
Services

Особые документы Liquiphant M/S с электронной вставкой FEL56 + Nivotester FTL325N

Руководство по функциональной безопасности

Система для измерения предельного уровня

Содержание

Цекларация о соответствии	3
Общие	5
Цругие характеристики, связанные с обеспечением	
безопасности	. 5
Срок эксплуатации электронных компонентов	15
Сертификат	16
Информация о документе	17
Назначение документа	17
Используемые символы	17
Сопроводительная документация по прибору	18
Разрешенные типы приборов	20
Метка SIL на заводской табличке	21
Функция обеспечения безопасности	22
Определение функции обеспечения безопасности	22
Ограничения на использование в областях, связанных	
с обеспечением безопасности	22
Использование в защитных системах с	
измерительным приборами	25
измерительным приборами	25 25
Поведение прибора в процессе работы	
Поведение прибора в процессе работы	
Поведение прибора в процессе работы	25
Поведение прибора в процессе работы	25 25 29
Поведение прибора в процессе работы	25 25
Поведение прибора в процессе работы	25 25 29 40
Поведение прибора в процессе работы	25 29 40 40
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Гребования к работе персонала Монтаж	25 29 40 40 40
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Гребования к работе персонала Монтаж Управление Гехническое обслуживание	25 29 40 40 40 40
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Гребования к работе персонала Монтаж Управление Гехническое обслуживание	255 299 400 400 400 400 400
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Гребования к работе персонала Монтаж Управление Гехническое обслуживание	255 299 400 400 400 400 400 400
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Гребования к работе персонала Монтаж Управление Гехническое обслуживание Ремонт Модификация Вывод из эксплуатации	255 259 400 400 400 400 400 400 400 400 400 40
Поведение прибора в процессе работы	25 25 29 40 40 40 40 40 40 42 42
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Пребования к работе персонала Монтаж Управление Пехническое обслуживание Ремонт Модификация Вывод из эксплуатации Приложение Приложение Приложение Приложение	255 299 400 400 400 400 400 400 400 400 400 4
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Пребования к работе персонала Монтаж Управление Пехническое обслуживание Ремонт Модификация Вывод из эксплуатации Приложение Структура измерительной системы Ввод в эксплуатацию или	255 299 400 400 400 400 400 400 400 400 400 4
Поведение прибора в процессе работы Настройка прибора для областей применения, связанных с обеспечением безопасности Функциональный тест Жизненный цикл Пребования к работе персонала Монтаж Управление Пехническое обслуживание Ремонт Модификация Вывод из эксплуатации Приложение Приложение Приложение Приложение	25 25 29 40 40 40 40 40 42 42 42 43

2

Декларация о соответствии

SIL_00069_03.15

Declaration of Conformity

Functional Safety according to IEC 61508:2010 Supplement 1 / NE130 Form B.1

Endress+Hauser GmbH+Co. KG, Hauptstraße 1, 79689 Maulburg

being the manufacturer, declares that the product stated below

Liquiphant M/S with electronic insert FEL56 (+ Nivotester FTL325N)

is suitable for the use in safety-instrumented systems up to SIL2 according to IEC 61508:2010.

In safety instrumented systems according IEC 61508 and IEC 61511, the instructions of the Safety Manual have to be followed.

Maulburg, 17-June-2016 Endress+Hauser GmbH+Co. KG

Dr. Arno Götz

Dept. Manager Product Safety Research & Development Dr.Dietmar Frühauf Dept. Manager Level Switches Research & Development

1/2

10025774

SIL_00069_03.15

General			
Device designation and permissible types	Liquiphant M/S with electron	nic insert FEL56, optional+ Nivotester FTL325N	
Order code selection	FTL5*/7*-****6**** (+FTL325N-y****, y = G, H, N, P, T, W, 2)		
Safety-related output signal	Liquiphant: NAMUR-interfact IEC60947-5-6 (+ Nivotester	e according to EN50227 (DIN19234;NAMUR) or FTL325N: Relay)	
Fault current	NAMUR: 2.2 mA 2.8 mA Relay: –	Domini w	
Process variable/function	Level switch for liquids		
Safety function(s)	Overfill protection or operating	ng maximum/minimum detection	
Device type acc. to IEC 61508-2	☐ Type A	☑ Type B	
Operating mode		☐ High Demand Mode ☐ Continuous Mod	
Valid hardware version	FEL56 as of version 01.01 / N	Nivotester FTL325N as of version O2.00	
Valid software version	FEL56 as of version 01.00.01	/ Nivotester FTL325 without SW	
Safety manual	SD01521F	15-130/1-71	
, n		uation parallel to development incl. quest acc. to IEC 61508-2, 3	
Type of evaluation		n-use" performance for HW/SW incl. FMEDA and	
(check only <u>one</u> box)		field data to verify "prior use" acc. to	
	Evaluation by FMEDA acc. to IEC 61508-2 for devices w/o software		
Evaluation through / certificate no.	TÜV Rheinland, Report No. 96	68/FSP 1148 00/15	
Test documents		Test reports Data sheets	
SIL - Integrity		but sieces	
Systematic safety integrity		SIL 2 capable	
Systematic safety integrity	Single channel use (HFT = 0)		
Hardware safety integrity	Multi channel use (HFT ≥ 1)	SIL 2 capable SIL 3 capal	
FMEDA	mara channer use (III 1 E 1)	Z Sic 2 capable Sic 3 capa	
Safety function	MIN	- I HAV	
λ _{ου} 1),2),3)	67 FIT	MAX	
λ _{0D} 1),2),3)	7 FIT	54 FIT	
λ _{SU} 1),2),3)	80 FIT	7 FIT	
λ _{SD} 1),2),3)		82 FIT	
nsD 1),2),3)	56 FIT 210 FIT	68 FIT	
SFF (Safe Failure Fraction) 3)	68 %	211 FIT	
PFD _{avg} ($T_1 = 1$ year) 2l,3 (single channel architecture)	2.92 · 10 ⁻⁴		
PTC 31,4)	93 %	2.36 · 10 ⁻⁴	
MTBF 3),5)		93 %	
Diagnostic test interval ⁶⁾	543 years		
Fault reaction time 7)	≤ 1 min		
	≤ 3 s		
Declaration			

2/2

M9K 60947-5-6.

Общие

Компоненты можно использовать в разных исполнениях.

- Исполнение I (→ 🖺 6)
 Один датчик Liquiphant для непосредственной активации коммутационного устройства NAMUR (например, преобразователя или ПЛК, обеспечивающего безопасность) через интерфейс NAMUR в соответствии со стандартом EN 50227 (DIN 19234; NAMUR) или
- Исполнение II (→ ≦ 7)
 Один датчик Liquiphant с 1-канальным преобразователем Nivotester для активации исполнительного механизма или ПЛК, обеспечивающего безопасность, посредством релейных контактов (например).
- Исполнение IV (→ 10)
 Два датчика Liquiphant с 3-канальным преобразователем Nivotester, релейные контакты коммутируются последовательно.
- Исполнение V (\rightarrow 🖺 12) Три датчика Liquiphant с 3-канальным преобразователем Nivotester, используются все каналы, оценка осуществляется в ПЛК, обеспечивающем безопасность (например).
- Исполнение VI (→ 14)
 Три датчика Liquiphant с 3-канальным преобразователем Nivotester, только каналу 1 выделена функция мониторинга в режиме SIL. Каналы 2 и 3 используются для контроля одного и того же уровня (например, ∆s). Такой контроль уровня не может рассматриваться как мера безопасности в рамках обеспечения функциональной безопасности согласно стандарту EN 61508.

УВЕДОМЛЕНИЕ

Измерение другого, независимого уровня (например, во втором резервуаре)

▶ Остальные каналы запрещено использовать для измерения других уровней.

Другие характеристики, связанные с обеспечением безопасности

Обратите внимание на некоторые особенности следующих таблиц.

- В расчетах, приведенных ниже, был применен общий коэффициент β = 10 %.
- Для многоканальных систем значения PFD_{avg} уже учитывают отказы по общей причине для конкретной схемы подключения.
- Значения PFD_{avg} применяются только к конкретной схеме подключения, для которой были рассчитаны значения. Они не являются приемлемой основой для расчета других схем подключения. В частности, использование размыкающих контактов вместо замыкающих контактов не допускается для работы в соответствии со спецификациями SIL.
- На схеме подключения указано количество приборов и схема контактов реле уровня (размыкаются при необходимости (режим запроса)).
- Если в схеме подключения несколько приборов, то для всех приборов отображаются одинаковые настройки.
- В таблицах приведены значения, связанные с безопасностью, и варианты подключения измерительной системы.
- FIT = количество отказов за определенный период, 1 FIT = 10^{-9} л/ч.

