
Valid as of version 01.03.zz (Device firmware)

Operating Instructions **Proline Promass S 100**

Coriolis flowmeter Modbus RS485

- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser Sales Center will supply you with current information and updates to these instructions.

Table of contents

1	About this document 5		6.1.2 Requirements from environment and	
1.1 1.2	Document function5Symbols used51.2.1 Safety symbols51.2.2 Electrical symbols51.2.3 Tool symbols5	6.2	process	22 23 23 23
	1.2.4 Symbols for certain types of information 6	6.3	6.2.3 Mounting the measuring device Post-installation check	
1.3	1.2.5 Symbols in graphics 6 Documentation 6	7	Electrical connection	25
1.4	1.3.1 Standard documentation	7.1	Connection conditions	25 25 26
2	Basic safety instructions 8		7.1.4 Pin assignment, device plug7.1.5 Shielding and grounding	
2.1 2.2 2.3 2.4 2.5 2.6	Requirements for the personnel 8 Designated use 8 Workplace safety 9 Operational safety 9 Product safety 9 IT security 10	7.2 7.3	7.1.6 Preparing the measuring device	30 31 32 33 33
3	Product description 11	7.4	7.3.1 Connection examples Ensuring the degree of protection	
3.1	Product design	7.5	Post-connection check	
	communication type 11	8	Operation options	36
4	Incoming acceptance and product	8.1 8.2	Overview of operating options Structure and function of the operating	36
	identification		menu	37
4.1 4.2	Incoming acceptance12Product identification124.2.1 Transmitter nameplate134.2.2 Sensor nameplate144.2.3 Promass 100 safety barrier nameplate154.2.4 Symbols on measuring device15	8.3	8.2.1 Structure of the operating menu	37 38 38 38 39 41
5	Storage and transport 16	9	3	42
5.1 5.2 5.3 6	Storage conditions	9.1	Overview of device description files	42 42 42 43 43 43 44
J. T	6.1.1 Mounting position	10	Commissioning	47
		10.1	Function check	47

10.2 10.3 10.4	Connecting via FieldCare	47 47		Event logbook	
	 10.4.4 Configuring the communication interface				77
10 F	detection	55	13	Maintenance	80
10.5	Advanced settings	56 56	13.1	Maintenance tasks	80
	10.5.2 Calculated values		13.2 13.3	13.1.2 Interior cleaning	80
	10.5.5 Using parameters for device administration	60	14	Repairs	ឧ1
10.6 10.7	Simulation	60 61	14.1	General notes	81 81
	switch	61	14.2 14.3	Spare parts	
11	Operation	63	14.4	Return	
11.1 11.2 11.3	Reading the device locking status	63 63	14.5	Disposal	82
	11.3.2 "Totalizer" submenu		15	Accessories	83
11.4 11.5	Adapting the measuring device to the process conditions	66 66 67	15.1 15.2 15.3 15.4	Device-specific accessories	83 83 83
	totalizers" parameter	67	16	Technical data	85
12	Diagnostics and troubleshooting	68	16.1	Application	
12.1 12.2	General troubleshooting		16.2 16.3 16.4	Function and system design	85
	diodes	69		Power supply	88
12.3	Diagnostic information in DeviceCare or FieldCare	69	16.8	Environment	
12.4	12.3.1 Diagnostic options		16.11 16.12	Mechanical construction	96 98 99
12.5	12.4.1 Reading out diagnostic information	71 71 72	16.14	Accessories	100 101 101
12.6	12.5.1 Adapting the diagnostic behavior Overview of diagnostic information	72 72	Index	x 1	L 02
12.7	Pending diagnostic events	74			
12.8	Diagnostic list	75			

1 About this document

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols used

1.2.1 Safety symbols

Symbol	ol Meaning	
DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situat result in serious or fatal injury.		
WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.		
▲ CAUTION	CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.	
NOTICE	NOTE! This symbol contains information on procedures and other facts which do not result in personal injury.	

1.2.2 Electrical symbols

Symbol	Meaning	
===	Direct current	
~	Alternating current	
$\overline{\sim}$	Direct current and alternating current	
-	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.	
	Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections.	
	The ground terminals are situated inside and outside the device: Inner ground terminal: Connects the protectiv earth to the mains supply. Outer ground terminal: Connects the device to the plant grounding system.	

1.2.3 Tool symbols

Symbol	Meaning
0 6	Allen key
Ŕ	Open-ended wrench

1.2.4 Symbols for certain types of information

Symbol	Meaning	
✓	Permitted Procedures, processes or actions that are permitted.	
✓ ✓	Preferred Procedures, processes or actions that are preferred.	
X	Forbidden Procedures, processes or actions that are forbidden.	
i	Tip Indicates additional information.	
	Reference to documentation.	
A=	Reference to page.	
	Reference to graphic.	
•	Notice or individual step to be observed.	
1., 2., 3	Series of steps.	
L	Result of a step.	
?	Help in the event of a problem.	
	Visual inspection.	

1.2.5 Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
×	Safe area (non-hazardous area)
≋➡	Flow direction

1.3 Documentation

- For an overview of the scope of the associated Technical Documentation, refer to the following:
 - The W@M Device Viewer: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
 - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.
- For a detailed list of the individual documents along with the documentation code

1.3.1 Standard documentation

Document type	Purpose and content of the document
Technical Information	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.
Sensor Brief Operating Instructions	Guides you quickly to the 1st measured value - Part 1 The Sensor Brief Operating Instructions are aimed at specialists with responsibility for installing the measuring device.
	Incoming acceptance and product identificationStorage and transportInstallation
Transmitter Brief Operating Instructions	Guides you quickly to the 1st measured value - Part 2 The Transmitter Brief Operating Instructions are aimed at specialists with responsibility for commissioning, configuring and parameterizing the measuring device (until the first measured value).
	 Product description Installation Electrical connection Operation options System integration Commissioning Diagnostic information
Description of Device Parameters	Reference for your parameters The document provides a detailed explanation of each individual parameter in the Expert operating menu. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations. The document provides Modbus-specific information for each individual parameter in the Expert operating menu.

1.3.2 Supplementary device-dependent documentation

Additional documents are supplied depending on the device version ordered: Always comply strictly with the instructions in the supplementary documentation. The supplementary documentation is an integral part of the device documentation.

1.4 Registered trademarks

Modbus[®]

Registered trademark of SCHNEIDER AUTOMATION, INC.

Microsoft®

Registered trademark of the Microsoft Corporation, Redmond, Washington, USA

TRI-CLAMP®

Registered trademark of Ladish & Co., Inc., Kenosha, USA

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task.
- ► Are authorized by the plant owner/operator.
- ► Are familiar with federal/national regulations.
- ▶ Before starting work, read and understand the instructions in the manual and supplementary documentation as well as the certificates (depending on the application).
- ▶ Follow instructions and comply with basic conditions.

The operating personnel must fulfill the following requirements:

- ► Are instructed and authorized according to the requirements of the task by the facility's owner-operator.
- ▶ Follow the instructions in this manual.

2.2 Designated use

Application and media

The measuring device described in these Brief Operating Instructions is intended only for flow measurement of liquids.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas, in hygienic applications or where there is an increased risk due to process pressure, are labeled accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ► Keep within the specified pressure and temperature range.
- ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ▶ Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ► Use the measuring device only for media to which the process-wetted materials are sufficiently resistant.
- ▶ If the measuring device is not operated at atmospheric temperature, compliance with the relevant basic conditions specified in the associated device documentation is absolutely essential: "Documentation" section → 🖺 6.
- ► Protect the measuring device permanently against corrosion from environmental influences.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

A WARNING

Danger of breakage due to corrosive or abrasive fluids!

- ▶ Verify the compatibility of the process fluid with the sensor material.
- ► Ensure the resistance of all fluid-wetted materials in the process.
- ▶ Keep within the specified pressure and temperature range.

NOTICE

Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

A WARNING

The electronics and the medium may cause the surfaces to heat up. This presents a burn hazard!

► For elevated fluid temperatures, ensure protection against contact to prevent burns.

2.3 Workplace safety

For work on and with the device:

► Wear the required personal protective equipment according to federal/national regulations.

For welding work on the piping:

▶ Do not ground the welding unit via the measuring device.

If working on and with the device with wet hands:

▶ Due to the increased risk of electric shock, gloves must be worn.

2.4 Operational safety

Risk of injury.

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability,

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to repair of an electrical device.
- ▶ Use original spare parts and accessories from Endress+Hauser only.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

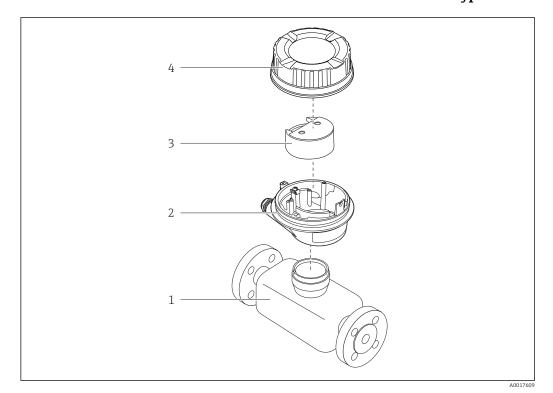
It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

2.6 IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

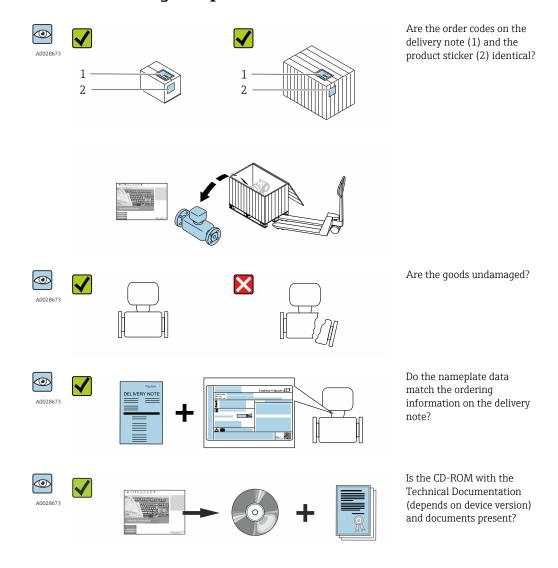
3 Product description


The device consists of a transmitter and a sensor. The Safety Barrier Promass 100 is part of the scope of supply and must be implemented to operate the device.

The device is available as a compact version:

The transmitter and sensor form a mechanical unit.

3.1 Product design


3.1.1 Device version with Modbus RS485 communication type

- $\blacksquare 1$ Important components of a measuring device
- 1 Sensor
- 2 Transmitter housing
- 3 Main electronics module
- 4 Transmitter housing cover
- In the case of the device version with Modbus RS485 intrinsically safe, the Safety Barrier Promass 100 forms part of the scope of supply.

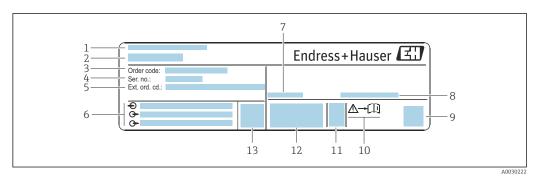
4 Incoming acceptance and product identification

4.1 Incoming acceptance

- If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.
- Depending on the device version, the CD-ROM might not be part of the delivery! The Technical Documentation is available via the Internet or via the *Endress+Hauser Operations App*, see the "Product identification" section →

 13.

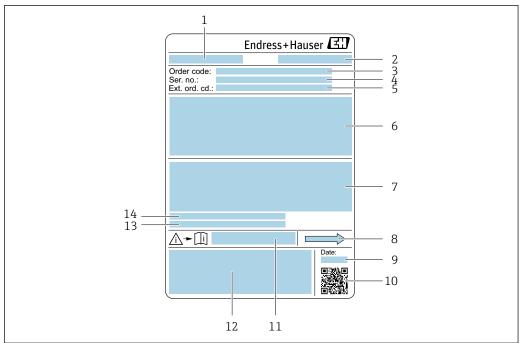
4.2 Product identification


The following options are available for identification of the measuring device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All information about the measuring device is displayed.
- Enter the serial number from the nameplates into the *Endress+Hauser Operations App* or scan the 2-D matrix code (QR code) on the nameplate with the *Endress+Hauser Operations App*: all the information for the measuring device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The chapters "Additional standard documentation on the device" \rightarrow \blacksquare 7 and "Supplementary device-dependent documentation" \rightarrow \blacksquare 7
- The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.


4.2.1 Transmitter nameplate

■ 2 Example of a transmitter nameplate

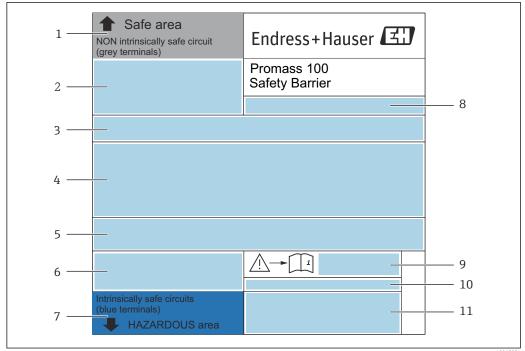
- 1 Manufacturing location
- 2 Name of the transmitter
- 3 Order code
- 4 Serial number (ser. no.)
- 5 Extended order code (Ext. ord. cd.)
- 6 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 7 Permitted ambient temperature (T_a)
- 8 Degree of protection
- 9 2-D matrix code
- 10 Document number of safety-related supplementary documentation
- 11 Manufacturing date: year-month
- 12 CE mark, C-Tick
- 13 Firmware version (FW)

4.2.2 Sensor nameplate

A00291

■ 3 Example of a sensor nameplate

- 1 Name of the sensor
- 2 Manufacturing location
- 3 Order code
- 4 Serial number (ser. no.)
- 5 Extended order code (Ext. ord. cd.)
- 6 Nominal diameter of the sensor; flange nominal diameter/nominal pressure; sensor test pressure; medium temperature range; material of measuring tube and manifold; sensor-specific information: e.g. pressure range of secondary containment, wide-range density specification (special density calibration)
- 7 Approval information for explosion protection, Pressure Equipment Directive and degree of protection
- 8 Flow direction
- 9 Manufacturing date: year-month
- 10 2-D matrix code
- 12 CE mark, C-Tick
- 13 Surface roughness
- 14 Permitted ambient temperature (T_a)


Order code

The measuring device is reordered using the order code.

Extended order code

- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

4.2.3 Promass 100 safety barrier nameplate

A0017854

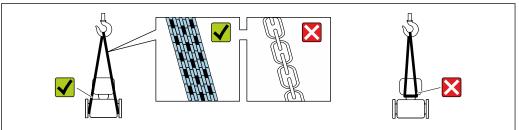
- € 4 Example of a Promass 100 safety barrier nameplate
- 1 Non-hazardous area or Zone 2/Div. 2
- Serial number, material number and 2-D matrix code of the Promass 100 safety barrier 2
- 3 Electrical connection data, e.g. available inputs and outputs, supply voltage
- Approval information for explosion protection
- Safety warning
- Communication-specific information 6
- Intrinsically safe area
- 8 Manufacturing location
- 10 Permitted ambient temperature (T_a)
- CE mark, C-Tick

4.2.4 Symbols on measuring device

Symbol	Meaning	
WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can resul or fatal injury.		
Reference to documentation Refers to the corresponding device documentation.		
	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.	

5 Storage and transport

5.1 Storage conditions


Observe the following notes for storage:

- ▶ Store in the original packaging to ensure protection from shock.
- ▶ Do not remove protective covers or protective caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.
- ▶ Protect from direct sunlight to avoid unacceptably high surface temperatures.
- ▶ Store in a dry and dust-free place.
- ▶ Do not store outdoors.

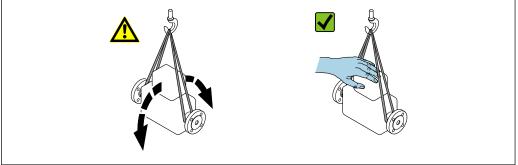
Storage temperature

5.2 Transporting the product

Transport the measuring device to the measuring point in the original packaging.

A002925

Do not remove protective covers or caps installed on process connections. They prevent mechanical damage to the sealing surfaces and contamination in the measuring tube.


5.2.1 Measuring devices without lifting lugs

MARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- Secure the measuring device against slipping or turning.
- ▶ Observe the weight specified on the packaging (stick-on label).

