
Información técnica **HAW562**

Descargadores de sobretensiones

para raíl DIN conforme a EN 60715

Aplicación

Las protecciones contra sobretensiones se utilizan para debilitar las corrientes residuales que se originan en las etapas de protección contra rayos ubicadas aguas arriba y para limitar los picos de sobretensión inducidos o generados por el sistema.

Las unidades HAW562 se utilizan principalmente en la automatización de procesos y en las tecnologías de medición y comunicación dentro del sector químico, farmacéutico, del tratamiento de aguas y aguas residuales, y en la industria alimentaria.

Ventajas

- Mayor disponibilidad de planta, ya que la protección contra sobretensiones se adapta perfectamente a los componentes electrónicos que intervienen en la automatización de procesos y en la tecnología de medición.
- Aplicación en zonas con peligro de explosión; homologaciones intrínsecamente seguras disponibles como opción.
- SIL2 (opcional)
- Puesta a tierra directa e indirecta del apantallamiento
- Protección de las inversiones intensivas en instrumentos de medición.
- A prueba de vibraciones y golpes según EN 60068-2

Diseño funcional y del sistema

Principio de funcionamiento

El descargador de sobretensiones HAW562 se utiliza para evitar que la sobretensión destruya los componentes electrónicos. Garantiza que las sobretensiones que se producen en los cables de señal (p. ej., 4 ... 20 mA), en las líneas de comunicación (buses de campo) y en las líneas eléctricas pasen de forma segura al suelo.

La funcionalidad del transmisor o del componente electrónico que se va a proteger no se ve afectada.

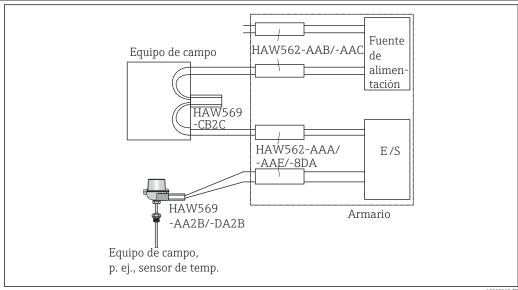
Funcionamiento de las unidades de protección de fuentes de alimentación:

Mediante la conexión sin impedancia de la unidad de protección se impide la entrada de caídas de tensión de interferencias en las líneas eléctricas.

Funcionamiento de las unidades de protección de cables de señal:

La baja impedancia equilibrada de desconexión entre las distintas etapas de protección de la unidad garantizan una elevada compatibilidad con el sistema a proteger.

Versiones disponibles


Para las líneas eléctricas:

- HAW562-AAB para proteger líneas eléctricas en las zonas sin peligro de explosión, rango de tensión de 10-55 V
- HAW562-AAC para proteger líneas eléctricas en las zonas sin peligro de explosión, rango de tensión de 90-230 V

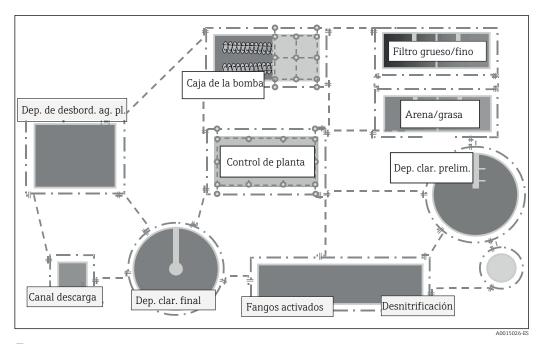
Para los cables de señal y las líneas de comunicación:

- Módulo HAW562-AAA para proteger los cables de señal en las zonas sin peligro de explosión
- Módulo HAW562-8DA con homologación Ex ia para proteger los cables de señal
- Módulo HAW562-AAD para proteger las líneas de comunicación (RS485, Modbus, Profibus DP) en las zonas sin peligro de explosión
- Módulo HAW562-AAE para proteger los equipos Prosonic FMU90 en zonas sin peligro de explosión

