Betriebsanleitung **iTEMP TMT84**

Zwei-Kanal Temperaturtransmitter mit PROFIBUS® PA-Protokoll

BA00257R/09/DE/05.20

71496984 2020-03-31 Gültig ab Version 01.02 (Geräteversion)

Inhaltsverzeichnis

1	Hinweise zum Dokument 4	ł
1.1 1.2 1 3	Dokumentfunktion	4 4 4
1.4	Werkzeugsymbole	ź
1.5	Dokumentation	5
1.6	Eingetragene Marken 6	Ś
2	Grundlegende Sicherheitshinweise 7	7
2.1	Anforderungen an das Personal	7
2.3	Betriebssicherheit	, 7
2.4	Produktsicherheit	3
2.5	11-Sicherheit 8	3
3	Warenannahme und Produktidenti-	
	fizierung 9)
3.1 3.2	Warenannahme) 7
3.3	Lieferumfang 10)
3.4 2.5	Zertifikate und Zulassungen 10)
5.5		J
4	Montage 12	L
4.1	Montagebedingungen 1	1
4.2 4.3	Montage 1 Montagekontrolle 1	L 5
_		
5	Elektrischer Anschluss 16)
5.1 5.2	Anschlussbedingungen	с С
5.3	Schutzart sicherstellen 22	2
5.4	Anschlusskontrolle 23	3
6	Bedienungsmöglichkeiten 24	ł
6.1	Übersicht zu Bedienungsmöglichkeiten 24	<u>'</u>
6.2 6.3	Messwertanzeige- und Bedienelemente 25 Bedienprogramm "FieldCare"	2
6.4	Bedienprogramm "SIMATIC PDM" (Fa. Sie-	_
6.5	mens)	3
7	Systemintegration 30)
7.1 7.2	Extended Formate	1
7.3	Arbeiten mit den GSD-Dateien 32	1
7.4	Kompatibilität zum Vorgängermodell	1
7.5	1//11184 3 Zvklischer Datenaustausch 3	1 2
7.6	Azyklischer Datenaustausch 35	5

8 8.1 8.2	Installationskontrolle Einschalten des Transmitters	37 37 37
8.3 8.4	Inbetriebnahme der PROFIBUS® PA-Schnitt- stelle	37 38
9	Wartung	39
10	Zubehör	39
10.1 10.2 10.3	Gerätespezifisches Zubehör Kommunikationsspezifisches Zubehör Servicespezifisches Zubehör	39 40 40
11	Diagnose und Störungsbehebung	42
11.1 11.2	Fehlersuche Darstellung des Gerätestatus auf dem PROFI- BUS® PA	42 43
11.3 11.4 11.5 11.6 11.7 11.8	Statusmeldungen	45 50 51 51 51
	sicht	51
12	Technische Daten	53
12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	Eingang	53 54 55 62 63 66 67
13	Bedienung über PROFIBUS® PA	68
13.1 13.2 13.3 13.4	Bedienstruktur	68 68 79 98
Stichwortverzeichnis 108		

1 Hinweise zum Dokument

1.1 Dokumentfunktion

Diese Anleitung liefert alle Informationen, die in den verschiedenen Phasen des Lebenszyklus des Geräts benötigt werden: Von der Produktidentifizierung, Warenannahme und Lagerung über Montage, Anschluss, Bedienungsgrundlagen und Inbetriebnahme bis hin zur Störungsbeseitigung, Wartung und Entsorgung.

1.2 Sicherheitshinweise (XA)

Bei Einsatz in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen einzuhalten. Messsystemen, die im explosionsgefährdetem Bereich eingesetzt werden, liegt eine separate Ex-Dokumentation bei, die ein fester Bestandteil dieser Betriebsanleitung ist. Die darin aufgeführten Installationsvorschriften, Anschlusswerte und Sicherheitshinweise müssen konsequent beachtet werden! Stellen Sie sicher, dass Sie die richtige Ex-Dokumentation zum passenden Ex-zugelassenen Gerät verwenden! Die Nummer der zugehörigen Ex-Dokumentation (XA...) finden Sie auf dem Typenschild. Wenn beide Nummern (auf der Ex-Dokumentation und auf dem Typenschild) exakt übereinstimmen, dürfen Sie diese Ex-Dokumentation benutzen.

1.3 Symbole

1.3.1 Warnhinweissymbole

GEFAHR

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen wird.

WARNUNG

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu Tod oder schwerer Körperverletzung führen kann.

VORSICHT

Dieser Hinweis macht auf eine gefährliche Situation aufmerksam, die, wenn sie nicht vermieden wird, zu leichter oder mittelschwerer Körperverletzung führen kann.

HINWEIS

Dieser Hinweis enthält Informationen zu Vorgehensweisen und weiterführenden Sachverhalten, die keine Körperverletzung nach sich ziehen.

1.3.2 Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
\sim	Wechselstrom
\sim	Gleich- und Wechselstrom

Symbol	Bedeutung
÷	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Schutzerde (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	 Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Schutzerde wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

1.3.3 Symbole für Informationstypen

Symbol	Bedeutung
	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
×	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
	Verweis auf Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
►	Zu beachtender Hinweis oder einzelner Handlungsschritt
1., 2., 3	Handlungsschritte
4	Ergebnis eines Handlungsschritts
?	Hilfe im Problemfall
	Sichtkontrolle

1.3.4 Symbole in Grafiken

Symbol	Bedeutung	Symbol	Bedeutung
1, 2, 3,	Positionsnummern	1., 2., 3	Handlungsschritte
A, B, C,	Ansichten	A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich	×	Sicherer Bereich (Nicht explosionsgefährdeter Bereich)

Symbol	Bedeutung
O A0011220	Schlitzschraubendreher
A0011219	Kreuz-Schlitzschraubendreher
A0011221	Innensechskantschlüssel
A0011222	Gabelschlüssel
A0013442	Torx Schraubendreher

1.4 Werkzeugsymbole

1.5 Dokumentation

Dokument	Zweck und Inhalt des Dokuments
Technische Information TIO0138T/09/de	Planungshilfe für Ihr Gerät Das Dokument liefert alle technischen Daten zum Gerät und gibt einen Überblick, was rund um das Gerät bestellt werden kann.
Kurzanleitung KA00258R/09/de	Schnell zum 1. Messwert Die Anleitung liefert alle wesentlichen Informationen von der Warenan- nahme bis zur Erstinbetriebnahme.

Die aufgelisteten Dokumenttypen sind verfügbar:

Im Download-Bereich der Endress+Hauser Internetseite: www.endress.com \rightarrow Download

1.6 Eingetragene Marken

PROFIBUS®

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, D

2 Grundlegende Sicherheitshinweise

2.1 Anforderungen an das Personal

Das Personal für Installation, Inbetriebnahme, Diagnose und Wartung muss folgende Bedingungen erfüllen:

- Ausgebildetes Fachpersonal: Verfügt über Qualifikation, die dieser Funktion und Tätigkeit entspricht
- ► Vom Anlagenbetreiber autorisiert
- Mit den nationalen Vorschriften vertraut
- Vor Arbeitsbeginn: Anweisungen in Anleitung und Zusatzdokumentation sowie Zertifikate (je nach Anwendung) lesen und verstehen
- Anweisungen und Rahmenbedingungen befolgen
- Das Bedienpersonal muss folgende Bedingungen erfüllen:
- Entsprechend den Aufgabenanforderungen vom Anlagenbetreiber eingewiesen und autorisiert
- Anweisungen in dieser Anleitung befolgen

2.2 Bestimmungsgemäße Verwendung

Das Gerät ist ein universeller und konfigurierbarer Temperaturtransmitter mit wahlweise ein oder zwei Sensoreingängen für Widerstandsthermometer (RTD), Thermoelemente (TC), Widerstands- und Spannungsgeber. Das Gerät in der Bauform Kopftransmitter ist zur Montage in einen Anschlusskopf Form B nach DIN EN 50446 konzipiert. Die Montage mit dem optional erhältlichen DIN rail Clip auf eine Hutschiene ist ebenfalls möglich.

Falls das Gerät in einer vom Hersteller nicht spezifizierten Weise verwendet wird, kann der durch das Gerät gebotene Schutz beeinträchtigt werden.

Der Hersteller haftet nicht für Schäden, die aus unsachgemäßer oder nicht bestimmungsgemäßer Verwendung entstehen.

2.3 Betriebssicherheit

- ▶ Das Gerät nur in technisch einwandfreiem und betriebssicherem Zustand betreiben.
- Der Betreiber ist für den störungsfreien Betrieb des Geräts verantwortlich.

Zulassungsrelevanter Bereich

Um eine Gefährdung für Personen oder für die Anlage beim Geräteeinsatz im zulassungsrelevanten Bereich auszuschließen (z.B. Explosionsschutz oder Sicherheitseinrichtungen):

- Anhand der technischen Daten auf dem Typenschild überprüfen, ob das bestellte Gerät für den vorgesehenen Gebrauch im zulassungsrelevanten Bereich eingesetzt werden kann. Das Typenschild befindet sich seitlich am Transmittergehäuse.
- Die Vorgaben in der separaten Zusatzdokumentation beachten, die ein fester Bestandteil dieser Anleitung ist.

Störsicherheit

Die Messeinrichtung erfüllt die allgemeinen Sicherheitsanforderungen gemäß EN 61010-1 und die EMV-Anforderungen gemäß IEC/EN 61326-Serie sowie die NAMUR-Empfehlung NE 21.

HINWEIS

► Das Gerät darf nur von einem Netzteil mit einem energiebegrenzten Stromkreis nach UL/EN/IEC 61010-1, Kap. 9.4 und Anforderungen Tabelle 18, gespeist werden.

2.4 Produktsicherheit

Dieses Messgerät ist nach dem Stand der Technik und guter Ingenieurspraxis betriebssicher gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Es erfüllt die allgemeinen Sicherheitsanforderungen und gesetzlichen Anforderungen. Zudem ist es konform zu den EG-Richtlinien, die in der gerätespezifischen EG-Konformitätserklärung aufgelistet sind. Mit der Anbringung des CE-Zeichens bestätigt Endress+Hauser diesen Sachverhalt.

2.5 IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Gerät gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Gerät verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Gerät und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

3 Warenannahme und Produktidentifizierung

3.1 Warenannahme

- 1. Temperaturtransmitter vorsichtig auspacken. Sind Inhalt oder Verpackung unbeschädigt?
 - Beschädigte Komponenten dürfen nicht installiert werden, da der Hersteller andernfalls die Einhaltung der ursprünglichen Sicherheitsanforderungen oder die Materialbeständigkeit nicht gewährleisten und daher auch nicht für daraus entstehende Schäden verantwortlich gemacht werden kann.
- 2. Ist die gelieferte Ware vollständig oder fehlt etwas? Lieferumfang anhand der Bestellung überprüfen.
- 3. Entspricht das Typenschild den Bestellinformationen auf dem Lieferschein?
- 4. Sind die technische Dokumentation und alle weiteren erforderlichen Dokumente vorhanden? Falls erforderlich: Sind die Sicherheitshinweise (z. B. XA) für die explosionsgefährdeten Bereiche vorhanden?

Wenn eine dieser Bedingungen nicht zutrifft: Wenden Sie sich an Ihre Endress+Hauser Vertriebsstelle.

3.2 Produktidentifizierung

Folgende Möglichkeiten stehen zur Identifizierung des Geräts zur Verfügung:

- Typenschildangaben
- Erweiterter Bestellcode (Extended order code) mit Aufschlüsselung der Gerätemerkmale auf dem Lieferschein
- Seriennummer vom Typenschild in W@M Device Viewer eingeben (www.endress.com/deviceviewer): Alle Angaben zum Gerät und eine Übersicht zum Umfang der mitgelieferten Technischen Dokumentation werden angezeigt.
- Seriennummer vom Typenschild in die Endress+Hauser Operations App eingeben oder mit der Endress+Hauser Operations App den 2-D-Matrixcode (QR-Code) auf dem Typenschild scannen: Alle Angaben zum Gerät und zum Umfang der zugehörigen Technischen Dokumentation werden angezeigt.

3.2.1 Typenschild

Das richtige Gerät?

Vergleichen und prüfen Sie die Angaben auf dem Typenschild des Gerätes mit den Anforderungen der Messstelle:

■ 1 Typenschild des Kopftransmitters (beispielhaft, Ex Version)

- 1 Spannungsversorgung, Stromaufnahme und Funkzulassung (Bluetooth)
- 2 Seriennummer, Geräterevision, Firmware- und Hardware-Version

3 DataMatrix 2D Code

- 4 2 Zeilen Messstellenbezeichnung TAG und erweiterter Bestellcode
- 5 Zulassung im explosionsgefährdeten Bereich mit Nummer der zugehörigen Ex-Dokumentation (XA...)

6 Zulassungen mit Symbolen

7 Bestellcode und Herstelleridentifikation

3.2.2 Name und Adresse des Herstellers

Name des Herstellers:	Endress+Hauser Wetzer GmbH + Co. KG
Adresse des Herstellers:	Obere Wank 1, D-87484 Nesselwang oder www.endress.com
Adresse des Fertigungswerks:	Siehe Typenschild

3.3 Lieferumfang

Der Lieferumfang des Gerätes besteht aus:

- Temperaturtransmitter
- Befestigungsmaterial, optional
- Gedruckte, mehrsprachige Kurzanleitung
- Zusätzliche Dokumentation für Geräte, die für den Einsatz im explosionsgefährdeten Bereich (ATEX, FM, CSA) geeignet sind, wie z.B. Sicherheitshinweise (XA...), Control oder Installation Drawings (ZD...)

3.4 Zertifikate und Zulassungen

Das Gerät entspricht den Anforderungen der Normen EN 61 010-1 "Sicherheitsbestimmungen für elektrische Mess-, Steuer, Regel- und Laborgeräte" sowie den EMV-Anforderungen gemäß IEC/EN 61326-Serie.

3.4.1 CE-/EAC-Kennzeichen, Konformitätserklärung

Das Gerät erfüllt die gesetzlichen Anforderungen der EU-/EEU-Richtlinien. Der Hersteller bestätigt die Einhaltung der entsprechenden Richtlinien mit der Anbringung des CE-/EAC-Kennzeichens.

3.4.2 Zertifizierung PROFIBUS® PA Protokoll

Der Temperaturtransmitter ist von der PNO (PROFIBUS[®] Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt die Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß PROFIBUS[®] PA Profile 3.02
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Eine Übersicht über weitere Zulassungen und Zertifizierungen finden Sie im Kap. "Technische Daten" $\rightarrow \cong 53$.

3.5 Lagerung und Transport

Vorsichtig alle Verpackungsmaterialien und Schutzhüllen entfernen, die zur Transportverpackung gehören.

<table-of-contents> Abmessungen und Betriebsbedingungen: → 🗎 63

Bei Lagerung (und Transport) das Gerät so verpacken, dass es zuverlässig vor Stößen geschützt wird. Die Originalverpackung bietet optimalen Schutz.

Lagerungstemperatur -40 ... +100 °C (-40 ... +212 °F)

4 Montage

4.1 Montagebedingungen

4.1.1 Abmessungen

Die Abmessungen des Gerätes finden Sie im Kapitel "Technische Daten" $\rightarrow \square 53$.

4.1.2 Montageort

- Im Anschlusskopf Form B nach DIN EN 50446, direkte Montage auf Messeinsatz mit Kabeldurchführung (Mittelloch 7 mm)
- Im Feldgehäuse, abgesetzt vom Prozess (siehe Kapitel "Zubehör" →
 ^B 39)

Mit dem Zubehörteil DIN rail Clip ist auch eine Montage des Kopftransmitters auf Hutschiene nach IEC 60715 möglich (siehe Kapitel "Zubehör" → 🗎 39).

Informationen über die Bedingungen, die am Montageort vorliegen müssen, um das Gerät bestimmungsgemäß zu montieren, wie Umgebungstemperatur, Schutzart, Klimaklasse, etc., finden Sie im Kapitel "Technische Daten" $\rightarrow \square$ 53.

Für den Einsatz im explosionsgefährdeten Bereich sind die Grenzwerte der Zertifikate und Zulassungen (siehe Ex-Sicherheitshinweise) einzuhalten.