A0029214

5.2.2 Measuring devices with lifting lugs

A CAUTION

Special transportation instructions for devices with lifting lugs

- ▶ Only use the lifting lugs fitted on the device or flanges to transport the device.
- ▶ The device must always be secured at two lifting lugs at least.

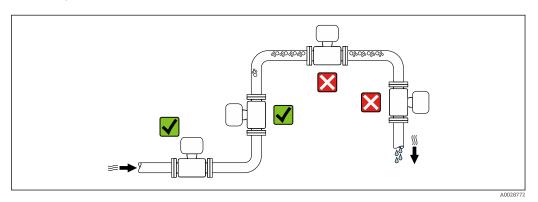
5.2.3 Transporting with a fork lift

If transporting in wood crates, the floor structure enables the crates to be lifted lengthwise or at both sides using a forklift.

5.3 Packaging disposal

All packaging materials are environmentally friendly and 100% recyclable:

- Measuring device secondary packaging: polymer stretch film that conforms to EC Directive 2002/95/EC (RoHS).
- Packaging:
 - Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.
 - Carton in accordance with European Packaging Directive 94/62EC; recyclability is confirmed by the affixed RESY symbol.
- Seaworthy packaging (optional): Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.
- Carrying and mounting hardware:
 - Disposable plastic pallet
 - Plastic straps
 - Plastic adhesive strips
- Dunnage: Paper cushion

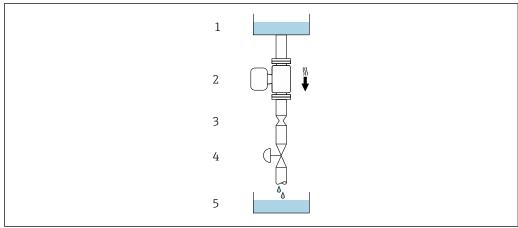

6 Installation

6.1 Installation conditions

No special measures such as supports are necessary. External forces are absorbed by the construction of the device.

6.1.1 Mounting position

Mounting location



To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

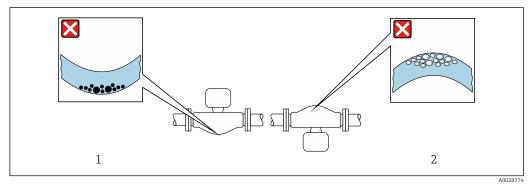
However, the following installation suggestion allows for installation in an open vertical pipeline. Pipe restrictions or the use of an orifice with a smaller cross-section than the nominal diameter prevent the sensor running empty while measurement is in progress.

A0028773

- 5 Installation in a down pipe (e.g. for batching applications)
- 1 Supply tank
- 2 Sensor
- 3 Orifice plate, pipe restriction
- 4 Valve
- 5 Batching tank

18

DN		Ø orifice plate, pipe restriction	
[mm]	[in]	[mm]	[in]
8	3/8	6	0.24
15	1/2	10	0.40
25	1	14	0.55
40	1½	22	0.87
50	2	28	1.10


Orientation

The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

	Orientatio	Recommendation	
A	Vertical orientation	A0015591	✓
В	Horizontal orientation, transmitter at top	A0015589	Exceptions: $\rightarrow \bigcirc 6, \bigcirc 19$
С	Horizontal orientation, transmitter at bottom	A0015590	Exceptions: $\rightarrow \blacksquare 6, \blacksquare 19$
D	Horizontal orientation, transmitter at side	A0015592	\checkmark

- Applications with low process temperatures may decrease the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

If a sensor is installed horizontally with a curved measuring tube, match the position of the sensor to the fluid properties.

■ 6 Orientation of sensor with curved measuring tube

- 1 Avoid this orientation for fluids with entrained solids: Risk of solids accumulating.
- 2 Avoid this orientation for outgassing fluids: Risk of gas accumulating.

Inlet and outlet runs

No special precautions need to be taken for fittings which create turbulence, such as

Installation dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section.

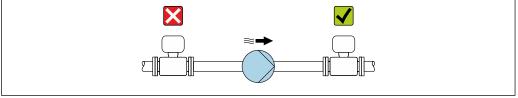
6.1.2 Requirements from environment and process

Ambient temperature range

Measuring device	 -40 to +60 °C (-40 to +140 °F) Order code for "Test, certificate", option JM: -50 to +60 °C (-58 to +140 °F)
Safety Barrier Promass 100	-40 to +60 °C (-40 to +140 °F)

► If operating outdoors: Avoid direct sunlight, particularly in warm climatic regions.

System pressure


It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas.

Cavitation is caused if the pressure drops below the vapor pressure:

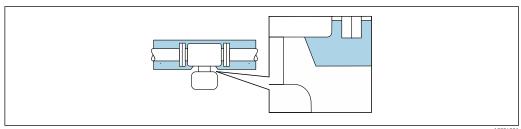
- In liquids that have a low boiling point (e.g. hydrocarbons, solvents, liquefied gases)
- In suction lines
- ► Ensure the system pressure is sufficiently high to prevent cavitation and outgassing.

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

Thermal insulation

In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.


The following device versions are recommended for versions with thermal insulation: Version with extended neck for insulation:

Order code for "Sensor option", option ${\bf CG}$ with an extended neck length of 105 mm (4.13 in).

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, transmitter housing pointing downwards.
- ▶ Do not insulate the transmitter housing .
- ▶ Maximum permissible temperature at the lower end of the transmitter housing: $80 \,^{\circ}\text{C} (176 \,^{\circ}\text{F})$
- ► Thermal insulation with extended neck free: the insulation is omitted around the extended neck. We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

■ 7 Thermal insulation with extended neck free

A0034391

Heating

NOTICE

Electronics can overheat due to elevated ambient temperature!

- ▶ Observe maximum permitted ambient temperature for the transmitter .
- ► Depending on the fluid temperature, take the device orientation requirements into account .

NOTICE

Danger of overheating when heating

- ▶ Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 $^{\circ}$ C (176 $^{\circ}$ F).
- ► Ensure that convection takes place on a sufficiently large scale at the transmitter neck.
- ► Ensure that a sufficiently large area of the housing support remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.

Heating options

If a fluid requires that no heat loss should occur at the sensor, users can avail of the following heating options:

- Electrical heating, e.g. with electric band heaters
- Via pipes carrying hot water or steam
- Via heating jackets

Using an electrical trace heating system

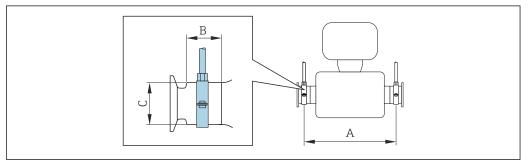
If heating is regulated via phase angle control or pulse packages, magnetic fields can affect the measured values (= for values that are greater than the values permitted by the EN standard (sine 30 A/m)).

For this reason, the sensor must be magnetically shielded: the housing can be shielded with tin plates or electric sheets without a privileged direction (e.g. V330-35A).

The sheet must have the following properties:

- Relative magnetic permeability $\mu r \ge 300$
- Plate thickness $d \ge 0.35$ mm ($d \ge 0.014$ in)

Vibrations


The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

6.1.3 Special mounting instructions

Securing with mounting clamp in the case of hygiene connections

It is not necessary to provide additional support for the sensor for operational performance purposes. If, however, additional support is required for installation purposes, the following dimensions must be observed.

Use mounting clamp with lining between clamp and measuring instrument.

10030298

DN		A	A	В		С	
[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]
8	3/8	298	11.73	33	1.3	28	1.1
15	1/2	402	15.83	33	1.3	28	1.1
25	1	542	21.34	33	1.3	38	1.5
40	1 ½	658	25.91	36.5	1.44	56	2.2
50	2	772	30.39	44.1	1.74	75	2.95

Zero point adjustment

Experience shows that zero point adjustment is advisable only in special cases:

- To achieve maximum measuring accuracy even with low flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity fluids).

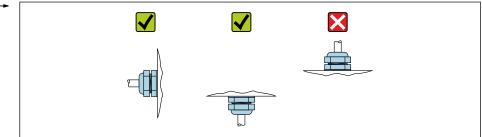
6.2 Mounting the measuring device

6.2.1 Required tools

For sensor

For flanges and other process connections: Corresponding mounting tools

6.2.2 Preparing the measuring device


- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

6.2.3 Mounting the measuring device

A WARNING

Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- ► Ensure that the gaskets are clean and undamaged.
- ► Install the gaskets correctly.
- 1. Ensure that the direction of the arrow on the nameplate of the sensor matches the flow direction of the fluid.
- 2. Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.

A002926

6.3 Post-installation check

Is the device undamaged (visual inspection)?		
Does the measuring device conform to the measuring point specifications?		
For example: ■ Process temperature → 🗎 94 ■ Process pressure (refer to the section on "Pressure-temperature ratings" in the "Technical Information" document) ■ Ambient temperature ■ Measuring range → 🖺 85		
Has the correct orientation for the sensor been selected? According to sensor type According to medium temperature According to medium properties (outgassing, with entrained solids)		
Does the arrow on the sensor nameplate match the direction of flow of the fluid through the piping $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Are the measuring point identification and labeling correct (visual inspection)?		

Is the device adequately protected from precipitation and direct sunlight?	
Are the securing screw and securing clamp tightened securely?	

7 Electrical connection

NOTICE

The measuring device does not have an internal circuit breaker.

- ► For this reason, assign the measuring device a switch or power-circuit breaker so that the power supply line can be easily disconnected from the mains.
- ▶ Although the measuring device is equipped with a fuse, additional overcurrent protection (maximum 16 A) should be integrated into the system installation.

7.1 Connection conditions

7.1.1 Required tools

- For cable entries: Use corresponding tools
- For securing clamp (on aluminum housing): Allen screw3 mm
- For securing screw (for stainless steel housing): open-ended wrench 8 mm
- Wire stripper
- When using stranded cables: crimper for wire end ferrule

7.1.2 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

Electrical safety

In accordance with applicable federal/national regulations.

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable

Standard installation cable is sufficient.

Signal cable

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz
Cable capacitance	< 30 pF/m
Wire cross-section	> 0.34 mm ² (22 AWG)
Cable type	Twisted pairs
Loop resistance	≤110 Ω/km
Signal damping	Max. 9 dB over the entire length of the cable cross-section
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.

Connecting cable between Safety Barrier Promass 100 and measuring device

Cable type	Shielded twisted-pair cable with 2x2 wires. When grounding the cable shield, observe the grounding concept of the plant.
Maximum cable resistance	2.5Ω , one side

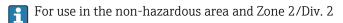
Comply with the maximum cable resistance specifications to ensure the operational reliability of the measuring device.

Wire cros	ss-section	Maximum cable length		
[mm ²]	[mm ²] [AWG]		[ft]	
0.5	20	70	230	
0.75	18	100	328	
1.0	17	100	328	
1.5	16	200	656	
2.5	14	300	984	

Cable diameter

Cable glands supplied:
 M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in)

Spring terminals:


Wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

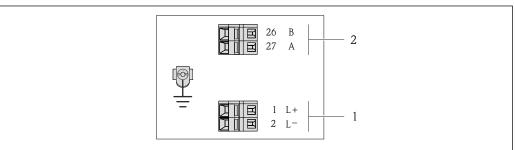
■ With Safety Barrier Promass 100: Plug-in screw terminals for wire cross-sections0.5 to 2.5 mm² (20 to 14 AWG)

7.1.3 Terminal assignment

Transmitter

Modbus RS485 connection version

Order code for "Output", option M


Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection methods available		Possible options for order code "Electrical connection"	
"Housing"	Output Power supply			
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½" 	
Options A, B	Device plugs → 🖺 29	Terminals	 Option L: plug M12x1 + thread NPT ½" Option N: plug M12x1 + coupling M20 Option P: plug M12x1 + thread G ½" Option U: plug M12x1 + thread M20 	

Order code	Connection me	thods available	Possible options for order code
"Housing"	Output	Power supply	"Electrical connection"
Options A, B, C	Device plugs → 🖺 29	Device plugs → 🖺 29	Option Q : 2 x plug M12x1

Order code for "Housing":

- Option A: compact, coated aluminum
- Option **B**: compact, hygienic, stainless
- Option C ultra-compact, hygienic, stainless

A0019528

- Modbus RS485 terminal assignment, connection version for use in non-hazardous areas and Zone 2/Div.
 2
- 1 Power supply: DC 24 V
- 2 Modbus RS485

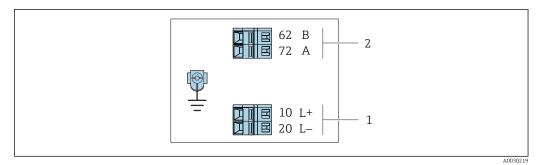
	Terminal number				
Order code "Output"	Power supply		Output		
	1 (L+)	2 (L-)	26 (B)	27 (A)	
Option M	DC 2	24 V	Modbus	RS485	
0.1. 1.6. 10.4. 11					

Order code for "Output":

Option **M**: Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2

Modbus RS485 connection version

For use in the intrinsically safe area. Connection via Safety Barrier Promass 100.

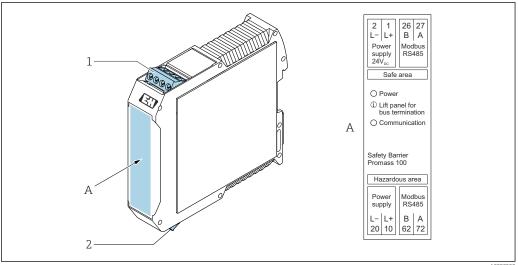

Order code for "Output", option M

Depending on the housing version, the transmitters can be ordered with terminals or device plugs.

Order code	Connection me	thods available	Possible options for order code "Electrical connection"	
"Housing"	Output	Power supply		
Options A, B	Terminals	Terminals	 Option A: coupling M20x1 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½" 	
A, B, C	Device plugs → 🖺 29		Option I: plug M12x1	

Order code for "Housing":

- $\, \bullet \,$ Option A: compact, coated aluminum
- Option **B**: compact, hygienic, stainless
- lacktriangledown Option ${f C}$ ultra-compact, hygienic, stainless



9 Modbus RS485 terminal assignment, connection version for use in intrinsically safe areas (connection via Safety Barrier Promass 100)

- Intrinsically safe power supply
- Modbus RS485

Order code "Output"	10 (L+)	20 (L-)	62 (B)	72 (A)
Option M	Intrinsically saf	e supply voltage	Modbus RS485	intrinsically safe
Order code for "Output": Option M : Modbus RS485, for use in the intrinsically safe area (connection via Safety Barrier Promass 100)				

Safety Barrier Promass 100

- \blacksquare 10 Safety Barrier Promass 100 with terminals
- Non-hazardous area, Zone 2, Class I Division 2
- Intrinsically safe area

28

7.1.4 Pin assignment, device plug

Supply voltage

Promass 100

Device plug for signal transmission with supply voltage (device side), MODBUS RS485 (intrinsically safe)

2	Pin		Assignment
	1	L+	Supply voltage, intrinsically safe
3 10 0 0 1	2	А	Modbus RS485 intrinsically safe
	3	В	Mounds K3407 intrinsically safe
5	4	L-	Supply voltage, intrinsically safe
4 A0016809	5		Grounding/shielding
	Cod	ling	Plug/socket
	I	A	Plug

Device plug for supply voltage (device side), MODBUS RS485 (not intrinsically safe)

For use in the non-hazardous area and Zone 2/Div. 2.

2	Pin	Assignment	
	1	L+	DC 24 V
3 10 0 0 1	2		Not assigned
	3		Not assigned
5	4	L-	DC 24 V
4 A0016809	5		Grounding/shielding
	Coding		Plug/socket
	I	A	Plug

Signal transmission

Promass

Device plug for signal transmission (device side), MODBUS RS485 (not intrinsically safe)

For use in the non-hazardous area and Zone 2/Div. 2.

2	Pin	Assignment	
	1		Not assigned
$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	2	А	Modbus RS485
	3		Not assigned
5	4	В	Modbus RS485
4 A0016811	5		Grounding/shielding
	Coding		Plug/socket
	В		Socket

7.1.5 Shielding and grounding

Shielding and grounding concept

- 1. Maintain electromagnetic compatibility (EMC).
- 2. Take explosion protection into consideration.
- 3. Pay attention to the protection of persons.
- 4. Comply with national installation regulations and guidelines.
- 5. Observe cable specifications .
- 6. Keep the stripped and twisted lengths of cable shield to the ground terminal as short as possible.
- 7. Shield cables fully.

Grounding of the cable shield

NOTICE

In systems without potential matching, the multiple grounding of the cable shield causes mains frequency equalizing currents!

Damage to the bus cable shield.