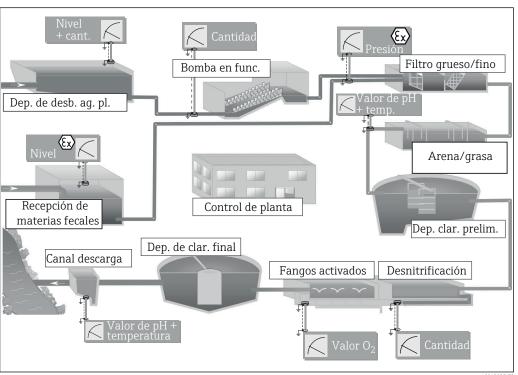
Instalación del sistema

A0015113-E

🖪 1 Visión general de la instalación del sistema, HAW562 y HAW569


Aplicación

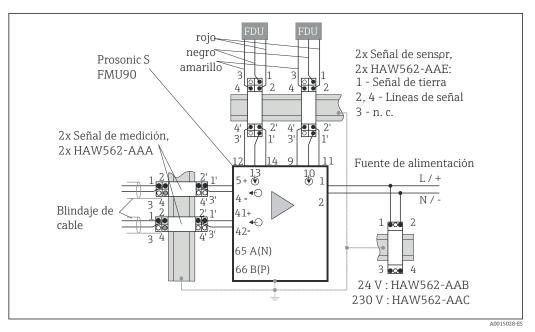
Protección contra sobretensiones para los diversos instrumentos de medición que se ven en el ejemplo de una planta de tratamiento de agua.


Las condiciones para instalar equipos de protección contra sobretensiones en una planta de tratamiento de aguas son:

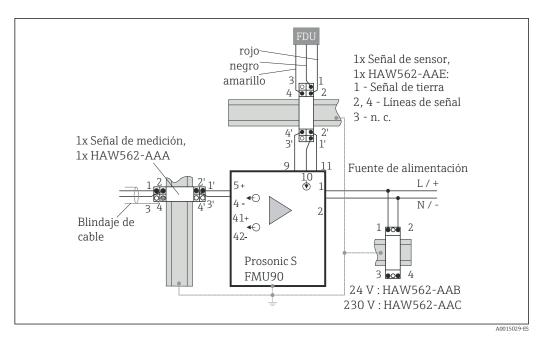
- Protección contra rayos de la planta y los edificios
- Protección contra rayos de los circuitos de distribución de tensión de alimentación principales en conformidad con las normativas locales
- Puesta a tierra de la base de baja impedancia
- Puesta a tierra conectada de todos los edificios y de la planta → 2, 3

2

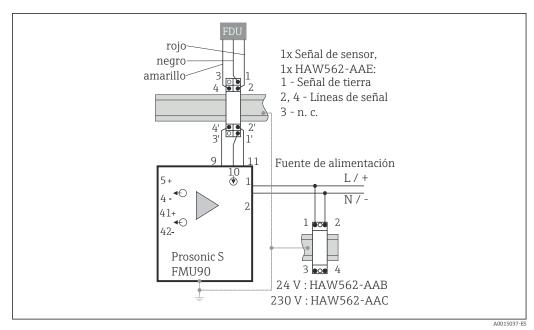
₽ 2 Puesta a tierra conectada (diagrama esquemático)

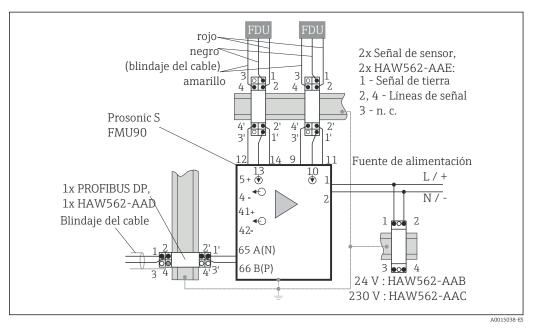


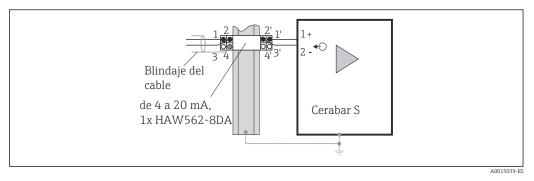
■ 3 Ejemplo de tratamiento de agua (diagrama esquemático)