4.2 Montage

Zur Montage des Kopftransmitters ist ein Kreuzschlitzschraubendreher erforderlich:

- Maximales Drehmoment f
 ür Befestigungsschrauben = 1 Nm (¾ pound-feet), Schraubendreher: Pozidriv Z2
- Maximales Drehmoment f
 ür Schraubklemmen = 0,35 Nm (¼ pound-feet), Schraubendreher: Pozidriv Z1

4.2.1 Montage Kopftransmitter

E 2 Kopftransmittermontage (drei Varianten)

Pos. A	Montage in einen Anschlusskopf (Anschlusskopf Form B nach DIN 43729)
1	Anschlusskopf
2	Sicherungsringe
3	Messeinsatz
4	Anschlussdrähte
5	Kopftransmitter
6	Montagefedern
7	Montageschrauben
8	Anschlusskopfdeckel
9	Kabeldurchführung

Vorgehensweise Montage in einen Anschlusskopf, Pos. A:

- 1. Öffnen Sie den Anschlusskopfdeckel (8) am Anschlusskopf.
- 2. Führen Sie die Anschlussdrähte (4) des Messeinsatzes (3) durch das Mittelloch im Kopftransmitter (5).
- 3. Stecken Sie die Montagefedern (6) auf die Montageschrauben (7).
- 4. Führen Sie die Montageschrauben (7) durch die seitlichen Bohrungen des Kopftransmitters und des Messeinsatzes (3). Fixieren Sie danach beide Montageschrauben mit den Sicherungsringen (2).
- 5. Schrauben Sie anschließend den Kopftransmitter (5) mit dem Messeinsatz (3) im Anschlusskopf fest.

Pos. B	Montage in ein Feldgehäuse
1	Feldgehäusedeckel
2	Montageschrauben mit -federn
3	Kopftransmitter
4	Feldgehäuse

3 Abmessungen Befestigungswinkel f
ür Wandmontage (komplettes Wandmontageset als Zubeh
ör erh
ältlich)

Vorgehensweise Montage in ein Feldgehäuse, Pos. B:

1. Öffnen Sie den Deckel (1) vom Feldgehäuse (4).

- **2.** Führen Sie die Montageschrauben (2) durch die seitlichen Bohrungen des Kopftransmitters (3).
- 3. Schrauben Sie den Kopftransmitter am Feldgehäuse fest.
- 4. Schließen Sie nach erfolgter Verdrahtung den Feldgehäusedeckel (1) wieder.
 →
 ⁽¹⁾ 16

Pos. C	Montage auf Hutschiene (Hutschiene nach IEC 60715)
1	Montageschrauben mit -federn
2	Kopftransmitter
3	Sicherungsringe
4	DIN rail Clip
5	Hutschiene

Vorgehensweise Montage auf Hutschiene, Pos. C:

- 1. Drücken Sie den DIN rail Clip (4) auf die Hutschiene (5), bis er einrastet.
- 2. Stecken Sie die Montagefedern auf die Montageschrauben (1) und führen diese durch die seitlichen Bohrungen des Kopftransmitters (2). Fixieren Sie danach beide Montageschrauben mit den Sicherungsringen (3).
- 3. Schrauben Sie den Kopftransmitter (2) am DIN rail Clip (4) fest.

Nordamerika-typische Montage

☑ 4 Kopftransmittermontage

- 1 Schutzrohr
- 2 Messeinsatz
- 3 Adapter, Verschraubung
- 4 Anschlusskopf
- 5 Kopftransmitter
- 6 Montageschrauben

Thermometeraufbau mit Thermoelementen oder RTD Sensoren und Kopftransmitter:

- **1.** Bringen Sie das Schutzrohr (1) am Prozessrohr oder der -behälterwand an. Befestigen Sie das Schutzrohr vorschriftsmäßig, bevor der Prozessdruck angelegt wird.
- 2. Bringen Sie benötigte Halsrohrnippel und Adapter (3) am Schutzrohr an.
- 3. Sorgen Sie für den Einbau von Dichtungsringen, wenn diese für raue Umgebungsbedingungen oder spezielle Vorschriften benötigt werden.
- **4.** Führen Sie die Montageschrauben (6) durch die seitlichen Bohrungen des Kopftransmitters (5).
- 5. Positionieren Sie den Kopftransmitter (5) im Anschlusskopf (4) so, dass die Busleitung (Klemmen 1 und 2) zur Kabeldurchführung weisen.
- 6. Schrauben Sie mit einem Schraubendreher den Kopftransmitter (5) im Anschlusskopf (4) fest.
- **7.** Führen Sie die Anschlussdrähte des Messeinsatzes (3) durch die untere Kabeldurchführung des Anschlusskopfes (4) und durch das Mittelloch im Kopftransmitter (5). Verdrahten Sie die Anschlussdrähte und Transmitter miteinander. $\rightarrow \square 16$
- 8. Schrauben Sie den Anschlusskopf (4) mit dem eingebauten und verdrahteten Kopftransmitter auf die bereits installierten Nippel und Adapter (3).

HINWEIS

Um den Anforderungen des Explosionsschutzes zu genügen, muss der Anschlusskopfdeckel ordnungsgemäß befestigt werden.

> Nach erfolgter Verdrahtung den Anschlusskopfdeckel wieder fest anschrauben.

Displaymontage am Kopftransmitter

5 Displaymontage

- 1. Schraube am Anschlusskopfdeckel lösen. Anschlusskopfdeckel umklappen.
- 2. Abdeckung des Displayanschlusses entfernen.
- 3. Displaymodul auf den montierten und verdrahteten Kopftransmitter stecken. Die Befestigungsstifte müssen fest am Kopftransmitter einrasten. Nach erfolgter Montage Anschlusskopfdeckel wieder festschrauben.

4.3 Montagekontrolle

Führen Sie nach der Montage des Gerätes folgende Kontrollen durch:

Gerätezustand und -spezifikationen	Hinweise
Ist das Gerät unbeschädigt (Sichtkontrolle)?	-
Entsprechen die Umgebungsbedingungen der Gerätespezifikation (z.B. Umgebungstem- peratur, Messbereich, usw.)?	siehe Kapitel "Tech- nische Daten" → 🗎 53

5 Elektrischer Anschluss

VORSICHT

- ► Gerät nicht unter Betriebsspannung installieren bzw. verdrahten. Ein Nichtbeachten kann zur Zerstörung von Teilen der Elektronik führen.
- ► Für den Anschluss von Ex-zertifizierten Geräten die entsprechenden Hinweise und Anschlussbilder in den spezifischen Ex-Zusatzdokumentationen zu dieser Betriebsanleitung beachten. Bei Fragen ist die Endress+Hauser-Vertretung zu kontaktieren.
- ► Display-Anschluss nicht belegen. Fremdanschluss kann zur Zerstörung der Elektronik führen.
- Vor dem Anlegen der Hilfsenergie: Potenzialausgleichsleitung an der äußeren Erdungsklemme anschließen.

5.1 Anschlussbedingungen

Zur Verdrahtung des Kopftransmitters mit Schraubklemmen ist ein Kreuzschlitzschraubendreher erforderlich. Die Verdrahtung bei der Federklemmenausführung erfolgt ohne Werkzeug.

Bei der Verdrahtung eines eingebauten Kopftransmitters grundsätzlich wie folgt vorgehen:

- 1. Kabelverschraubung und den Gehäusedeckel am Anschlusskopf oder am Feldgehäuse öffnen.
- 2. Die Leitungen durch die Öffnung der Kabelverschraubung führen.
- 4. Kabelverschraubung wieder anziehen und den Gehäusedeckel schließen.

Um Anschlussfehler zu vermeiden, in jedem Falle vor der Inbetriebnahme die Hinweise in der Anschlusskontrolle beachten!

5.2 Messgerät anschließen

Klemmenbelegung

🖻 6 Klemmenbelegung Kopftransmitter

HINWEIS

 ESD - Electrostatic discharge. Schützen Sie die Klemmen vor elektrostatischer Entladung. Ein Nichtbeachten kann zur Zerstörung oder Fehlfunktion von Teilen der Elektronik führen.

5.2.1 Anschluss Sensorleitungen

Klemmenbelegung der Sensoranschlüsse $\rightarrow \blacksquare 6$, 🖺 16.

HINWEIS

Beim Anschluss von 2 Sensoren ist darauf zu achten, dass keine galvanische Verbindung zwischen den Sensoren entsteht (z. B. durch Sensorelemente, die nicht zum Schutzrohr isoliert sind). Die dadurch auftretenden Ausgleichsströme führen zu erheblichen Verfälschungen der Messung.

► Die Sensoren müssen zueinander galvanisch getrennt bleiben, indem jeder Sensor separat an einen Transmitter angeschlossen wird. Der Transmitter gewährleistet eine ausreichende galvanische Trennung (> 2 kV AC) zwischen Ein- und Ausgang.

Bei Belegung beider Sensoreingänge sind folgende Anschlusskombinationen möglich:

	Sensoreingang 1						
			RTD oder Widerstands- geber, 3-Leiter	RTD oder Widerstands- geber, 4-Leiter	Thermoele- ment (TC), Spannungsge- ber		
Sensorein- gang 2 RTL star RTL star The Spa	RTD oder Wider- standsgeber, 2-Leiter	V	V	-	V		
	RTD oder Wider- standsgeber, 3-Leiter	V	V	-	V		
	RTD oder Wider- standsgeber, 4-Leiter	-	-	-	-		
	Thermoelement (TC), Spannungsgeber	~	V	V	V		

Anschluss an Federklemmen

Pos. A, Massivleiter:

- 1. Leiterende abisolieren. Abisolierlänge min. 10 mm (0,39 in).
- 2. Leiterende in die Klemmstelle einführen.
- 3. Verbindung mit leichtem Ziehen am Leiter überprüfen, ggf. ab 1. wiederholen.

Pos. B, Feindrähtige Leiter ohne Aderendhülse:

- 1. Leiterende abisolieren. Abisolierlänge min. 10 mm (0,39 in).
- 2. Hebelöffner nach unten drücken.
- 3. Leiterende in die Klemmstelle einführen.
- 4. Hebelöffner loslassen.
- 5. Verbindung mit leichtem Ziehen am Leiter überprüfen, ggf. ab 1. wiederholen.

Pos. C, Lösen der Verbindung:

- 1. Hebelöffner nach unten drücken.
- 2. Leiter aus der Klemme ziehen.
- 3. Hebelöffner loslassen.

5.2.2 Kabelspezifikation PROFIBUS® PA

Kabeltyp

Für den Anschluss des Messgerätes an den Feldbus sind grundsätzlich zweiadrige Kabel empfehlenswert. In Anlehnung an die IEC 61158-2 (MBP) können beim Feldbus vier unterschiedliche Kabeltypen (A, B, C, D) verwendet werden, wobei nur die Kabeltypen A und B abgeschirmt sind.

- Speziell bei Neuinstallationen ist der Kabeltyp A oder B zu bevorzugen. Nur diese Typen besitzen einen Kabelschirm, der ausreichenden Schutz vor elektromagnetischen Störungen und damit höchste Zuverlässigkeit bei der Datenübertragung gewährleistet. Beim Kabeltyp B dürfen mehrere Feldbusse (gleicher Schutzart) in einem Kabel betrieben werden. Andere Stromkreise im gleichen Kabel sind unzulässig.
- Erfahrungen aus der Praxis haben gezeigt, dass die Kabeltypen C und D wegen der fehlenden Abschirmung nicht verwendet werden sollten, da die Störsicherheit oftmals nicht den im Standard beschriebenen Anforderungen genügt.

Die elektrischen Kenndaten des Feldbuskabels sind nicht festgelegt, bei der Auslegung des Feldbusses bestimmen diese jedoch wichtige Eigenschaften wie z.B. überbrückbare Entfernungen, Anzahl Teilnehmer, elektromagnetische Verträglichkeit, usw.

	Тур А	Тур В
Kabelaufbau	verdrilltes Adernpaar, geschirmt	Einzelne oder mehrere ver- drillte Adernpaare, Gesamt- schirm
Adernquerschnitt	0,8 mm ² (18 in ²)	0,32 mm ² (22 in ²)
Schleifenwiderstand (Gleichstrom)	44 Ω/km	112 Ω/km
Wellenwiderstand bei 31,25 kHz	100 Ω ±20 %	100 Ω ±30 %
Wellendämpfung bei 39 kHz	3 dB/km	5 dB/km
Kapazitive Unsymmetrie	2 nF/km	2 nF/km
Gruppenlaufzeitverzerrung (7,9 39 kHz)	1,7 mS/km	*)
Bedeckungsgrad des Schirmes	90 %	*)
Max. Kabellänge (inkl. Stichleitungen > 1 m (3 ft)	1900 m (6233 ft)	1200 m (3937 ft)
*) nicht spezifiziert		

Nachfolgend sind geeignete Feldbuskabel (Typ A) verschiedener Hersteller für den Nicht-Ex-Bereich aufgelistet:

- Siemens: 6XV1 830-5BH10
- Belden: 3076F
- Kerpen: CeL-PE/OSCR/PVC/FRLA FB-02YS(ST)YFL

Maximale Gesamtkabellänge

Die maximale Netzwerkausdehnung ist von der Zündschutzart und den Kabelspezifikationen abhängig. Die Gesamtkabellänge setzt sich aus der Länge des Hauptkabels und der Länge aller Stichleitungen (>1 m/3,28 ft) zusammen. Beachten Sie folgende Punkte:

- Die höchstzulässige Gesamtkabellänge ist vom verwendeten Kabeltyp abhängig.
 - Typ A: 1900 m (6200 ft)
 Typ B: 1200 m (4000 ft)
- Falls Repeater eingesetzt werden, verdoppelt sich die zulässige max. Kabellänge! Zwischen Teilnehmer und Master sind max. drei Repeater erlaubt.

Maximale Stichleitungslänge

Als Stichleitung wird die Leitung zwischen Verteilerbox und Feldgerät bezeichnet. Bei Nicht-Ex-Anwendungen ist die max. Länge einer Stichleitung von der Anzahl der Stichleitungen (> 1 m (3,28 ft)) abhängig:

Anzahl Stichleitungen	1 12	13 14	15 18	19 24	25 32
Max. Länge pro Stichleitung	120 m (393 ft)	90 m (295 ft)	60 m (196 ft)	30 m (98 ft)	1 m (3,28 ft)

Anzahl Feldgeräte

Bei Systemen gemäß FISCO in Zündschutzarten Ex ia ist die Leitungslänge auf max. 1000 m (3280 ft) begrenzt. Es sind höchstens 32 Teilnehmer pro Segment im Nicht-Ex-Bereich bzw. max. 10 Teilnehmer im Ex-Bereich (Ex ia IIC) möglich. Die tatsächliche Anzahl der Teilnehmer muss während der Projektierung festgelegt werden.

Schirmung und Erdung

Bei der Installation sind die Vorgaben PROFIBUS Nutzerorganisation für Gerätemontage zu beachten.

Busabschluss

Anfang und Ende eines jeden Feldbussegments sind grundsätzlich durch einen Busabschluss zu terminieren. Bei verschiedenen Anschlussboxen (Nicht-Ex) kann der Busabschluss über einen Schalter aktiviert werden. Ist dies nicht der Fall, muss ein separater Busabschluss installiert werden. Beachten Sie zudem Folgendes:

- Bei einem verzweigten Bussegment stellt das Gerät, das am weitesten vom Segmentkoppler entfernt ist, das Busende dar.
- Wird der Feldbus mit einem Repeater verlängert, dann muss auch die Verlängerung an beiden Enden terminiert werden.

Weiterführende Informationen

Allgemeine Informationen und weitere Hinweise zur Verdrahtung finden Sie in der Betriebsanleitung "Leitfaden zur Projektierung und Inbetriebnahme, PROFIBUS ® DP/PA, Feldnahe Kommunikation". Bezugsquelle: → www.endress.com/download → Erweitert → "Dokumentationscode" BA00034S.