- ▶ Only ground the bus cable shield to either the local ground or the protective ground at one end.
- ▶ Insulate the shield that is not connected.

To comply with EMC requirements:

- 1. Ensure the cable shield is grounded to the potential matching line at multiple points.
- 2. Connect every local ground terminal to the potential matching line.

7.1.6 Preparing the measuring device

NOTICE

Insufficient sealing of the housing!

Operational reliability of the measuring device could be compromised.

- ▶ Use suitable cable glands corresponding to the degree of protection.
- 1. Remove dummy plug if present.
- 2. If the measuring device is supplied without cable glands:
 Provide suitable cable gland for corresponding connecting cable.
- 3. If the measuring device is supplied with cable glands:

 Observe requirements for connecting cables →

 ≥ 25.

7.2 Connecting the measuring device

NOTICE

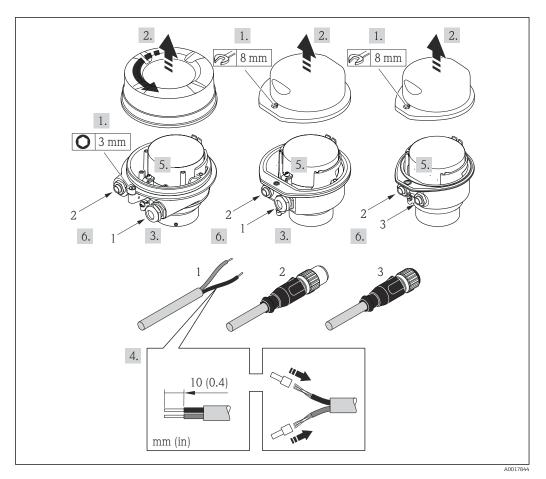
Limitation of electrical safety due to incorrect connection!

- ► Have electrical connection work carried out by appropriately trained specialists only.
- ▶ Observe applicable federal/national installation codes and regulations.
- ► Comply with local workplace safety regulations.
- ▶ Always connect the protective ground cable ⊕ before connecting additional cables.
- ► For use in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.
- ► The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

30

7.2.1 Connecting the transmitter

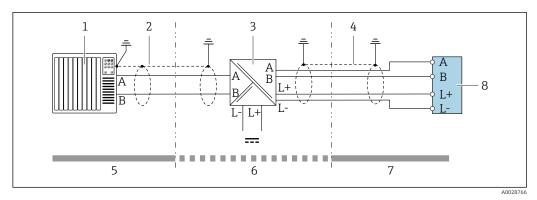
The connection of the transmitter depends on the following order codes:


- Housing version: compact or ultra-compact
- Connection version: device plug or terminals

A001692

 \blacksquare 11 Housing versions and connection versions

- A Compact, coated aluminum
- B Compact hygienic, stainless or compact, stainless
- Cable entry or device plug for signal transmission
- 2 Cable entry or device plug for supply voltage
- C Ultra-compact hygienic, stainless or ultra-compact, stainless
- 3 Device plug for signal transmission
- 4 Device plug for supply voltage


 \blacksquare 12 Device versions with connection examples

- 1 Cable
- 2 Device plug for signal transmission
- 3 Device plug for supply voltage
- ► Connect the cable in accordance with the terminal assignment or the device plug pin assignment .

7.2.2 Connecting the Safety Barrier Promass 100

In the case of the device version with Modbus RS485 intrinsically safe, the transmitter must be connected to the Safety Barrier Promass 100.

- 1. Strip the cable ends. In the case of stranded cables, also fit ferrules.
- 2. Connect the cable in accordance with the terminal assignment $\rightarrow \triangleq 26$.
- 3. Where applicable, enable the terminating resistor in the Safety Barrier Promass 100.

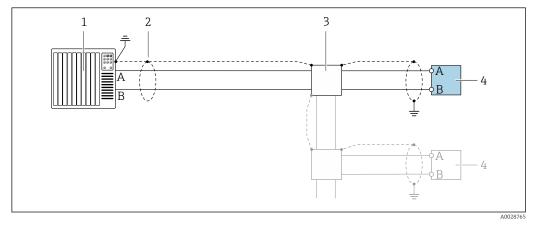
■ 13 Electrical connection between the transmitter and Safety Barrier Promass 100

- 1 Control system (e.g. PLC)
- 2 Observe cable specifications $\rightarrow \stackrel{\triangle}{=} 25$
- 3 Safety Barrier Promass 100: terminal assignment → 🖺 28
- 4 Observe cable specifications → 🖺 25
- 5 Non-hazardous area
- 6 Non-hazardous area and Zone 2/Div. 2
- 7 Intrinsically safe area
- 8 Transmitter: terminal assignment → 🖺 26

7.2.3 Ensure potential equalization

Requirements

No special measures for potential equalization are required.

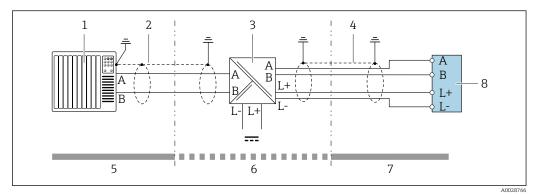

For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).

7.3 Special connection instructions

7.3.1 Connection examples

Modbus RS485

Modbus RS485, non-hazardous area and Zone 2/Div. 2



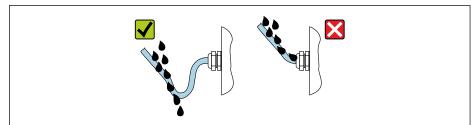
■ 14 Connection example for Modbus RS485, non-hazardous area and Zone 2/Div. 2

- 1 Control system (e.g. PLC)
- 2 Cable shield: the cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications →

 25
- 3 Distribution box
- 4 Transmitter

Modbus RS485 intrinsically safe

■ 15 Connection example for Modbus RS485 intrinsically safe


- 1 Control system (e.g. PLC)
- 2 Cable shield, observe cable specifications
- 3 Safety Barrier Promass 100
- 4 Observe cable specifications
- 5 Non-hazardous area
- 6 Non-hazardous area and Zone 2/Div. 2
- 7 Intrinsically safe area
- 8 Transmitter

7.4 Ensuring the degree of protection

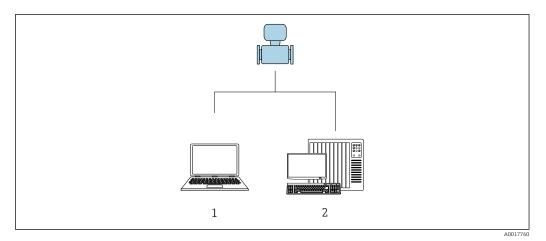
The measuring device fulfills all the requirements for the IP66/67 degree of protection, Type 4X enclosure.

To guarantee IP66/67 degree of protection, Type 4X enclosure, carry out the following steps after the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly.
- 2. Dry, clean or replace the seals if necessary.
- 3. Tighten all housing screws and screw covers.
- 4. Firmly tighten the cable glands.
- 5. To ensure that moisture does not enter the cable entry: Route the cable so that it loops down before the cable entry ("water trap").

A0029278

6. Insert dummy plugs into unused cable entries.

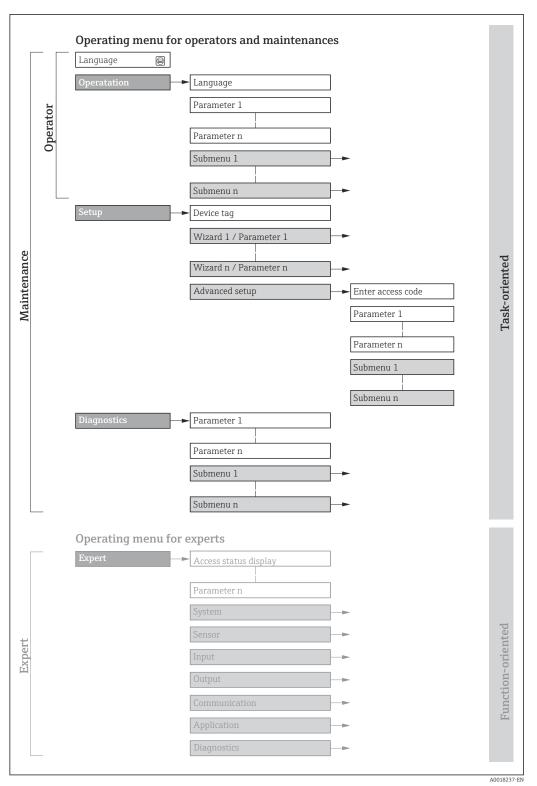

7.5 Post-connection check

Are cables or the device undamaged (visual inspection)?		
Do the cables used meet the requirements→ 🗎 25?		
Do the cables have adequate strain relief?		
Are all the cable glands installed, firmly tightened and leak-tight? Cable run with "water trap" → 🖺 34 ?		

Depending on the device version: are all the device plugs firmly tightened ?				
 Does the supply voltage match the specifications on the transmitter nameplate? For device version with Modbus RS485 intrinsically safe: does the supply voltage match the specifications on the nameplate of the Safety Barrier Promass 100? 				
Is the terminal assignment \rightarrow $\ \ \ \ \ \ \ \ \$				
 If supply voltage is present, is the power LED on the electronics module of the transmitter lit green →				
Depending on the device version, is the securing clamp or fixing screw firmly tightened?				

8 Operation options

8.1 Overview of operating options


- Computer with "FieldCare" or "DeviceCare" operating tool via Commubox FXA291 and service interface
- 2 Control system (e.g. PLC)

36

8.2 Structure and function of the operating menu

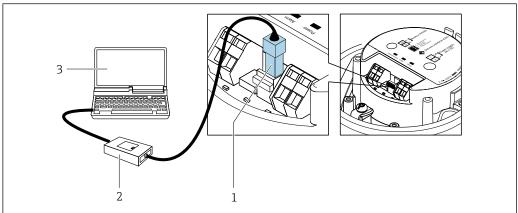
8.2.1 Structure of the operating menu

For an overview of the operating menu for experts: "Description of Device Parameters" document supplied with the device

■ 16 Schematic structure of the operating menu

8.2.2 Operating philosophy

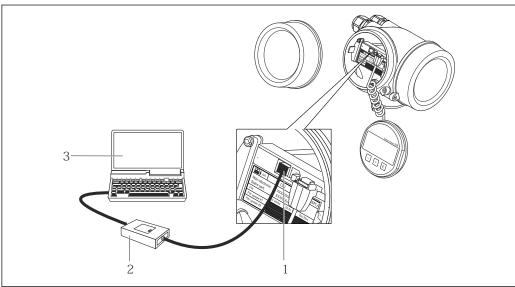
The individual parts of the operating menu are assigned to certain user roles (operator, maintenance etc.). Each user role contains typical tasks within the device lifecycle.


Men	u/parameter	User role and tasks	Content/meaning
Language	task-oriented	Role "Operator", "Maintenance" Tasks during operation:	Defining the operating languageResetting and controlling totalizers
Operation		Reading measured values	Resetting and controlling totalizers
Setup		"Maintenance" role Commissioning: Configuration of the measurement Configuration of the communication interface	Submenus for fast commissioning: Set the system units Define the medium Configuration of the digital communication interface Configuring the operational display Set the low flow cut off Configure partial and empty pipe detection Advanced setup For more customized configuration of the measurement (adaptation to special measuring conditions) Configuration of totalizers Configure the WLAN settings Administration (define access code, reset measuring device)
Diagnostics		"Maintenance" role Fault elimination: Diagnostics and elimination of process and device errors Measured value simulation	Contains all parameters for error detection and analyzing process and device errors: Diagnostic list Contains up to 5 currently pending diagnostic messages. Event logbook Contains event messages that have occurred. Device information Contains information for identifying the device. Measured values Contains all current measured values. Heartbeat The functionality of the device is checked on demand and the verification results are documented. Simulation Is used to simulate measured values or output values.
Expert	function-oriented	Tasks that require detailed knowledge of the function of the device: Commissioning measurements under difficult conditions Optimal adaptation of the measurement to difficult conditions Detailed configuration of the communication interface Error diagnostics in difficult cases	Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: System Contains all higher-order device parameters which do not concern the measurement or the communication interface. Sensor Configuration of the measurement. Communication Configuration of the digital communication interface. Application Configure the functions that go beyond the actual measurement (e.g. totalizer). Diagnostics Error detection and analysis of process and device errors and for device simulation and Heartbeat Technology.

8.3 Access to the operating menu via the operating tool

8.3.1 Connecting the operating tool

Via service interface (CDI)


Modbus RS485

Δ0030216

- 1 Service interface (CDI) of measuring device
- 2 Commubox FXA291
- 3 Computer with "FieldCare" operating tool with COM DTM "CDI Communication FXA291"

Via service interface (CDI)

A0014019

- 1 Service interface (CDI = Endress+Hauser Common Data Interface) of the measuring device
- 2 Commubox FXA291
- $3\qquad \textit{Computer with FieldCare operating tool with COM DTM CDI Communication FXA291}$

8.3.2 FieldCare

Function scope

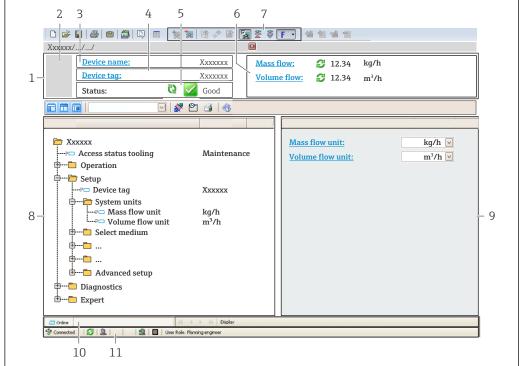
FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Access is via:

CDI service interface \rightarrow \blacksquare 39

Typical functions:

- Configuring parameters of transmitters
- Loading and saving device data (upload/download)
- Documentation of the measuring point
- Visualization of the measured value memory (line recorder) and event logbook
- For additional information about FieldCare, see Operating Instructions BA00027S and BA00059S


Source for device description files

See information \rightarrow \blacksquare 42

Establishing a connection

- 1. Start FieldCare and launch the project.
- 2. In the network: Add a device.
 - ► The **Add device** window opens.
- 3. Select the **CDI Communication FXA291** option from the list and press **OK** to confirm.
- 4. Right-click **CDI Communication FXA291** and select the **Add device** option in the context menu that opens.
- 5. Select the desired device from the list and press **OK** to confirm.
- 6. Establish the online connection to the device.
- $\hfill \hfill \hfill$

User interface

A00210E1 EN

- 1 Header
- 2 Picture of device
- 3 Device name
- 4 Tag name
- 5 Status area with status signal→ 🖺 70
- 6 Display area for current measured values
- 7 Edit toolbar with additional functions such as save/restore, event list and create documentation
- 8 Navigation area with operating menu structure
- 9 Working area
- 10 Range of action
- 11 Status area

8.3.3 DeviceCare

Function scope

Tool to connect and configure Endress+Hauser field devices.

The fastest way to configure Endress+Hauser field devices is with the dedicated "DeviceCare" tool. Together with the device type managers (DTMs) it presents a convenient, comprehensive solution.

For details, see Innovation Brochure IN01047S

Source for device description files

See information \rightarrow \triangleq 42

9 System integration

9.1 Overview of device description files

9.1.1 Current version data for the device

Firmware version	01.03.zz	 On the title page of the Operating Instructions On the transmitter nameplate Firmware version Diagnostics → Device information → Firmware version
Release date of firmware version	10.2014	

For an overview of the different firmware versions for the device

9.1.2 Operating tools

The suitable device description file for the individual operating tools is listed in the table below, along with information on where the file can be acquired.

FieldCare	 www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)
DeviceCare	 www.endress.com → Download Area CD-ROM (contact Endress+Hauser) DVD (contact Endress+Hauser)

9.2 Modbus RS485 information

9.2.1 Function codes

Function codes are used to define which read or write action is carried out via the Modbus protocol. The measuring device supports the following function codes:

Code	Name	Description	Application
03	Read holding register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes	Read device parameters with read and write access Example: Read mass flow
		The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	
04	Read input register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes	Read device parameters with read access Example: Read totalizer value
		The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	

Code	Name	Description	Application
06	Write single registers	Master writes a new value to one Modbus register of the measuring device. Use function code 16 to write	Write only 1 device parameter Example: reset totalizer
		multiple registers with just 1 telegram.	
08	Diagnostics	Master checks the communication connection to the measuring device.	
		The following "Diagnostics codes" are supported: Sub-function 00 = Return query data (loopback test) Sub-function 02 = Return diagnostics register	
16	Write multiple registers	Master writes a new value to multiple Modbus registers of the device. A maximum of 120 consecutive registers can be written with 1 telegram.	Write multiple device parameters Example: • Mass flow unit • Mass unit
		If the required device parameters are not available as a group, yet must nevertheless be addressed with a single telegram, use Modbus data map → 🖺 45	
23	Read/Write multiple registers	Master reads and writes a maximum of 118 Modbus registers of the measuring device simultaneously with 1 telegram. Write access is executed before read access.	Write and read multiple device parameters Example: Read mass flow Reset totalizer

Broadcast messages are only allowed with function codes 06, 16 and 23.