Acondicionamiento de puntos de medición en una planta de tratamiento de aguas

	Muestra de un punto de medición	Requisitos de los puntos de medición	Diagrama de conexión
Depósitos de desbordamiento de aguas pluviales Nivel y cantidad del sobrellenado	 Medición de nivel: de 0/4 a 20 mA Medición de la cantidad del sobrellenado: de 0/4 a 20 mA Transductor Prosonic S FMU90 con 2 sensores Prosonic FDU9x 	 2 módulos HAW562-AAA para señal remota de 0/4 a 20 mA 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 2 módulos HAW562-AAE para el cable de señal del sensor 	Diagrama de conexión 1, → 1 4, 1 5
Sistema de bombeo Cantidad	Medición de la cantidad: de 0/4 a 20 mA Prosonic S FMU90 transductor con sensores de medición de nivel Prosonic FDU9x	 1 módulo HAW562-AAA para señales de 0/4 a 20 mA 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 1 módulo HAW562-AAE para el cable de señal del sensor 	Diagrama de conexión 2, → 💀 5, 🖺 5
Estación de bombeo	Medición de nivel Prosonic S FMU90 transductor con sensor de medición de nivel Prosonic FDU9x	 1 módulo HAW562-AAE para el cable de señal del sensor Utilice una puesta a tierra indirecta del apantallamiento. 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 	Diagrama de conexión 3, → 🖫 6, 🖺 6
Entrada de aguas residuales Nivel	Medición de nivel: Prosonic S FMU90 transductor con sensor de medición de nivel Prosonic FDU9x señal PROFIBUS DP	1 módulo HAW562-AAD para señal PROFIBUS DP.	Diagrama de conexión 4, → 1 5 6
Tubería Monitorización de presión de bomba intrínsecamente segura	Medición de presión: 4 a 20 mA Transmisor de presión Cerabar S	1 módulo HAW562-8DA para señal remota de 4 a 20 mA en zona con peligro de explosión.	Diagrama de conexión 5, → 🖻 8, 🖺 6
Depósito de clarificación prelim. a la entrada Valor de pH + temperatura	 Medición del valor de pH: de 0/4 a 20 mA Medición de temperaturas: de 0/4 a 20 mA Liquisys M CPM253 transmisor con sensores de medición CYA611 y CPS11 	 2 módulos HAW562-AAA para señal remota de 0/4 a 20 mA 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 	Diagrama de conexión 6, → 🖻 9, 🖺 7
Desnitrificación Cantidad de recirculación	Medición de caudal: de 0/4 a 20 mA Promag 50 W caudalímetro	 1 módulo HAW562-AAA para señal remota de 0/4 a 20 mA 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 	Diagrama de conexión 7, → 💀 10, 🖺 7
Depósito de activación Oxígeno disuelto	Medición del contenido de oxígeno: de 0/4 a 20 mA Liquisys M CPM253 transmisor con sensor de medición COS41	 1 módulo HAW562-AAA para señal remota de 0/4 a 20 mA 1 módulo HAW562-AAB o módulo HAW562-AAC para tensión de alimentación hasta el transductor 	Diagrama de conexión 2, $\rightarrow \square$ 5, \cong 5 y diagrama de conexión 7, $\rightarrow \square$ 10, \cong 7


	Muestra de un punto de medición	Requisitos de los puntos de medición	Diagrama de conexión
Canal de descarga Valor de pH y temperatura	Véase la clarificación prelim. a la entrada	Véase la clarificación prelim. a la entrada	Diagrama de conexión 1, $\rightarrow \blacksquare 4, \trianglerighteq 5$ y diagrama de conexión 6, $\rightarrow \blacksquare 9, \trianglerighteq 7$
Ejemplo de otras aplicaciones: Medición de caudal	P. ej., Coriolis Promass 84, 83, 80; T-mass, Prosonic 92 F o 91w, 93W	1 módulo HAW569-CB2C para la protección de la fuente de alimentación y el cable de señal	Ejemplo: Proline Prosonic Flow 91W, Diagrama de conexión 8, → 📵 11, 🗎 7


■ 4 Diagrama de conexión 1: Medición de nivel con Prosonic S FMU90 con 2 sensores de nivel Prosonic FDU9x


🗷 5 Diagrama de conexión 2: Medición de nivel con Prosonic S FMU90 con sensor de nivel Prosonic FDU9x

🛮 6 Diagrama de conexión 3: Medición de nivel con Prosonic S FMU90 con sensor de nivel Prosonic FDU9x

🖪 7 Diagrama de conexión 4: Medición de nivel con señal PROFIBUS DP

🛮 8 Diagrama de conexión 5: Medición de la presión con el transmisor de presión Cerabar S