5.2.3 Feldbusanschluss

Der Anschluss von Geräten an den Feldbus kann auf zwei Arten erfolgen:

- Über herkömmliche Kabelverschraubung $\rightarrow \cong 20$
- Über Feldbus-Gerätestecker (optional, als Zubehör erhältlich) $\rightarrow \cong 20$

Beschädigungsgefahr

- Kopftransmitter nicht unter Betriebsspannung installieren bzw. verdrahten. Ein Nichtbeachten kann zur Zerstörung von Teilen der Elektronik führen.
- Es wird eine Erdung über eine der Erdungsschrauben (Anschlusskopf, Feldgehäuse) empfohlen.
- In Anlagen ohne zusätzlichen Potenzialausgleich können, falls der Schirm des Feldbuskabels an mehreren Stellen geerdet wird, netzfrequente Ausgleichsströme auftreten, welche das Kabel bzw. den Schirm beschädigen. Der Schirm des Feldbuskabels ist in solchen Fällen nur einseitig zu erden, d.h. er darf nicht mit der Erdungsklemme des Gehäuses (Anschlusskopf, Feldgehäuse) verbunden werden. Der nicht angeschlossene Schirm ist zu isolieren!
- Es ist nicht empfehlenswert, den Feldbus über die herkömmlichen Kabelverschraubungen zu schleifen. Falls Sie später auch nur ein Messgerät austauschen, muss die Buskommunikation unterbrochen werden.

Kabelverschraubung oder -durchführung

Beachten Sie dazu auch die generelle Vorgehensweise auf $\rightarrow \square$ 16.

8 Anschluss Signalkabel und Spannungsversorgung

- 1 Kopftransmitter eingebaut im Feldgehäuse
- 2 Kopftransmitter eingebaut im Anschlusskopf
- 3 Anschlussklemmen für Feldbus-Kommunikation und Spannungsversorgung
- 4 Erdungsanschluss innen
- 5 Erdungsanschluss außen
- 6 Abgeschirmtes Feldbuskabel

Die Klemmen f
ür den Feldbusanschluss (1+ und 2-) sind verpolungsunabh
ängig.

- Leitungsquerschnitt:
 - max. 2,5 mm² bei Schraubklemmen
 - max. 1,5 mm² bei Federklemmen. Abisolierlänge des Leiters min. 10 mm (0,39 in).
- Für den Anschluss ist grundsätzlich ein abgeschirmtes Kabel zu verwenden.

Feldbus-Gerätestecker

Optional kann in den Anschlusskopf oder Feldgehäuse, anstelle einer Kabelverschraubung, ein Feldbus Gerätestecker eingeschraubt werden. Feldbus-Gerätestecker können bei Endress+Hauser als Zubehörteil bestellt werden ($\rightarrow \cong 39$).

Die Anschlusstechnik beim PROFIBUS[®] PA ermöglicht es, Geräte über einheitliche mechanische Anschlüsse wie T-Abzweiger, Verteilerbausteine usw. an den Feldbus anzuschließen. Diese Anschlusstechnik mit vorkonfektionierten Verteilerbausteinen und Steckverbindern besitzt gegenüber der konventionellen Verdrahtung erhebliche Vorteile:

- Feldgeräte können während des normalen Messbetriebs jederzeit entfernt, ausgetauscht oder neu hinzugefügt werden. Die Kommunikation wird nicht unterbrochen.
- Installation und Wartung sind wesentlich einfacher.
- Vorhandene Kabelinfrastrukturen sind sofort nutz- und erweiterbar, z.B. beim Aufbau neuer Sternverteilungen mit Hilfe von 4- oder 8-kanaligen Verteilerbausteinen.

Optional ist das Gerät deshalb mit einem bereits montierten Feldbus-Gerätestecker ab Werk lieferbar. Feldbus-Gerätestecker für die nachträgliche Montage können bei Endress +Hauser als Ersatzteil bestellt werden. $\rightarrow \cong 39$.

Abschirmung der Zuleitung/T-Box

Es sind Kabelverschraubungen mit guten EMV-Eigenschaften zu verwenden, möglichst mit Rundumkontaktierung des Kabelschirms (Iris-Feder). Dies erfordert geringe Potentialunterschiede, evt. Potentialausgleich.

- Die Abschirmung des PA-Kabels darf nicht unterbrochen werden.
- Der Anschluss der Abschirmung muss immer so kurz wie möglich gehalten werden.

Im Idealfall sollten für den Anschluss der Abschirmung Kabelverschraubungen mit Iris-Feder verwendet werden. Über die Iris-Feder, welche sich innerhalb der Verschraubung befindet, wir der Schirm auf das T-Box-Gehäuse aufgelegt. Unter der Iris-Feder befindet sich das Abschirmgeflecht. Beim Zuschrauben des Panzergewindes wird die Iris-Feder auf den Schirm gequetscht und stellt so eine leitende Verbindung zwischen Abschirmung und dem Metallgehäuse her.

Eine Anschlussbox bzw. eine Steckverbindung ist als Teil der Abschirmung (Faradayscher Käfig) zu sehen. Dies gilt besonders für abgesetzte Boxen, wenn diese über ein steckbares Kabel mit einem PROFIBUS[®] PA Gerät verbunden sind. In einem solchen Fall ist ein metallischer Stecker zu verwenden, bei dem die Kabelabschirmung am Steckergehäuse aufgelegt wird (z.B. vorkonfektionierte Kabel).

Gerätestecker für den Anschluss an den PROFIBUS[®] PA Feldbus

		Pinbele	Pinbelegung / Farbcodes		
		D	Stecker 7/8":	D	Stecker M12:
A	Feldbus-Gerätestecker	1	Braune Leitung: PA+ (Klemme 1)	1	Graue Leitung: Schirm
В	Anschlusskopf	2	Grün-gelbe Leitung: Erde	2	Braune Leitung: PA+ (Klemme 1)

		Pinbelegung / Farbcodes			
С	Gerätestecker am Gehäuse (male)	3	Blaue Leitung: PA- (Klemme 2)	3	Blaue Leitung: PA- (Klemme 2)
		4	Graue Leitung: Schirm	4	Grün-gelbe Leitung: Erde
		5	Positioniernase	5	Positioniernase

Technische Daten Gerätestecker:

Aderquerschnitt	4 x 0,8 mm
Anschlussgewinde	M20 x 1,5 / NPT 1/2"
Schutzart	IP 67 nach DIN 40 050 IEC 529
Kontaktoberfläche	CuZn, vergoldet
Werkstoff Gehäuse	1.4401 (316)
Brennbarkeit	V - 2 nach UL - 94
Umgebungstemperatur	-40 +105 °C (-40 +221 °F)
Strombelastbarkeit	9 A
Bemessungsspannung	max. 600 V
Durchgangswiderstand	$\leq 5 \text{ m}\Omega$
Isolationswiderstand	≥ 10 mΩ

5.3 Schutzart sicherstellen

Das Gerät erfüllt alle Anforderungen gemäß Schutzart IP67. Um nach erfolgter Montage im Feld oder nach einem Servicefall die Schutzart IP67 zu gewährleisten, müssen folgende Punkte zwingend beachtet werden:

- Die Gehäusedichtungen müssen sauber und unverletzt in die Dichtungsnut eingelegt werden. Gegebenenfalls sind die Dichtungen zu trocknen, zu reinigen oder zu ersetzen.
- Die für den Anschluss verwendeten Kabel müssen den spezifizierten Außendurchmesser aufweisen (z.B. M20x1.5, Kabeldurchmesser 8 ... 12 mm).
- Kabelverschraubung fest anziehen. $\rightarrow \blacksquare 10$, 🖹 22
- Kabel vor der Kabelverschraubung in einer Schlaufe verlegen ("Wassersack"). Auftretende Feuchtigkeit kann so nicht zur Verschraubung gelangen. Das Gerät möglichst in der Weise montieren, dass die Kabelverschraubungen nicht nach oben gerichtet sind.
 → ■ 10, ■ 22
- Nicht benutzte Kabelverschraubungen sind durch einen Blindstopfen zu ersetzen.
- Die verwendete Schutztülle darf nicht aus der Kabelverschraubung entfernt werden.

🖻 10 Anschlusshinweise zur Einhaltung der Schutzart IP67

5.4 Anschlusskontrolle

Gerätezustand und -spezifikationen	Hinweise
Sind Gerät oder Kabel unbeschädigt (Sichtkontrolle)?	
Elektrischer Anschluss	Hinweise
Stimmt die Versorgungsspannung mit den Angaben auf dem Typenschild überein?	9 32 V _{DC}
Erfüllen die verwendeten Kabel die erforderliche Spe- zifikationen?	Feldbuskabel, → 🗎 18 Sensorleitung, → 🗎 17
Sind die montierten Kabel von Zug entlastet?	
Sind Hilfsenergie- und Signalkabel korrekt angeschlos- sen?	→ 🗎 16
Sind alle Schraubklemmen gut angezogen, bzw. die Verbindungen der Federklemmen geprüft?	→ 🗎 17
Sind alle Kabeleinführungen montiert, fest angezogen und dicht? Kabelführung mit "Wassersack"?	
Sind alle Gehäusedeckel montiert und fest angezogen?	
Elektrischer Anschluss Feldbussystem	Hinweise
Sind alle Anschlusskomponenten (T-Abzweiger, Anschlussboxen, Gerätestecker, usw.) korrekt mitei- nander verbunden?	
Wurde jedes Feldbussegment beidseitig mit einem Busabschluss terminiert?	
Wurde die max. Länge der Feldbusleitung gemäß den Feldbusspezifikationen eingehalten?	→ 🗎 18
Wurde die max. Länge der Stichleitungen gemäß den Feldbusspezifikationen eingehalten?	
Ist das Feldbuskabel lückenlos abgeschirmt und kor- rekt geerdet?	

6 Bedienungsmöglichkeiten

6.1 Übersicht zu Bedienungsmöglichkeiten

Für die Konfiguration und die Inbetriebnahme des Gerätes stehen dem Bediener verschiedene Möglichkeiten zur Verfügung:

1. Konfigurationsprogramme $\rightarrow \cong 28$

Die Konfiguration von Profile-Parametern sowie gerätespezifischen Parametern erfolgt ausschließlich über die Feldbusschnittstelle. Dafür stehen dem Benutzer spezielle, von unterschiedlichen Herstellern angebotene Konfigurations- bzw. Bedienprogramme zur Verfügung.

Über DIP-Schalter auf der Rückseite des optionalen Displays können folgende Hardware-Einstellungen für die PROFIBUS[®] PA Schnittstelle vorgenommen werden:

- Eingabe der Geräte-Busadresse
- Ein-/Ausschalten des Hardwareschreibschutzes
- Umschalten (Drehen) der Anzeige um 180 °

🖻 11 Bedienungsmöglichkeiten des Kopftransmitters

- 1 Konfigurations-/Bedienprogramme für die Bedienung über den PROFIBUS® PA (Feldbusfunktionen, Geräteparameter)
- 2 DIP-Schalter für Hardware-Einstellungen auf der Rückseite des optionalen Displays (Schreibschutz, Geräteadresse, Anzeige umschalten)

6.2 Messwertanzeige- und Bedienelemente

6.2.1 Anzeigeelemente

Kopftransmitter

I2 Optionales LC Display des Kopftransmitters

Posnr.	Funktion	Beschreibung		
1	Anzeige Messstellen TAG	TAG der Messstelle, 32 Zeichen lang.		
2	Anzeige 'Kommuni- kation'	Bei Lese- und Schreibzugriff über das Feldbus-Protokoll erscheint das Kom- munikationssymbol.		
3	Einheitenanzeige	Einheitenanzeige für den jeweilig angezeigten Messwert.		
4	Messwertanzeige	Anzeige des aktuellen Messwerts.		
5	Werte-/Kanalan- zeige C1 oder C2, P1, S1 oder P2, S2, RJ	z. B. C1 für einen Messwert von Kanal 1. (S = Secondary value, P = Primary value; C = Channel, RJ = Reference junction)		
6	Anzeige 'Konfigura- tion gesperrt'	Bei Sperrung der Parametrierung/Konfiguration über Hardware erscheint d Symbol 'Konfiguration gesperrt'.		
7	Statussignale			
	Symbole	Bedeutung		
	F	Fehlermeldung "Betriebsfehler" Es liegt ein Betriebsfehler vor. Der Messwert ist nicht mehr gültig.		
		Fehlermeldung und "" (kein gültiger Messwert vorhanden) werden im Display abwechselnd angezeigt, siehe Kapitel "Diagnose und Störungsbehe- bung" → 🗎 42 Detaillierte Hinweise zu den Fehlermeldungen finden Sie in der Betriebsanlei- tung.		
	C	"Service-Modus" Das Gerät befindet sich im Service-Modus (zum Beispiel während einer Simu- lation).		
	S	"Außerhalb der Spezifikation" Das Gerät wird außerhalb seiner technischen Spezifikationen betrieben (z. B. während des Anlaufens oder einer Reinigung).		
	M	"Wartung erforderlich" Es ist eine Wartung erforderlich. Der Messwert ist weiterhin gültig. Messwert und Statusmeldung werden im Display abwechselnd angezeigt.		
		1		

6.2.2 Bedienung vor Ort

F

Über Miniaturschalter (DIP-Schalter) auf der Rückseite des optionalen Displays können diverse Hardware-Einstellungen vorgenommen werden.

Das Display kann optional mit dem Kopftransmitter oder für die nachträgliche Montage als Zubehör bestellt werden. $\rightarrow \cong 39$

HINWEIS

 ESD - Electrostatic discharge. Klemmen vor elektrostatischer Entladung schützen. Ein Nichtbeachten kann zur Zerstörung oder Fehlfunktion von Teilen der Elektronik führen.

Vorgehensweise zur DIP-Schalter Einstellung:

- 1. Deckel am Anschlusskopf oder Feldgehäuse öffnen.
- 2. Das aufgesteckte Display vom Kopftransmitter abziehen.
- 3. DIP-Schalter auf der Rückseite des Displays entsprechend konfigurieren. Generell: Schalter auf ON = Funktion ist aktiv, Schalter auf OFF = Funktion ist deaktiviert.
- 4. Display in der richtigen Position auf den Kopftransmitter stecken. Die Einstellungen werden vom Kopftransmitter innerhalb einer Sekunde übernommen.
- 5. Deckel wieder auf dem Anschlusskopf oder Feldgehäuse befestigen.

Schreibschutz ein-/ausschalten

Der Schreibschutz wird über einen DIP-Schalter auf der Rückseite des optionalen Aufsteckdisplays ein- oder ausgeschaltet. Bei aktivem Schreibschutz ist eine Veränderung der Parameter nicht möglich. Ein Schlosssymbol auf dem Display zeigt den Schreibschutz an. Der Schreibschutz verhindert jeglichen Schreibzugriff auf die Parameter. Der Schreibschutz bleibt auch nach Abziehen des Displays aktiv. Um den Schreibschutz zu deaktivieren, muss das Display mit deaktiviertem DIP Schalter (WRITE LOCK = OFF) auf den Transmitter aufgesteckt werden. Der Transmitter übernimmt die Einstellung im laufenden Messbetrieb und muss nicht erneut gestartet werden.

Displayanzeige drehen

Die Anzeige kann per DIP-Schalter um 180° gedreht werden. Im Display Transducer Block wird die Einstellung des DIP-Schalters über einen nicht schreibbaren Parameter (DISP_ORIENTATION) gespeichert und angezeigt. Die Einstellung bleibt beim Abziehen des Displays erhalten.

Einstellen der Geräteadresse

Display vorbereiten:

- 1. ADDR ACTIVE DIP-Schalter auf ON stellen.
- 2. SW-HW-Dip-Schalter auf HW stellen.
- 3. Adresse nach Bedarf einstellen.

Display anschließen:

1. Display anschließen.

- 2. Warten, bis das Display vollständig gestartet ist und die gemessene Temperatur anzeigt.
- 3. Den TMT84 vom PA-Bus trennen (Ausschalten).
- 4. Das Anzeigemodul aus dem TMT84 herausnehmen und den ADDR ACTIVE DIP-Schalter auf OFF stellen.
- 5. Den TMT84 wieder an den PA-Bus anschließen (Power On).

 Die eingestellte Adresse wird dauerhaft im TMT84 gespeichert.
- 6. Optional die Adresse in der SPS überprüfen oder ein Display mit dem ADDR ACTIVE DIP-Schalter auf OFF einstecken (beim Start des Displays wird die konfigurierte PA-Adresse angezeigt).

Beachten Sie folgende Punkte:

- Die Adresse muss bei einem PROFIBUS[®] PA Gerät immer eingestellt werden. Gültige Geräteadressen liegen im Bereich 0...125. In einem PROFIBUS[®] PA-Netz kann jede Adresse nur einmal vergeben werden. Bei nicht korrekt eingestellter Adresse wird das Gerät vom Master nicht erkannt. Die Adresse 126 wird für die Erstinbetriebnahme und für Servicezwecke verwendet.
- Alle Geräte werden ab Werk mit der Adresse 126 und SW-Adressierung ausgeliefert.