9.2.2 **Register information**

For an overview of device parameters with their respective Modbus register information, please refer to the "Modbus RS485 register information" section in the "Description of device parameters" documentation .

9.2.3 Response time

Response time of the measuring device to the request telegram of the Modbus master: typically 3 to 5 ms

9.2.4 Data types

The measuring device supports the following data types:

FLOAT (floating point number IEEE 754) Data length = 4 bytes (2 registers)				
Byte 3 Byte 2 Byte 1 Byte 0				
SEEEEEE EMMMMMM MMMMMMMM MMMMMMMM				
S = sign, E = exponent, M = mantissa				

INTEGER Data length = 2 bytes (1 register)	
Byte 1	Byte 0
Most significant byte (MSB)	Least significant byte (LSB)

STRING Data length = depends on the device parameter, e.g. presentation of a device parameter with a data length = 18 bytes (9 registers)				
Byte 17 Byte 16 Byte 1 Byte 0				
Most significant byte (MSB)				Least significant byte (LSB)

9.2.5 Byte transmission sequence

Byte addressing, i.e. the transmission sequence of the bytes, is not specified in the Modbus specification. For this reason, it is important to coordinate or match the addressing method between the master and slave during commissioning. This can be configured in the measuring device using the **Byte order** parameter.

The bytes are transmitted depending on the selection in the **Byte order** parameter:

FLOAT							
	Sequence	Sequence					
Options	1.	2.	3.	4.			
1-0-3-2*	Byte 1	Byte 0	Byte 3	Byte 2			
	(MMMMMMMM)	(MMMMMMMM)	(SEEEEEEE)	(EMMMMMMM)			
0 - 1 - 2 - 3	Byte 0	Byte 1	Byte 2	Byte 3			
	(MMMMMMMM)	(MMMMMMMM)	(EMMMMMMM)	(SEEEEEEE)			
2 - 3 - 0 - 1	Byte 2	Byte 3	Byte 0	Byte 1			
	(EMMMMMMM)	(SEEEEEEE)	(MMMMMMM)	(MMMMMMM)			
3 - 2 - 1 - 0	Byte 3	Byte 2	Byte 1	Byte 0			
	(SEEEEEEE)	(EMMMMMMM)	(MMMMMMMM)	(MMMMMMMM)			
* = factory setting	* = factory setting, S = sign, E = exponent, M = mantissa						

INTEGER				
	Sequence			
Options	1.	2.		
1-0-3-2* 3-2-1-0	Byte 1 (MSB)	Byte 0 (LSB)		
0-1-2-3 2-3-0-1	Byte 0 (LSB)	Byte 1 (MSB)		
* = factory setting, MSB = most significant byte, LSB = least significant byte				

STRING Presentation taking the example of a device parameter with a data length of 18 bytes.					
	Sequence				
Options	1.	2.		17.	18.
1-0-3-2* 3-2-1-0	Byte 17 (MSB)	Byte 16		Byte 1	Byte 0 (LSB)

0-1-2-3 2-3-0-1	Byte 16	Byte 17 (MSB)		Byte 0 (LSB)	Byte 1		
* = factory setting, MSB = 1	* = factory setting, MSB = most significant byte, LSB = least significant byte						

9.2.6 Modbus data map

Function of the Modbus data map

The device offers a special memory area, the Modbus data map (for a maximum of 16 device parameters), to allow users to call up multiple device parameters via Modbus RS485 and not only individual device parameters or a group of consecutive device parameters.

Grouping of device parameters is flexible and the Modbus master can read or write to the entire data block simultaneously with a single request telegram.

Structure of the Modbus data map

The Modbus data map consists of two data sets:

- Scan list: Configuration area
 The device parameters to be grouped are defined in a list in that their Modbus RS485 register addresses are entered in the list.
- Data area
 The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area.
- For an overview of device parameters with their respective Modbus register information, please refer to the "Modbus RS485 register information" section in the "Description of device parameters" documentation.

Scan list configuration

For configuration, the Modbus RS485 register addresses of the device parameters to be grouped must be entered in the scan list. Please note the following basic requirements of the scan list:

Max. entries	16 device parameters
Supported device parameters	Only parameters with the following characteristics are supported: • Access type: read or write access • Data type: float or integer

Configuring the scan list via FieldCare or DeviceCare

Carried out using the operating menu of the measuring device: Expert \rightarrow Communication \rightarrow Modbus data map \rightarrow Scan list register 0 to 15

Scan list	
No.	Configuration register
0	Scan list register 0
15	Scan list register 15

Configuring the scan list via Modbus RS485

Carried out using register addresses 5001 - 5016

Scan list	Scan list			
No.	Modbus RS485 register	Data type	Configuration register	
0	5001	Integer	Scan list register 0	
		Integer		
15	5016	Integer	Scan list register 15	

Reading out data via Modbus RS485

The Modbus master accesses the data area of the Modbus data map to read out the current values of the device parameters defined in the scan list.

Master access to data area Via register addresses 5051-5081	
---	--

Data area				
Device parameter value	Modbus RS485 1	Modbus RS485 register		Access**
	Start register	End register (Float only)	-	
Value of scan list register 0	5051	5052	Integer/float	Read/write
Value of scan list register 1	5053	5054	Integer/float	Read/write
Value of scan list register				
Value of scan list register 15	5081	5082	Integer/float	Read/write

 $[\]ensuremath{^{\star}}$ Data type depends on the device parameters entered in the scan list.

^{**} Data access depends on the device parameters entered in the scan list. If the device parameter entered supports read and write access, the parameter can also be accessed via the data area.

10 Commissioning

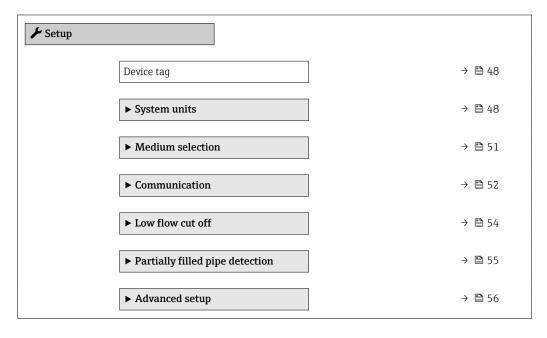
10.1 Function check

Before commissioning the measuring device:

- ▶ Make sure that the post-installation and post-connection checks have been performed.
- "Post-installation check" checklist → 🗎 23

10.2 Connecting via FieldCare

- For FieldCare connection
- For connecting via FieldCare $\rightarrow \triangleq 40$
- For the FieldCare → 🖺 41 user interface


10.3 Setting the operating language

Factory setting: English or ordered local language

The operating language can be set in FieldCare or DeviceCare: Operation \rightarrow Display language

10.4 Configuring the measuring device

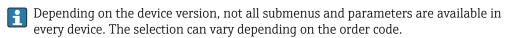
The **Setup** menu with its submenus contains all the parameters needed for standard operation.

10.4.1 Defining the tag name

To enable fast identification of the measuring point within the system, you can enter a unique designation using the **Device tag** parameter and thus change the factory setting.

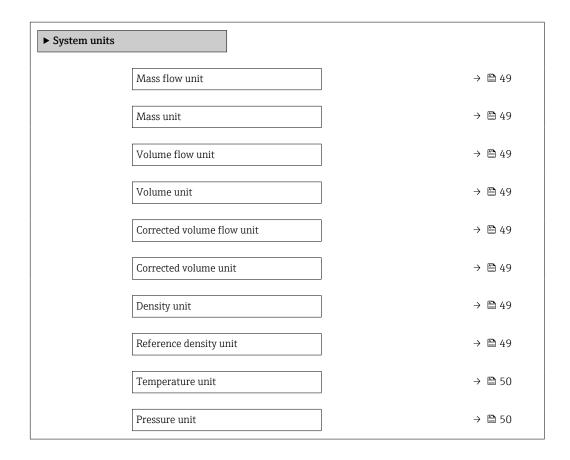
Enter the tag name in the "FieldCare" operating tool \rightarrow $\stackrel{\triangle}{=}$ 41

Navigation


"Setup" menu → Device tag

Parameter overview with brief description

Parameter	Description	User entry
Device tag	51	Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).


10.4.2 Setting the system units

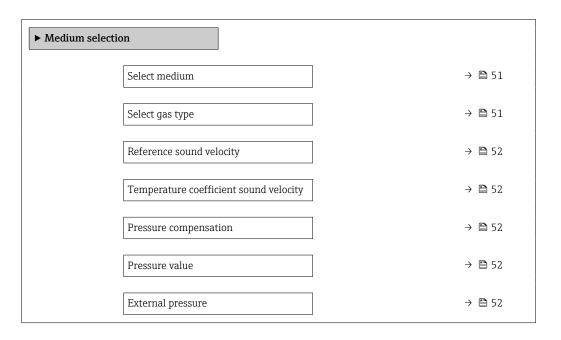
In the **System units** submenu the units of all the measured values can be set.

Navigation

"Setup" menu → Advanced setup → System units

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Mass flow unit	Select mass flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: kg/h lb/min
Mass unit	Select mass unit.	Unit choose list	Country-specific: kg lb
Volume flow unit	Select volume flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: l/h gal/min (us)
Volume unit	Select volume unit.	Unit choose list	Country-specific: 1 (DN > 150 (6"): m³ option) gal (us)
Corrected volume flow unit	Select corrected volume flow unit. Result The selected unit applies for: Corrected volume flow parameter (→ 64)	Unit choose list	Country-specific: NI/h Sft³/min
Corrected volume unit	Select corrected volume unit.	Unit choose list	Country-specific: NI Sft³
Density unit	Select density unit. Result The selected unit applies for: Output Simulation process variable Density adjustment (Expert menu)	Unit choose list	Country-specific: • kg/l • lb/ft³
Reference density unit	Select reference density unit.	Unit choose list	Country-dependent • kg/Nl • lb/Sft ³


Parameter	Description	Selection	Factory setting
Temperature unit	Select temperature unit. Result The selected unit applies for: Electronic temperature parameter (6053) Maximum value parameter (6051) Minimum value parameter (6052) External temperature parameter (6080) Maximum value parameter (6108) Minimum value parameter (6109) Carrier pipe temperature parameter (6027) Maximum value parameter (6029) Minimum value parameter (6030) Reference temperature parameter (1816) Temperature parameter	Unit choose list	Country-specific: ■ °C ■ °F
Pressure unit	Select process pressure unit. Result The unit is taken from: ■ Pressure value parameter (→ 🖺 52) ■ External pressure parameter (→ 🖺 52) ■ Pressure value	Unit choose list	Country-specific: • bar a • psi a

10.4.3 Selecting and setting the medium

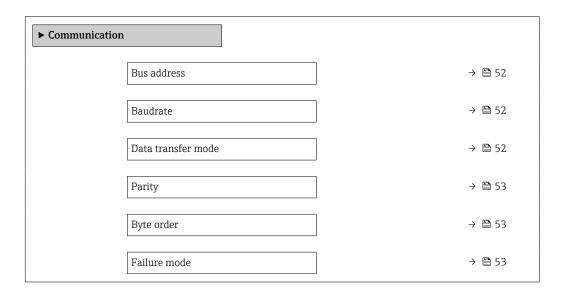
The **Select medium** wizard submenu contains parameters that must be configured in order to select and set the medium.

Navigation

"Setup" menu \rightarrow Medium selection

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Select medium	-	Select medium type.	Liquid	-
Select gas type	The Gas option is selected in the Select medium parameter.	Select measured gas type.	 Air Ammonia NH3 Argon Ar Sulfur hexafluoride SF6 Oxygen O2 Ozone O3 Nitrogen oxide N2O Nitrogen N2 Nitrogen N2 Nitrogen N2 Helium He Hydrogen H2 Helium He Hydrogen chloride HCl Hydrogen sulfide H2S Ethylene C2H4 Carbon dioxide CO2 Carbon monoxide CO Chlorine Cl2 Butane C4H1O Propane C3H8 Propylene C3H6 Ethane C2H6 Others 	


Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Reference sound velocity	In the Select gas type parameter, the Others option is selected.	Enter sound velocity of gas at 0 °C (32 °F).	1 to 99999.9999 m/s	-
Temperature coefficient sound velocity	The Others option is selected in the Select gas type parameter.	Enter temperature coefficient for the gas sound velocity.	Positive floating- point number	0 (m/s)/K
Pressure compensation	-	Select pressure compensation type.	OffFixed valueExternal value	_
Pressure value	The Fixed value option is selected in the Pressure compensation parameter.	Enter process pressure to be used for pressure correction.	Positive floating- point number	-
External pressure	The External value option is selected in the Pressure compensation parameter.		Positive floating- point number	_

10.4.4 Configuring the communication interface

The **Communication** submenu guides you systematically through all the parameters that have to be configured for selecting and setting the communication interface.

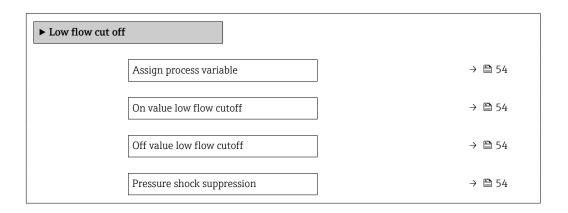
Navigation

"Setup" menu \rightarrow Communication

Parameter overview with brief description

Parameter	Description	User entry / Selection
Bus address	Enter device address.	1 to 247
Baudrate	Define data transfer speed.	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	Select data transfer mode.	ASCII RTU

Parameter	Description	User entry / Selection
Parity	Select parity bits.	Picklist ASCII option: • 0 = Even option • 1 = Odd option
		Picklist RTU option: • 0 = Even option • 1 = Odd option • 2 = None / 1 stop bit option • 3 = None / 2 stop bits option
Byte order	Select byte transmission sequence.	■ 0-1-2-3 ■ 3-2-1-0 ■ 1-0-3-2 ■ 2-3-0-1
Assign diagnostic behavior	Select diagnostic behavior for MODBUS communication.	OffAlarm or warningWarningAlarm
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication. NaN ¹⁾	■ NaN value ■ Last valid value


1) Not a Number

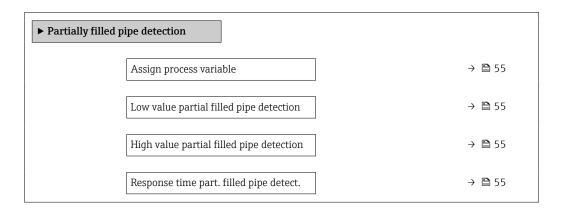
10.4.5 Configuring the low flow cut off

The **Low flow cut off** submenu contains the parameters that must be set in order to configure the low flow cut off.

Navigation

"Setup" menu \rightarrow Low flow cut off

Parameter overview with brief description


Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for low flow cut off.	OffMass flowVolume flowCorrected volume flow	-
On value low flow cutoff	One of the following options is selected in the Assign process variable parameter (→ 🖺 54): Mass flow Volume flow Corrected volume flow	Enter on value for low flow cut off.	Positive floating- point number	Depends on country and nominal diameter
Off value low flow cutoff	One of the following options is selected in the Assign process variable parameter (→ 🖺 54): • Mass flow • Volume flow • Corrected volume flow	Enter off value for low flow cut off.	0 to 100.0 %	-
Pressure shock suppression	One of the following options is selected in the Assign process variable parameter (→ 🖺 54): • Mass flow • Volume flow • Corrected volume flow	Enter time frame for signal suppression (= active pressure shock suppression).	0 to 100 s	-

10.4.6 Configuring the partial filled pipe detection

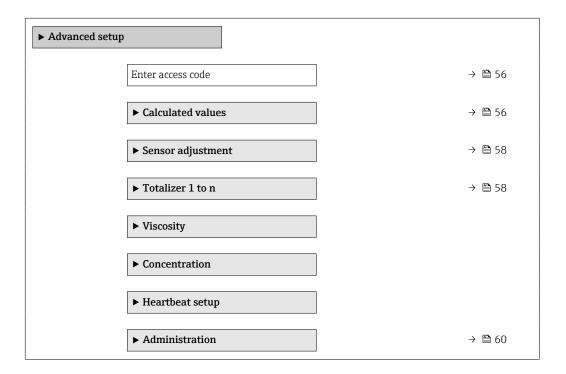
The **Partially filled pipe detection** submenu contains parameters that have to be set for configuring empty pipe detection.