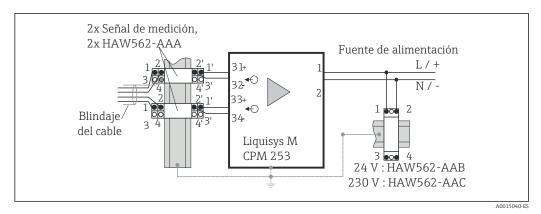
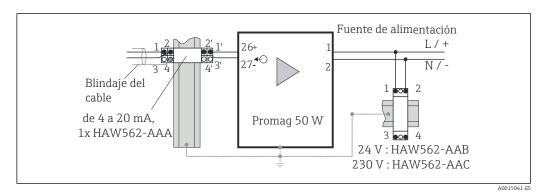
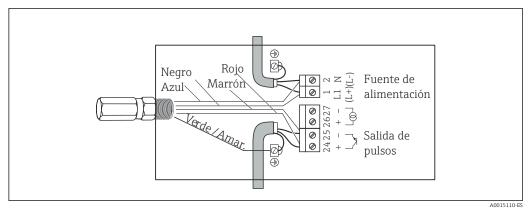
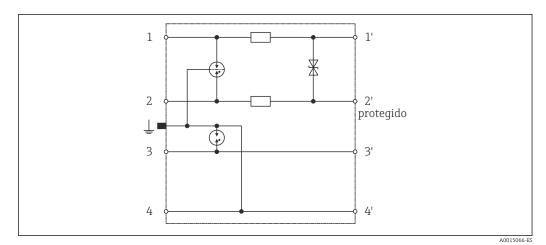




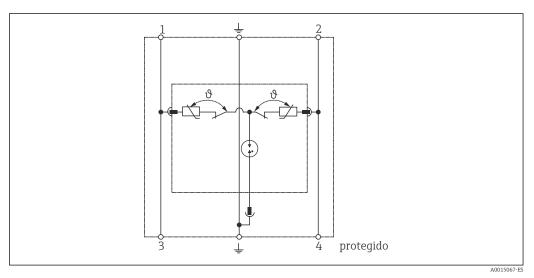
Diagrama de conexión 6: Medición del valor de pH y de la temperatura con los sensores de medición M CPM253 con CYA611 y CPS11

🛮 10 Diagrama de conexión 7: Medición del caudal con Promag 50 W

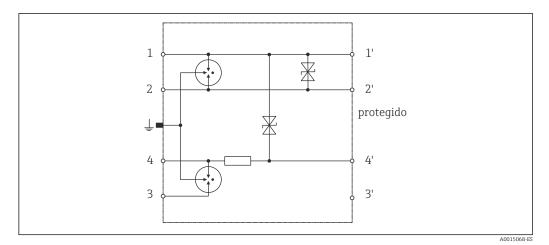


🖻 11 Diagrama de conexión 8: Medición del caudal, p. ej., Coriolis Promass 84, 83, 80; T-mass, Prosonic 92 F o 91w, 93W

Alimentación

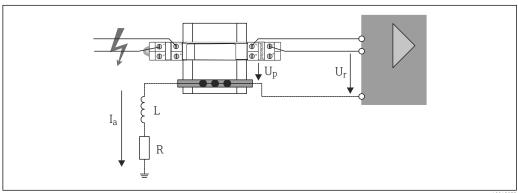

Conexión eléctrica

HAW562-AAA, HAW562-AAD, HAW562-8DA

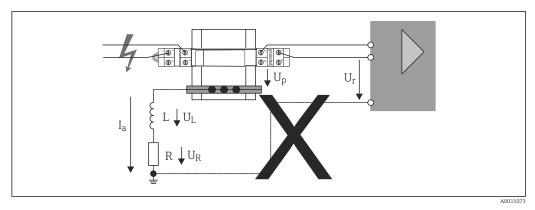

■ 12 Circuitos internos HAW562-AAA, HAW562-AAD y HAW562-8DA

HAW562-AAB, HAW562-AAC

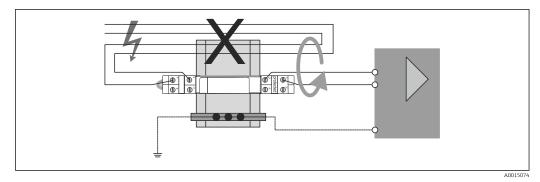
■ 13 Circuitos internos HAW562-AAB y HAW562-AAC


HAW562-AAE

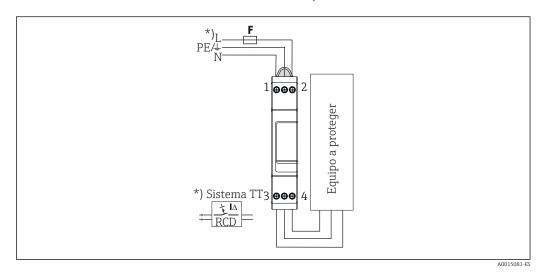
Circuito interno HAW562-AAE


Instrucciones para el conexionado

Instalación correcta: HAW562-AAA, -AAD, -AAE, -8DA


■ 15 Instalación correcta de HAW562-AAA, -AAD, -AAE, -8DA; las L y R del cable no influyen en U_r ; $U_p = U_r$; transferencia de corriente I_a