Die Einstellung der Hardwareadresse erfolgt über die DIP-Schalter 1 (1) - 7 (64). Um die eingestellte Hardwareadresse zu verwenden, muss der DIP-Schalter (SW-HW) auf die Schalterstellung "HW" und der DIP-Schalter ADDR ACTIVE auf "ON" gestellt werden.

Der Transmitter muss erneut in Betrieb genommen werden, damit die DIP-Schalter Einstellungen vom TMT84 übernommen und gespeichert werden.

Softwareadresse bedeutet, dass die gespeicherte Busadresse mittels eines DDLM_SLAVE_ ADD Telegramms geändert werden kann. Ist dagegen ein Display mit einer gültigen Adresse aufgesteckt, bedeutet dies, das die am Display eingestellte Adresse verwendet und ein DDLM_SLAVE_ADD Telegramm ignoriert wird.

Wird also das Display abgezogen oder ein Display mit der Dip-Schalter SW/HW auf SW (Dip- Schalter ADDR ACTIVE auf ON) aufgesteckt, bedeutet das, dass die aktuell gespeicherte Busadresse wieder über ein DDLM_SLAVE_ADD Telegramm geändert werden kann. Es wird solange die aktuell gespeicherte Busadresse verwendet, bis diese durch ein DDLM_SLAVE_ADD Telegramm geändert wird. Die Änderung der Busadresse erfolgt dabei direkt nach dem Empfang des Telegramms und erfordert keinen Neustart des Gerätes.

🖻 14 Einstellung der Geräteadresse am Beispiel Busadresse 49

DIP-Schalter auf ON: 32 + 16 + 1 = 49. Desweiteren DIP-Schalter SW/HW auf "HW" und ADDR ACTIVE auf "ON".

Display im laufenden Messbetrieb aufstecken

Die DIP-Schalter für die Busadresse werden im laufenden Betrieb geprüft und eine eingestellte gültige Busadresse (DIP-Schalter: SW/HW auf HW; ADDR ACTIVE auf ON; Busadresse < 126) gespeichert und beim nächsten Neustart des Gerätes übernommen. Das Aufstecken des Display hat keine Auswirkungen auf die Busadresse, solange der DIPSchalter "ADDR ACTIVE" auf OFF steht. Steht der Schalter auf ON und ist eine gültige Busadresse (DIP-Schalter: SW/HW auf HW; ADDR ACTIVE auf ON; Busadresse < 126) eingestellt, wird diese beim nächsten Gerätestart übernommen. Erfolgt der Gerätestart nicht innerhalb 30 Minuten nach Änderung der Busadresse, wird diese Änderung verworfen und das Gerät behält die zuletzt gespeicherte Adresse. Steht der DIP-Schalter "ADDR ACTIVE" auf ON und der DIP-Schalter SW/HW auf SW, wirkt sich das nicht auf die Busadresse aus.

- Display im laufenden Betrieb abziehen Wird das Display im laufenden Messbetrieb entfernt, verwendet der TMT84 die im Gerät gespeicherte Adresse und der Messbetrieb läuft uneingeschränkt weiter.
- Rücksetzen der Busadresse auf Default-Wert 126
- 1. Display mit gültiger HW-Adresse aufstecken (DIP-Schalter: SW/HW auf HW; ADDR ACTIVE auf ON; Busadresse < 126).
- 2. Warten bis auf dem Display das Firmenemblem erscheint.
- 3. Display abziehen und den DIP-Schalter SW/HW auf SW stellen.
- 4. Display wieder aufstecken und warten, bis das Firmenemblem erscheint.
 - └ ► Nach einen Neustart des Gerätes wird die Busadresse 126 verwendet.

6.3 Bedienprogramm "FieldCare"

FieldCare ist das FDT-basierende Anlagen-Asset-Management-Tool von Endress+Hauser und ermöglicht die Konfiguration und Diagnose von intelligenten Feldgeräten. Durch Nutzung von Zustandinformationen ist FieldCare ein einfaches aber effektives Tool zur Überwachung der Geräte. Der Zugriff auf den iTEMP TMT84 erfolgt ausschliesslich über die Profibus-Kommunikation.

Weitere Informationen:

- zur Menüstruktur siehe Kapitel "Bedienstruktur" → 🖺 68

Detaillierte Angaben über PROFIBUS[®] PA Geräteparametrierung und Bedienkonzept entnehmen Sie der Betriebsanleitung BA00034S/04 "Leitfaden zur Projektierung und Inbetriebnahme PROFIBUS[®] DP/PA - Feldnahe Kommunikation".

6.4 Bedienprogramm "SIMATIC PDM" (Fa. Siemens)

SIMATIC PDM ist ein einheitliches herstellerunabhängiges Werkzeug zur Bedienung, Einstellung, Wartung und Diagnose von intelligenten Feldgeräten. Weiterführende Informationen unter: www.de.endress.com

6.5 Aktuelle Gerätebeschreibungsdateien

In folgender Tabelle wird die passende Gerätebeschreibungsdatei, für das jeweilige Bedientool, sowie die Bezugsquelle ersichtlich.

Gültig für Firm-/Soft- ware:	1.00.zz	1.01.zz	siehe Parameter DEVICE SOFTWARE
Gerätedaten PROFIBUS® PA Profile Version:	3.01	3.02	siehe Parameter PROFIL VERSION
TMT84 Geräte ID: Profile ID:	1551 _{hex} si Je nach verwendeter Profile GSD Datei: 0x9703, 0x9702, 0x9701 oder 0x9700		siehe Parameter DEVICE ID
GSD Informationen			
TMT84 GSD:	Extended		Kompatibilitätsmatrix:
Profile GSD:	PA139700.gsd PA139701.gsd PA139702.gsd PA139703.gsd		EH3x1551.gsd EH021551.gsd 1.00.zz OK STOP ¹⁾ 1.01.zz OK OK
Bitmaps	EH1551_D.bmp EH1551_N.bmp EH1551_S.bmp		
Bedienprogramm/Gerä- tetreiber:	Bezugsquellen der Gerätebeschreibungen/Programm Updates, kosten über das Internet:		
GSD	 www.endress.com (→ Download → Software → Treiber) www.profibus.com 		
FieldCare / DTM	www.endress.co	om (→ Download	→ Software → Treiber)
SIMATIC PDM	 www.endress.com (→ Download → Software → Treiber) www.feldgeraete.de 		

PROFIBUS PA -Protokoll (IEC 61158-2, MBP):

1) Kann verwendet werden, wenn in der GSD der Eintrag "C1_Read_Write_supp = 1" auf "C1_Read_Write_supp = 0" gesetzt wird.

7 Systemintegration

Nach der Inbetriebnahme über den Klasse 2 Master ist das Gerät für die Systemintegration vorbereitet. Um die Feldgeräte in das Bussystem einzubinden, benötigt das PROFIBUS[®] PA-System eine Beschreibung der Geräteparameter wie Ausgangsdaten, Eingangsdaten, Datenformat, Datenmenge und unterstützte Übertragungsrate.

Diese Daten sind in einer so genannten Geräte Stamm Datei (GSD-Datei) enthalten, die während der Inbetriebnahme des Kommunikationssystems dem PROFIBUS[®] PA Master zur Verfügung gestellt wird.

Zusätzlich können auch Geräte Bitmaps die als Symbole im Netzwerkbaum erscheinen mit eingebunden werden. Durch die Profile 3.02 Gerätestammdatei (GSD) ist es möglich, Feldgeräte verschiedener Hersteller auszutauschen ohne eine Neuprojektierung durchzuführen. Generell sind durch die Profile 3.02 zwei verschiedene Ausprägungen der GSD möglich (Werkseinstellung: Herstellerspezifische GSD):

Herstellerspezifische GSD:

Mit dieser GSD wird die uneingeschränkte Funktionalität des Feldgerätes gewährleistet. Gerätespezifische Prozessparameter und Funktionen sind somit verfügbar.

Profile GSD:

Unterscheidet sich in der Anzahl der Analog Input Blöcke (AI). Sofern eine Anlage mit den Profile GSD projektiert ist, kann ein Austausch der Geräte verschiedener Hersteller stattfinden. Zu beachten ist allerdings, dass die zyklischen Prozesswerte in ihrer Reihenfolge übereinstimmen.

1. Herstellerspezifische GSD, EH021551.gsd bzw. EH3x1551.gsd (→ Kap. 6.5 "Aktuelle Gerätebeschreibungsda- teien" → 🗎 28) Identnummer = 1551 (Hex) Identnummerselektor = 1
2. Profile GSD, PA139703.gsd (4 Analog Inputs) Identnummer = 9703 (Hex) Identnummerselektor = 0
3. Profile GSD, PA139700.gsd (1 Analog Input) Identnummer = 9700 (Hex) Identnummerselektor = 129
4. Profile GSD, PA139701.gsd (2 Analog Inputs) Identnummer = 9701 (Hex) Identnummerselektor = 130
5. Profile GSD, PA139702.gsd (3 Analog Inputs) Identnummer = 9702 (Hex) Identnummerselektor = 131
6. Herstellerspezifische GSD, Eh3x1523.gsd (Kompatibilitätsmodus TMT184) Identnummer = 1523 (Hex) Identnummerselektor = 128

Vor der Projektierung ist zu entscheiden, mit welcher GSD die Anlage betrieben werden soll. Über einen Klasse 2 Master ist es möglich, die Einstellung zu verändern. Der Kopftransmitter TMT84 unterstützt folgende GSD-Dateien (siehe Tabelle unter → Kap. 6.5 "Aktuelle Gerätebeschreibungsdateien" → 🗎 28).

Jedes Gerät erhält von der Profibus-Nutzerorganisation (PNO) eine Identifikationsnummer (ID-Nr.). Aus dieser leitet sich der Name der Gerätestammdatei (GSD) ab. Für Endress +Hauser beginnt diese ID-Nr. mit der Herstellerkennung 15xx. Um eine bessere Zuordnung und Eindeutigkeit zur jeweiligen GSD zu erhalten, lauten die GSD-Namen bei Endress +Hauser wie folgt:

EH0215xx	EH = Endress+Hauser 02 = GSD-Revision 15xx = ID-Nr.
----------	---

Die GSD-Dateien aller Endress+Hauser Geräte können wie folgt angefordert werden:

- Internet (Endress+Hauser) → http://www.endress.com (download → software)
- Internet (PNO) → http://www.profibus.com (GSD library)
- Auf CD-ROM von Endress+Hauser. Wenden Sie sich an ein Endress+Hauser Vertriebsbüro.

7.1 Extended Formate

Es gibt GSD-Dateien, deren Module durch eine erweiterte Kennung (z.B. 0x42, 0x84, 0x08, 0x05) übertragen werden. Diese GSD-Dateien befinden sich im Ordner "Extended".

7.2 Inhalte der Download-Datei

- Alle Endress+Hauser GSD-Dateien
- Endress+Hauser Bitmap-Dateien
- Hilfreiche Informationen zu den Geräten

7.3 Arbeiten mit den GSD-Dateien

Die GSD-Dateien müssen in das Automatisierungssystem eingebunden werden. Die GSD-Dateien können, abhängig von der verwendeten Firmware/Software, entweder in das programmspezifische Verzeichnis kopiert werden bzw. durch eine Import-Funktion innerhalb der Projektierungssoftware in die Datenbank eingelesen werden.

Beispiel:

Für die Projektierungssoftware Siemens STEP 7 der Siemens SPS S7-300 / 400 ist es das Unterverzeichnis ...\ siemens \ step7 \ s7data \ gsd.

Zu den GSD-Dateien gehören auch Bitmap-Dateien. Mit Hilfe dieser Bitmap-Dateien werden die Messstellen bildlich dargestellt. Die Bitmap-Dateien müssen in das Verzeichnis ...\ siemens \ step7 \ s7data \ nsbmp geladen werden.

Fragen Sie zu einer anderen Projektierungssoftware den Hersteller Ihrer SPS nach dem korrekten Verzeichnis.

7.4 Kompatibilität zum Vorgängermodell TMT184

Der Kopftransmitter iTEMP TMT84 gewährleistet bei einem Geräteaustausch die Kompatibilität der zyklischen Daten zum Vorgängermodell iTEMP TMT184 mit Profile-Version 3.0 (ID-Nr. 1523). Ein Austausch eines iTEMP TMT184 gegen einen iTEMP TMT84 ist ohne Anpassung der Projektierung des PROFIBUS[®] DP/PA Netzwerkes im Automatisierungssystem möglich, obwohl sich die Geräte im Namen und in der Identifikationsnummer unterscheiden.

Automatische Erkennung

Nach dem Austausch des Kopftransmitters erfolgt die Umschaltung vom Standardbetriebsmodus in den Kompatibilitätsmodus automatisch, wenn der Parameter **PROFIBUS Ident Number Selector** auf 127 (Default Werkseinstellung) eingestellt ist. Der Kompatibilitätsmodus kann auch durch die Einstellung des Parameters **PROFIBUS Ident Number Selector** auf 128 (Manuf. specific Ident Number 1523 - TMT184) aktiviert werden. Dieser Wert wird während dem Aufbau der zyklischen Kommunikation vom Master übermittelt und ausgewertet. Anhand dieser Nummer wird der iTEMP TMT84 entweder für den Standardbetriebsoder den Kompatibilitätsmodus konfiguriert.

Ein manuelles Umschalten zwischen dem Betrieb als iTEMP TMT84 oder iTEMP TMT184 wird unterstützt.

Hinweise zur Diagnose im Kompatibiltätsmodus

- Bei azyklischer Parametrierung des iTEMP TMT84 über ein Bedienprogramm (Klasse 2 Master) erfolgt der Zugriff direkt über die Blockstruktur bzw. den Parametern des Gerätes.
- Wurden Parameter im auszutauschenden Gerät (iTEMP TMT184) verändert (Parametereinstellung entspricht nicht mehr der ursprünglichen Werkeinstellung), müssen diese Parameter im neu eingesetzten iTEMP TMT84 über ein Bedienprogramm (Klasse 2 Master) entsprechend angepasst werden.
- Da sich der iTEMP TMT84 im Kompatibilitätsmodus bezüglich des Diagnose- und Statushandling wie ein iTEMP TMT184 verhält, wird bei Betrieb in diesem Modus nur das PA-Profile 3.0 hinsichtlich der Diagnosebits und Statuscodes unterstützt.

Austausch der Geräte

Vorgehensweise:

7.5 Zyklischer Datenaustausch

Bei PROFIBUS[®] PA erfolgt die zyklische Übertragung der Analogwerte zum Automatisierungssystem in Datenblöcken zu 5 Byte. Der Messwert wird in den ersten 4 Bytes in Form von Fließkommazahlen nach IEEE 754-Standard dargestellt (siehe IEEE Gleitpunktzahl). Das 5. Byte enthält eine zum Messwert gehörende Statusinformation, die nach der Profile 3.02¹⁾)-Spezifikation implementiert ist. Der Status wird als Symbol auf der Geräteanzeige, falls vorhanden, dargestellt. Eine genaue Beschreibung der Datentypen finden Sie im Kap. 11 "Bedienung über PROFIBUS[®] PA".

7.5.1 IEEE Gleitpunktzahl

Konvertierung eines Hexadezimal-Wertes in eine IEEE Gleitpunktzahl zur Messwerterfassung. Die Messwerte werden im Zahlenformat IEEE-754 wie folgt dargestellt und an die Master-Klasse 1 übertragen:

Byte n		Byte n+1		Byte n+2	Byte n+3	
Bit 7	Bit 6 Bit 0	Bit 7	Bit 6 I	Bit O	Bit 7 Bit 0	Bit 7 Bit 0
VZ	2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹	20	2 ⁻¹ 2 ⁻² 2 ⁻³ 2 ⁻⁴ 2 ⁻⁵ 2 ⁻⁷	2-6	2 ⁻⁸ 2 ⁻⁹ 2 ⁻¹⁰ 2 ⁻¹¹ 2 ⁻¹² 2 ⁻¹³ 2 ⁻¹⁴ 2 ⁻¹⁵	2 ⁻¹⁶ 2 ⁻²³
	Exponenten		Mantisse		Mantisse	Mantisse

VZ = 0: Positive Zahl

VZ = 1: Negative Zahl $Zahl = -1^{VZ} \cdot (1 + M) \cdot 2^{E-127}$

Nach Profile 3.01: Profile GSD-Dateien verwendet bzw. IDENT_NUMBER_SELECTOR auf {0, 129, 130 oder 131} gesetzt oder TMT84 GSD-Datei verwendet bzw. IDENT_NUMBER_SELECTOR auf 1 und Parameter "CondensedStatus" auf OFF. Nach Profile 3.02: TMT84 GSD-Datei verwendet bzw. IDENT_NUMBER_SELECTOR auf 1 und Parameter "CondensedStatus" auf ON. Falls IDENT_NUMBER_SELECTOR = 127 bestimmt die für den Aufbau des zyklischen Datenaustausches verwendete GSD-Datei ob Diagnose nach Profile 3.01 oder nach Profile 3.02 erfolgt.