Navigation

"Setup" menu \rightarrow Partially filled pipe detection

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry
Assign process variable	-	Select process variable for partially filled pipe detection.	OffDensityReference density
Low value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter (→ ■ 55): ■ Density ■ Reference density	Enter lower limit value for deactivating partialy filled pipe detection.	Signed floating-point number
High value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter (→ ■ 55): Density Reference density	Enter upper limit value for deactivating partialy filled pipe detection.	Signed floating-point number
Response time part. filled pipe detect.	One of the following options is selected in the Assign process variable parameter (→ ■ 55): ■ Density ■ Reference density	Enter time before diagnostic message is displayed for partially filled pipe detection.	0 to 100 s


Advanced settings 10.5

The **Advanced setup** submenu together with its submenus contains parameters for specific settings.

The number of submenus can vary depending on the device version, e.g. viscosity is available only with the Promass I.

Navigation

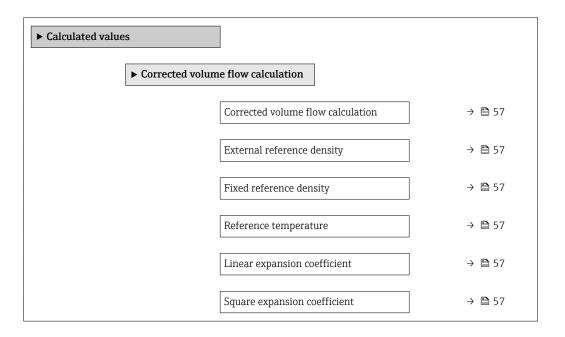
"Setup" menu → Advanced setup

10.5.1 Using the parameter to enter the access code

Navigation

"Setup" menu → Advanced setup

Parameter overview with brief description


Parameter	Description	User entry
Enter access code	Enter access code to disable write protection of parameters.	0 to 9 999

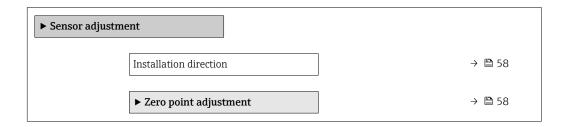
10.5.2 Calculated values

The Calculated values submenu contains parameters for calculating the corrected volume flow.

Navigation

"Setup" menu → Advanced setup → Calculated values

Parameter overview with brief description


Parameter	Prerequisite	Description	Selection / User interface / User entry	Factory setting
Corrected volume flow calculation	-	Select reference density for calculating the corrected volume flow.	 Fixed reference density Calculated reference density Reference density by API table 53 External reference density 	-
External reference density	In the Corrected volume flow calculation parameter, the External reference density option is selected.	Shows external reference density.	Floating point number with sign	-
Fixed reference density	The Fixed reference density option is selected in the Corrected volume flow calculation parameter parameter.	Enter fixed value for reference density.	Positive floating- point number	-
Reference temperature	The Calculated reference density option is selected in the Corrected volume flow calculation parameter.	Enter reference temperature for calculating the reference density.	−273.15 to 99 999 °C	Country-specific: +20 °C +68 °F
Linear expansion coefficient	The Calculated reference density option is selected in the Corrected volume flow calculation parameter parameter.	Enter linear, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	-
Square expansion coefficient	The Calculated reference density option is selected in the Corrected volume flow calculation parameter parameter.	For media with a non-linear expansion pattern: enter the quadratic, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	-

10.5.3 Carrying out a sensor adjustment

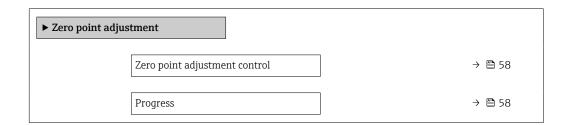
The **Sensor adjustment** submenu contains parameters that pertain to the functionality of the sensor.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Sensor adjustment

Parameter overview with brief description

Parameter	Description	Selection
Installation direction	Set sign of flow direction to match the direction of the arrow on the sensor.	Flow in arrow directionFlow against arrow direction


Zero point adjustment

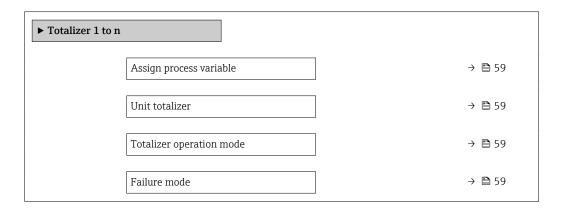
Experience shows that zero point adjustment is advisable only in special cases:

- To achieve maximum measuring accuracy even with low flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity fluids).

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Sensor adjustment \rightarrow Zero point adjustment

Parameter overview with brief description


Parameter	Description	Selection / User interface	Factory setting
Zero point adjustment control	Start zero point adjustment.	CancelBusyZero point adjust failureStart	-
Progress	Shows the progress of the process.	0 to 100 %	_

10.5.4 Configuring the totalizer

In the **"Totalizer 1 to n" submenu** the individual totalizer can be configured.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1 to n

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection	Factory setting
Assign process variable	-	Select process variable for totalizer.	 Off Mass flow Volume flow Corrected volume flow Target mass flow* Carrier mass flow* 	-
Unit totalizer	One of the following options is selected in the Assign process variable parameter (→ 🖺 59) of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Select process variable totalizer unit.	Unit choose list	Country-specific: • kg • lb
Totalizer operation mode	One of the following options is selected in the Assign process variable parameter (→ 🖺 59) of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Select totalizer calculation mode.	 Net flow total Forward flow total Reverse flow total 	-
Failure mode	One of the following options is selected in the Assign process variable parameter (→ 🗎 59) of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Define totalizer behavior in alarm condition.	StopActual valueLast valid value	-

^{*} Visibility depends on order options or device settings

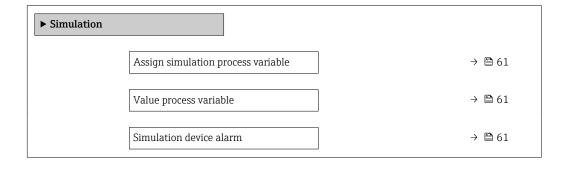
10.5.5 Using parameters for device administration

The **Administration** submenu systematically guides the user through all the parameters that can be used for device administration purposes.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Administration

Parameter overview with brief description


Parameter	Description	Selection
Device reset	Reset the device configuration - either entirely or in part - to a defined state.	CancelTo delivery settingsRestart device

10.6 Simulation

The **Simulation** submenu enables you to simulate, without a real flow situation, various process variables in the process and the device alarm mode and to verify downstream signal chains (switching valves or closed-control loops).

Navigation

"Diagnostics" menu → Simulation

Parameter overview with brief description

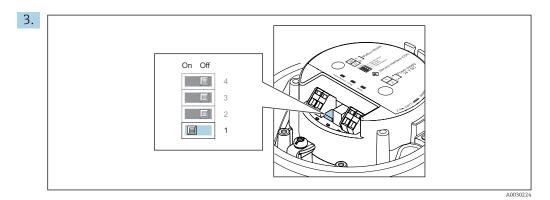
Parameter	Prerequisite	Description	Selection / User entry
Assign simulation process variable	-	Select a process variable for the simulation process that is activated.	 Off Mass flow Volume flow Corrected volume flow Density Reference density Temperature Concentration * Target mass flow * Carrier mass flow *
Value process variable	One of the following options is selected in the Assign simulation process variable parameter (→ 🖺 61): Mass flow Volume flow Corrected volume flow Density Reference density Temperature Concentration Target mass flow Carrier mass flow Carrier mass flow	Enter the simulation value for the selected process variable.	Depends on the process variable selected
Simulation device alarm	-	Switch the device alarm on and off.	Off On

^{*} Visibility depends on order options or device settings

10.7 Protecting settings from unauthorized access

The following options exist for protecting the configuration of the measuring device from unintentional modification after commissioning:

Write protection via write protection switch $\rightarrow \triangleq 61$


10.7.1 Write protection via write protection switch

The write protection switch makes it possible to block write access to the entire operating menu with the exception of the following parameters:

- External pressure
- External temperature
- Reference density
- All parameters for configuring the totalizer

The parameter values are now read only and cannot be edited any more:

- Via service interface (CDI)
- Via Modbus RS485
- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Depending on the housing version, unscrew or open the housing cover.

Setting the write protection switch on the main electronics module to the \mathbf{On} position enables hardware write protection. Setting the write protection switch on the main electronics module to the \mathbf{Off} position (factory setting) disables hardware write protection.

If hardware write protection is enabled: the **Locking status** parameter displays the **Hardware locked** option; if disabled, the **Locking status** parameter does not display any option.

4. Reverse the removal procedure to reassemble the transmitter.

Operation 11

11.1 Reading the device locking status

Device active write protection: Locking status parameter

Navigation

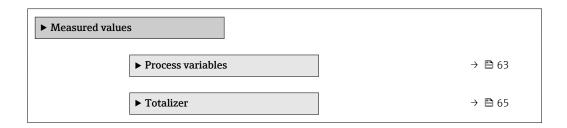
"Operation" menu → Locking status

Function scope of "Locking status" parameter

Options	Description
Hardware locked	The locking switch (DIP switch) for locking the hardware is activated on the main electronic module. This prevents write access to the parameters .
Temporarily locked	Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.

11.2 Adjusting the operating language

Petailed information:


- To configure the operating language → 🖺 47
- For information on the operating languages supported by the measuring device

11.3 Reading measured values

With the **Measured values** submenu, it is possible to read all the measured values.

Navigation

"Diagnostics" menu → Measured values

11.3.1 "Measured variables" submenu

The Process variables submenu contains all the parameters needed to display the current measured values for each process variable.

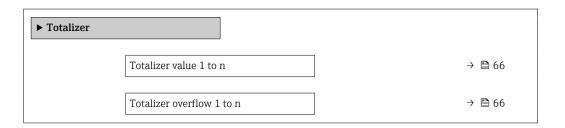
Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Measured variables

Volume f	low	<u> </u>	₿ 64
Corrected	d volume flow	$\Big] \hspace{1cm} \rightarrow \hspace{1cm}$	₿ 64
Density		→	₿ 64
Reference	e density	→	₿ 64
Tempera	ture		₿ 64
Pressure	value	· 	≅ 65
Concentr	ation	→	₿ 65
Target m	ass flow	→	6 5
Carrier n	nass flow	,] →	₿ 65

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Mass flow	-	Displays the mass flow currently measured.	Signed floating-point number
		Dependency The unit is taken from the Mass flow unit parameter (→ 🖺 49).	
Volume flow	-	Displays the volume flow currently calculated.	Signed floating-point number
		Dependency The unit is taken from the Volume flow unit parameter (→ 🖺 49).	
Corrected volume flow	-	Displays the corrected volume flow currently calculated.	Signed floating-point number
		Dependency The unit is taken from the Corrected volume flow unit parameter $(\rightarrow \implies 49)$.	
Density	-	Shows the density currently measured. Dependency The unit is taken from the Density unit parameter $(\Rightarrow \ \ \ \ \ \ \ \)$	Signed floating-point number
Reference density	-	Displays the reference density currently calculated.	Signed floating-point number
		Dependency The unit is taken from the Reference density unit parameter (→ 🖺 49).	
Temperature	-	Shows the medium temperature currently measured.	Signed floating-point number
		Dependency The unit is taken from the Temperature unit parameter $(\rightarrow \stackrel{\triangle}{=} 50)$.	


Parameter	Prerequisite	Description	User interface
Pressure value	-	Displays either a fixed or external pressure value.	Signed floating-point number
		Dependency The unit is taken from the Pressure unit parameter (→ 🖺 50).	
Concentration	For the following order code: "Application package", option ED "Concentration" The software options currently enabled are displayed in the Software option overview parameter.	Displays the concentration currently calculated. Dependency The unit is taken from the Concentration unit parameter.	Signed floating-point number
Target mass flow	 With the following conditions: Order code for "Application package", option ED "Concentration" The WT-% option or the User conc. option is selected in the Concentration unit parameter. The software options currently enabled are displayed in the 	Displays the target fluid mass flow currently measured. Dependency The unit is taken from the Mass flow unit parameter (→ 🖺 49).	Signed floating-point number
	Software option overview parameter.		
Carrier mass flow	With the following conditions: ■ Order code for "Application package", option ED "Concentration" ■ The WT-% option or the User conc. option is selected in the Concentration unit parameter.	Displays the carrier fluid mass flow currently measured. Dependency The unit is taken from the Mass flow unit parameter (→ 🖺 49).	Signed floating-point number
	The software options currently enabled are displayed in the Software option overview parameter.		

11.3.2 "Totalizer" submenu

The **Totalizer** submenu contains all the parameters needed to display the current measured values for every totalizer.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Totalizer

Parameter overview with brief description

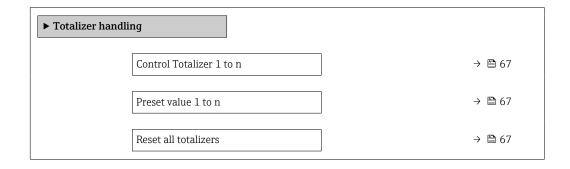
Parameter	Prerequisite	Description	User interface
Totalizer value	One of the following options is selected in the Assign process variable parameter (→ 🖺 59)Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Displays the current totalizer counter value.	Signed floating-point number
Totalizer overflow	One of the following options is selected in the Assign process variable parameter (→ 🖺 59)Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Displays the current totalizer overflow.	Integer with sign

^{*} Visibility depends on order options or device settings

11.4 Adapting the measuring device to the process conditions

The following are available for this purpose:

- Basic settings using the **Setup** menu (→ 🖺 47)
- Advanced settings using the **Advanced setup** submenu (→ 🖺 56)


11.5 Performing a totalizer reset

The totalizers are reset in the **Operation** submenu:

- Control Totalizer
- Reset all totalizers

Navigation

"Operation" menu \rightarrow Totalizer handling

Parameter overview with brief description

Parameter	Prerequisite	Description	Selection / User entry	Factory setting
Control Totalizer	One of the following options is selected in the Assign process variable parameter (→ 🖺 59) of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow Carrier mass flow Carrier mass flow	Control totalizer value.	 Totalize Reset + hold Preset + hold Reset + totalize Preset + totalize 	-
Preset value	One of the following options is selected in the Assign process variable parameter (→ 🖺 59) of the Totalizer 1 to n submenu: Volume flow Mass flow Corrected volume flow Target mass flow* Carrier mass flow*	Specify start value for totalizer. Dependency The unit of the selected process variable is specified for the totalizer depending on the selection made in the Assign process variable parameter: Volume flow option: Volume flow unit parameter Mass flow option, Target mass flow option, Carrier mass flow option: Mass flow unit parameter Corrected volume flow option: Corrected volume unit parameter	Signed floating-point number	Country-specific: • 0 kg • 0 lb
Reset all totalizers	_	Reset all totalizers to 0 and start.	CancelReset + totalize	_

^{*} Visibility depends on order options or device settings

11.5.1 Function scope of the "Control Totalizer" parameter

Options	Description
Totalize	The totalizer is started or continues running.
Reset + hold	The totaling process is stopped and the totalizer is reset to 0.
Preset + hold	The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.
Reset + totalize	The totalizer is reset to 0 and the totaling process is restarted.
Preset + totalize	The totalizer is set to the defined start value from the Preset value parameter and the totaling process is restarted.

11.5.2 Function scope of the "Reset all totalizers" parameter

Options	Description
Cancel	No action is executed and the user exits the parameter.
Reset + totalize	Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.

12 Diagnostics and troubleshooting

12.1 General troubleshooting

For output signals

Error	Possible causes	Solution
Green power LED on the main electronics module of the transmitter is dark	Supply voltage does not match the value indicated on the nameplate.	Apply the correct supply voltage .
Green power LED on the main electronics module of the transmitter is dark	Power supply cable connected incorrectly	Check the terminal assignment $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Green power LED on Safety Barrier Promass 100 is dark	Supply voltage does not match the value indicated on the nameplate.	Apply the correct supply voltage .
Green power LED on Safety Barrier Promass 100 is dark	Power supply cable connected incorrectly	Check the terminal assignment → 🖺 26.
Device measures incorrectly.	Configuration error or device is operated outside the application.	Check and correct parameter configuration. Observe limit values specified in the "Technical Data".