Особые параметры функциональной безопасности

Исполнение I: Liquiphant M/S

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Функция обеспечения безопасности	MIN	MAX
Пример		
Схема подключения	А. Другое защитное оборудование, н ПЛК, обеспечивающий безопасности	апример исполнительный механизм/
SIL	2	
HFT	0	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	68 %	74 %
MTTR	8 ч	
λ _{sd} 1)	56 FIT	68 FIT
λ _{su} 1)	80 FIT	82 FIT
λ _{dd} 1)	7 FIT	
λ _{du} 1)	67 FIT	54 FIT
PFD _{avg} для T ₁ = 1 год	2,92 x 10 ⁻⁴	2,36 x 10 ⁻⁴
MTBF	543 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы 4)	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	93 %	
Последовательность проверки РТС С ⁶⁾	-	93 %

- 1) Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- 6) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.

Исполнение II: датчик Liquiphant M/S; 1-канальный преобразователь Nivotester FTL325N

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Функция обеспечения безопасности	MIN	MAX
Пример		
Схема подключения		Н1 \ А А апример исполнительный механизм/
SIL	2	
HFT	0	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	85 %	86 %
MTTR	8 ч	
λ _{sd} 1)	56 FIT	68 FIT
λ _{su} 1)	542 FIT	
$\lambda_{dd}^{1)}$	9 FIT	
$\lambda_{du}^{1)}$	110 FIT	97 FIT
$\mathrm{PFD}_{\mathrm{avg}}$ для T_1 = 1 год	4,83 x 10 ⁻⁴	4,27 x 10 ⁻⁴
MTBF	159 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы ⁴⁾	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	88 %	
Последовательность проверки РТС В ⁶⁾	34 %	38 %
Последовательность проверки РТС С ⁷⁾	-	88 %

- 1) Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- 5) Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- Контрольные испытания при выполнении моделирования на преобразователе Nivotester путем активации кнопки запуска диагностики.
- 7) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.

 $\it Исполнение III:$ датчик $\it Liquiphant M/S; 3$ -канальный преобразователь $\it Nivotester FTL325N,$ контакты $\it CH2$ и $\it CH3$ соединены последовательно

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Функция обеспечения безопасности	MIN	MAX
Пример		
Схема подключения	В СН1 СН2 А СН3 А А СН3 В Вероятность 1 С Вероятность 2; оценка 1002	С СН1 Д А (1002) апример исполнительный механизм/
SIL	2	
HFT	0	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	92 %	93 %
MTTR	8 ч	
λ _{sd} 1)	63 FIT	76 FIT
λ _{su} 1)	803 FIT	
λ _{dd} 1)	7 FIT	
λ _{du} 1)	78 FIT	65 FIT
PFD _{avg} для T ₁ = 1 год	3,41 x 10 ⁻⁴	2,85 x 10 ⁻⁴
MTBF	120 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы ⁴⁾	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	93 %	
Последовательность проверки РТС В ⁶⁾	52 %	57 %

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Последовательность проверки РТС С ⁷⁾	-	93 %

- 1) Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- 6) Контрольные испытания при выполнении моделирования на преобразователе Nivotester путем активации кнопки запуска диагностики.
- 7) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.

Исполнение IV: 2 датчика Liquiphant M/S; 3-канальный преобразователь Nivotester FTL325N

Характеристики согласно	Значение	
ГОСТ Р МЭК 61508	MIN	MAX
Функция обеспечения безопасности	IVIIIV	MAX
Пример		
Схема подключения	А. Другое защитное оборудование, на ПЛК, обеспечивающий безопасность В Вероятность 1 С Вероятность 2; оценка 1003	С СН1 А (1003) СН3 СН3 Механизм/
SIL	2	
HFT	1	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	99 %	
MTTR	8 ч	
λ _{sd} 1)	135 FIT	159 FIT
λ_{su}	1225 FIT	1203 FIT
λ_{dd}	1 FIT	
λ_{du}	16 FIT	15 FIT
PFD _{avg} для T ₁ = 1 год	7,07 x -10 ⁻⁵	6,52 x 10 ⁻⁵
MTBF	83 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы ⁴⁾	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	88 %	
Последовательность проверки РТС В ⁶⁾	34 %	38 %

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Последовательность проверки РТС С ⁷⁾	-	88 %

- Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- Контрольные испытания при выполнении моделирования на преобразователе Nivotester путем активации кнопки запуска диагностики.
- 7) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.
- 1 Интенсивность отказов основывается на анализе в соответствии со стандартом DIN EN 61508-6:2011-02, таблица D.4 («Использование коэффициента β для расчета вероятности отказа в системе E/E/PE, обеспечивающей безопасность, вследствие отказа по общей причине»). Расчет дает коэффициент β 10 %. Этот коэффициент основан на указанной выше частоте отказов. Если во время установки будут приняты дополнительные меры для предотвращения отказов по общей причине согласно таблице D.1, коэффициент β может быть уменьшен до 5 %. Возможные меры перечислены ниже.
 - Монтаж датчиков в физически обособленном месте.
 - Отдельное прокладывание кабелей между датчиком Liquiphant и преобразователем Nivotester.
 - Отдельная защита от воздействия окружающей среды: толчков, солнечных лучей, электромагнитных помех и/или повышенного напряжения.
 - Использование различных материалов изготовления датчиков, а также сочетание высокотемпературного и стандартного исполнений.

Исполнение V: 3 датчика Liquiphant M/S; 3-канальный преобразователь Nivotester FTL325N

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Функция обеспечения безопасности	MIN	MAX
Пример		
Схема подключения		Н1 \ A (2003) Н3 \ \ тоценка 2003
SIL	2	
HFT	1	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	99 %	
MTTR	8 ч	
$\lambda_{sd}^{1)}$	198 FIT	234 FIT
λ_{su}	1411 FIT	1377 FIT
$\lambda_{ m dd}$	1 FIT	
λ_{du}	18 FIT	17 FIT
PFD _{avg} для T ₁ = 1 год	8,04 x -10 ⁻⁵	7,49 x 10 ⁻⁵
MTBF	70 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы ⁴⁾	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	88 %	
Последовательность проверки РТС В ⁶⁾	34 %	38 %
Последовательность проверки РТС С ⁷⁾	-	88 %

- 1) Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- Контрольные испытания при выполнении моделирования на преобразователе Nivotester путем активации кнопки запуска диагностики.
- 7) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.

- Интенсивность отказов основывается на анализе в соответствии со стандартом DIN EN 61508-6:2011-02, таблица D.4 («Использование коэффициента β для расчета вероятности отказа в системе E/E/PE, обеспечивающей безопасность, вследствие отказа по общей причине»). Расчет дает коэффициент β 10 %. Этот коэффициент основан на указанной выше частоте отказов. Если во время установки будут приняты дополнительные меры для предотвращения отказов по общей причине согласно таблице D.1, коэффициент β может быть уменьшен до 5 %. Возможные меры перечислены ниже.
 - Монтаж датчиков в физически обособленном месте.
 - Отдельное прокладывание кабелей между датчиком Liquiphant и преобразователем Nivotester.
 - Отдельная защита от воздействия окружающей среды: толчков, солнечных лучей, электромагнитных помех и/или повышенного напряжения.
 - Использование различных материалов изготовления датчиков, а также сочетание высокотемпературного и стандартного исполнений.