E = Exponent; M = Mantisse Beispiel: 40 F0 00 00 h Wert

 $= 0100\ 0000\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ b$ $= -1^{0} \cdot 2^{129-127} \cdot (1 + 2^{-1} + 2^{-2} + 2^{-3})$ $= 1 \cdot 2^{2} \cdot (1 + 0.5 + 0.25 + 0.125)$ $= 1 \cdot 4 \cdot 1.875 = 7.5$

7.5.2 Blockmodell

Der Kopftransmitter unterstützt im zyklischen Datenaustausch max. 5 Slots. Es können maximal 4 Werte ausgewählt und übertragen werden. Elemente der zyklischen Kommunikation:

Slot	Datenblock	Zugriff
1	Analog Input 1	lesend
2	Analog Input 2	lesend
3	Analog Input 3	lesend
4	Analog Input 4	lesend
5	Display Value	schreibend

Allgemeine Blockbeschreibung:

Blockname	Kurzbeschreibung	Slot
Physical Block	Allgemeine Gerätedaten	0
Transducer Block 1	Sensoreinstellungen Kanal 1	1
Transducer Block 2	Sensoreinstellungen Kanal 2	2
Analog Input Block 1	Ausgabe eines Messwertes	1
Analog Input Block 2	Ausgabe eines Messwertes	2
Analog Input Block 3	Ausgabe eines Messwertes	3
Analog Input Block 4	Ausgabe eines Messwertes	4

Das dargestellte Blockmodell (→ 🖻 15, 🖺 33) zeigt, welche Ein- und Ausgangsdaten der Kopftransmitter für den zyklischen Datenaustausch zur Verfügung stellt.

🖻 15 🛛 Blockmodell Kopftransmitter, Profile 3.02

7.5.3 Anzeigewert - Display value

Der Display value (Anzeigewert) beinhaltet 4 Byte Messwert und 1 Byte Status.

7.5.4 Eingangsdaten

Eingangsdaten sind: Prozesstemperatur, interne Referenztemperatur.

7.5.5 Datentransfer vom Kopftransmitter zum Automatisierungssystem

Die Eingangs- und Ausgangsbytes sind in ihrer Reihenfolge fest strukturiert. Wird über das Konfigurationsprogramm die Adressierung automatisch vorgenommen, können die Zahlwerte der Ein- und Ausgangsbytes von den folgenden Tabellenwerten abweichen.

Eingangsbyte	Prozessparameter	Zugriffsart	Bemerkung/Datenformat	Werkeinstellung Einheit	
0, 1, 2, 3	*Temperatur ¹⁾	lesend	32-Bit-Gleitpunktzahl (IEEE-754) Darstellung → 🗎 32§	°C	
4	*Status Temperatur ¹⁾		Statuscode	-	
 Mögliche Einstellt PV-Wert des Tr Messwert des S gang Messwert der in stelle 	ungen: ransducer iensor am Sensorein- nternen Referenzmess-	 → ⇒ 37 → im Parameter CHANNEL auszuwählen → Primary Value TB1 → im Parameter CHANNEL auszuwählen → Secondary Value TB1 → im Parameter CHANNEL auszuwählen → Interne Temperatur 			

1) abhängig von der Auswahl im Parameter CHANNEL des Analog Input Funktionsblocks → 🗎 37

Die Systemeinheiten in der Tabelle entsprechen den voreingestellten Skalierungen, die im zyklischen Datenaustausch übertragen werden. Bei kundenspezifischen Einstellungen können die Einheiten jedoch von der Werkeinstellung abweichen.

7.5.6 Ausgangsdaten

Der Display value (Anzeigewert) bietet die Möglichkeit, einen in dem Automatisierungssystem berechneten Messwert direkt zu dem Kopftransmitter zu übertragen. Dieser Messwert ist ein reiner Anzeigewert, der z. B. mit dem PROFIBUS[®] PA Display RID16 angezeigt wird. Der Display value (Anzeigewert) beinhaltet 4 Byte Messwert und 1 Byte Status.

Eingangsbyte	Prozessparameter	Zugriffsart	Bemerkung/Datenformat
0, 1, 2, 3	Display value	schreibend	32-Bit-Gleitpunktzahl (IEEE-754) Darstellung → 🗎 32
4	Status Display value	schreibend	-

Aktivieren Sie nur die Datenblöcke, die im Automatisierungssystem verarbeitet werden. Dadurch wird der Datendurchsatz eines PROFIBUS[®] PA Netzwerkes verbessert. Um zu erkennen, dass das Gerät mit dem Automatisierungssystem kommuniziert, wird auf dem optionalen Display ein blinkendes Doppelpfeil-Symbol angezeigt.

7.5.7 Systemeinheiten

Die Messwerte werden in den Systemeinheiten, wie in Kap. "Gruppe Setup" (Parameter EINHEIT N) beschrieben, über den zyklischen Datenaustausch an das Automatisierungssystem übertragen.

7.5.8 Konfigurationsbeispiel

Generell erfolgt die Projektierung eines PROFIBUS® DP/PA Systems wie folgt:

- 1. Die zu konfigurierenden Feldgeräte (iTEMP TMT84) werden über das PROFIBUS[®] DPNetzwerk mittels der GSD-Datei in das Konfigurationsprogramm des Automatisierungssystem eingebunden. Benötigte Messgrößen können "offline" mit der Projektierungssoftware konfiguriert werden.
- 2. Das Anwenderprogramm des Automatisierungssystems sollte jetzt programmiert werden. Im Anwenderprogramm werden die Ein- und Ausgabedaten gesteuert und es wird festgelegt, wo die Messgrößen zu finden sind, um sie weiter verarbeiten zu können.
- **3.** Gegebenenfalls muss für ein Automatisierungssystem, welches das IEEE-754-Fließkommaformat nicht unterstützt, ein zusätzlicher Messwert-Konvertierungsbaustein verwendet werden.
- 4. Je nach Art der Datenverwaltung im Automatisierungssystem (Little-Endian-Format oder Big-Endian-Format) kann auch eine Umstellung der Bytereihenfolge notwendig werden (Byte-Swapping).
- 5. Nachdem die Projektierung abgeschlossen ist, wird diese als binäre Datei in das Automatisierungssystem übertragen.
- 6. Das System kann nun gestartet werden. Das Automatisierungssystem baut eine Verbindung zu den projektierten Geräten auf. Nun können die prozessrelevanten Geräteparameter über einen Klasse 2 Master eingestellt werden, z.B. mit Hilfe von FieldCare.

7.6 Azyklischer Datenaustausch

Der azyklische Datenaustausch wird für die Übertragung von Parametern während der Inbetriebnahme, der Wartung oder zur Anzeige weiterer Messgrößen, die nicht im zyklischen Nutzdatenverkehr enthalten sind, verwendet. Es können somit Parameter zur Erkennung, zur Steuerung oder zum Abgleich in den verschiedenen Blöcken (Physical Block, Transducer Block, Funktionsblock) verändert werden, während sich das Gerät im zyklischen Datenaustausch mit einer SPS befindet.

Das Gerät unterstützt die folgende grundsätzlichen Arten der azyklischen Datenübertragung:

MS2AC Kommunikation mit 2 verfügbaren SAP's.

Wenn die azyklische Kommunikation betrachtet wird, muss grundsätzlich zwischen zwei Arten unterschieden werden:

7.6.1 Master Klasse 2 azyklisch (MS2AC)

Beim MS2AC handelt es sich um die azyklische Kommunikation zwischen einem Feldgerät und einem Master der Klasse 2 (z.B. Fieldcare, PDM usw.). Hierbei öffnet der Master einen Kommunikationskanal über einen so genannten SAP (Service Access Point) um auf das Gerät zuzugreifen.

Einem Master Klasse 2 müssen alle Parameter, die über PROFIBUS[®] mit einem Gerät ausgetauscht werden sollen, bekannt gemacht werden. Diese Zuordnung erfolgt entweder in einer so genannten Gerätebeschreibung (DD = Device Description), einem DTM (Device Type Manager) oder innerhalb einer Softwarekomponente im Master über Slot- und Index-Adressierung zu jedem einzelnen Parameter.

Beim Schreiben von Parametern durch einen Master Klasse 2 werden neben der Adresse des Feldgerätes die Slot und Index, Längenangaben (Byte) und der Datensatz übertragen. Der Slave quittiert diesen Schreibauftrag nach Beendigung. Mit einem Klasse 2-Master kann auf die Blöcke zugegriffen werden. Die Parameter, welche in dem Endress+Hauser Bedienprogramm (FieldCare) bedient werden können, sind in den Tabellen in Kapitel 13 dargestellt.

Bei der MS2AC Kommunikation ist folgendes zu beachten:

- Wie bereits beschrieben, greift ein Master der Klasse 2 über spezielle SAP's auf ein Gerät zu. Es können daher nur so viele Master der Klasse 2 gleichzeitig mit einem Gerät kommunizieren wie auch SAP's für diese Kommunikation bereitgestellt worden sind.
- Der Einsatz eines Master der Klasse 2 erhöht die Zykluszeit des Bussystems. Dies ist bei der Programmierung des verwendeten Leitsystems bzw. der Steuerung zu berücksichtigen.

7.6.2 Master Klasse 1 azyklisch (MS1AC)

Beim MS1AC öffnet ein zyklischer Master, der bereits die zyklischen Daten vom Gerät liest bzw. auf das Gerät schreibt, den Kommunikationskanal über den SAP 0x33 (spezieller Service Access Point für MS1AC) und kann dann wie ein Master Klasse 2 über den Slot und den Index einen Parameter azyklisch lesen bzw. schreiben (wenn unterstützt).

Bei der MS1AC Kommunikation ist folgendes zu beachten:

- Aktuell gibt es wenige PROFIBUS Master auf dem Markt, die diese Kommunikation unterstützen.
- Nicht alle PROFIBUS Geräte unterstützen MS1AC.
- Im Anwenderprogramm muss darauf geachtet werden, dass ein dauerhaftes Schreiben von Parametern (z.B. mit jedem Zyklus des Programms) die Lebensdauer eines Gerätes drastisch verkürzen kann. Azyklisch geschriebene Parameter werden spannungsresistent in Speicherbausteine (EEPROM, Flash etc.) geschrieben. Diese Speicherbausteine sind nur für eine begrenzte Anzahl von Schreibvorgängen ausgelegt. Diese Anzahl von Schreibvorgängen wird im Normalbetrieb ohne MS1AC (während der Parametrierung) nicht annähernd erreicht. Aufgrund einer fehlerhaften Programmierung kann diese maximale Anzahl schnell erreicht werden und damit die Lebens zeit eines Gerätes drastisch verkürzt werden.

Das Gerät unterstützt die MS2AC-Kommunikation mit 2 verfügbaren SAPs. Die MS1ACKommunikation wird vom Gerät unterstützt. Der Speicherbaustein ist für 106 Schreibvorgänge ausgelegt.
8 Inbetriebnahme

8.1 Installationskontrolle

Vergewissern Sie sich, dass alle Abschlusskontrollen durchgeführt wurden, bevor Sie Ihre Messstelle in Betrieb nehmen:

- Checkliste "Montagekontrolle", $\rightarrow~\textcircled{15}$
- Checkliste "Anschlusskontrolle", \rightarrow 🗎 23
- Die funktionstechnischen Daten der PROFIBUS[®] PA-Schnittstelle nach IEC 61158-2 (MBP) müssen eingehalten werden.

Eine Überprüfung der Busspannung von 9 ... 32 V sowie der Stromaufnahme von ca. 11 mA am Messgerät kann über ein normales Multimeter erfolgen.

8.2 Einschalten des Transmitters

Wenn Sie die Abschlusskontrollen durchgeführt haben, schalten Sie nun die Versorgungsspannung ein. Nach dem Einschalten durchläuft der Transmitter interne Testfunktionen. Während dieses Vorgangs erscheint auf dem Display folgende Sequenz von Meldungen:

Schritt	Anzeige		
1	Displayname sowie Firm- (FW) und Hardware (HW) -Version		
2	Firmenemblem		
3a	Gerätename sowie die FW und HW des Kopftransmitters		
3b	Anzeige der Geräteadresse, des IDENT_NUMBER_SELECTOR Modus und der aktuellen IDENT_NUM- BER		
3c	Anzeige der Sensorkonfiguration		
4a	Aktueller Messwert oder		
5b	aktuelle Statusmeldung		
	Falls der Einschaltvorgang nicht erfolgreich ist, wird je nach Ursache das entsprechende Diagno- seereignis angezeigt. Eine detaillierte Auflistung der Diagnoseereignisse sowie die entspre- chende Fehlerbehebung finden Sie im Kapitel "Diagnose und Störungsbehebung".		

Das Gerät arbeitet nach ca. 8 Sekunden, das aufgesteckte Display nach ca. 12 Sekunden im Normalbetrieb! Nach erfolgreichem Einschaltvorgang wird der normale Messbetrieb aufgenommen. Auf dem Display erscheinen Mess- und/oder Statuswerte.

8.3 Inbetriebnahme der PROFIBUS® PA-Schnittstelle

Eine ausführliche Beschreibung aller für die Inbetriebnahme erforderlichen Funktionen finden Sie im Kapitel 13 "Bedienung über PROFIBUS[®] PA".

8.3.1 Inbetriebnahme PROFIBUS® PA

Vorgehensweise:

Überprüfen des Hardware-Schreibschutzes
•
Einstellung Busadresse
▼
Eingabe Messstellenbezeichnung

Zum Entriegeln

- via Bedientool den Software-Schreibschutz deaktivieren. Siehe Beschreibung zum Geräteparameter "Geräteschreibschutz definieren" in der Betriebsanleitung.
- Bei aktivem Hardware-Schreibschutz (Schreibschutzschalter auf der Rückseite des Displays in Position "ON"), kann der Schreibschutz via Bedientool nicht deaktiviert werden. Der Hardware-Schreibschutz muss in jedem Fall zuerst deaktiviert werden, bevor der Software-Schreibschutz aktiviert oder deaktiviert werden kann.

9 Wartung

Für das Gerät sind grundsätzlich keine speziellen Wartungsarbeiten erforderlich.

Reinigung

Das Gerät kann mit einem sauberen, trockenen Tuch gereinigt werden.