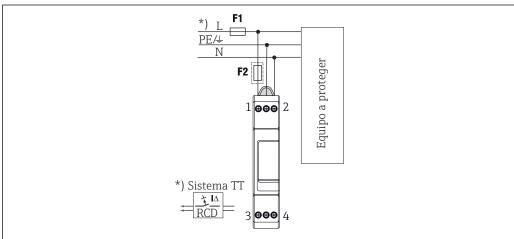
Instalación incorrecta 1: HAW562-AAA, -AAD, -AAE, -8DA


Instalación incorrecta 1: HAW562-AAA, -AAD, -AAE y -8DA; las L y R del cable empeoran U_r ; $U_r = U_p + 1$ $U_R + U_L$; transferencia de corriente I_a

Instalación incorrecta 2: HAW562-AAA, -AAD, -AAE, -8DA

■ 17 Instalación incorrecta 2: HAW562-AAA, -AAD, -AAE, -8DA; debido a la instalación incorrecta de los cables, la interferencia se transfiere de los cables desprotegidos a los protegidos.

Instalación correcta 1: cableado en serie HAW562-AAB, -AAC



■ 18 Cableado en serie de HAW562-AAB, HAW562-AAC

El interruptor de circuito por falla a tierra debe venir suministrado con el sistema TT.

Si se elige un cableado en serie, el fusible de protección debe ser $F \le 25$ A gG. Para los fusibles de protección F > 25 A, debe elegirse un cableado en paralelo.

Instalación correcta 2: cableado en paralelo de HAW562-AAB, -AAC

■ 19 Cableado en paralelo de HAW562-AAB, HAW562-AAC

10 Endress+Hauser

A0015082-E

El interruptor de circuito por falla a tierra debe venir suministrado con el sistema TT.

Debe suministrarse un segundo fusible de protección $F2 \le 25$ A gG para el fusible de protección F1 > 25 A gG. Para los fusibles de protección $F1 \le 25$ A gG no es necesario un segundo fusible de protección F2.

Clase SPD

HAW562					
-AAA	-AAB	-AAC	-AAD	-AAE	-8DA
Tipo 1 P1	Tipo 3 P3			Tipo 1 P1	

Tensión de alimentación

Tensión nominal

HAW562					
-AAA	-AAB	-AAC	-AAD	-AAE	-8DA
24 V	60 V	230 V	5 V	Terminal 4: 12 V DC Terminal 2: 80 V DC	24 V

Tensión continua máxima

	HAW562					
	-AAA	-AAB	-AAC	-AAD	-AAE	-8DA
CC:	33,0 V	75 V	255 V	6,0 V	Terminal 4:	33,0 V
CA:	23,3 V			4,2 V	15,0 V DC Terminal 2: 180 V DC	23,3 V

Consumo de corriente

	HAW562					
	-AAA	-AAB	-AAC	-AAD	-AAE	-8DA
Corriente nominal $[I_L]$	1,0 A	25 A	25 A	1,0 A	Terminal 4: 0,45 A Terminal 2: 3 A	500 mA a T _{amb} 80 °C (176 °F)
Corriente de descarga nominal C2 $[I_n]$ (8/20) por línea	10 kA	2 kA	3 kA	10 kA	10 kA	5 kA
Corriente de descarga nominal C2 $\left[I_n\right]$ (8/20) total	20 kA	4 kA	5 kA	20 kA	20 kA	10 kA
Capacidad de resistencia a cortocircuitos en la protección de sobreintensidades del lado de la red con 25 A gL/gG (I _{SCCR})		6 kA _{eff}	6 kA _{eff}			
Corriente de pico por rayo D1 [I _{imp}] (10/350) para cada línea	2,5 kA			2,5 kA	2,5 kA	1 kA
Corriente de pico por rayo D1 [I _{imp}] (10/350) total	9 kA			9 kA	7,5 kA	2 kA