Исполнение VI: датчик Liquiphant M/S; 3-канальный преобразователь Nivotester FTL325N

Характеристики согласно ГОСТ Р МЭК 61508	Значение	
Функция обеспечения безопасности	MIN	MAX
Пример		A0027836
Схема подключения		H1 \ ∆S H2 \ ∆S H3 \ √ апример исполнительный механизм/
	ПЛК, обеспечивающий безопасность Контроль уровня типа ∆s (не SIL)	ипример исполнительный мехинизмо
SIL	2	
HFT	0	
Тип прибора	В	
Режим работы	Режим с низкой частотой запросов	
SFF	85 %	86 %
MTTR	8 ч	
$\lambda_{sd}^{1)}$	56 FIT	68 FIT
λ_{su}	542 FIT	
λ_{dd}	9 FIT	
λ_{du}	110 FIT	97 FIT
PFD _{avg} для T ₁ = 1 год	4,83 x 10 ⁻⁴	4,27 x 10 ⁻⁴
MTBF	159 лет	
Интервал диагностических проверок ²⁾	≤ 60 c	
Время реакции на неисправность ³⁾	≤ 3 c	
Время реакции системы ⁴⁾	1 с (покрыт > не покрыт)	0,5 с (не покрыт > покрыт)
Последовательность проверки РТС А ⁵⁾	88 %	
Последовательность проверки РТС В ⁶⁾	34 %	38 %
Последовательность проверки РТС С ⁷⁾	-	88 %

- 1) Это значение учитывает типы отказов, относящиеся к работе электронных компонентов, согласно стандарту Siemens SN29500.
- 2) В течение этого времени все диагностические функции выполняются по меньшей мере один раз.
- 3) Время между обнаружением ошибки и реакцией на ошибку.
- 4) Время отклика на скачок согласно стандарту DIN EN 61298-2.
- Контрольные испытания с достижением уровня или снятием датчика и погружением камертона в среду аналогичной плотности и вязкости.
- Контрольные испытания при выполнении моделирования на преобразователе Nivotester путем активации кнопки запуска диагностики.
- 7) Контрольные испытания с проверкой точки переключения в стандартных условиях эксплуатации.

Срок эксплуатации электронных компонентов

Установленная частота сбоев электрических компонентов соответствует сроку эксплуатации согласно стандарту МЭК 61508-2:2010, раздел 7.4.9.5, примечание 3.

Согласно стандарту DIN EN 61508-2:2011, раздел 7.4.9.5 (национальное примечание N3), соответствующие меры, принятые изготовителем и оператором, могут продлить срок службы.

Сертификат

A002806

Информация о документе

Назначение документа

Настоящий документ является частью руководства по эксплуатации и служит справочником по параметрам для конкретных областей применения и соответствующим пояснениям.

- Общая информация о функциональной безопасности: SIL
- Общую информацию о SIL можно получить следующим образом:
 В разделе загрузки на веб-сайте Endress+Hauser: www.de.endress.com/SIL

Используемые символы

Символы по технике безопасности

Символ	Значение
№ ОПАСНО	ОПАСНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к серьезным или смертельным травмам.
▲ ОСТОРОЖНО	ОСТОРОЖНО! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к серьезным или смертельным травмам.
▲ ВНИМАНИЕ	ВНИМАНИЕ! Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травмам небольшой и средней тяжести.
УВЕДОМЛЕНИЕ	УКАЗАНИЕ! Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

Описание информационных символов

Символ	Значение
A0011193	Подсказка Указывает на дополнительную информацию.
	Ссылка на документацию
A	Ссылка на страницу
	Ссылка на рисунок
1., 2., 3	Серия шагов

Символы на рисунках

Символ	Значение
1, 2, 3,	Номера пунктов
1., 2., 3	Серия шагов
A, B, C,	Виды

Сопроводительная документация по прибору

Liquiphant M FTL50, FTL50H, FTL51, FTL51H, FTL51C

Документация	Комментарии
Технические описания: Т100328F/00 (FTL50, FTL50H, FTL51, FTL51H) Т100347F/00 (FTL51C)	Документацию можно получить через Интернет: → www.endress.com
Руководства по эксплуатации: КА00143F/00 (FTL50, FTL51) КА00163F/00 (FTL50, FTL51 ¹⁾) КА00144F/00 (FTL50H, FTL51H) КА00164F/00 (FTL50H, FTL51H ¹⁾) КА00162F/00 (FTL51C) КА00165F/00 (FTL51C)	 Документ входит в состав комплектации прибора. Документацию можно получить через Интернет: → www.endress.com
Специальное исполнение документации: SV01222F/00	Дополнительное руководство по монтажу для специальных технических изделий (TSP) со съемными модулями электроники
	 Документ входит в состав комплектации прибора. Документацию можно получить через Интернет: → www.endress.com → поиск → укажите серийный номер
Правила техники безопасности в зависимости от выбранной опции "Сертификат".	К приборам в сертифицированном исполнении прилагаются дополнительные правила техники безопасности (ХА, ZE). Документ правил техники безопасности, относящийся к данному прибору, указан на его заводской табличке.

1) с алюминиевым корпусом Т13/отдельным клеммным отсеком

Liquiphant S FTL70, FTL71

Документация	Комментарии	
Технические описания: TI00354F/00	Документацию можно получить через Интернет: → www.endress.com	
Руководства по эксплуатации: • KA00172F/00 • KA00173F/00 1)	 Документ входит в состав комплектации прибора. Документацию можно получить через Интернет: → www.endress.com 	
Специальное исполнение документации: SV01222F/00	Дополнительное руководство по монтажу для специальных технических изделий (TSP) со съемными модулями электроники	
	 Документ входит в состав комплектации прибора. Документацию можно получить через Интернет: → www.endress.com → поиск → укажите серийный номер 	
Правила техники безопасности в зависимости от выбранной опции "Сертификат".	К приборам в сертифицированном исполнении прилагаются дополнительные правила техники безопасности (ХА, ZE). Документ правил техники безопасности, относящийся к данному прибору, указан на его заводской табличке.	

1) с алюминиевым корпусом Т13/отдельным клеммным отсеком

Nivotester FTL325N

Документация	Комментарии	
Технические описания: TI00353F/00	Документацию можно получить через Интернет: → www.endress.com	
Руководства по эксплуатации: ■ KA00170F/00 (1-канальный) ■ KA00171F/00 (3-канальный)	 Документ входит в состав комплектации прибора. Документацию можно получить через Интернет: → www.endress.com 	
Правила техники безопасности в зависимости от выбранной опции "Сертификат".	К приборам в сертифицированном исполнении прилагаются дополнительные правила техники безопасности (ХА, ZE). Документ правил техники безопасности, относящийся к данному прибору, указан на его заводской табличке.	

Данный документ дополнительных правил техники безопасности является приложением к руководству по эксплуатации, техническому описанию и инструкции по применению оборудования во взрывоопасных зонах АТЕХ. При монтаже, вводе в эксплуатацию и эксплуатации обязательно соблюдайте инструкции, приведенные в дополнительной документации по прибору. В настоящих правилах техники безопасности приведены требования, относящиеся к функции обеспечения безопасности.

Разрешенные типы приборов

Приведенные в настоящем руководстве подробные сведения о функциональной безопасности относятся к перечисленным ниже исполнениям прибора и действуют для указанных версий программного и аппаратного обеспечения. Все последующие версии также можно применять в составе систем обеспечения безопасности, если не указано иное. К вносимым в приборы изменениям применяется процесс модификации согласно ГОСТ Р МЭК 61508.

 $\it Исполнения приборов, допущенные к применению в системах обеспечения безопасности: Liquiphant M FTL50, FTL50H, FTL51, FTL51H, FTL51C$

Опция заказа	Обозначение	Параметр
010	Сертификат	Bce
020	Присоединение к процессу	Bce
030	Длина зонда; тип	Bce
040	Электронная вставка; выходной сигнал	6 FEL56; SIL NAMUR (сигнал L-H)
050	Тип корпуса; кабельный ввод	Bce
060	Дополнительные опции	Bce
570	Service	Bce
580	Дополнительные тесты, сертификаты	Bce
600	Конструкция датчика	Bce
895	Маркировка	Bce

- Действительная версия встроенного ПО: начиная с версии 01.00.01
- Действительная версия аппаратного обеспечения: начиная с версии 01.01

Исполнения изделий, допущенные к применению в системах обеспечения безопасности: Liquiphant S FTL70, FTL71

Опция заказа	Обозначение	Параметр
010	Сертификат	Bce
020	Присоединение к процессу	Bce
030	Длина зонда	Bce
040	Электронная вставка; выходной сигнал	6 FEL56; SIL NAMUR (сигнал L-H)
050	Тип корпуса; кабельный ввод	Bce
060	Дополнительные опции	Bce
070	Применение	Bce
570	Service	Bce
580	Дополнительные тесты, сертификаты	Bce
600	Конструкция датчика	Bce
895	Маркировка	Bce

- Действительная версия встроенного ПО: начиная с версии 01.00.01
- Действительная версия аппаратного обеспечения: начиная с версии 01.01