10 Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Im Lieferumfang enthaltenes Zubehör:

- Mehrsprachige Kurzanleitung in Papierform
- Zusatzdokumentation ATEX: ATEX Sicherheitshinweise (XA), Control Drawings (CD)
- Befestigungsmaterial f
 ür Kopftransmitter
- Optional Befestigungsmaterial für Feldgehäuse (Wand- oder Rohrmontage)

10.1 Gerätespezifisches Zubehör

Zubehör			
Anzeigeeinheit TID10 für Endress+Hauser Kopftransmitter iTEMP TMT8x ¹⁾ , aufsteckbar			
Feldgehäuse TA30x für Endress+Hauser Kopftransmitter			
Adapter für Hutschienenmontage, DIN rail clip nach IEC 60715 (TH35) ohne Befestigungsschrauben			
Standard - DIN Befestigungsset (2 Schrauben + Federn, 4 Sicherungsscheiben und 1 Abdeckkappe Displayste- cker)			
US - M4 Befestigungsschrauben (2 Schrauben M4 und 1 Abdeckkappe Displaystecker)			
Feldbus-Geräteste- cker (PROFIBUS [®] PA):	Einschraubgewinde • M20x1,5 • NPT ½" • M20x1,5	Kabelanschlussgewinde • M12 • M12 • 7/8"	
Edelstahl Wandmonta Edelstahl Rohrmontag	agehalter gehalter		

1) Ohne TMT80

Zubehör	Beschreibung
Commubox FXA195 HART	Für die eigensichere HART [®] -Kommunikation mit FieldCare über die USB-Schnitt- stelle.
	Für Einzelheiten: Technische Information TI404F/00
Commubox FXA291	Verbindet Endress+Hauser Feldgeräte mit CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops.
	Für Einzelheiten: Technische Information TI405C/07
WirelessHART Adapter	Dient zur drahtlosen Anbindung von Feldgeräten. Der WirelessHART [®] Adapter ist leicht auf Feldgeräten und in bestehende Infra- struktur integrierbar, bietet Daten- und Übertragungssicherheit und ist zu anderen Wireless-Netzwerken parallel betreibbar.
	Li Pur Enizementen. Berriebsamentung BA0013/04
Field Xpert SMT70	Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration Der Tablet PC ermöglicht ein mobiles Plant Asset Management in explosions- und nicht explosionsgefährdeten Bereichen. Er eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieser Tablet PC ist als Komplettlösung konzipiert. Mit einer vorinstallierten Treiberbibliothek stellt er ein einfaches und touchfähiges "Werkzeug" dar, über das sich die Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen.
	Für Einzelheiten: Technische Information TI01342S/04

10.3 Servicespezifisches Zubehör

Zubehör	Beschreibung
Applicator	 Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Berechnung aller notwendigen Daten zur Bestimmung des optimalen Messgeräts: z.B. Druckabfall, Messgenauigkeiten oder Prozessanschlüsse. Grafische Darstellung von Berechnungsergebnissen
	Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanten Daten und Parameter über die gesamte Lebensdauer eines Projekts.
	Applicator ist verfügbar: Über das Internet: https://portal.endress.com/webapp/applicator
Zubehör	Beschreibung
Konfigurator	 Produktkonfigurator - das Tool für eine individuelle Produktkonfiguration Tagesaktuelle Konfigurationsdaten Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache Automatische Überprüfung von Ausschlusskriterien Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDFoder Excel-Ausgabeformat Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop
	Der Konfigurator steht auf der Endress+Hauser Website zur Verfügung unter: www.endress.com -> "Corporate" klicken -> Land wählen -> "Products" klicken -> Produkt mit Hilfe der Filter und Suchmaske auswählen -> Produktseite öffnen -> Die Schaltfläche "Konfiguration" rechts vom Produktbild öffnet den Produktkonfigu- rator.

DeviceCare SFE100	Konfigurations-Tool für Geräte über Feldbusprotokolle und Endress+Hauser Ser- viceprotokolle. DeviceCare ist das von Endress+Hauser entwickelte Tool zur Konfiguration von Endress+Hauser Geräten. Alle intelligenten Geräte in einer Anlage können über eine Punkt-zu-Punkt- oder eine Punkt-zu-Bus-Verbindung konfiguriert werden. Die benutzerfreundlichen Menüs ermöglichen einen transparenten und intuitiven Zugriff auf die Feldgeräte. Im Zu Einzelheiten: Betriebsanleitung BA00027S
FieldCare SFE500	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Im Zu Einzelheiten: Betriebsanleitung BA00027S und BA00059S
Zubehör	Beschreibung
W@M	Life Cycle Management für Ihre Anlage W@M unterstützt mit einer Vielzahl von Software-Anwendungen über den gesam- ten Prozess: Von der Planung und Beschaffung über Installation und Inbetrieb- nahme bis hin zum Betrieb der Messgeräte. Zu jedem Messgerät stehen über den gesamten Lebenszyklus alle relevanten Informationen zur Verfügung: z. B. Geräte- status, gerätespezifische Dokumentation, Ersatzteile. Die Anwendung ist bereits mit den Daten Ihrer Endress+Hauser Geräte gefüllt; auch die Pflege und Updates des Datenbestandes übernimmt Endress+Hauser.
	W@M ist verfügbar: Über das Internet: www.endress.com/lifecyclemanagement

11 Diagnose und Störungsbehebung

11.1 Fehlersuche

Beginnen Sie die Fehlersuche in jedem Fall mit den nachfolgenden Checklisten, falls nach der Inbetriebnahme oder während des Messbetriebs Störungen auftreten. Über die verschiedenen Abfragen werden Sie gezielt zur Fehlerursache und den entsprechenden Behebungsmaßnahmen geführt.

Das Gerät kann auf Grund seiner Bauform nicht repariert werden. Es ist jedoch möglich, das Gerät für eine Überprüfung einzusenden. Kapitel "Rücksendung" beachten.

Display überprüfen (optionales, aufsteckbares LC Display)		
Keine Anzeige sicht-	1.	Versorgungs spannung am Kopftransmitter überprüfen \rightarrow Klemmen + und -
bar	2.	Überprüfen Sie, ob die Halterungen und der Anschluss des Displaymoduls korrekt auf dem Kopftransmitter sitzen, Kap. 4.2. $\rightarrow \square 15$
	3.	Sofern vorhanden, Displaymodul mit anderem, passenden E+H Kopftransmittern testen
	4.	Displaymodul defekt → Modul ersetzen
	5.	Kopftransmitter defekt \rightarrow Transmitter ersetzen

ŧ

Vor-Ort-Fehlermeldungen auf der Anzeige		
→ 🗎 45		

ţ

Fehlerhafte Verbindung zum Feldbus-Hostsystem		
Zwischen dem Feldbus-Hostsystem und dem Gerät kann keine Verbindung aufgebaut werden. Prüfen Sie fol- gende Punkte:		
Feldbusanschluss	Datenleitung überprüfen	
Feldbus-Gerätestecker (optional)	Steckerbelegung / Verdrahtung prüfen, $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Feldbusspannung	Prüfen Sie, ob an den Klemmen +/- eine min. Busspannung von 9 $V_{\rm DC}$ vorhanden ist. Zulässiger Bereich: 9 32 $V_{\rm DC}$	
Netzstruktur	Zulässige Feldbuslänge und Anzahl Stichleitungen überprüfen $\rightarrow ~ igoplus 18$	
Basisstrom	Fließt ein Basisstrom von min. 11 mA?	
Abschlusswiderstände	Ist das PROFIBUS [®] PA Segment richtig terminiert? Grundsätzlich muss jedes Bussegment beidseitig (Anfang und Ende) mit einem Busabschluss- widerstand abgeschlossen sein. Ansonsten können Störungen in der Datenübertragung auftreten.	
Stromaufnahme Zulässiger Speise- strom	Stromaufnahme des Bussegments überprüfen: Die Stromaufnahme des betreffenden Bussegmentes (= Summe der Basisströme aller Busteilnehmer) darf den max. zulässigen Speisestrom des Busspeisegerätes nicht überschreiten.	
Fehlermeldungen im PROFIBUS® PA-Konfigurationssystem		
→ 🗎 45		

¥

Andere Fehlerbilder (Applikations	sfehler ohne Meldungen)
Es liegen andere Fehlerbilder vor.	Mögliche Ursachen und Behebungsmaßnahmen s. Kap. $11.4 \rightarrow \bigoplus 50$

11.2 Darstellung des Gerätestatus auf dem PROFIBUS® PA

11.2.1 Darstellung im Bedienprogramm (azyklische Datenübertragung)

Der Gerätestatus kann über ein Bedienprogramm abgefragt werden, s. Kap. 13.2.3: EXPERTE \rightarrow DIAGNOSE \rightarrow STATUS).

11.2.2 Darstellung in FieldCare-Diagnose-Modul (azyklische Datenübertragung)

Mit Hilfe des Startbildschirms einer Online-Verbindung zum Gerät lässt sich schnell der allgemeine Gerätestatus nach NAMUR NE107 ermitteln. Alle Diagnosemeldungen der Messstelle wurden in vier Kategorien (Ausfall, Funktionskontrolle, Außerhalb der Spezifikation, Wartungsbedarf) gegliedert und geben so dem Benutzer Hinweise auf die Ursache und mögliche Abhilfemaßnahmen. Liegt keine Diagnosemeldung vor, so erscheint das Statussignal "ok".

Die Abbildung zeigt einen Ausfall, hervorgerufen durch einen Leitungsbruch am Sensor 1:

11.2.3 Darstellung im PROFIBUS[®] Mastersystem (zyklische Datenübertragung)

Wird das Modul AI für die zyklische Datenübertragung konfiguriert, so wird der Gerätestatus gemäss PROFIBUS Profile Spezifikation 3.02²⁾ codiert und zusammen mit dem Mess-

²⁾ Nach Profile 3.01: Profile GSD-Dateien verwendet bzw. IDENT_NUMBER_SELECTOR auf {0, 129, 130 oder 131} gesetzt oder TMT84 GSD-Datei verwendet bzw. IDENT_NUMBER_SELECTOR auf 1 und Parameter "CondensedStatus" auf OFF. Nach Profile 3.02: TMT84 GSD-Datei verwendet bzw. IDENT_NUMBER_SELECTOR auf 1 und Parameter "CondensedStatus" auf ONFalls IDENT_NUMBER_SELECTOR = 127 bestimmt die für den Aufbau des zyklischen Datenaustausches verwendete GSD-Datei ob Diagnose nach Profile 3.01 oder nach Profile 3.02 erfolgt.

wert über das Quality-Byte (Byte 5) an den PROFIBUS Master (Klasse 1) übertragen. Das Quality-Byte ist in die Segmente Quality Status, Quality Substatus und Limits (Grenz-werte) unterteilt.

Der Inhalt des Quality-Byte eines Analog Input Funktionsblock ist abhängig von dessen konfigurierten Fehlerverhalten. Je nachdem, welches Fehlerverhalten in der Funktion FAILSAFE MODE eingestellt wurde, werden über das Quality-Byte folgende Statusinformationen an den PROFIBUSMaster (Klasse 1) übertragen:

FAILSAFE MODE nach Profile 3.01

Quality Code (HEX)	Quality Status	Quality Substatus	Limits
0x48 0x49 0x4A	UNCERTAIN	Substitute-Set	OK Low High

Bei Auswahl FAILSAFE MODE → LAST GOOD VALUE (Werkeinstellung)

Lag vor dem Ausfall ein gültiger Ausgangswert vor			Lag vor dem Ausfall kein gültiger Ausgangswert vor				
Quality code (hex) Quality status Quality		Quality sub- status	Limits	Quality code (hex)	Quality status	Quality sub- status	Limits
0x44 0x45 0x46	UNCERTAIN	Last usable value	OK Low High	0x4C 0x4D 0x4E	UNCERTAIN	Initial value	OK Low High

Bei Auswahl FAILSAFE MODE \rightarrow WRONG VALUE: Statusmeldungen ($\rightarrow \square 45$).

Die Funktion FAILSAFE MODE kann über ein Bedienprogramm (z.B. FieldCare) im jeweiligen Analog Input Funktionsblock 1...4 konfiguriert werden.

FAILSAFE MODE nach Profile 3.02

Input	Result					
State before Fail Safe Mechanism (FB-Input)	FSAFE_TYPE 0 (Failsafe Value)	FSAFE_TYPE 1 (Last usable value)	FSAFE_TYPE 2 (wrong calculated value)			
BAD - non specific (not generated by the device)	-	-	-			
BAD - passivated	BAD - passivated	BAD - passivated	BAD - passivated			
BAD - maintenance alarm	UNCERTAIN - substitute set	UNCERCTAIN - substitute set	BAD - maintenance alarm			

Input	Result					
BAD - process related	UNCERTAIN - process related	UNCERTAIN - process related	BAD - process related			
BAD - function check	UNCERTAIN - substitute set	UNCERTAIN - substitute set	BAD - function check			

11.3 Statusmeldungen

Das Gerät zeigt Warnungen oder Alarme als Statusmeldung an. Treten Fehler während der Inbetriebnahme oder des Messbetriebs auf, werden diese sofort angezeigt. Dies erfolgt im Konfigurationsprogramm über den Parameter im Physical Block oder auf dem aufgesteckten Display. Dabei ist zwischen folgenden 4 Statuskategorien zu unterscheiden:

Statuskatogorie	Beschreibung	Fehlerkategorie
F	Fehler erfasst ('Failure')	ALARM
М	Wartung erforderlich ('Maintenance')	
С	Gerät ist im Service-Modus (check) ('Service mode')	WARNUNG
S	Nichteinhaltung der Spezifikationen ('Out of specification')	

Fehlerkategorie WARNUNG:

Bei Statusmeldungen "M", "C" und "S" versucht das Gerät, weiter zu messen (Messung unsicher!). Ist ein Display aufgesteckt, wird der Status abwechselnd zum Hauptmesswert in Form des jeweiligen Buchstabens plus der definierten Fehlernummer darauf angezeigt.

Fehlerkategorie ALARM:

Bei der Statusmeldung "F" misst das Gerät nicht weiter. Ist ein Display aufgesteckt, wird abwechselnd die Statusmeldung und "- - - -" (kein gültiger Messwert vorhanden) darauf dargestellt. Über den Feldbus wird, je nach Einstellung des Parameters Fail Safe Type (FSAFE_TYPE), der letzte gute Messwert, der fehlerhafte Messwert oder der unter Fail Safe Value (FSAFE_VALUE) eingestellte Wert, mit dem Messwertstatus "BAD" oder "UNCERTAIN" übertragen. Der Fehlerzustand wird in Form des Buchstabens "F" plus einer definierten Nummer angezeigt.

In beiden Fällen wird der jeweilige Sensor ausgegeben, welcher den Status erzeugt, z. B. "C1", "C2". Wenn keine Sensorbezeichnung angezeigt wird, bezieht sich die Statusmeldung nicht auf einen Sensor, sondern auf das Gerät selbst.

Abkürzungen der Ausgangsgrößen:

- SV1 = Secondary value 1 = Sensorwert 1 in Temperatur Transducer Block 1 = Sensorwert 2 in Temperatur Transducer Block 2
- SV2 = Secondary value 2 = Sensorwert 2 in Temperatur Transducer Block 1 = Sensorwert 1 in Temperatur Transducer Block 2
- PV1 = Primary value 1 = Hauptmesswert 1
- PV2 = Primary value 2 = Hauptmesswert 2
- RJ1 = Reference junction 1 = Vergleichsstelle 1
- RJ2 = Reference junction 2 = Vergleichsstelle 2

Kate- gorie	Nr.	Statusmeldungen • im Physical Block • Diagnosecode • Erweiterte Diagnose • Vor-Ort-Anzeige	Sensor Transducer Block Messwert- status 1 = Status (Profile 3.01/3.02) 2 = Quality 3 = Substatus (Profile 3.01/3.02) 4 = Limits	Fehlerursache / Behebung	Betroffene Ausgangsgrö- ßen
F-	041	Gerätestatusmeldung (PA): Sensor Leitungsbruch F-041 Vor-Ort-Anzeige: F041	1 = 0x10 ¹⁾ /0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: 1. Elektr. Unterbrechung des Sensors oder dessen Verdrahtung. 2. falsche Einstellung der Anschlussart im Parameter ANSCHLUSSART. Behebung: zu 1.) Elektr. Verbindung wiederherstellen, bzw. Sensor austauschen. zu 2.) richtige Anschlussart einstellen.	SV1, SV2 je nach Konfigu- ration auch PV1, PV2
F-	042	Gerätestatusmeldung (PA): Sensor Korrosion F-042 Vor-Ort-Anzeige: F042	L = 0x10x24 1)Fehlerursache:Z = BADKorrosion an den Sensorklemmen detek-B = Sensor Failure / Maintenance alarm,tiert.more diagnosis availableBehebung:L = OKVerdrahtung überprüfen und ggf. tauschen.		SV1, SV2 je nach Konfigu- ration auch PV1, PV2
F-	043	Gerätestatusmeldung (PA): Sensor Kurzschluss F-043 Vor-Ort-Anzeige: F043	1 = 0x10x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Kurzschluss an den Sensorklemmen detek- tiert. Behebung: Sensor und dessen Verdrahtung überprü- fen.	SV1, SV2 je nach Konfigu- ration auch PV1, PV2
F-	103	Gerätestatusmeldung (PA): Sensor Drift F-103 Vor-Ort-Anzeige: F103	1 = 0x10x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Sensordrift wurde detektiert (gemäß den Einstellungen in den Transducer Blöcken). Behebung: Je nach Anwendung Sensor überprüfen.	PV1, PV2 SV1, SV2
F-	221	Gerätestatusmeldung (PA): Messung Referenztemperatur F-221 Vor-Ort-Anzeige: F221	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Interne Vergleichsstelle defekt. Behebung: Gerät defekt, ersetzen	SV1, SV2, PV1, PV2, RJ1, RJ2
F-	261	Gerätestatusmeldung (PA): Elektronikfehler F-261 Vor-Ort-Anzeige: F261	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Fehler in der Elektronik. Behebung: Gerät defekt, ersetzen	SV1, SV2, PV1, PV2, RJ1, RJ2
F-	283	Gerätestatusmeldung (PA): Speicherfehler F-283 Vor-Ort-Anzeige: F283	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Fehler im Speicher. Behebung: Gerät defekt, ersetzen	SV1, SV2, PV1, PV2, RJ1, RJ2
F-	431	Gerätestatusmeldung (PA): Abgleich fehlerhaft F-431 Vor-Ort-Anzeige: F431	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Fehler bei Abgleichparametern. Behebung: Gerät defekt, ersetzen	SV1, SV2, PV1, PV2, RJ1, RJ2