For access

Error	Possible causes	Solution
No write access to parameters	Hardware write protection enabled	Set the write protection switch on main electronics module to the OFF position $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
No connection via Modbus RS485	Modbus RS485 bus cable connected incorrectly	Check terminal assignment → 🖺 26.
No connection via Modbus RS485	Device plug connected incorrectly	Check the pin assignment of the connector $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
No connection via Modbus RS485	Modbus RS485 cable incorrectly terminated	Check terminating resistor .
No connection via Modbus RS485	Incorrect settings for the communication interface	Check the Modbus RS485 configuration → 🖺 52.
No connection via service interface	Incorrect configuration of USB interface on PC or driver not installed correctly.	Observe the documentation for the Commubox. FXA291: Document "Technical Information" TI00405C
Not connecting to Web server	Incorrect IP address	Check the IP address: 192.168.1.212
Operation with FieldCare or DeviceCare via CDI-RJ45 service interface (port 8000)	Firewall of computer or network is preventing communication	Depending on the settings of the firewall used on the computer or in the network, the firewall must be adapted or disabled to allow FieldCare/DeviceCare access.
Flashing of firmware with FieldCare or DeviceCare via CDI-RJ45 service interface (via port 8000 or TFTP ports)	Firewall of computer or network is preventing communication	Depending on the settings of the firewall used on the computer or in the network, the firewall must be adapted or disabled to allow FieldCare/DeviceCare access.

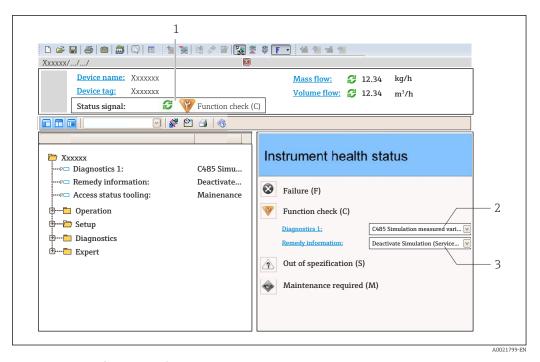
12.2 Diagnostic information via light emitting diodes

12.2.1 Transmitter

Different LEDs in the transmitter provide information on the device status.

LED	Color	Meaning
Supply voltage	Off	Supply voltage is off or too low
	Green	Supply voltage is ok
Alarm	Off	Device status is ok
	Flashing red	A device error of diagnostic behavior "Warning" has occurred
	Red	 A device error of diagnostic behavior "Alarm" has occurred Boot loader is active
Communication	Flashing white	Modbus RS485 communication is active

12.2.2 Safety Barrier Promass 100


Various light emitting diodes (LEDs) on the Safety Barrier Promass 100 provide status information.

LED	Color	Color
Power	Off	Supply voltage is off or too low.
	Green	Supply voltage is ok.
Communication	Flashing white	Modbus RS485 communication is active.

12.3 Diagnostic information in DeviceCare or FieldCare

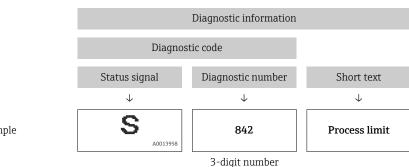
12.3.1 Diagnostic options

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established.

- 1 Status area with status signal
- *2 Diagnostic information* → 🗎 70
- 3 Remedy information with Service ID
- In addition, diagnostic events which have occurred can be shown in the **Diagnostics** menu:
 - Via parameter
 - Via submenu → 🗎 75

Status signals

The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).


Symbol	Meaning
8	Failure A device error has occurred. The measured value is no longer valid.
	Function check The device is in service mode (e.g. during a simulation).
<u>^</u>	Out of specification The device is operated: Outside its technical specification limits (e.g. outside the process temperature range)
&	Maintenance required Maintenance is required. The measured value is still valid.

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault.

70

Example

12.3.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page
 Remedy information is displayed in a separate field below the diagnostics information.
- In the **Diagnostics** menu
 Remedy information can be called up in the working area of the user interface.

The user is in the **Diagnostics** menu.

- 1. Call up the desired parameter.
- 2. On the right in the working area, mouse over the parameter.
 - ► A tool tip with remedy information for the diagnostic event appears.

12.4 Diagnostic information via communication interface

12.4.1 Reading out diagnostic information

Diagnostic information can be read out via Modbus RS485 register addresses.

- Via register address **6821** (data type = string): diagnosis code, e.g. F270
- Via register address **6859** (data type = integer): diagnosis number, e.g. 270
- For an overview of diagnostic events with diagnosis number and diagnosis code $\Rightarrow \stackrel{\square}{\Rightarrow} 72$

12.4.2 Configuring error response mode

The error response mode for Modbus RS485 communication can be configured in the **Communication** submenu using 2 parameters.

Navigation path

Setup → Communication

Parameter overview with brief description

Parameters	Description	Selection	Factory setting
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication. This effect of this parameter depends on the option selected in the Assign diagnostic behavior parameter.	 NaN value Last valid value NaN = not a number 	NaN value

12.5 Adapting the diagnostic information

12.5.1 Adapting the diagnostic behavior

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the **Diagnostic behavior** submenu.

Expert \rightarrow System \rightarrow Diagnostic handling \rightarrow Diagnostic behavior

You can assign the following options to the diagnostic number as the diagnostic behavior:

Options	Description
Alarm	The device stops measurement. The measured value output via Modbus RS485 and the totalizers assume the defined alarm condition. A diagnostic message is generated.
Warning	The device continues to measure. The measured value output via Modbus RS485 and the totalizers are not affected. A diagnostic message is generated.
Logbook entry only	The device continues to measure. The diagnostic message is entered only in the Event logbook submenu.
Off	The diagnostic event is ignored, and no diagnostic message is generated or entered.

12.6 Overview of diagnostic information

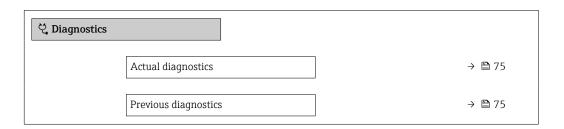
- The amount of diagnostic information and the number of measured variables affected increase if the measuring device has one or more application packages.
- In the case of some items of diagnostic information, the diagnostic behavior can be changed. Change the diagnostic information $\rightarrow \bigcirc 72$

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
Diagnostic of sensor				
022	Sensor temperature	Change main electronic module Change sensor	F	Alarm
046	Sensor limit exceeded	Inspect sensor Check process condition	S	Alarm 1)
062	Sensor connection	Change main electronic module Change sensor	F	Alarm

Diagnostic Short text number		Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]	
082	Data storage	Check module connections Contact service	F	Alarm	
083	Memory content	Restart device Contact service	F	Alarm	
140	Sensor signal	Check or change main electronics Change sensor	S	Alarm 1)	
144	Measuring error too high	Check or change sensor Check process conditions	F	Alarm 1)	
190	Special event 1	Contact service	F	Alarm	
191	Special event 5	Contact service	F	Alarm	
192	Special event 9	Contact service	F	Alarm 1)	
Diagnostic of e	lectronic		I	1	
242	Software incompatible	Check software Flash or change main electronics module	F	Alarm	
270	Main electronic failure	Change main electronic module	F	Alarm	
271	Main electronic failure	Restart device Change main electronic module	F	Alarm	
272	Main electronic failure	Restart device Contact service	F	Alarm	
273	Main electronic failure	Change electronic	F	Alarm	
274	Main electronic failure	Change electronic	S	Warning 1)	
311	Electronic failure 1. Reset device 2. Contact service		F	Alarm	
390	Special event 2	Contact service	F	Alarm	
391	Special event 6	Contact service	F	Alarm	
392	Special event 10	Contact service	F	Alarm 1)	
Diagnostic of c	onfiguration		<u>'</u>	1	
410	Data transfer	Check connection Retry data transfer	F	Alarm	
411	Up-/download active	Up-/download active, please wait	С	Warning	
438	Dataset	Check data set file Check device configuration Up- and download new configuration	М	Warning	
453	Flow override	Deactivate flow override	С	Warning	
484	Simulation failure mode	Deactivate simulation	С	Alarm	
485	Simulation measured variable	Deactivate simulation	С	Warning	
590	Special event 3	Contact service	F Alarn		
591	Special event 7 Contact service F		F	Alarm	
592	Special event 11	Contact service	F	Alarm 1)	
Diagnostic of p	rocess	•			
830	Sensor temperature too high	Reduce ambient temp. around the sensor housing	S	Warning	

Diagnostic number	Short text	Remedy instructions	Status signal [from the factory]	Diagnostic behavior [from the factory]
831	Sensor temperature too low	Increase ambient temp. around the sensor housing	S	Warning
832	Electronic temperature too high	Reduce ambient temperature	S	Warning 1)
833	Electronic temperature too low	Increase ambient temperature	S	Warning 1)
834	Process temperature too high	Reduce process temperature	S	Warning 1)
835	Process temperature too low	Increase process temperature	S	Warning 1)
843	Process limit	Check process conditions	S	Warning
862	Partly filled pipe	Check for gas in process Adjust detection limits	S	Warning
910	Tubes not oscillating	Check electronic Inspect sensor	F	Alarm
912	Medium inhomogeneous	1. Check process cond.	S	Warning 1)
912	Inhomogeneous	2. Increase system pressure	S	Warning 1)
913	Medium unsuitable	Check process conditions Check electronic modules or sensor	S	Alarm 1)
944	Monitoring failed	Check process conditions for Heartbeat Monitoring	S	Warning 1)
948	Tube damping too high	Check process conditions	S	Warning
990	Special event 4	Contact service	F	Alarm
991	Special event 8	Contact service	F	Alarm
992	Special event 12	Contact service	F	Alarm 1)

¹⁾ Diagnostic behavior can be changed.


12.7 Pending diagnostic events

The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately.

- To call up the measures to rectify a diagnostic event:
 - Via "FieldCare" operating tool → 🖺 71
 - Via "DeviceCare" operating tool → 🖺 71
- Other pending diagnostic events can be displayed in the **Diagnostic list** submenu $\rightarrow \stackrel{ riangle}{\Rightarrow} 75$

Navigation

"Diagnostics" menu

Operating time from restart	→ 🖺 75
Operating time	→ 🖺 75

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Actual diagnostics	A diagnostic event has occurred.	Shows the current occured diagnostic event along with its diagnostic information.	Symbol for diagnostic behavior, diagnostic code and short message.
		If two or more messages occur simultaneously, the message with the highest priority is shown on the display.	
Previous diagnostics	Two diagnostic events have already occurred.	Shows the diagnostic event that occurred prior to the current diagnostic event along with its diagnostic information.	Symbol for diagnostic behavior, diagnostic code and short message.
Operating time from restart	_	Shows the time the device has been in operation since the last device restart.	Days (d), hours (h), minutes (m) and seconds (s)
Operating time	-	Indicates how long the device has been in operation.	Days (d), hours (h), minutes (m) and seconds (s)

12.8 Diagnostic list

Up to 5 currently pending diagnostic events can be displayed in the **Diagnostic list** submenu along with the associated diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display.

Navigation path

Diagnostics → Diagnostic list

To call up the measures to rectify a diagnostic event:

- Via "FieldCare" operating tool → 🖺 71
- Via "DeviceCare" operating tool → 🖺 71

12.9 Event logbook

12.9.1 Reading the event logbook

A chronological overview of the event messages that have occurred is provided in the events list which contains a maximum of 20 message entries. This list can be displayed via FieldCare if necessary.

Navigation path

Edit tool bar: $\mathbf{F} \rightarrow \text{Additional functions} \rightarrow \text{Events list}$

The edit tool bar can be accessed via the FieldCare user interface $\rightarrow \triangleq 39$

This event history includes entries for:

- Diagnostic events \rightarrow $\stackrel{\triangle}{=}$ 72
- Information events \rightarrow \blacksquare 76

In addition to the operation time of its occurrence and possible troubleshooting measures, each event is also assigned a symbol that indicates whether the event has occurred or has ended:

- Diagnostic event
 - ①: Occurrence of the event
 - 🕒: End of the event
- Information event
 - €: Occurrence of the event
- To call up the measures to rectify a diagnostic event:
 - Via "FieldCare" operating tool \rightarrow 🗎 71
 - Via "DeviceCare" operating tool → 71
- For filtering the displayed event messages $\rightarrow \triangleq 76$

12.9.2 Filtering the event logbook

Using the **Filter options** parameter you can define which category of event message is displayed in the **Events list** submenu.

Navigation path

Diagnostics \rightarrow Event logbook \rightarrow Filter options

Filter categories

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

12.9.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

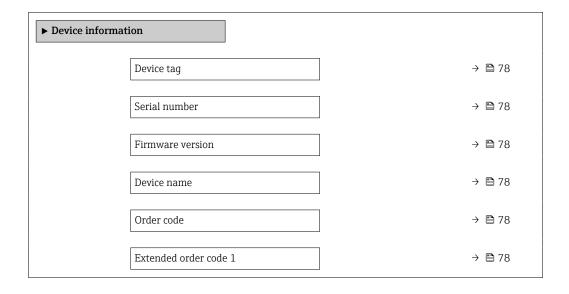
Info number	Info name	
I1000	(Device ok)	
I1089	Power on	
I1090	Configuration reset	
I1091	Configuration changed	
I1110	Write protection switch changed	
I1111	Density adjust failure	
I1151	History reset	
I1209	Density adjustment ok	
I1221	Zero point adjust failure	
I1222	Zero point adjustment ok	
I1444	Device verification passed	
I1445	Device verification failed	
I1446	Device verification active	
I1447	Record application reference data	
I1448	Application reference data recorded	
I1449	Recording application ref. data failed	
I1450	Monitoring off	

Info number	Info name	
I1451	Monitoring on	
I1457	Failed:Measured error verification	
I1459	Failed: I/O module verification	
I1460	Failed: Sensor integrity verification	
I1461	Failed: Sensor verification	
I1462	Failed:Sensor electronic module verific.	

12.10 Resetting the measuring device

Using the **Device reset** parameter ($\Rightarrow \triangleq 60$) it is possible to reset the entire device configuration or some of the configuration to a defined state.

12.10.1 Function scope of the "Device reset" parameter


Options	Description
Cancel	No action is executed and the user exits the parameter.
To fieldbus defaults	Every parameter is reset to fieldbus default values.
To delivery settings	Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting. This option is not visible if no customer-specific settings have been ordered.
Restart device	The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.

12.11 Device information

The **Device information** submenu contains all parameters that display different information for device identification.

Navigation

"Diagnostics" menu \rightarrow Device information

Extended order code 2	→ 🖺 78
Extended order code 3	→ 🖺 78
ENP version	→ 🖺 78

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Device tag	Shows name of measuring point.	Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).	-
Serial number	Shows the serial number of the measuring device.	A maximum of 11-digit character string comprising letters and numbers.	-
Firmware version	Shows the device firmware version installed.	Character string in the format xx.yy.zz	-
Device name	Shows the name of the transmitter. The name can be found on the nameplate of the transmitter.	Max. 32 characters such as letters or numbers.	-
Order code	Shows the device order code. The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.	Character string composed of letters, numbers and certain punctuation marks (e.g. /).	-
Extended order code 1	Shows the 1st part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
Extended order code 2	Shows the 2nd part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
Extended order code 3	Shows the 3rd part of the extended order code. The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.	Character string	-
ENP version	Shows the version of the electronic nameplate (ENP).	Character string	-

78

12.12 Firmware history

Release date	Firmware version	Order code for "Firmware version"	Firmware changes	Documentation type	Documentation
06.2012	01.01.00	Option 78	Original firmware	Operating Instructions	BA01060D/06/EN/01.12
04.2013	01.02.zz	Option 74	Update	Operating Instructions	BA01060D/06/EN/02.13
10.2014	01.03.zz	Option 72	 New unit "Beer Barrel (BBL)" Use of an external pressure value for "liquid" medium type New parameter and diagnostic information for "oscillation damping" upper limit value 	Operating Instructions	BA01060D/06/EN/03.14

- It is possible to flash the firmware to the current version or the previous version using the service interface.
- For the compatibility of the firmware version with the previous version, the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document.
- The manufacturer's information is available:
 - \blacksquare In the Download Area of the Endress+Hauser web site: www.endress.com \to Downloads
 - Specify the following details:
 - Product root, e.g. 8E1B
 The product root is the first part of the order code: see the nameplate on the device.
 - Text search: Manufacturer's information
 - Media type: Documentation Technical Documentation

13 Maintenance

13.1 Maintenance tasks

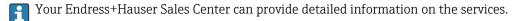
No special maintenance work is required.