Исполнения изделий, допущенные к применению в системах обеспечения безопасности: Nivotester FTL325N

Опция заказа	Обозначение	Параметр		
010	Сертификат	 G ATEX II 3(1)G Ex nC/A [ia] IIC T4, SIL, MЭК Ex, зона 2 H ATEX II (1)GD [EEx ia] IIC, WHG, SIL, MЭК Ex [Ex ia] IIC N NEPSI (Ex ia) IIC, SIL P FM IS Класс I, II, III, разд. 1 гр. A-G, SIL T CSA IS, кл. I, II, III, разд. 1 гр. A-G, SIL W TIIS Ex ia IIC, SIL, маркировка для Японии 2 INMETRO [Ex ia Ga] IIC, SIL 8 EAC [Ex ia Ga] IIC SIL; EAC [Ex ia Da] IIC, SIL 		
020	Корпус	 1 Монтаж на рейку; 22,5 мм, 1 канал 3 Монтаж на рейку; 45 мм, 3 канала 		
030	Подключение питания	Bce		
040	Релейный выход	 1 1 уровень SPDT + 1 сигнализация SPST 3 уровня SPDT + 1 сигнализация SPST 		
995	Маркировка	Bce		

Действительная версия аппаратного обеспечения: начиная с версии 02.00

Метка SIL на заводской табличке

Приборы с сертификатом SIL отмечаются следующим символом на заводской табличке: s

Функция обеспечения безопасности

Определение функции обеспечения безопасности

Измерительная система выполняет следующие функции обеспечения безопасности.

- Мониторинг максимального предельного уровня (защита от перелива)
- Мониторинг минимального предельного уровня (защита от сухого хода)

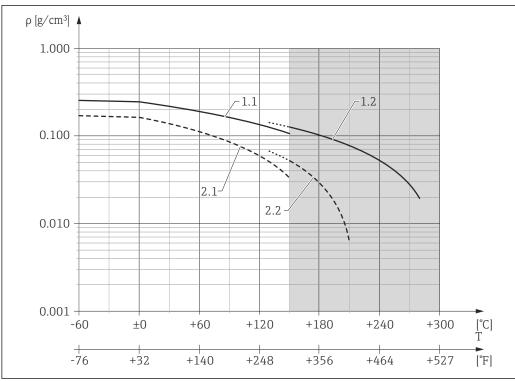
Сведения о выборе рабочего режима (определение минимального или максимального уровня) см. в разделе $\rightarrow \ \cong \ 25$.

Ограничения на использование в областях, связанных с обеспечением безопасности

- В каждой конкретной области применения измерительная система должна использоваться корректно и с учетом свойств рабочей и окружающей среды. В руководстве по эксплуатации приводятся инструкции, относящиеся к критическим ситуациям процесса и условиям монтажа строго следуйте им. Также необходимо соблюдать предельные значения для конкретной области применения.
- Не допускайте нарушения спецификаций, приведенных в руководстве по эксплуатации,
 (→ 18).

Плотность среды

Прибор предназначен исключительно для мониторинга жидких сред:

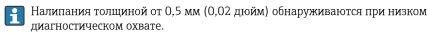

- В зависимости от настройки плотности, плотность жидкости должна быть следующей:
 - при положении переключателя > 0,7 плотность должна быть выше 0,7 g/cm³ (наиболее распространенные жидкости на водной или масляной основе);
 - при положении переключателя > 0,5 плотность должна быть выше 0,5 g/cm³ (например, сжиженный газ, изопентан, нефтяной эфир).
- Плотность газа над жидкостью не должна превышать максимально допустимое значение.
 Максимально допустимая плотность газа зависит от температуры и исполнения прибора.

▲ ВНИМАНИЕ

Превышена плотность газа!

Состояние «не покрыт» не определяется, но постоянно отмечается состояние «покрыт».

▶ Превышение плотности газа не допускается.


- 1.1 Датчик Liquiphant M; положение переключателя плотности 0.7 g/cm^3
- 1.2 Датчик Liquiphant S; положение переключателя плотности 0.7 g/cm^3
- Датчик Liquiphant M; положение переключателя плотности 0.5 g/cm^3
- 2,2 Датчик Liquiphant S; положение переключателя плотности 0,5 g/cm^3

- Не указана минимальная плотность газа. Настройками допускается работа в вакууме!
- Не указана максимальная плотность жидкости.
- Для получения дополнительной информации о диагностическом охвате см. стандарт МЭК 61508-2:2010 Приложение А.2, Комментарий 2 и Таблица А.1.

Налипания (только для обнаружения минимального уровня)

Прибор подходит для сред, не склонных к образованию налипаний. Налипаниями считаются любые отложения толщиной более 0,5 мм (0,02 дюйм). Налипания могут приводить к невозможности обнаружения режима запроса к функции безопасности, в результате прибор не будет переключаться в соответствии с рабочими условиями.

Твердые частицы – неоднородные смеси (только для обнаружения минимального уровня)

Среда не должна содержать твердых частиц диаметром более 5 мм (0,2 дюйм). Твердые частицы, осевшие между лопастями вибрационной вилки, могут приводить к невозможности обнаружения режима запроса к функции безопасности, в результате прибор не будет переключаться в соответствии с рабочими условиями.

Осевшие твердые частицы обнаруживаются при низком диагностическом охвате.

Диффузия водорода (только для датчиков Liquiphant S при высокой температуре)

Если существует опасность диффузии водорода, прибор запрещается использовать при одновременном соблюдении всех следующих условий. При проникновении водорода внутрь прибора датчик повреждается в такой мере, что режим запроса функции обеспечения безопасности не будет обнаружен и прибор не переключится должным образом.

- Не выше +180 °C (+356 °F) и одновременно
- Не выше 64 бар (928 фунт/кв. дюйм)
- Ошибка не обнаруживается диагностической системой.

Расстояние до стенки

Расстояние между вибрационной вилкой прибора и стенкой резервуара, содержащего среду (например, бака или трубы), должно быть не менее 10 мм (0,39 дюйм).

Коррозия

Прибор может использоваться только в среде, к которой устойчивы его смачиваемые компоненты. Коррозия может приводить к невозможности обнаружения режима запроса к функции безопасности, в результате прибор не будет переключаться в соответствии с рабочими условиями.

Коррозия обнаруживается при низком диагностическом охвате.

Если используются датчики с покрытием, необходимо принять меры для предотвращения повреждений во время их установки и эксплуатации.

Абразивный износ

Запрещается эксплуатировать или очищать прибор в абразивных средах. Удаление материала может привести к тому, что режим запроса не будет обнаружен.

Абразивный износ обнаруживается при низком диагностическом охвате.

Скорость потока

Если среда движется, то скорость потока в зоне вокруг вибрационной вилки не должна превышать 5 м/с. Более высокие скорости потока могут приводить к невозможности обнаружения режима запроса к функции безопасности и датчик будет отправлять сигнал о низком уровне среды (среда не покрывает вибрационную вилку).

Внешняя вибрация

В системах, подверженных сильной внешней вибрации, например в диапазоне 400 до 1200 Гц (спектральная плотность ускорения > 1 (m/s²)²/Hz) или ультразвуковому воздействию с кавитацией, функция обеспечения безопасности должна быть проверена путем моделирования режима запроса до начала работы. Возможны непреднамеренные эпизодические переключения, если на частоту колебаний вибрационной вилки накладывается сильная частота колебаний внешнего источника.

Электромагнитная совместимость

Прибор сертифицирован в соответствии со стандартом МЭК 61326-3-2 и поэтому пригоден для использования в промышленных системах обеспечения безопасности, в определенной электромагнитной среде. В случае превышения допустимых параметров в отношении электромагнитных условий окружающей среды безошибочность обнаружения состояния переключения не гарантируется. В этих условиях окружающей среды между приборами можно прокладывать неэкранированный кабель длиной до 1000 м (3 281 фут). Устойчивость к электромагнитным помехам можно дополнительно повысить за счет использования экранированных кабелей.

Монтаж датчика Liquiphant M FTL51 с помощью скользящей муфты

Особая осторожность требуется при установке прибора с удлинительной трубкой и скользящей муфтой. Оператор должен принять соответствующие меры, чтобы исключить изменение точки переключения и обеспечить надежное обнаружение любого вмешательства.