11.3.1 Diagnosecodemeldungen der Kategorie F

Kate- gorie	Nr.	Statusmeldungen • im Physical Block • Diagnosecode • Erweiterte Diagnose • Vor-Ort-Anzeige	Sensor Transducer Block Messwert- status 1 = Status (Profile 3.01/3.02) 2 = Quality 3 = Substatus (Profile 3.01/3.02) 4 = Limits	Fehlerursache / Behebung	Betroffene Ausgangsgrö- ßen
F-	437	Gerätestatusmeldung (PA): Konfiguration fehlerhaft F-437 Vor-Ort-Anzeige: F437	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Falsche Konfiguration innerhalb der Trans- ducer Blöcke "Sensor 1 und 2". Behebung: Konfiguration der verwendeten Sensorty- pen, Einheiten sowie die Einstellungen von PV1 und/oder PV2 überprüfen.	SV1, SV2, PV1, PV2, RJ1, RJ2
F-	502	Gerätestatusmeldung (PA): Linearisierungsfehler F-502 Vor-Ort-Anzeige: F502	1 = 0x0C/0x24 ¹⁾ 2 = BAD 3 = Sensor Failure / Maintenance alarm, more diagnosis available 4 = OK	Fehlerursache: Fehler in der Linearisierung. Behebung: gültige Linearisierungsart (Sensortyp) aus- wählen.	SV1, SV2, PV1, PV2, RJ1, RJ2

1) → 🖺 49

11.3.2 Diagnosecodemeldungen der Kategorie M

Kate- gorie	Nr.	Statusmeldungen • im Physical Block • Diagnosecode • Erweiterte Diagnose • Vor-Ort-Anzeige	Sensor Transducer Block Mess- wertstatus 1 = Status (Profile 3.01/3.02) 2 = Quality 3 = Substatus (Profile 3.01/3.02) 4 = Limits	Fehlerursache / Behebung	Betroffene Ausgangs- größen
M-	042	Gerätestatusmeldung (PA): Korrosion M-042 Vor-Ort-Anzeige: M042	1 = 0x50 ¹ /0xA4 ¹⁾ 2 = UNCERTAIN/GOOD 3 = Sensor conversion not accurate / Maintenance required/demanded 4 = OK	Fehlerursache: Korrosion an den Sensorklemmen detektiert. Behebung: Verdrahtung überprüfen und ggf. tauschen.	SV1, SV2 je nach Konfigu- ration auch PV1, PV2
M-	103	Gerätestatusmeldung (PA): Drift M-103 Vor-Ort-Anzeige: M103	1 = 0x10 ¹ /0xA4 ¹⁾ 2 = UNCERTAIN / GOOD 3 = non specific / Maintenance required / demanded 4 = OK	Fehlerursache: Sensordrift wurde detektiert (gemäß den Einstel- lungen in den Transducer Blöcken). Behebung: Je nach Anwendung Sensor überprüfen.	PV1, PV2 SV1, SV2
M-	262	Gerätestatusmeldung (PA): Display Kommunikations- fehler M-262 Vor-Ort-Anzeige: M262	Kein Einfluss auf den Mess- wertstatus	 Fehlerursache: Keine Kommunikation mit dem Display möglich. Behebung: Überprüfen Sie, ob die Halterungen und der Anschluss des Displaymoduls korrekt auf dem Kopftransmitter sitzen Sofern vorhanden, Displaymodul mit anderem, passenden E+H Kopftransmittern testen Displaymodul defekt → Modul ersetzen 	SV1, SV2, PV1, PV2, RJ1, RJ2

1) siehe Hinweis → 🗎 49

Kate- gorie	Nr.	Statusmeldungen • im Physical Block • Diagnosecode • Erweiterte Diagnose • Vor-Ort-Anzeige	Sensor Transducer Block Messwertsta- tus 1 = Status (Profile 3.01/3.02) 2 = Quality 3 = Substatus (Profile 3.01/3.02) 4 = Limits	Fehlerursache / Behebung	Betroffene Ausgangsgrö- ßen
S-	101	Gerätestatusmeldung (PA): Arbeitsbereich Sensor unter- schritten S-101 Vor-Ort-Anzeige: S101	$1 = 0x50^{-1}/0x78^{-1}$ 2 = UNCERTAIN 3 = Sensor conversion not accurate / Pro- cess related, no maintenance 4 = OK	Fehlerursache: Physikalischer Messbereich unter- schritten. Behebung: Geeigneten Sensortyp auswählen.	SV1, SV2 je nach Konfigura- tion auch PV1, PV2
S-	102	Gerätestatusmeldung (PA): Arbeitsbereich Sensor über- schritten S-102 Vor-Ort-Anzeige: S102	1 = 0x50 ¹⁾ /0x78 ¹⁾ 2 = UNCERTAIN 3 = Sensor conversion not accurate / Pro- cess related, no maintenance 4 = OK	Fehlerursache: Physikalischer Messbereich über- schritten. Behebung: Geeigneten Sensortyp auswählen.	SV1, SV2 je nach Konfigura- tion auch PV1, PV2
S-	901	Gerätestatusmeldung (PA): Umgebungstemperatur zu nied- rig S-901 Vor-Ort-Anzeige: S901	1 = 0x40 ¹⁾ /0x78 ¹⁾ 2 = UNCERTAIN 3 = Non specific / Process related, no maintenance 4 = OK	Fehlerursache: Vergleichstemperatur < -40 °C (-40 °F): Parameter Umge- bungstemperatur Alarm = Ein. Behebung: Umgebungstemperatur gemäß Spezi- fikation einhalten.	SV1, SV2, PV1, PV2, RJ1, RJ2
S-	902	Gerätestatusmeldung (PA): Umgebungstemperatur zu hoch S-902 Vor-Ort-Anzeige: S902	1 = 0x40 ¹⁾ /0x78 ¹⁾ 2 = UNCERTAIN 3 = Non specific / Process related, no maintenance 4 = OK	Fehlerursache: Vergleichstemperatur < +85 °C (+185 °F): Parameter Umge- bungstemperatur Alarm = Ein. Behebung: Umgebungstemperatur gemäß Spezi- fikation einhalten.	SV1, SV2, PV1, PV2, RJ1, RJ2

11.3.3	Diagnosecod	emeldungen de	er Kategorie S
--------	-------------	---------------	----------------

1) siehe Hinweis $\rightarrow \square 49$

Kate- gorie	Nr.	Statusmeldungen • im Physical Block • Diagnosecode • Erweiterte Diagnose • Vor-Ort-Anzeige	Sensor Transducer Block Messwertstatus 1 = Status (Profile 3.01/3.02) 2 = Quality 3 = Substatus (Profile 3.01/3.02) 4 = Limits	Fehlerursache / Behebung	Betroffene Ausgangsgrö- ßen
C-	402	Gerätestatusmeldung (PA): Startup Initialisierung C-402 Vor-Ort-Anzeige: C402 ↔ Messwert	1 = 0x4C ¹⁾ /0x3C ¹⁾ 2 = UNCERTAIN / BAD 3 = Init value / function check / local override 4 = OK	Fehlerursache: Gerät startet /initialisiert sich. Behebung: Meldung wird nur während des Auf- startens angezeigt.	SV1, SV2, PV1, PV2, RJ1, RJ2
C-	482	Gerätestatusmeldung (PA): Simulation aktiv C-482 Vor-Ort-Anzeige: C482 ↔ Messwert	1 = 0x70 ¹⁾ /0x73(0x74) 2 = UNCERTAIN / BAD 3 =Init value / simulated value, start (end) 4 = OK	Fehlerursache: Simulation ist aktiv. Behebung: -	
C-	501	Gerätestatusmeldung (PA): Gerätereset C-501 Vor-Ort-Anzeige: C501 ↔ Messwert	$1 = 0x4C^{1}/0x7F$ 2 = UNCERTAIN 3 = Init value / 4 = OK	Fehlerursache: Gerätereset wird durchgeführt. Behebung: Meldung wird nur während des Resets angezeigt.	SV1, SV2, PV1, PV2, RJ1, RJ2

11.3.4 Diagnosecodemeldunger	der Kategorie C
------------------------------	-----------------

1) siehe Hinweis $\rightarrow \square 49$

Der angegebene Status kann sich auf Grund einer Limitverletzung um den Wert 1 (Low Limit), 2 (High Limit) oder 3 (Constant) erhöhen. Die Erhöhung des Statuswertes kann sich durch eine Limitverletzung des direkt angezeigten Fehlers ergeben oder, bei gleichzeitigem Auftreten mehrerer Status, aus einem niederprioren Fehler übertragen werden.

Beispiel:

	Quality (BAD)		Quality Substatus			Limits	5		
Fehler (F)	0 0		1	0	0	1	х	х	= 0x24 0x27

11.3.5 Korrosionsüberwachung

Die Korrosion von Sensoranschlussleitungen kann zu einer Verfälschung des Messwertes führen. Das Gerät bietet deshalb die Möglichkeit, die Korrosion zu erkennen bevor eine Messwertverfälschung eintritt.

Korrosionsüberwachung ist nur für RTD mit 4-Leiter Anschluss und Thermoelementen möglich.

2 verschiedene Stufen sind je nach Applikationsanforderung im Parameter CORROSION_ DETECTION (siehe Kap. 11) auswählbar:

- off (keine Korrosionsüberwachung)
- on (Ausgabe einer Warnung vor dem Erreichen des Alarmwertes siehe nachfolgende Tabelle, damit vorbeugend eine Wartungsmaßnahme/Fehlerbehebung durchgeführt werden kann. Ab dem Alarmwert wird eine Alarmmeldung ausgegeben)

Die nachfolgende Tabelle beschreibt das Verhalten des Gerätes bei Änderung des Widerstandes in einer Sensoranschlussleitung, in Abhängigkeit von der Parameterauswahl on/ off.

RTD	< ≈ 2 kΩ	2 kΩ ≈ < x ≈ 3 kΩ	> ≈ 3 kΩ
off		kein Alarm	kein Alarm
on		WARNING (M-042)	ALARM (F-042)

тс	< ≈ 10 kΩ	10 kΩ ≈ < x ≈ 15 kΩ	> ≈ 15 kΩ
off		kein Alarm	kein Alarm
on		WARNING (M-042)	ALARM (F-042)

Der Sensorwiderstand kann die Widerstandsangaben in der Tabelle beeinflussen. Bei gleichzeitiger Erhöhung aller Sensoranschlussleitungswiderstände halbieren sich die in der Tabelle beschriebenen Werte.

Bei der Korrosionserkennung wird davon ausgegangen, dass es sich um einen langsamen Prozess mit kontinuierlicher Widerstandserhöhung handelt.

11.4 Applikationsfehler ohne Meldungen

11.4.1 Applikationsfehler für RTD-Anschluss

Sensortypen siehe $\rightarrow \cong 54$.

Fehlerbild	Ursache	Aktion/Behebung
Messwert ist falsch/unge-	Einbaulage des Sensors ist fehlerhaft	Sensor richtig einbauen
nau	Ableitwärme über den Sensor	Einbaulänge des Sensors beachten
	Geräteprogrammierung ist fehlerhaft (Leiter-Anzahl)	Gerätefunktion Anschlussart ändern
	Geräteprogrammierung ist fehlerhaft (Skalierung)	Skalierung ändern
	Falscher RTD eingestellt	Gerätefunktion Kennlinientyp ändern
	Anschluss des Sensors (2-Leiter), fal- sche Anschlusskonfiguration gegen- über tatsächlichem Anschluss	Anschluss des Sensors / Konfiguration des Transmitters überprüfen
	Leitungswiderstand des Sensors (2- Leiter) wurde nicht kompensiert	Leitungswiderstand kompensieren
	Offset falsch eingestellt	Offset überprüfen
	Sensor, Messfühler defekt	Sensor, Messfühler überprüfen
	Anschluss RTD falsch	Anschlussleitungen korrekt anschließen (siehe Kap. "Elektrischer Anschluss" → 🗎 16)
	Programmierung	Falscher Sensortyp in der Gerätefunktion Kennlinientyp eingestellt; auf richtigen Sensortyp ändern
	Gerät defekt	Gerät erneuern

11.4.2 Applikationsfehler für TC-Anschluss

Sensortypen siehe $\rightarrow \square 54$.

Fehlerbild	Ursache	Aktion/Behebung
Messwert ist falsch/unge-	Einbaulage des Sensors ist fehlerhaft	Sensor richtig einbauen
nau	Ableitwärme über den Sensor	Einbaulänge des Sensors beachten
	Geräteprogrammierung ist fehlerhaft (Skalierung)	Skalierung ändern
	Falscher Thermoelementtyp (TC) ein- gestellt	Gerätefunktion Kennlinientyp ändern

Fehlerbild	Ursache	Aktion/Behebung
	Falsche Vergleichsmessstelle einge- stellt	siehe Kap. 13
	Offset falsch eingestellt	Offset überprüfen
	Störungen über den im Schutzrohr angeschweißten Thermodraht (Ein- kopplung von Störspannungen)	Sensor verwenden, bei dem der Thermo- draht nicht angeschweißt ist
	Sensor falsch angeschlossen	Anschlussleitungen korrekt anschließen (siehe Kap. "Elektrischer Anschluss" → 🗎 16)
	Sensor, Messfühler defekt	Sensor, Messfühler überprüfen
	Programmierung	Falscher Sensortyp in der Gerätefunk- tion Kennlinientyp eingestellt; richtiges Thermoelement (TC) einstellen
	Gerät defekt	Gerät erneuern

11.5 Ersatzteile

Aktuell lieferbare Ersatzteile zu Ihrem Produkt finden Sie Online unter: http://www.products.endress.com/spareparts_consumables, Temperaturtransmitter: TMT84. Bei Ersatzteilbestellungen die Seriennummer des Gerätes angeben!

Тур	Bestellnummer
Adapter für Hutschienenmontage, DIN rail clip nach IEC 60715	51000856
Standard - DIN Befestigungsset (2 Schrauben und Federn, 4 Wellensicherungsringe, 1 Stop- fen für die Display Schnittstelle)	71044061
US - M4 Befestigungsset (2 Schrauben und 1 Stopfen für die Display Schnittstelle)	71044062

11.6 Rücksendung

Die Anforderungen für eine sichere Rücksendung können je nach Gerätetyp und landesspezifischer Gesetzgebung unterschiedlich sein.

- 1. Informationen auf der Internetseite einholen: https://www.endress.com/en/instrumentation-services/instrumentation-repair
- 2. Das Gerät bei einer Reparatur, Werkskalibrierung, falschen Lieferung oder Bestellung zurücksenden.

11.7 Entsorgung

Das Gerät enthält elektronische Bauteile und muss deshalb, im Falle der Entsorgung, als Elektronikschrott entsorgt werden. Beachten Sie bitte insbesondere die örtlichen Entsorgungsvorschriften Ihres Landes.

11.8 Softwarehistorie und Kompatibilitätsübersicht

Änderungsstand

XX

Die Firmwareversion (FW) auf dem Typenschild und in der Betriebsanleitung gibt den Änderungsstand des Geräts an: XX.YY.ZZ (Beispiel 01.02.01).

Änderung der Hauptversion. Kompatibilität ist nicht mehr gegeben. Gerät und Betriebsanleitung ändern sich.

Änderungsstand	
----------------	--

YY	Änderung bei Funktionalität und Bedienung. Kompatibilität ist gegeben.
	Betriebsanleitung ändert sich.

ZZ Fehlerbeseitigung und interne Änderungen. Betriebsanleitung ändert sich nicht.