Nivel de protección contra tensiones

	HAW562	HAW562							
	-AAA	-AAB	-AAC	-AAD	-AAE	-8DA			
Línea/línea	≤ 52 V a I _{imp}	L - N: ≤ 400 V	L - N: ≤ 1250 V	≤ 25 V		≤ 52 V			
Línea/PG	≤ 550 V a I _{imp}	L/N - PE: ≤ 730 V	L/N - PE: ≤ 1500 V	≤ 550 V	≤ 600 V	≤ 1400 V			

Tiempos de respuesta

		HAW562							
	-AAA	-AAB	-AAC	-AAD	-AAE	-8DA			
Línea/línea	≤ 1 ns	L - N: ≤ 25 ns	L - N: ≤ 25 ns	≤ 1 ns	≤ 1 ns	≤ 1 ns			
Línea/PG	≤ 100 ns	L/N - PE: ≤ 100 ns	L/N - PE: ≤ 100 ns	≤ 100 ns	≤ 100 ns	≤ 100 ns			

Frecuencia límite

HAW562						
-AAA	-AAB	-AAC	-AAD	-AAE	-8DA	
7,8 MHz			100 MHz	Terminal 4: 2 MHz Terminal 2: 15 MHz	7,7 MHz (50 Ohm) 3,2 MHz (100 Ohm)	

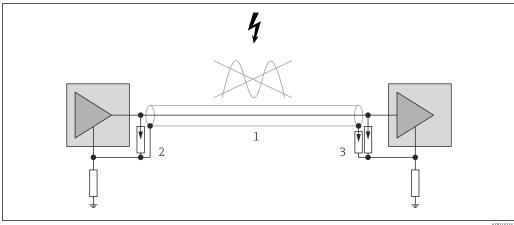
Impedancia en serie para cada línea

	HAW562						
-AAA	-AAB	-AAC	-AAD	-AAE	-8DA		
1,0 Ohm	-	-	1,0 Ohm	Terminal 4: 1,8 Ohm Terminal 1+2: conectado directamente	1,0 Ohm		

Capacitancia

		HAW562				
	-AAA	-AAB	-AAC	-AAD	-AAE	-8DA
Línea/línea	≤ 1,0 nF	-	-	≤ 25 pF	-	≤ 0,8 nF
Línea/PG	≤ 25 pF	-	-	≤ 25 pF	-	≤ 16 pF

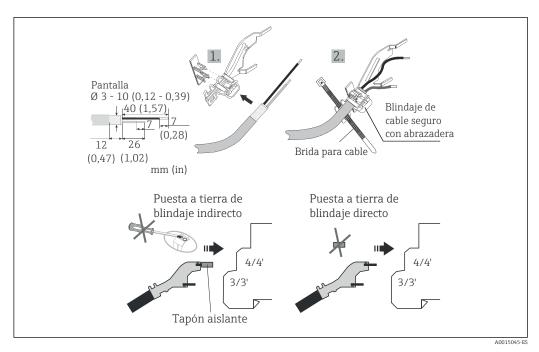
Protección máxima contra sobreintensidades del lado de la línea


Solo para unidades de tipo HAW562-AAB y HAW562-AAC:

25 A gG o B 25 A

Puesta a tierra de apantallamiento

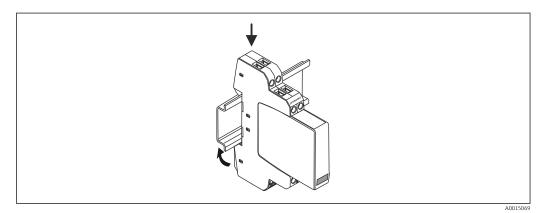
Como norma general, el apantallamiento del cable debe conectarse a tierra en su totalidad. El apantallamiento debe conectarse a tierra mediante una puesta a tierra directa del apantallamiento al menos en ambos extremos del cable.


Si no es posible o no se desea una puesta a tierra directa del apantallamiento en ambos extremos, p. ej., para evitar corrientes residuales de baja frecuencia, se debe proporcionar una conexión a tierra indirecta del apantallamiento en un extremo. De este modo se evitan las corrientes residuales, pero se siguen cumpliendo los requisitos de compatibilidad electromagnética (EMC). La puesta a tierra del apantallamiento tiene lugar mediante un tubo de descarga de gases instalado en el módulo de protección contra sobretensiones.