Использование в защитных системах с измерительным приборами

Поведение прибора в процессе работы

Поведение прибора в процессе включения

Поведение прибора при включении питания описан в соответствующем руководстве по эксплуатации ($\rightarrow \stackrel{\text{\tiny \square}}{=} 18$).

Поведение прибора в режиме функциональной безопасности по запросу

Исполнение I

Выходной сигнал, связанный с обеспечением безопасности, представляет собой токовый сигнал согласно NAMUR согласно EN 50227 (DIN 19234; NAMUR) или МЭК 60947-5-6.

- В нормальном состоянии ток на клемме 2 находится в диапазоне от 0,6 до 1,0 мА.
- В режиме запроса или при обнаружении неисправности прибора этот ток увеличивается до диапазона от 2,2 до 2,8 мА.
- При обрыве цепи в кабеле или при аналогичных неисправностях ток составляет < 0,6 мA.
- При коротком замыкании или при аналогичных неисправностях ток составляет > 2,8 мА.

Стандарт МЭК 60947-5-6 определяет диапазоны, в которых могут находиться точки переключения, см. «Рисунок 3 – управляющий вход коммутирующего усилителя» в стандарте. Соответственно, расчет характеристических значений, связанных с обеспечением безопасности, основан на том условии, что последующая оценка должна обнаруживать следующие токи (преобразователь Nivotester FTL325N соответствует этому требованию):

- < 0,05 мА однозначно расценивается как обрыв цепи в кабеле;
- > 6,6 мА однозначно расценивается как короткое замыкание.

Исполнения II-VI

Выходной сигнал, связанный с обеспечением безопасности, выдается с помощью одного переключающего контакта на канал.

Канал 1: клеммы 4 и 5

При использовании 3-канального преобразователя Nivotester, кроме того, используются следующие клеммы:

- Канал 2: клеммы 22 и 23;
- Канал 3: клеммы 26 и 27.
- Переключающие контакты работают в режиме обеспечения безопасности по току покоя; они замкнуты при нормальном состоянии.

Переключающие контакты обесточиваются в следующих ситуациях:

- в режиме запроса;
- при обнаружении неисправности;
- в случае сбоя питания.

Поведение прибора при наличии аварийных сигналов и предупреждений

Настройка прибора для областей применения, связанных с обеспечением безопасности

При работе прибора в режиме SIL изменить его конфигурацию невозможно.

Рекомендация: после настройки выполните функциональный тест и убедитесь в том, что функция обеспечения безопасности работает должным образом.

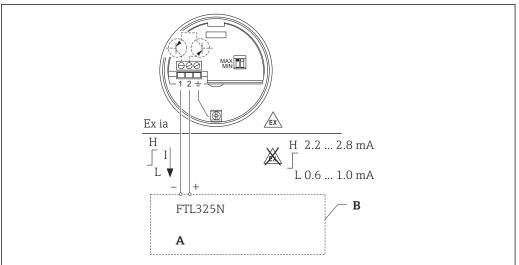
Настройка датчика Liquiphant

№ ВНИМАНИЕ

Значения, допустимые для релейных контактов, превышать запрещено.

▶ Оператор должен принять соответствующие меры, чтобы допустимые значения для релейных контактов (U \leq 253 В _{перем. тока} 50/60 Гц, I \leq 2 A, P \leq 500 В·А при соз φ \geq 0,7 или U \leq 40 В_{пост. тока}, I \leq 2 A, P \leq 80 Вт) не были превышены (например, использовать ограничитель тока или предохранитель).

▲ ВНИМАНИЕ


Могут произойти нарушения в работе прибора в качестве устройства безопасности

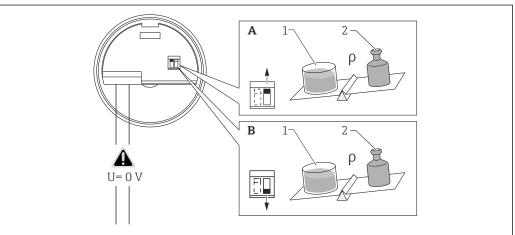
▶ Изменение настройки измерительной системы после ее ввода в эксплуатацию может негативно повлиять на защитную функцию.

Режим работы

Включение рабочего режима с помощью левого переключателя

Режим работы	Функция	Положение переключателя
Отказоустойчивый режим МАХ	MAX	Верхнее
Отказоустойчивый режим MIN	MIN	Нижнее

A0027861

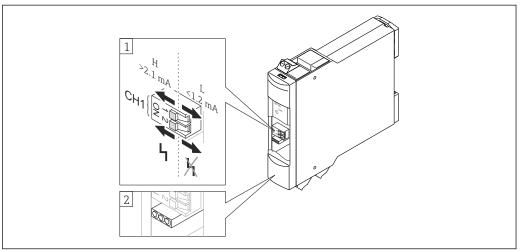

- А Мультиплексор: время цикла >2 с
- В Изолирующий усилитель, соответствующий требованиям NAMUR (МЭК 60947-5-6)

26

Плотность

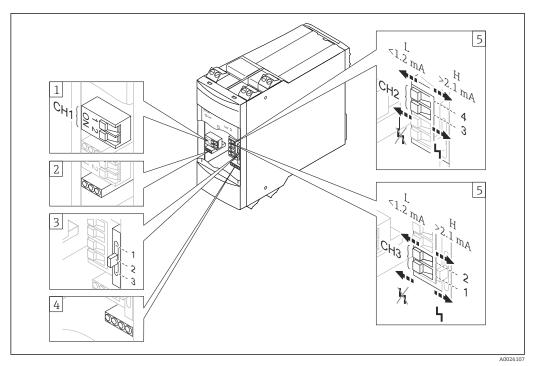
Настройка плотности с помощью правого переключателя

Плотность жидкости	Функция	Положение переключателя	Комментарии
>0,7 kg/dm ³	>0,7	Верхнее (см. поз. A на следующем рисунке)	Стандартная настройка; по возможности используйте всегда
>0,5 kg/dm ³	>0,5	Нижнее (см. поз. B на следующем рисунке)	Особая настройка; для сверхлегких жидкостей (например, сжиженного природного газа)


- A Стандартная настройка (плотность >0,7 kg/dm³) A1 1 л (0,264 галлон) или 1 dm³ (61,02 in³) A2 >0,7 кг (1,54 lbs)

- В Особая настройка (плотность >0,5 kg/dm³) В1 1 л (0,264 галлон) или 1 dm³ (61,02 in³)
- B2 >0,5 до 0,7 кг (1,10 до 1,54 lbs)

Настройка преобразователя Nivotester


	Реле						
	Канал 1	Сообщение об ошибке	Канал 2 ¹⁾	Сообщение об ошибке	Канал 3 ¹⁾	Сообщение об ошибке	MODE 1)
Исполнение	1	2	4	3	2	1	
II	H = высокий уровень	При выборе опции	Не применимо)			
III	2,1 до 5,5 мА	Нет	Н = высокий	При выборе	Н = высокий	При выборе	2
IV		При выборе	уровень 2,1 до 5,5 мА	опции	уровень 2,1 до 5,5 мА	опции	2
В		опции					3
VI							1

1) Только для 3-канального преобразователя Nivotester FTL325N

A003558

- 🖩 1 Элементы управления и отображения, 1-канальный преобразователь Nivotester FTL325N
- 1 DIL-переключатель: токовый сигнал сбоя 2,1 мА / 1,2 мА (1), положение включения/выключения сигнала неисправности (2)
- 2 Светодиодные индикаторы (LED)

- 🖪 2 Элементы управления и отображения, 3-канальный преобразователь Nivotester FTL325N
- 1 DIL-переключатель для канала 1: токовый сигнал сбоя 2,1 мА / 1,2 мА (1), положение включения/ выключения сигнала неисправности (2)
- 2 Светодиодные индикаторы (LED)
- 3 Переключатель для функций: ∆s, например управление насосами (1), два реле уровня (2), индивидуальные каналы (3)
- 4 Светодиодные индикаторы (LED)
- 5 DIL-переключатель для каналов 2 и 3: положение включения/выключения сигнала неисправности (1/3), токовый сигнал сбоя 2,1 мА / 1,2 мА (2/4)

Функциональный тест

Проверку работоспособности приборов и надежности функций обеспечения безопасности необходимо выполнять регулярно с установленной периодичностью! Временные интервалы должны быть определены оператором.