13.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.

13.1.2 Interior cleaning

Observe the following points for CIP and SIP cleaning:


- Use only cleaning agents to which the process-wetted materials are adequately resistant.
- Observe the maximum permitted medium temperature for the measuring device
 → 94.

Observe the following point for cleaning with pigs:

Observe the inside diameter of the measuring tube and process connection.

13.2 Measuring and test equipment

Endress+Hauser offers a wide variety of measuring and test equipment, such as W@M or device tests.

List of some of the measuring and testing equipment: $\rightarrow \implies 83$

13.3 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

14 Repairs

14.1 General notes

14.1.1 Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers.
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory.

14.1.2 Notes for repair and conversion

For repair and modification of a measuring device, observe the following notes:

- ▶ Use only original Endress+Hauser spare parts.
- ▶ Carry out the repair according to the Installation Instructions.
- ▶ Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- ▶ Document every repair and each conversion and enter them into the *W*@*M* life cycle management database.

14.2 Spare parts

W@M Device Viewer (www.endress.com/deviceviewer):

All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

- Measuring device serial number:
 - Is located on the nameplate of the device.
 - Can be read out via the Serial number parameter (→ ☐ 78) in the Device information submenu.

14.3 Endress+Hauser services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

14.4 Return

The measuring device must be returned if it is need of repair or a factory calibration, or if the wrong measuring device has been delivered or ordered. Legal specifications require Endress+Hauser, as an ISO-certified company, to follow certain procedures when handling products that are in contact with the medium.

To ensure safe, swift and professional device returns, please refer to the procedure and conditions for returning devices provided on the Endress+Hauser website at http://www.endress.com/support/return-material

14.5 Disposal

14.5.1 Removing the measuring device

1. Switch off the device.

WARNING

Danger to persons from process conditions.

- ► Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids.
- 2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

14.5.2 Disposing of the measuring device

MARNING

Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- ▶ Observe valid federal/national regulations.
- ► Ensure proper separation and reuse of the device components.

15 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

15.1 Device-specific accessories

15.1.1 For the sensor

Accessories	Description
Heating jacket	Is used to stabilize the temperature of the fluids in the sensor. Water, water vapor and other non-corrosive liquids are permitted for use as fluids. If using oil as a heating medium, please consult with Endress+Hauser. For details, see Operating Instructions BA00099D

15.2 Communication-specific accessories

Accessories	Description
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.
	For details, see the "Technical Information" document TI405C/07

15.3 Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: Choice of measuring devices for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy. Graphic illustration of the calculation results Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project. Applicator is available:
	 Via the Internet: https://wapps.endress.com/applicator As a downloadable DVD for local PC installation.
W@M	W@M Life Cycle Management Improved productivity with information at your fingertips. Data relevant to a plant and its components is generated from the first stages of planning and during the asset's complete life cycle. W@M Life Cycle Management is an open and flexible information platform with online and on-site tools. Instant access for your staff to current, in-depth data shortens your plant's engineering time, speeds up procurement processes and increases plant uptime. Combined with the right services, W@M Life Cycle Management boosts productivity in every phase. For more information, visit www.endress.com/lifecyclemanagement

FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. For details, see Operating Instructions BA00027S and BA00059S
DeviceCare	Tool for connecting and configuring Endress+Hauser field devices. For details, see Innovation brochure IN01047S
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see "Technical Information" TI00405C

15.4 System components

Accessories	Description
Memograph M graphic data manager	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
	For details, see "Technical Information" TI00133R and Operating Instructions BA00247R
iTEMP	The temperature transmitters can be used in all applications and are suitable for the measurement of gases, steam and liquids. They can be used to read in the medium temperature.
	For details, see "Fields of Activity", FA00006T

16 Technical data

16.1 Application

The measuring device is suitable for flow measurement of liquids and gases only.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are adequately resistant.

16.2 Function and system design

Measuring principle

Mass flow measurement based on the Coriolis measuring principle

Measuring system

The device consists of a transmitter and a sensor. If a device with Modbus RS485 intrinsically safe is ordered, the Safety Barrier Promass 100 is part of the scope of supply and must be implemented to operate the device.

One device version is available: compact version, transmitter and sensor form a mechanical unit.

For information on the structure of the device

16.3 Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring ranges for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h] [lb/min]	
8	3/8	0 to 2 000	0 to 73.5
15	1/2	0 to 6 500	0 to 238
25	1	0 to 18 000	0 to 660
40	1½	0 to 45 000	0 to 1650
50	2	0 to 70 000	0 to 2 570

Measuring ranges for gases

The full scale values depend on the density of the gas and can be calculated with the formula below:

 $\dot{m}_{\max(G)} = \dot{m}_{\max(F)} \cdot \rho_G : x$

m _{max(G)}	Maximum full scale value for gas [kg/h]
m _{max(F)}	Maximum full scale value for liquid [kg/h]
$\dot{\mathbf{m}}_{\max(G)} < \dot{\mathbf{m}}_{\max(F)}$	$\dot{m}_{\max(G)}$ can never be greater than $\dot{m}_{\max(F)}$
$ ho_{G}$	Gas density in [kg/m³] at operating conditions

DN		х
[mm]	[mm] [in]	
8	3/8	60
15	1/2	80
25	1	90
40	1½	90
50	2	90

Calculation example for gas

- Sensor: Promass S, DN 50
- Gas: Air with a density of 60.3 kg/m³ (at 20 °C and 50 bar)
- Measuring range (liquid):70 000 kg/h
- $x = 90 \text{ kg/m}^3 \text{ (for Promass S, DN 50)}$

Maximum possible full scale value:

 $\dot{m}_{\max(G)} = \dot{m}_{\max(F)} \cdot \rho_G : x = 70\,000 \text{ kg/h} \cdot 60.3 \text{ kg/m}^3 : 90 \text{ kg/m}^3 = 46\,900 \text{ kg/h}$

Recommended measuring range

Operable flow range

Over 1000:1.

Flow rates above the preset full scale value are not overridden by the electronics unit, with the result that the totalizer values are registered correctly.

Input signal

Fieldbuses

To increase the accuracy of certain measured variables or to calculate the corrected volume flow for gases, the automation system can continuously write different measured values to the measuring device via Modbus RS485, EtherNet/IP or HART input:

- Process pressure or medium temperature to increase accuracy (e.g. external values from Cerabar M, Cerabar S or iTEMP)
- Reference density for calculating the corrected volume flow

16.4 Output

Output signal

Modbus RS485

Physical interface	In accordance with EIA/TIA-485-A standard		
Terminating resistor	 For device version used in non-hazardous areas or Zone 2/Div. 2: integrated and can be activated via DIP switches on the transmitter electronics module For device version used in intrinsically safe areas: integrated and can be activated via DIP switches on the Safety Barrier Promass 100 		

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Modbus RS485

Failure mode	Choose from:
	 NaN value instead of current value
	■ Last valid value

Operating tool

Plain text display	With information on cause and remedial measures
--------------------	---

Light emitting diodes (LED)

Status information	Status indicated by various light emitting diodes
	The following information is displayed depending on the device version:
	Supply voltage active
	 Data transmission active
	■ Device alarm/error has occurred

Ex connection data

These values only apply for the following device version:

Order code for "Output", option M: Modbus RS485, for use in intrinsically safe areas

Transmitter

Intrinsically safe values

Order code for	Terminal numbers			
"Approvals"	Supply voltage		Signal transmission	
	20 (L-)	10 (L+)	62 (A)	72 (B)
 Option BM: ATEX II2G + IECEx Z1 Ex ia, II2D Ex tb Option BO: ATEX II1/2G + IECEx Z0/Z1 Ex ia, II2D Option BQ: ATEX II1/2G + IECEx Z0/Z1 Ex ia Option BU: ATEX II2G + IECEx Z1 Ex ia Option C2: CSA C/US IS Cl. I, II, III Div. 1 Option 85: ATEX II2G + IECEx Z1 Ex ia + CSA C/US IS Cl. I, II, III Div. 1 		$I_i = 62$ $P_i = 2$ $L_i = 0$	5.24 V 3 mA 45 W 0 µH 6 nF	

 $[\]ensuremath{^{\star}}$ The gas group depends on the sensor and nominal diameter.

For an overview and for information on the interdependencies between the gas group - sensor - nominal diameter, see the "Safety Instructions" (XA) document for the measuring device

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The following connections are galvanically isolated from each other:

- Outputs
- Power supply

Protocol-specific data

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: 06: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	• ASCII • RTU
Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information → 101

16.5 Power supply

Terminal assignment

(Verweisziel existiert nicht, aber @y.link.required='true')

Pin assignment, device plug

Supply voltage

Transmitter

- \blacksquare For device version with all communication types except Modbus RS485 intrinsically safe: DC20 to 30 V
- For device version with Modbus RS485100 intrinsically safe: power supply via Safety Barrier Promass 100

The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

Safety Barrier Promass 100

DC20 to 30 V

Power consumption

Transmitter

Order code for "Output"	Maximum Power consumption
Option M : Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	3.5 W
Option M : Modbus RS485, for use in intrinsically safe areas	2.45 W

Safety Barrier Promass 100

Order code for	Maximum
"Output"	Power consumption
Option M : Modbus RS485, for use in intrinsically safe areas	4.8 W

Current consumption

Transmitter

Order code for "Output"	Maximum Current consumption	Maximum switch-on current
Option M : Modbus RS485, for use in non-hazardous areas and Zone 2/Div. 2	90 mA	10 A (< 0.8 ms)
Option M : Modbus RS485, for use in intrinsically safe areas	145 mA	16 A (< 0.4 ms)

Safety Barrier Promass 100

Order code for "Output"	Maximum Current consumption	Maximum switch-on current
Option M : Modbus RS485, for use in intrinsically safe areas	230 mA	10 A (< 0.8 ms)

Power supply failure

- Totalizers stop at the last value measured.
- Depending on the device version, the configuration is retained in the device memory or in the plug-in memory (HistoROM DAT).
- Error messages (incl. total operated hours) are stored.

Electrical connection

Potential equalization

No special measures for potential equalization are required.

Terminals

Transmitter

Spring terminals for wire cross-sections 0.5 to 2.5 mm^2 (20 to 14 AWG)

Safety Barrier Promass 100

Plug-in screw terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Cable entries

Transmitter

- Cable gland: M20 × 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - NPT ½"
 - G ½"
 - M20

Cable specification

16.6 Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 °C (+59 to +113 °F) at 2 to 6 bar (29 to 87 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.
- ho To obtain measured errors, use the *Applicator* sizing tool ho ho 101

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

Mass flow and volume flow (liquids)

±0.10 %

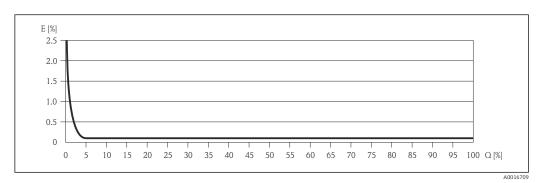
Mass flow (gases)

±0.50 % o.r.

Design fundamentals → 🖺 93

Density (liquids)

- Reference conditions:±0.0005 g/cm³
- Standard density calibration:±0.01 g/cm³
 (valid over the entire temperature range and density range)
- Wide-range density specification (order code for "Application package", option EF "Special density and concentration"): ± 0.002 g/cm³ (valid range for special density calibration: 0.0 to 2 g/cm³, +5 to +80 °C (+41 to +176 °F))


Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

DN		Zero poin	t stability
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	0.20	0.007
15	1/2	0.65	0.024
25	1	1.80	0.066
40	1½	4.50	0.165
50	2	7.0	0.257

Example for max. measured error

- E Error: Maximum measured error as % o.r. (example)
- Q Flow rate as %

ightharpoonup Design fundamentals ightharpoonup ightharpoonup 93

Flow values

Flow values as turndown parameter depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6 5 0 0	650	325	130	65	13
25	18 000	1800	900	360	180	36
40	45 000	4500	2 250	900	450	90
50	70 000	7 000	3 500	1400	700	140

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73.5	7.35	3.675	1.47	0.735	0.147
1/2	238	23.8	11.9	4.76	2.38	476
1	660	66	33	13.2	6.6	1.32
11/2	1650	165	825	33	16.5	3.3
2	2 5 7 0	257	1'285	51.4	25.7	5.14

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Mass flow and volume flow (liquids)

±0.05 % o.r.

Mass flow (gases)

±0.25 % o.r.

Page 1 Design fundamentals → 1 93

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

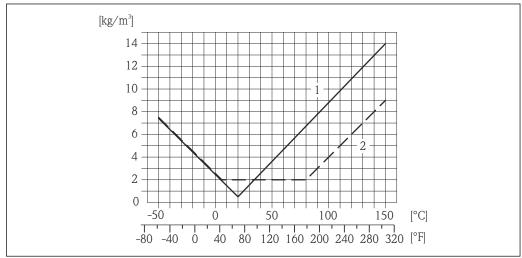
Temperature

 $\pm 0.25 \,^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.45 \,^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \,^{\circ}\text{F})$

Response time

- The response time depends on the configuration (damping).
- Response time in the event of erratic changes in the measured variable (only mass flow): after 100 ms 95 % of the full scale value

Influence of medium temperature


Mass flow and volume flow

When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the sensor is ± 0.0002 % of the full scale value/°C (± 0.0001 % of the full scale value/°F).

Density

When there is a difference between the density calibration temperature and the process temperature, the typical measured error of the sensor is $\pm 0.0001 \text{ g/cm}^3$ /°C ($\pm 0.00005 \text{ g/cm}^3$ /°F). Field density calibration is possible.

Wide-range density specification (special density calibration)

A001661

- 1 Field density calibration, for example at +20 $^{\circ}$ C (+68 $^{\circ}$ F)
- 2 Special density calibration

Temperature

 $\pm 0.005 \cdot \text{T °C } (\pm 0.005 \cdot (\text{T} - 32) \text{ °F})$

Influence of medium pressure

The table below shows the effect on accuracy of mass flow due to a difference between calibration pressure and process pressure.

o.r. = of reading

DN		[% o.r./bar]	[% o.r./psi]
[mm]	[in]		
8	3/8	-0.002	-0.0001
15	1/2	-0.006	-0.0004
25	1	-0.005	-0.0003
40	1½	-0.005	-0.0003
50	2	-0.005	-0.0003

Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

Dependent on the flow:

- Flow in % o.f.s. ≥ (zero point stability : base accuracy in % o.r.) · 100
 - Maximum measured error in % o.r.: ±base accuracy in % o.r.
 - Repeatability in % o.r.: $\pm \frac{1}{2}$ · base accuracy in % o.r.
- Flow in % o.f.s. < (zero point stability : base accuracy in % o.r.) · 100
 - Maximum measured error in % o.r.: ± (zero point stability : measured value) · 100
 - Repeatability in % o.r.: $\pm \frac{1}{2}$ · (zero point stability : measured value) · 100

Base accuracy for	[% o.r.]
Mass flow, liquids	0.1
Volume flow, liquids	0.1
Mass flow, gases	0.5

16.7 Installation

"Mounting requirements"

16.8 Environment

Ambient temperature range	
Storage temperature	-40 to $+80$ °C (-40 to $+176$ °F), preferably at $+20$ °C ($+68$ °F)
Climate class	DIN EN 60068-2-38 (test Z/AD)
Degree of protection	Transmitter and sensor ■ As standard: IP66/67, type 4X enclosure ■ With the order code for "Sensor options", option CM: IP69K can also be ordered ■ When housing is open: IP20, type 1 enclosure
	Safety Barrier Promass 100 IP20
Shock resistance	As per IEC/EN 60068-2-31
Vibration resistance	Acceleration up to 1 g, 10 to 150 Hz, based on IEC/EN 60068-2-6
Interior cleaning	■ SIP cleaning ■ CIP cleaning
Electromagnetic compatibility (EMC)	 As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21) Complies with emission limits for industry as per EN 55011 (Class A) Details are provided in the Declaration of Conformity.

16.9 **Process**

Medium temperature range

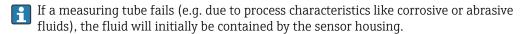
Sensor

-50 to +150 °C (-58 to +302 °F)

No internal seals

Medium density

0 to 5000 kg/m^3 (0 to 312 lb/cf)


Pressure-temperature ratings

An overview of the material load diagrams (pressure/temperature diagrams) for the process connections is provided in the "Technical Information" document.