№ 20 Puesta a tierra directa e indirecta del apantallamiento

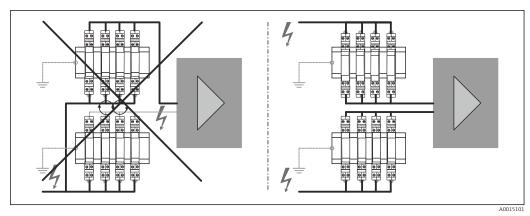
- Blindaje de cables
- Puesta a tierra directa del apantallamiento 2
- Puesta a tierra indirecta del apantallamiento

Es posible obtener una puesta a tierra del apantallamiento tanto directa como indirecta mediante el terminal de puesta a tierra para apantallamientos, que está disponible como accesorio (excepto para HAW562-AAB, -AAC y -AAE). La tira de aislamiento que se incluye en el suministro viene colocada en uno de las dos patillas de conexión. De este modo, la patilla libre proporciona la toma a tierra del apantallamiento.


 \blacksquare 21 Puesta a tierra del apantallamiento con HAW562

Instalación

Instrucciones de instalación

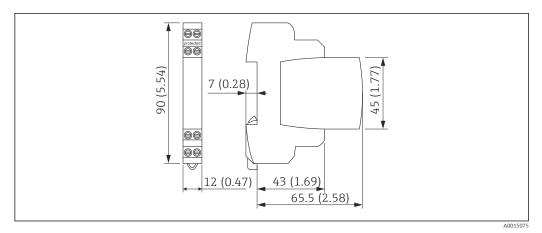

Lugar de instalación

Instalación en un raíl de fijación superior de 35 mm según EN 60715

 \blacksquare 22 Instalación en un raíl de fijación superior, ejemplo en el esquema

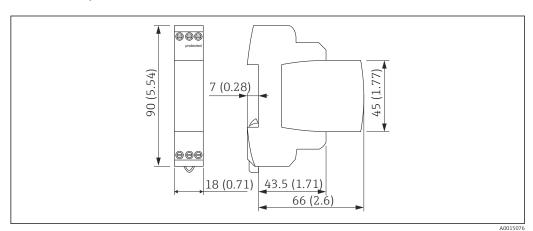
Instalación de múltiples unidades

■ 23 Instalación de múltiples unidades


Entorno

Rango de temperatura ambiente	−40 +80 °C (−40 +176 °F)
Humedad	5 95 %
Temperatura de almacenamiento	Véase "Rango de temperaturas ambiente"
Grado de protección	IP 20

Construcción mecánica


Dimensiones

HAW562-AAA, HAW562-AAD, HAW562-AAE, HAW562-8DA

■ 24 Dimensiones en mm (dimensiones en pulgadas entre paréntesis)

HAW562-AAB, HAW562-AAC

Dimensiones en mm (dimensiones en pulgadas entre paréntesis)

Peso

HAW562-AAA, HAW562-AAD, HAW562-AAE, HAW562-8DA	HAW562-AAB, HAW562-AAC
60 g (2,12 oz.)	130 g (4,59 oz.)

Material

HAW562-AAA, HAW562-AAD, HAW562-AAE, HAW562-8DA	HAW562-AAB, HAW562-AAC
Poliamida PA 6.6	Termoplástico UL 94 V-0

Terminales

	HAW562-AAA, HAW562-AAD, HAW562-AAE, HAW562-8DA	HAW562-AAB, HAW562-AAC
Cables con un hilo	0,08 4 mm ² (28 12 AWG)	0,5 4 mm ² (21 12 AWG)
Cables con múltiples hilos	0,08 2,5 mm ² (28 14 AWG)	0,5 2,5 mm ² (21 14 AWG)

Interfaz de usuario

Elementos del indicador

HAW562-AAB/HAW562-AAC

Indicación verde (= funcional) en la ventana del indicador. El sistema de monitorización térmica integrado controla la transferencia de energía de las unidades. En caso de fallo (= ventana del indicador en rojo, equivale a sobrecarga térmica), este sistema de monitorización separará automáticamente la protección contra sobretensiones de la fuente de alimentación.

El resto de unidades HAW562 no cuentan con elementos de indicación.

AVISO

Protección contra sobretensiones defectuosa

En este caso, las unidades conectadas ya no estarán protegidas contra sobretensiones.

► Sustituya la protección contra sobretensiones inmediatamente.

HAW562-AAA, HAW562-AAD, HAW562-AAE, HAW562-8DA

Estas unidades no están dotadas de elementos de indicación.

AVISO

Protección contra sobretensiones defectuosa

Cortocircuito en el cable de señal.

► El cortocircuito se corrige cuando el módulo de protección defectuoso se extrae del soporte. Las unidades conectadas ya no estarán protegidas contra sobretensiones. Sustituya la protección contra sobretensiones inmediatamente.