Для этого можно использовать значения и цифры из раздела «Дополнительные характеристические значения, связанные с обеспечением безопасности», → 🗎 5. Проверку следует выполнять таким образом, чтобы можно было подтвердить безупречную работу защитной системы во взаимодействии со всеми компонентами.

Функциональный тест следует выполнять в следующем порядке.

- Испытательная процедура А
- Достижение уровня или демонтаж и погружение в среду аналогичной плотности и вязкости.
- Испытательная процедура В
 Активируйте моделирование путем нажатия кнопки запуска теста на преобразователе
 Nivotester.
- Испытательная процедура С
 Проверьте точку переключения в стандартных условиях эксплуатации

УВЕДОМЛЕНИЕ

Необходимо обеспечить надлежащую герметизацию прибора!

► Также необходимо убедиться в том, что все уплотнения крышек и кабельных вводов установлены должным образом.

(START) Этап 1 Выходной Статус «ОК» NO (Her) сигнал для статуса на датчике «NK» YES (Да) Выходной Установить NO (<u>Heт</u>) Испытание сигнал для режима ежим аварийног аварийного вавершилось неудачно управления управления YES (Да) Выходной Этап Установить NO (Heт) сигнал для статуса статус «ОК» «OK» Испытание YES (Да) прошло успешно

Процедура функционального тестирования

A0026161-RU

Режим обращений к функции безопасности или неисправность имеют абсолютный приоритет перед функциональным тестом и в системе обеспечения безопасности датчика предельного уровня. По этой причине необходимо сначала завершить отправку обращений к функции безопасности или устранить неисправность, прежде чем можно будет начать функциональный тест. Также при запуске функционального теста (на этапе 1) рекомендуется убедиться в том, что реле аварийной сигнализации (клеммы 15 и 16) не обесточено (неисправность отсутствует).

Функциональный тест можно провести только в при нахождении прибора в нормальном состоянии.

Состояние отдельного выходного сигнала отображается измерительным прибором или следующим компонентом пути обеспечения безопасности (например, ПЛК, обеспечивающим безопасность, или исполнительным механизмом). Более подробные сведения: → 🖺 43.

🚹 Рекомендуется документировать этапы функционального теста (→ 🖺 45).

Исполнение I	Режим работы		
	MIN	MAX	
Выполните достижение уровня	Исполнение I, испытательная	Исполнение I, испытательная	
извлеките и погрузите зонд в среду аналогичной плотности и вязкости	процедура А, обнаружение минимального уровня (→ 🖺 32)	процедура А, обнаружение максимального уровня (→ 🖺 33)	
Проверьте точку переключения в стандартных условиях эксплуатации	-	Исполнение I, испытательная процедура С, обнаружение максимального уровня (→ 🖺 37)	

Исполнения II–VI	Режим работы		
	MIN	MAX	
Выполните приближение уровня	Исполнения II–VI,	Исполнения II–VI,	
извлеките и погрузите зонд в среду аналогичной плотности и вязкости	испытательная процедура А, обнаружение минимального уровня (→ 🖺 34)	испытательная процедура A, обнаружение максимального уровня ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Активируйте моделирование путем нажатия кнопки запуска теста на преобразователе Nivotester.	Исполнения II–VI, испытательная процедура В (→ 🖺 36)		
Проверьте точку переключения в стандартных условиях эксплуатации	-	Исполнения II–VI, испытательная процедура С, обнаружение максимального уровня (→ 🖺 38)	

Исполнение I, испытательная процедура A, обнаружение минимального уровня

- Достигните уровня в резервуаре или
- извлеките и погрузите зонд в среду аналогичной плотности и вязкости

Этап 1

- 1. Поднимите уровень или погрузите вибрационную вилку в среду до тех пор, пока контролируемая среда не покроет ее полностью.
 - □ Если это невозможно сделать с исходной средой, необходимо использовать среду аналогичной плотности и вязкости.
- 2. Проверьте ток на клемме 2.
 - □ После погружения вилки (с учетом времени отклика примерно 1 с) ток должен составлять от 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Опускайте уровень или извлекайте вибрационную вилку датчика из среды до тех пор, пока вибрационная вилка не будет полностью извлечена из среды.
- 2. Проверьте ток на клемме 2.
 - □ После извлечения вилки (с учетом времени отклика примерно 1 с) ток должен составлять от 2,2 до 2,8 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Установите снятый датчик на место.
- 2. Восстановите нормальное состояние путем полного погружения вибрационной вилки.
- 3. Проверьте ток на клемме 2.
 - □ После погружения вилки (с учетом времени отклика около 2 с) или после восстановления напряжения (с учетом времени отклика около 3 с) ток должен составлять 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Исполнение I, испытательная процедура A, обнаружение максимального уровня

- Достигните уровня в резервуаре или
- извлеките и погрузите зонд в среду аналогичной плотности и вязкости

Этап 1

- 1. Опускайте уровень или извлекайте вибрационную вилку датчика из среды до тех пор, пока вибрационная вилка не будет полностью извлечена из среды.
 - Если это невозможно сделать с исходной средой, необходимо использовать среду аналогичной плотности и вязкости.
- 2. Проверьте ток на клемме 2.
 - ▶ Ток должен составлять от 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Поднимите уровень или погрузите вибрационную вилку в среду до тех пор, пока контролируемая среда не покроет ее полностью.
- 2. Проверьте ток на клемме 2.
 - □ После погружения вилки (с учетом времени отклика примерно 1 с) ток должен составлять от 2,2 до 2,8 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Установите снятый датчик на место.
- 2. Восстановите нормальное состояние путем полного высвобождения вибрационной вилки.
- 3. Проверьте ток на клемме 2.
 - □ После извлечения вилки (с учетом времени отклика около 2 с) или после восстановления напряжения (с учетом времени отклика около 3 с) ток должен составлять 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Исполнения II-VI, испытательная процедура A, обнаружение минимального уровня

- Достигните уровня в резервуаре или
- извлеките и погрузите зонд в среду аналогичной плотности и вязкости

Этап 1

- 1. Поднимите уровень или погрузите вибрационную вилку в среду до тех пор, пока контролируемая среда не покроет ее полностью.
 - □ Если это невозможно сделать с исходной средой, необходимо использовать среду аналогичной плотности и вязкости.
- 2. Проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vi		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Опускайте уровень или извлекайте вибрационную вилку датчика из среды до тех пор, пока вибрационная вилка не будет полностью извлечена из среды.
- 2. После погружения вилки (с учетом времени отклика около 1 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vi		
4+5	Разомкнут	Не применимо	Разомкнут	Разомкнут	Разомкнут		
22+23	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		
26+27	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности замкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Установите снятый датчик на место.
- 2. Восстановите нормальное состояние путем полного погружения вибрационной вилки.
- 3. После погружения вилки (с учетом времени отклика около 2 с) или после восстановления напряжения (с учетом времени отклика около 3 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vi		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Исполнения II-VI, испытательная процедура A, обнаружение максимального уровня

- Достигните уровня в резервуаре или
- извлеките и погрузите зонд в среду аналогичной плотности и вязкости

Этап 1

- 1. Опускайте уровень или извлекайте вибрационную вилку датчика из среды до тех пор, пока вибрационная вилка не будет полностью извлечена из среды.
 - □ Если это невозможно сделать с исходной средой, необходимо использовать среду аналогичной плотности и вязкости.
- 2. Проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	VI		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Поднимите уровень или погрузите вибрационную вилку в среду до тех пор, пока контролируемая среда не покроет ее полностью.
- 2. После погружения вилки (с учетом времени отклика около 1) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	VI		
4+5	Разомкнут	Не применимо	Разомкнут	Разомкнут	Разомкнут		
22+23	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		
26+27	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности замкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Установите снятый датчик на место.
- 2. Восстановите нормальное состояние путем полного высвобождения вибрационной вилки.
- 3. После извлечения вилки (с учетом времени отклика около 2 с) или после восстановления напряжения (с учетом времени отклика около 3 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	VI		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

испытательная процедура В

Активируйте моделирование путем нажатия кнопки запуска теста на преобразователе Nivotester.

Этап 1

▶ Проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	VI		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Нажмите и удерживайте кнопку запуска теста на преобразователе Nivotester.
- 2. Проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vı		
4+5	Разомкнут	Не применимо	Разомкнут	Разомкнут	Разомкнут		
22+23	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		
26+27	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности замкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Отпустите кнопку запуска теста на преобразователе Nivotester.
- 2. После отпускания кнопки (с учетом времени отклика около 3 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vi		
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут		
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Общая испытательная процедура С

Проверьте точку переключения в стандартных условиях эксплуатации.