Sensor housing

The sensor housing is filled with dry nitrogen gas and protects the electronics and mechanics inside.

If the sensor is to be purged with gas (gas detection), it should be equipped with purge connections.

Do not open the purge connections unless the containment can be filled immediately with a dry, inert gas. Use only low pressure to purge.

Maximum pressure: 5 bar (72.5 psi)

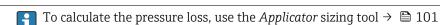
Burst pressure of the sensor housing

The following sensor housing burst pressures are only valid for standard devices and/or devices equipped with closed purge connections (not opened/as delivered).

If a device fitted with purge connections (order code for "Sensor option", option CH "Purge connection") is connected to the purge system, the maximum pressure is determined by the purge system itself or by the device, depending on which component has the lower pressure classification.

The sensor housing burst pressure refers to a typical internal pressure which is reached prior to mechanical failure of the sensor housing and which was determined during type testing. The corresponding type test declaration can be ordered with the device (order code for "Additional approval", option LN "Sensor housing burst pressure, type test").

DN		Sensor housing	burst pressure
[mm]	[in]	[bar]	[psi]
8	3/8	190	2755
15	1/2	175	2 538
25	1	165	2 3 9 2
40	1½	152	2 2 0 4
50	2	103	1494


For information on the dimensions: see the "Mechanical construction" section of the "Technical Information" document

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- Select a lower full scale value for abrasive substances (such as liquids with entrained solids): flow velocity <1 m/s (<3 ft/s).
- For gas measurement the following rules apply:
 - The flow velocity in the measuring tubes should not exceed half the sonic velocity (0.5 Mach).

Pressure loss

16.10 Mechanical construction

Design, dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section.

Weight

All values (weight exclusive of packaging material) refer to devices with EN/DIN PN 40 flanges. Weight specifications including transmitter: order code for "Housing", option A "Compact, aluminum coated".

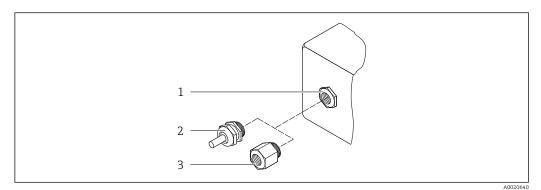
Weight in SI units

DN [mm]	Weight [kg]
8	11
15	13
25	19
40	35
50	58

Weight in US units

DN [in]	Weight [lbs]
3/8	24
1/2	29
1	42
1½	77
2	128

Safety Barrier Promass 100


49 g (1.73 ounce)

Materials

Transmitter housing

- Order code for "Housing", option A "Compact, aluminum coated": Aluminum, AlSi10Mq, coated
- Order code for "Housing", option B "Compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)
- Order code for "Housing", option **C** "Ultra-compact, hygienic, stainless": Hygienic version, stainless steel 1.4301 (304)

Cable entries/cable glands

■ 17 Possible cable entries/cable glands

- 1 Female thread M20 \times 1.5
- 2 Cable gland $M20 \times 1.5$
- 3 Adapter for cable entry with female thread G ½" or NPT ½"

Order code for "Housing", option A "Compact, aluminum, coated"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	
Adapter for cable entry with female thread G ½"	Nickel-plated brass
Adapter for cable entry with female thread NPT ½"	

Order code for "Housing", option B "Compact, hygienic, stainless"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	Stainless steel, 1.4404 (316L)
Adapter for cable entry with female thread G ½"	
Adapter for cable entry with female thread NPT ½"	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: Stainless steel, 1.4404 (316L) Contact housing: Polyamide Contacts: Gold-plated brass

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

- Stainless steel, 1.4539 (904L)
- Stainless steel, 1.4435 (316L)

Process connections

Flange according to EN 1092-1 (DIN 2501)/ASME B16.5/JIS B2220:	Stainless steel, 1.4404 (316/316L)
All other process connections:	Stainless steel, 1.4435 (316L)

Available process connections → 🗎 98

Seals

Welded process connections without internal seals

Accessories

Protective cover

Stainless steel, 1.4404 (316L)

Safety Barrier Promass 100

Housing: Polyamide

Process connections

- Fixed flange connections:
 - EN 1092-1 (DIN 2501) flange
 - EN 1092-1 (DIN 2512N) flange
 - ASME B16.5 flange
 - JIS B2220 flange
 - DIN 11864-2 Form A flange, DIN 11866 series A, flange with notch
- Clamp connections:
 - Tri-Clamp (OD tubes), DIN 11866 series C
 - DIN 11864-3 Form A clamp, DIN 11866 series A, with notch
 - DIN 32676 clamp, DIN 11866 series A
 - ISO 2852 clamp, ISO 2037
- Thread:
 - DIN 11851 thread, DIN 11866 series A
 - SMS 1145 thread
 - ISO 2853 thread, ISO 2037
 - DIN 11864-1 Form A thread, DIN 11866 series A

Process connection materials

Surface roughness

All data relate to parts in contact with fluid. The following surface roughness quality can be ordered.

- $Ra_{max} = 0.76 \mu m (30 \mu in)$
- $Ra_{max} = 0.38 \, \mu m \, (15 \, \mu in)$

16.11 Operability

Remote operation

Service interface (CDI)

Operation of the measuring device with the service interface (CDI) via: "FieldCare" operating tool with COM DTM "CDI Communication FXA291" via Commubox FXA291

Languages	Can be operated in the following languages: Via "FieldCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese	
	16.12 Certificates and approvals	
CE mark	The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.	
	Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.	
C-Tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".	
Ex approval	The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.	
Hygienic compatibility	■ 3A approval ■ EHEDG-tested	
Modbus RS485 certification	The measuring device meets all the requirements of the MODBUS/TCP conformity test and has the "MODBUS/TCP Conformance Test Policy, Version 2.0". The measuring device has successfully passed all the test procedures carried out and is certified by the "MODBUS/TCP Conformance Test Laboratory" of the University of Michigan.	
Pressure Equipment Directive	 With the PED/G1/x (x = category) marking on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements" specified in Annex I of the Pressure Equipment Directive 97/23/EC. Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Art.3 Section 3 of the Pressure Equipment Directive 97/23/EC. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive. 	
Other standards and guidelines	 EN 60529 Degrees of protection provided by enclosures (IP code) IEC/EN 60068-2-6 Environmental influences: Test procedure - Test Fc: vibrate (sinusoidal). IEC/EN 60068-2-31 Environmental influences: Test procedure - Test Ec: shocks due to rough handling, primarily for devices. EN 61010-1 Safety requirements for electrical equipment for measurement, control and laboratory use 	

Endress+Hauser 99

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC

Electromagnetic compatibility (EMC) of industrial process and laboratory control

■ IEC/EN 61326

requirements)
• NAMUR NE 21

equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 80

The application of the pressure equipment directive to process control devices

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

■ NAMUR NE 107

Self-monitoring and diagnosis of field devices

■ NAMUR NE 131

Requirements for field devices for standard applications

■ NAMUR NE 132

Coriolis mass meter

16.13 Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered from Endress+Hauser either directly with the device or subsequently. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Heartbeat	Techno	loav
i icui ibcui	I CCITIO	LOU V

Package	Description
Heartbeat Verification +Monitoring	Heartbeat Monitoring: Continuously supplies monitoring data, which are characteristic of the measuring principle, for an external condition monitoring system. This makes it possible to: Draw conclusions - using these data and other information - about the impact the measuring application has on the measuring performance over time. Schedule servicing in time. Monitor the product quality, e.g. gas pockets. Heartbeat Verification: Makes it possible to check the device functionality on demand when the device is installed, without having to interrupt the process. Access via onsite operation or other interfaces (requires no on-site presence). Ideal solution for recurring device checks (SIL). End-to-end, traceable documentation of the verification results and verification report.

Concentration

Package	Description
Concentration measurement and special density	Calculation and outputting of fluid concentrations Many applications use density as a key measured value for monitoring quality or controlling processes. The device measures the density of the fluid as standard and makes this value available to the control system. The "Special Density" application package offers high-precision density measurement over a wide density and temperature range particularly for applications subject to varying process conditions.
	With the help of the "Concentration Measurement" application package, the measured density is used to calculate other process parameters: Temperature-compensated density (reference density). Percentage mass of the individual substances in a two-phase fluid. (Concentration in %). Fluid concentration is output with special units ("Brix, "Baumé, "API, etc.) for standard applications.
	The measured values are output via the digital and analog outputs of the device.

16.14 Accessories

16.15 Documentation

The following document types are available:

- On the CD-ROM supplied with the device
- In the Download Area of the Endress+Hauser Internet site: www.endress.com → Download

Standard documentation

Communication	Document type	Documentation code
	Brief Operating Instructions	KA01119D
	Technical Information	TI01037D

Supplementary devicedependent documentation

Document type	Contents	Documentation code
Safety Instructions	ATEX/IECEx Ex i	XA00159D
	ATEX/IECEx Ex nA	XA01029D
	cCSAus IS	XA00160D
Special documentation	Information on the Pressure Equipment Directive	SD00142D
Special documentation	Modbus RS485 Register Information	SD00154D
Special documentation	Concentration Measurement	SD01152D
Special documentation	Viscosity Measurement	SD01151D
Special documentation	Heartbeat Technology	SD01153D
Installation Instructions		Specified for each individual accessory → 🖺 83
		Overview of accessories available for order $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Index

A	Device name
Accuracy	Sensor
Adapting the diagnostic behavior	Transmitter
Application	Device repair
Application packages	Device revision
Applicator	Device type ID
Approvals	DeviceCare
Auto scan buffer	Device description file 42
see Modbus RS485 Modbus data map	Diagnostic information
	Communication interface 71
C	Design, description
C-Tick symbol	DeviceCare
Cable entries	FieldCare
Technical data	Light emitting diodes 69
Cable entry	Overview
Degree of protection	Remedial measures
CE mark	Diagnostic list
Certificates	DIP switches
Check	see Write protection switch
Installation	Disabling write protection 61
Checklist	Display values
Post-connection check	For locking status 63
Post-installation check 23	Disposal
CIP cleaning	Document
Cleaning	Function
Cleaning in place (CIP) 80	Symbols used
Exterior cleaning	Document function
Interior cleaning	Down pipe
Sterilization in place (SIP) 80	
Climate class	E
Commissioning	Electrical connection
Advanced settings	Commubox FXA291
Configuring the measuring device 47	Degree of protection
Configuring error response mode, Modbus RS485 71	Measuring device
Connecting cable	Operating tools
Connecting the measuring device	Via service interface (CDI)
Connection	Electromagnetic compatibility
see Electrical connection	Enabling write protection 61
Connection preparations	Endress+Hauser services
Connection tools	Maintenance
Current consumption	Repair
Garrent consumption	Error messages
D	see Diagnostic messages
Declaration of Conformity 9	Event list
Degree of protection	Event logbook
Design	Ex approval
Measuring device	Ex connection data
Design fundamentals	Extended order code
Maximum measured error 93	Sensor
Repeatability	Transmitter
Designated use 8	Exterior cleaning
Device components	
Device description files 42	F
Device documentation	Field of application
Supplementary documentation	
Supplementary documentation	Residual risks
Device locking, status	

102

FieldCare		Manufacturing date	14
Device description file		Materials	
Establishing a connection		Maximum measured error	90
Function		Measured variables	
User interface		see Process variables	00
Filtering the event logbook	/6	Measuring and test equipment	80
Firmware	<i>(</i> , 2)	Measuring device	1.7
Release date		Configuration	
Version		Conversion	
Firmware history		Design	
Flow direction		Disposal	
Flow limit		Mounting the sensor	
Function check		Preparing for electrical connection	
Function codes	42	Preparing for mounting	
Functions		Removing	
see Parameter		Repairs	
G		Measuring principle	85
	20	Measuring range	0.6
Galvanic isolation	50	Calculation example for gas	
Н		For gases	
Hardware write protection 6	61	For liquids	
Hygienic compatibility		Measuring range, recommended	
Trygletile companionity		Measuring system	
I		Medium density	94
I/O electronics module	31	Medium pressure	0.0
Identifying the measuring device		Influence	92
Incoming acceptance		Medium temperature	0.0
Influence		Influence	92
Medium pressure	92	Menu	- ,
Medium temperature		Diagnostics	
Information on the document		Operation	
Inlet runs		Setup	47
Input		Menus	
Inspection		For measuring device configuration	
Received goods	12	For specific settings	56
Inspection check		Modbus RS485	
Connection	34	Configuring error response mode	
Installation		Diagnostic information	
Installation conditions		Function codes	
Down pipe	18	Modbus data map	
Inlet and outlet runs		Read access	
Installation dimensions		Reading out data	
Mounting location		Register addresses	
Orientation		Register information	
Sensor heating		Response time	
System pressure		Scan list	
Thermal insulation		Write access	
Vibrations		Modbus RS485 certification	99
Installation dimensions		Mounting dimensions	
Interior cleaning		see Installation dimensions	10
		Mounting location	
L		Mounting preparations	
Languages, operation options	99	Mounting tools	43
Low flow cut off		N	
M		Nameplate Promose 100 sofoty barrier	1 =
Main electronics module	11	Promass 100 safety barrier	
Maintenance tasks	30	Sensor	
	42	Transmitter	13

0	Registered trademarks	
Operable flow range	Remote operation	
Operating menu	Repair of a device	
Menus, submenus	Repairs	
Structure	Notes	
Submenus and user roles	Repeatability	91
Operating philosophy	Replacement	
Operation	Device components	
Operation options	Requirements for personnel	
Operational safety	Response time	92
Order code	Return	81
Orientation (vertical, horizontal) 19		
Outlet runs	S	
Output	Safety	
Output signal	Safety Barrier Promass 100	28
	Seals	
P	Medium temperature range	94
Packaging disposal	Sensor	
Parameter settings	Medium temperature range	
Administration (Submenu) 60	Mounting	
Advanced setup (Submenu) 56	Sensor heating	
Calculated values (Submenu) 56	Sensor housing	
Communication (Submenu) 52	Serial number	
Device information (Submenu)	Service interface (CDI)	
Diagnostics (Menu)	Setting the operating language	47
Low flow cut off (Wizard) 54	Settings	
Measured variables (Submenu) 63	Adapting the measuring device to the process	
Medium selection (Submenu) 51	conditions	
Partially filled pipe detection (Wizard) 55	Administration	
Sensor adjustment (Submenu) 58	Communication interface	
Setup (Menu)	Device reset	
Simulation (Submenu) 60	Low flow cut off	
System units (Submenu) 48	Medium	
Totalizer (Submenu)	Operating language	
Totalizer 1 to n (Submenu)	Partial filled pipe detection	
Totalizer handling (Submenu) 66	Resetting the totalizer	
Zero point adjustment (Submenu) 58	Sensor adjustment	
Performance characteristics	System units	
Post-connection check (checklist)	Tag name	
Post-installation check 47	Totalizer	
Post-installation check (checklist) 23	Totalizer reset	
Potential equalization	Shock resistance	
Power consumption	Signal on alarm	
Power supply failure	SIP cleaning	
Pressure Equipment Directive	Software release	
Pressure loss	Spare part	
Pressure-temperature ratings 94	Spare parts	
Process connections	Special connection instructions	
Process variables	Standards and guidelines	
Calculated	Status signals	
Measured	Storage conditions	
Product safety	Storage temperature	16
Protecting parameter settings 61	Structure	
n.	Operating menu	37
R	Submenu	
Reading measured values	Administration	
Reading out diagnostic information, Modbus RS485 71	Advanced setup	
Recalibration	Calculated values	
Reference operating conditions 90	Communication	52

104

Device information 7 Event list 7 Measured values 6 Measured variables 6 Medium selection 5 Overview 38	5 3 3
Process variables	8 0 8
Totalizer 1 to n	6 8 8
System design Measuring system	_
see Measuring device design System integration	_
T	
Technical data, overview	5
Medium temperature 94 Storage temperature 10	6
Terminal assignment	9
Electrical connection	3
Connecting the signal cables	
General 68	8
U	
see Designated use	8 8
User interface Current diagnostic event	4
V	
Version data for the device	3
W	
W@M 80, 8 W@M Device Viewer 12, 8 Weight 12, 8	
SI units 90	6

Transport (notes)	
Wizard	
Low flow cut off	4
Partially filled pipe detection 5	5
Workplace safety	9
Write protection	
Via write protection switch 6	1
Write protection switch 6	1

www.addresses.endress.com