Certificados y homologaciones

Marca CE

El sistema de medición satisface los requisitos legales de las Directivas CE. Endress+Hauser confirma que el equipo ha superado satisfactoriamente las pruebas correspondientes, por lo que lo identifica con la marca CE.

Certificación Ex

Puede obtener bajo demanda información sobre las versiones Ex actualmente disponibles (ATEX, FM, CSA, etc.) dirigiéndose al centro de ventas de E+H de su zona. Los datos relativos a la protección contra explosiones se han recopilado en un documento separado que puede adquirirse a petición.

Otras normas y directrices

- IEC 61010:
- Requisitos de seguridad de equipos eléctricos de medida, control y uso en laboratorio
- IEC 61326:

Compatibilidad electromagnética (requisitos EMC)

HAW562-AAB / -AAC	HAW562-AAA / -AAD / -AAE / -8DA	
IEC 61643-1	IEC 61643-21:1999-07	
EN 61643-11	A2, B2, C2, C3, D1	

Datos para realizar su pedido

Para obtener información detallada sobre las referencias disponibles, puede consultar:

- El Configurador de Producto de la página Web de Endress+Hauser: www.endress.com → Seleccione un país → Instruments → Seleccione un instrumento → Product page function: Configure this product
- La oficina de Ventas de Endress+Hauser más cercana: www.endress.com/worldwide

i

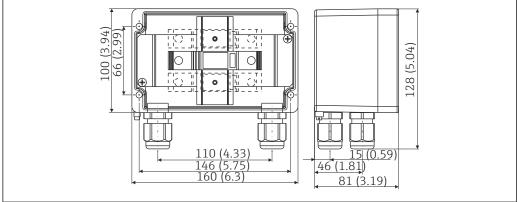
Configurador de Producto: la herramienta para la configuración individual de productos

- Datos de configuración actualizados
- En función del dispositivo, entrada directa de información específica del punto de medida, tal como el rango de medida o el idioma de trabajo
- Comprobación automática de criterios de exclusión
- Creación automática de la referencia (order code) y su desglose en formato PDF o Excel
- Posibilidad de realizar un pedido en la tienda online de Endress+Hauser

Accesorios

Terminal de puesta a tierra de apantallamiento

Solo para HAW562-AAA, HAW562-AAD y HAW562-8DA, → 🖺 12.

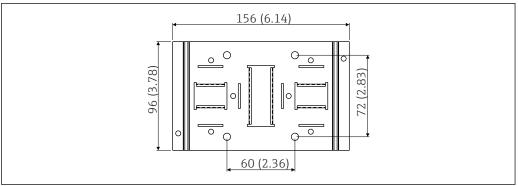

Solicítelo como opción adicional en la estructura de pedido del producto para HAW562 o por separado mediante el código de producto: RK01-AN

Para montaje en campo

Caja de protección con raíl de soporte integrado para instalar hasta cuatro equipos HAW562:

Raíl DIN integrado; conexión a tierra; filtro de Goretex®; 2 tornillos de precintado y 4 entradas de cable M20 de plástico; material: aluminio moldeado, recubrimiento de epoxy, grado de protección IP 66/NEMA4x.

Solicítelo como opción adicional en la estructura de pedido del producto para HAW562 o por separado mediante el código de producto: RKO1-AO


■ 26 Dimensiones en mm (dimensiones en pulgadas entre paréntesis)

Soporte de montaje para instalar la caja de protección en una pared o tubería:

Solicítelo como opción adicional en la estructura de pedido del producto para HAW562 o por separado mediante el código de producto: RK01-AP

Endress+Hauser 17

A0015043

■ 27 Dimensiones en mm (dimensiones en pulgadas entre paréntesis)

A0015044

Documentación

- Catálogo "Componentes del sistema: Indicadores con unidad de control para montaje en campo y en armario, fuentes de alimentación, barreras, transmisores, contadores energéticos y protección contra sobretensiones' (FA016K/09)
- Manual de instrucciones HAW562-AAB, HAW562-AAC (BA00302K/09/a2)
- Manual de instrucciones HAW562-AAA, HAW562-AAD, HAW562-8DA (BA00303K/09/a2)
- Manual de instrucciones HAW562-AAE (BA00306K/09/a2)
- Documentación suplementaria relacionada con Ex: ATEX / IECEX II (1)GD [Ex ia] IIC: XA01002K/09/a3

www.addresses.endress.com