УВЕДОМЛЕНИЕ

Испытательную процедуру можно выполнять только при соблюдении следующих условий:

- ▶ вилка без покрытия (FTL50, FTL51, FTL50H или FTL51H);
- ▶ материал вилки: 316L (код заказа 020 «Присоединение к процессу» должен оканчиваться цифрой 2);
- ▶ шероховатость поверхности Ra < 3,2 мкм (126 микродюйм) или Ra < 1,5 мкм (59 микродюйм) (код заказа 030 «Длина зонда; тип» должен оканчиваться буквой А для моделей FTL50 и FTL51, и буквой С для моделей FTL50H и FTL51H).</p>
- Функциональность подтверждается косвенно, поэтому нельзя исключить, что датчик Liquiphant, прошедший испытательную процедуру А «Достижение уровня или снятие» с результатом «хорошо», будет ошибочно расценен как прошедший испытательную процедуру С с результатом «неудачно».

Подготовка

- Снимите прибор и храните его при комнатной температуре +24 °C±5 °С (+75 °F±41 °F).
- 2. Храните дистиллированную воду при такой же температуре.
- 3. Выберите момент, когда прибор и жидкость адаптируются к параметрам воздуха в помещении.

Рекомендация

- Добавьте каплю средства для мытья посуды (например, в дистиллированную или деионизированную воду), чтобы сократить размеры мениска воды на стенках.
- Резервуар для испытаний должен быть по меньшей мере следующих размеров: ø50 мм (1,97 дюйм), высота 80 мм (3,15 дюйм).
- Вилка датчика Liquiphant должна быть хорошо видна в зоне точки переключения (например, можно взять прозрачный резервуар).
- При использовании более длинного или тяжелого датчика Liquiphant закрепите датчик в вертикальном положении и перемещайте резервуар.
- Закрепите шкалу, четко указывающую три точки переключения, на приборе или резервуаре (см. следующую таблицу).
- Глубина погружения измеряется от нижнего края вилки.
- Исполнение I: подключите датчик Liquiphant к пригодному для этой цели источнику питания.
- Исполнения II–VI: подключите датчик Liquiphant к преобразователю Nivotester. Для исполнений V и VI этапы 1–3 должны быть реализованы отдельно и последовательно для каждого датчика Liquiphant, каждого канала и каждой пары клемм.

Ш	lar e	Глубина погружения			
		Настройка плотности 0,5	Настройка плотности 0,7		
1	Погружено, «свободно»	7 до 8 мм (0,28 до 0,31 дюйм)	10 до 11 мм (0,39 до 0,43 дюйм)		
2	Погружено, «покрыто»	10,5 до 11,5 мм (0,41 до 0,45 дюйм)	13,5 до 14,5 мм (0,53 до 0,57 дюйм)		
3	Извлечено, «свободно»	6 до 7 мм (0,24 до 0,28 дюйм)	8 до 9 мм (0,31 до 0,35 дюйм)		

Исполнение I, испытательная процедура C, обнаружение максимального уровня

Этап 1

- 1. Плавно погрузите вибрационную вилку вертикально в воду.
 - └ Поверхность воды находится в пределах зоны «погружено, свободно».
- 2. Проверьте ток на клемме 2.
 - Ч Ток должен составлять от 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Плавно погрузите вибрационную вилку глубже вертикально в воду.
 - ► Поверхность воды находится в пределах зоны «погружено, покрыто».
- 2. Проверьте ток на клемме 2.
 - □ После погружения вилки (с учетом времени отклика примерно 1 с) ток должен составлять от 2,2 до 2,8 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Плавно извлеките вибрационную вилку вертикально из воды.
 - └ Поверхность воды находится в пределах зоны «извлечено, свободно».
- 2. Проверьте ток на клемме 2.
 - □ После извлечения вилки (с учетом времени отклика примерно 2 с) ток должен составлять от 0,6 до 1,0 мА.
- Если ток выходит за пределы указанного допуска, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

испытательная процедура С, обнаружение максимального уровня

Этап 1

- 1. Плавно погрузите вибрационную вилку вертикально в воду.
 - □ Поверхность воды находится в пределах зоны «погружено, свободно».
- 2. Проверьте состояние контактов обеспечения безопасности.

	Исполнение							
Клемма	п	ш	IV	В	vi			
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут			
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо			
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо			

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 2

- 1. Плавно погрузите вибрационную вилку глубже вертикально в воду.
 - └ Поверхность воды находится в пределах зоны «погружено, покрыто».
- 2. После погружения вилки (с учетом времени отклика около 1 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение						
Клемма	п	ш	IV	В	vi		
4+5	Разомкнут	Не применимо	Разомкнут	Разомкнут	Разомкнут		
22+23	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		
26+27	Не применимо	Разомкнут	Разомкнут	Разомкнут	Не применимо		

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Этап 3

- 1. Плавно извлеките вибрационную вилку вертикально из воды.
 - ► Поверхность воды находится в пределах зоны «извлечено, свободно».
- 2. После извлечения вилки (с учетом времени отклика около 2 с) проверьте состояние контактов обеспечения безопасности.

	Исполнение							
Клемма	п	Ш	IV	В	VI			
4+5	Замкнут	Не применимо	Замкнут	Замкнут	Замкнут			
22+23	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо			
26+27	Не применимо	Замкнут	Замкнут	Замкнут	Не применимо			

Если один или несколько контактов обеспечения безопасности разомкнуты, в пути обеспечения безопасности произошел сбой. Функциональный тест не пройден и должен быть остановлен.

Жизненный цикл

Требования к работе персонала

Персонал, занимающийся монтажом, вводом в эксплуатацию, диагностикой, ремонтом и техническим обслуживанием, должен соответствовать следующим требованиям:

- Обученные квалифицированные специалисты, которые должны иметь соответствующую квалификацию для выполнения конкретных функций и задач;
- Получить разрешение на выполнение данных работ от руководства предприятия;
- Специалисты должны ознакомиться с нормами федерального/национального законодательства;
- Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководствах, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения);
- Следовать инструкциям и соблюдать основные условия.

Обслуживающий персонал должен соответствовать следующим требованиям:

- Получить инструктаж и разрешение у руководства предприятия в соответствии с требованиями выполняемой задачи.
- Следовать инструкциям, представленным в данном руководстве.

Монтаж

Монтаж прибора описан в соответствующем руководстве по эксплуатации ($\Rightarrow \triangleq 18$).

Условия применения влияют на надежность измерения, поэтому обратите внимание на примечания, которые приведены в документах «Техническая информация» и «Руководство по эксплуатации» (→ 🖺 18).

Управление

Обязательные настройки и информация для функции обеспечения безопасности (🗲 🖺 25).

Техническое обслуживание

Информация о техническом обслуживании, .

На время конфигурирования, функционального тестирования и техобслуживания прибора необходимо принять альтернативные меры по мониторингу для обеспечения безопасности процесса.

Ремонт

Ремонт – это поэлементная замена компонентов. Ремонт приборов в обязательном порядке должны выполнять специалисты компании Endress+Hauser. Если ремонт выполняется какой-либо другой организацией, то работа функции обеспечения безопасности не гарантируется.

Исключения:

Высококвалифицированный персонал может заменить следующие компоненты при условии использования оригинальных запасных частей и соблюдения соответствующего руководства по монтажу.

Компонент	Руководство по монтажу	Проверка прибора после ремонта		
Электронная вставка	EA01030F/00	Функциональное тестирование, см. раздел		
Крышка корпуса Т13	 EA01049F/00 (электроника) EA01049F/00 (смотровое стекло) EA01050F/00 (подключение) 	«Функциональный тест» (→ 🖺 29) ¹⁾		
Крышка корпуса F13	EA01046F/00			
Крышка корпуса F15	EA01034F/00			
Крышка корпуса F16	EA01035F/00			
Крышка корпуса F17	EA01036F/00			
Крышка корпуса F27	EA01047F/00			
Уплотнение крышки F15	KA00620F/00			

Необходимо соблюдать дополнительные требования, действующие в стране эксплуатации, и выполнять соответствующие испытания.

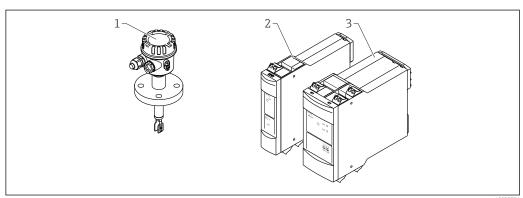
Модификация

Под модификацией подразумевается внесение изменений в уже поставленные или установленные приборы с классом безопасности SIL.

Модификация приборов с классом безопасности SIL обычно выполняется в производственном центре Endress+Hauser.

Модификация приборов с классом безопасности SIL непосредственно на предприятии заказчика возможна после получения соответствующего разрешения от производственного центра Endress+Hauser. В этом случае модификация должна выполняться и документироваться специалистом Endress+Hauser по техническому обслуживанию.

Пользователям запрещено вносить изменения в приборы с классом безопасности SIL.


Вывод из эксплуатации

Приложение

Структура измерительной системы

Системные компоненты

На следующей схеме приведен пример состава приборов в измерительной системе:

- 1 Liquiphant M/S
- 2 1-канальный преобразователь Nivotester FTL325N
- 3 3-канальный преобразователь Nivotester FTL325N

Описание применения в качестве системы защиты

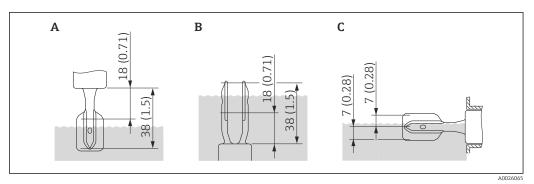
Вибрационная вилка датчика осуществляет колебания на собственной частоте. Частота вибраций уменьшается с увеличением плотности. Это изменение частоты вызывает изменение токового сигнала. Предусмотрено два следующих рабочих режима на выбор:

- обнаружение минимального уровня;
- обнаружение максимального уровня.

обнаружение минимального уровня (MIN)

Датчик используется для защиты от недопустимо низкого уровня (например, защита насоса от работы всухую, защита от опорожнения или защита от недостаточного заполнения).

В нормальном режиме работы вибрационная вилка покрыта жидкостью, и датчик отправляет сигнал о рабочем состоянии. Если вибрационная вилка не покрыта средой, датчик переходит в безопасное состояние и отправляет запрос функции безопасности.


Обнаружение максимального уровня (МАХ)

Датчик используется для защиты от недопустимо высокого уровня (например, защита от перелива).

В нормальном режиме работы вибрационная вилка не покрыта жидкостью, и датчик отправляет сигнал о рабочем состоянии. Если вибрационная вилка покрыта средой, датчик переходит в безопасное состояние и отправляет запрос функции безопасности.

Точка переключения зависит от характера установки. Эта точка находится в зоне вибрационной вилки (см. следующую схему).

- 🖪 3 Размеры: мм (дюймы)
- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку

Обязательным условием для безопасного использования прибора является его правильная установка.

Ввод в эксплуатацию или Отчет для исполнения I отчет о функциональном тесте

Данные системы							
Компания							
Название/номер точки измерения							
Установка	ОВКА						
Тип прибора/код заказа							
Серийный номер датчика Liquiphant							
Название							
Дата							
Подпись							
Рабочий режим, диапазо	н плотнос	ги и исполнение (установите со	ответствующий флажок)				
Режим работы	Отказоус	тойчивый режим MIN					
	Отказоус	тойчивый режим МАХ					
Переключатель	Настройка >0,7						
настройки плотности	Настройка >0,5						
Исполнение	I	Один датчик Liquiphant, без пре	еобразователя Nivotester	Электронная вставка FEL56			
				Электронная вставка FEL58			
Отчет о вводе в эксплуата	ацию или	испытании			<u>'</u>		
Испытательная	A	Выполните приближение уровн					
процедура		извлеките и погрузите зонд в ср					
	В	Выполните моделирование на д					
	С	Проверьте точку переключения	в стандартных условиях эксплуат	гации. ²⁾			
			Ток на клемме 2				
Этап теста Клемма		Заданное значение, FEL56	Заданное значение, FEL58	«Фактич. значение»			
Этап 1 (нормальное состояние)		0,6 до 1,0 мА	2,2 до 3,5 мА				
Этап 2 (режим запроса)		2,2 до 2,8 мА	А, С: 0,6 до 1,0 мА В: 0 мА				
Этап 3 (нормальное состояние)		0,6 до 1,0 мА	2,2 до 3,5 мА				
Заключение		Успешно □		Неудачно 🗆			

- Только для датчика Liquiphant с электронной вставкой FEL58. Данные об ограничениях и глубине погружения: см. $\rightarrow \, \stackrel{\triangle}{=} \, 37$ 1)
- 2)

Отчет для исполнений II-VI

Данные системы								
Компания								
Название/номер точки измерения								
Установка								
Тип прибора/код заказа								
Серийный номер датчика Liquiphant(en)								
Серийный номер датчика Nivotester								
Название								
Дата								
Подпись								
Рабочий режим, диапазон	н плотност	ги и исполнение	(установите соо	тветствующий ф	олажок)			
Режим работы	Отказоуст	гойчивый режим	MIN					
	Отказоуст	гойчивый режим	MAX					
Переключатель настройки плотности	Настройк	a >0,7						
	Настройк	Настройка >0,5						
Исполнение	II	Один датчик Liq	uiphant на кажді	ый канал (1001)				
	Ш	Один датчик Liq последовательн						
	IV	Два датчика Liqu последовательн						
	В	Три прибора Liquiphant, оценка выполняется, например, в ПЛК (2003)						
	VI	Три прибора Liq	uiphant, 1 для ре	жима SIL, 2 для к	онтроля уровня (Δs)		
Отчет о вводе в эксплуата	ацию или	испытании						
Испытательная	A	Выполните приб	полните приближение уровня					
процедура		Снимите датчик	вязкости					
	В	Выполните моде	елирование на да	тчике Liquiphant	, нажав кнопку за	апуска теста ¹⁾		
		Выполните моде теста	Выполните моделирование на преобразователе Nivotester, нажав кнопку запуска теста					
	С	Проверьте точку	переключения в	в стандартных усл	повиях эксплуата	ции. ²⁾		
		Исполнение						
Этап теста	Клемма	II	Ш	IV	v	VI	«Фактич. значение»	
Этап 1	4+5		3)					
(нормальное состояние)	22+23	3)	_ <u>L</u>	Ł	Ł	4)		
Контакты переключателя замкнуты	26+27	3)				4)		
Этап 2	4+5		3)					
(режим запроса)	22+23	3)				4)		
Контакты переключателя разомкнуты	26+27	3)	~_	~	~	4)		
Этап 3	4+5		3)	Ł				
(нормальное состояние)	22+23	3)				4)		

Данные системы							
Контакты переключателя замкнуты	26+27	3)		<u>_</u>		4)	
Заключение		Успешно □		Неудачно 🗆			

- 1) Только для датчика Liquiphant с электронной вставкой FEL58 и преобразователем Nivotester FLT325N.
- 2) Данные об ограничениях и глубине погружения: см. → 🗎 37
- 3) Неприменимо, так как канал не используется.
- 4) Не относится к режиму SIL, используется для контроля уровня (Δ s).

Дополнительная информация

Общая информация по функциональной безопасности (SIL) доступна в следующих источниках:

www.de.endress.com/SIL (на немецком языке) или www.endress.com/SIL (на английском языке) и брошюра для повышения квалификации CP01008Z/11 "Functional Safety in the Process Industry - Risk Reduction with Safety Instrumented Systems" (Функциональная безопасность в обрабатывающей промышленности – снижение рисков при использовании приборных систем безопасности).

История версий

Исполнение	Изменения	Действительно для исполнения аппаратуры
SD00168F/00/RU/10.03 (MAX) SD00188F/00/RU/13.13 (MIN)	Первая версия	01.00
SD01521F/00/RU/01.15	 MIN (SD00188F) и MAX (SD00168F), совместно Nivotester. Обновление до требований стандарта МЭК 61508-2011 	02.00
SD01521F/00/RU/02.16	Новая декларация соответствия	02.00
SD01521F/00/RU/04.19	Добавлено к сопроводительной документации по прибору: SV01222F, для специальных технических изделий (TSP) со съемными модулями электроники	02.00

www.addresses.endress.com