Datum	Firmware Version	Modifications	Dokumentation
07/08	01.00.zz	Original Firmware	BA257R/09/de/07.08 71076270
06/11	01.01.zz	Update auf PROFIBUS Profile 3.02	BA00257R/09/de/01.1171137263
06/11	01.01.zz	-	BA00257R/09/de/02.1171137263
06/11	01.01.zz	-	BA00257R/09/de/03.12 71192570
03/17	01.01.zz	Keine firmwarespezifischen Änderungen	BA00257R/09/de/04.17 71357863

12 Technische Daten

12.1 Eingang

Messgröße

Temperatur (temperaturlineares Übertragungsverhalten), Widerstand und Spannung.

Messbereich

Der Anschluss zweier voneinander unabhängiger Sensoren ist möglich. Die Messeingänge sind galvanisch nicht voneinander getrennt.

Widerstandsthermometer (RTD) nach Standard	Bezeichnung	α	Messbereichsgrenzen
IEC 60751:2008	Pt100 (1) Pt200 (2) Pt500 (3) Pt1000 (4)	0,003851	-200 +850 °C (-328 +1562 °F) -200 +850 °C (-328 +1562 °F) -200 +250 °C (-328 +482 °F) -200 +250 °C (-328 +482 °F)
JIS C1604:1984	Pt100 (5)	0,003916	−200 +649 °C (−328 +1200 °F)
DIN 43760 IPTS-68	Ni100 (6) Ni1000	0,006180	-60 +250 °C (-76 +482 °F) -60 +150 °C (-76 +302 °F)
Edison Copper Winding No. 15	Cu10	0,004274	-100 +260 °C (-148 +500 °F)
Edison Curve	Ni120	0,006720	−70 +270 °C (−94 +518 °F)
GOST 6651-94	Pt50 (8) Pt100 (9)	0,003910	-200 +1 100 °C (-328 +2 012 °F) -200 +850 °C (-328 +1562 °F)
OIML R84: 2003 GOST 6651-2009	Cu50 (10) Cu100 (11)	0,004280	−200 +200 °C (−328 +392 °F)
-	Pt100 (Callendar van Dusen) Polynom Nickel Polynom Kupfer	-	10 400 Ω, 10 2 000 Ω 10 400 Ω, 10 2 000 Ω 10 400 Ω, 10 2 000 Ω
	 Anschlussart: 2-Leiter-, 3-Leiter oder 4-Leiteranschluss, Sensorstrom: ≤ 0,3 mA bei 2-Leiterschaltung Kompensation des Leitungswiderstandes möglich (0 30 Ω) bei 3-Leiter- und 4-Leiteranschluss Sensorleitungswiderstand bis max. 50 Ω je Leitung 		
Widerstandsgeber	Widerstand Ω		10 400 Ω 10 2 000 Ω

Thermoelemente nach Standard	Bezeichnung	Messbereichsgrenzen	
IEC 60584, Teil 1	Typ A (W5Re-W20Re) (30) Typ B (PtRh30-PtRh6) (31) Typ E (NiCr-CuNi) (34) Typ J (Fe-CuNi) (35) Typ K (NiCr-Ni) (36) Typ N (NiCrSi-NiSi) (37) Typ R (PtRh13-Pt) (38) Typ S (PtRh10-Pt) (39) Typ T (Cu-CuNi) (40)	0 +2 500 °C (+32 +4 532 °F) +40 +1 820 °C (+104 +3 308 °F) -270 +1 000 °C (-454 +1 832 °F) -210 +1 200 °C (-346 +2 192 °F) -270 +1 372 °C (-454 +2 501 °F) -270 +1 300 °C (-454 +2 372 °F) -50 +1 768 °C (-58 +3 214 °F) -50 +1 768 °C (-58 +3 214 °F) -260 +400 °C (-436 +752 °F)	Empfohlener Temperaturbereich: 0 +2 500 °C (+32 +4 532 °F) +500 +1 820 °C (+932 +3 308 °F) -150 +1 000 °C (-238 +1 832 °F) -150 +1 200 °C (-238 +2 192 °F) -150 +1 200 °C (-238 +2 192 °F) -150 +1 300 °C (-238 +2 372 °F) +50 +1 768 °C (+122 +3 214 °F) +50 +1 768 °C (+122 +3 214 °F) -150 +400 °C (-238 +752 °F)
IEC 60584, Teil 1; ASTM E988-96	Typ C (W5Re-W26Re) (32)	0 +2 315 °C (+32 +4 199 °F)	0 +2 000 °C (+32 +3 632 °F)
ASTM E988-96	Typ D (W3Re-W25Re) (33)	0 +2 315 °C (+32 +4 199 °F)	0 +2 000 °C (+32 +3 632 °F)
DIN 43710	Typ L (Fe-CuNi) (41) Typ U (Cu-CuNi) (42)	-200 +900 °C (-328 +1652 °F) -200 +600 °C (-328 +1112 °F)	-150 +900 ℃ (-238 +1652 ℉) -150 +600 ℃ (-238 +1112 ℉)
GOST R8.585-2001	Typ L (NiCr-CuNi) (43)	−200 +800 °C (−328 +1472 °F)	–200 +800 °C (+328 +1472 °F)

Thermoelemente nach Standard	Bezeichnung	Messbereichsgrenzen
	 Vergleichsstelle intern (Pt100) Vorgabewert extern: Wert einstellbar -40 +85 °C (-40 +185 °F) Maximaler Sensorleitungswiderstand 10 kΩ (ist der Sensorleitungswiderstand größer als 10 kΩ, wird eine Fehlermeldun nach NAMUR NE89 ausgegeben) 	
Spannungsgeber (mV)	Millivoltgeber (mV)	-20 100 mV -5 30 mV

Eingangstyp

Bei Belegung beider Sensoreingänge sind folgende Anschlusskombinationen möglich:

	Sensoreingang 1					
		RTD oder Widerstands- geber, 2-Leiter	RTD oder Widerstands- geber, 3-Leiter	RTD oder Widerstands- geber, 4-Leiter	Thermoele- ment (TC), Spannungsge- ber	
Sensorein-	RTD oder Wider- standsgeber, 2-Leiter	V	V	-	\checkmark	
gang 2	RTD oder Wider- standsgeber, 3-Leiter	V	V	-	\checkmark	
	RTD oder Wider- standsgeber, 4-Leiter	-	-	-	-	
	Thermoelement (TC), Spannungsgeber	V	V	V	V	

Eingangssignal

Eingangsdaten: Der Kopftransmitter ist in der Lage, einen zyklisch übertragenen Messwert + Status von einem PROFIBUS[®] Master zu empfangen. Dieser Wert kann azyklisch gelesen werden.

12.2 Ausgang

Ausgangssignal	 PROFIBUS® PA gemäß EN 50170 Volume 2, IEC 61158-2 (MBP), galvanisch getrennt Ergänzung 2 "Condensed status and diagnostic messages" Ergänzung 3 "Identification and Maintenance Functions" Fehlerstrom FDE (Fault Disconnection Electronic) = 0 mA Datenübertragungsgeschwindigkeit: unterstützte Baudrate = 31,25 kBit/s Signalkodierung = Manchester II Ausgangsdaten: Verfügbare Werte über AI-Blöcke: Temperatur (PV), Temp. Sensor 1 + 2, Anschluss- klemmentemperatur Der Transmitter wird in einem Leitsystem immer als Slave betrieben und ermöglicht, abhängig von der Anwendung, den Datenaustausch mit einem oder mehreren Mastern. Gemäß IEC 60079-27, FISCO/FNICO
Ausfallinformation	Status- und Alarmmeldungen gemäß Spezifikation PROFIBUS® PA Profile 3.01/3.02
Linearisierungs-/Übertra- gungsverhalten	temperaturlinear, widerstandslinear, spannungslinear
Netzfrequenzfilter	50/60 Hz
Galvanische Trennung	U = 2 kV AC (Eingang/Ausgang)

Stromaufnahme	≤ 11 mA		
Einschaltverzögerung	8 s		
PROFIBUS® PA Basisdaten	Herstellerspezifische ID-Nr.:	Profile 3.0 ID-Nr.:	Herstellerspezifische GSD
	1551 (Hex)	9700 (Hex) 9701 (Hex) 9702 (Hex) 9703 (Hex)	EH021551.gsd (Profile 3.01 EH3x1551.gsd)
	Profile 3.0 GSD	Geräte- oder Busadresse	Bitmaps
	Pa139700.gsd Pa139701.gsd Pa139702.gsd Pa139703.gsd	126 (default)	EH_1551_d.bmp EH_1551_n.bmp EH_1551_s.bmp

Kurzbeschreibung der Blö-**Physical Block** cke Der Physical Block beinhaltet alle Daten, die das Gerät eindeutig identifizieren und charakterisieren. Er entspricht einem elektronischen Typenschild des Gerätes. Neben Parametern, die zum Betrieb des Geräts am Feldbus gebraucht werden, stellt der Physical Block Informationen wie Ordercode, Geräte-ID, Hardwarerevision, Softwarerevision, Device Release usw. zur Verfügung. Außerdem lassen sich über den Physical Block die Display-Einstellungen vornehmen. Transducer Block "Sensor 1" und "Sensor 2" Die Transducer Blöcke des Kopftransmitters beinhalten alle messtechnischen und gerätespezifischen Parameter, die für die Messung der Eingangsgrössen relevant sind. Analog Input (AI) Im AI Funktionsblock werden die Prozessgrößen aus den Transducer Blöcken für die anschließenden Automatisierungsfunktionen im Leitsystem aufbereitet (z.B. Skalierung, Grenzwertverarbeitung). 12.3 Energieversorgung

Versorgungsspannung U = 9...32 V DC, polaritätsunabhängig (max. Spannung $U_b = 35 \text{ V}$)

Elektrischer Anschluss

🖻 16 Klemmenanschlussbelegung des Kopftransmitters

Klemmen

Wahlweise Schraub- oder Federklemmen für Sensor- und Versorgungsleitungen:

Klemmenausführung	Leitungsausführung	Leitungsquerschnitt
Schraubklemmen (mit Laschen an den Feldbusklemmen für einfachen Anschluss eines Handbediengerä- tes,)	Starr oder flexibel	≤ 2,5 mm² (14 AWG)
Federklemmen (Leitungsausfüh-	Starr oder flexibel	0,2 1,5 mm² (24 16 AWG)
rung, Abisolierlänge = min. 10 mm (0,39 in)	Flexibel mit Aderendhülsen mit/ ohne Kunststoffhülse	0,25 1,5 mm² (24 16 AWG)

12.4 Leistungsmerkmale

Antwortzeit	1 s pro Kanal
Referenzbedingungen	 Kalibrationstemperatur: +25 °C ±5 K (77 °F ±9 °F) Versorgungsspannung: 24 V DC 4-Leiter-Schaltung für Widerstandsabgleich
Auflösung	Auflösung A/D-Wandler = 18 Bit
Maximale Messabweichung	Nach DIN EN 60770 und oben angegebenen Referenzbedingungen. Die Angaben zur Mes- sabweichung entsprechen ±2 σ (Gauß'sche Normalverteilung). Die Angaben beinhalten Nichtlinearitäten und Wiederholbarkeit.

Typisch

Standard	Bezeichnung	Messbereich	Typische Messabweichung (±)
Widerstandsthermometer (RTD) nach Standard			Digitaler Wert ¹⁾
IEC 60751:2008	Pt100 (1)	0 +200 °C (32 +392 °F)	0,08 °C (0,14 °F)

Standard	Bezeichnung	Messbereich	Typische Messabweichung (±)
IEC 60751:2008	Pt1000 (4)		0,08 K (0,14 °F)
GOST 6651-94	Pt100 (9)		0,07 °C (0,13 °F)
Thermoelemente (TC) nach S	tandard		Digitaler Wert ¹⁾
IEC 60584, Teil 1	Typ K (NiCr-Ni) (36)		0,31 °C (0,56 °F)
IEC 60584, Teil 1	Typ S (PtRh10-Pt) (39)	0 +800 °C (32 +1472 °F)	0,97 °C (1,75 °F)
GOST R8.585-2001	Typ L (NiCr-CuNi) (43)		2,18 °C (3,92 °F)

1) ${\it Mittels} \; {\it FELDBUS}^{\circledast} \; \ddot{u} bertragener \; {\it Messwert}.$

Messabweichung für Widerstandsthermometer (RTD) und Widerstandsgeber

Standard	Bezeich- nung	Messbereich	Messabweichung (±)		Nichtwiederholbar- keit (±)
				Digital ¹⁾	
			Maximal ²⁾	Messwertbezogen ³⁾	
	Pt100 (1)	−200 +850 °C	≤ 0,12 °C (0,21 °F)	0,06 °C (0,11 °F) + 0,006% * (MW - MBA)	≤ 0,05 °C (0,09 °F)
IEC 60751-2009	Pt200 (2)	(−328 +1562 °F)	≤ 0,30 °C (0,54 °F)	0,11 °C (0,2 °F) + 0,018% * (MW - MBA)	≤ 0,13 ℃ (0,23 ℉)
IEC 00791.2008	Pt500 (3)	−200 +250 °C (−328 +482 °F)	≤ 0,16 °C (0,29 °F)	0,05 °C (0,09 °F) + 0,015% * (MW - MBA)	≤ 0,08 °C (0,14 °F)
	Pt1000 (4)	−200 +250 °C (−328 +482 °F)	0,03 °C (0,05 °F) + 0,013% * (MW - MBA)		≤ 0,05 °C (0,09 °F)
JIS C1604:1984	Pt100 (5)	−200 +649 °C (−328 +1200 °F)	≤ 0,09 C (0,10 F)	0,05 °C (0,09 °F) + 0,006% * (MW - MBA)	≤ 0,04 °C (0,07 °F)
COST 6651 04	Pt50 (8)	-200 +1100 ℃ (-328 +2012 ℉)	≤ 0,20 °C (0,36 °F)	0,10 °C (0,18 °F) + 0,008% * (MW - MBA)	≤ 0,11 °C (0,2 °F)
6051 6651-94	Pt100 (9)	−200 +850 °C (−328 +1562 °F)	≤ 0,11 °C (0,2 °F)	0,05 °C (0,09 °F) + 0,006% * (MW - MBA)	≤ 0,05 °C (0,09 °F)
DIN 43760	Ni100 (6)	−60 +250 °C (−76 +482 °F)	< 0.05 °C (0.09 °E)	0,05 °C (0,09 °F) - 0,006% * (MW	< 0.02 °C (0.05 °E)
IPTS-68	Ni1000	−60 +150 °C (−76 +302 °F)	≤ 0,05 C (0,07 F)	- MBA)	≤ 0,05 °C (0,05 1)
OIML R84: 2003 /	Cu50 (10)	−200 +200 °C	≤ 0,11 °C (0,2 °F)	0,09 °C (0,16 °F) + 0,006% * (MW - MBA)	≤ 0,05 °C (0,09 °F)
GOST 6651-2009	Cu100 (11)	(−328 +1562 °F)	≤ 0,06 °C (0,11 °F)	0,05 °C (0,09 °F) + 0,003% * (MW - MBA)	≤ 0,04 °C (0,07 °F)
Widerstandsgeber	Widerstand	10 400 Ω	32 mΩ	-	15mΩ
	Ω	10 2 000 Ω	300 mΩ	-	≤ 200mΩ

1)

2)

Mittels FELDBUS[®] übertragener Messwert. Maximale Messabweichung auf den angegebenen Messbereich. Abweichungen von maximaler Messabweichung durch Rundung möglich. 3)

Standard	Bezeichnung	Messbereich	Messabweichung (±)		Nichtwie- derhol- barkeit (±)
			Di	gital ¹⁾	
			Maximal ²⁾	Messwertbezogen ³⁾	
IEC 60584-1	Тур А (30)	0 +2 500 °C (+32 +4 532 °F)	≤ 1,33 ℃ (2,39 ℉)	0,8 °C (1,44 °F) + 0,021% * MW	≤ 0,52 °C (0,94 °F)
IEC 00504 1	Тур В (31)	+500 +1 820 ℃ (+932 +3 308 ℉)	≤ 1,5 °C (2,7 °F)	1,5 °C (2,7 °F) - 0,06% * (MW - MBA)	≤ 0,67 °C (1,21 °F)
IEC 60584-1 / ASTM E988-96	Тур С (32)	0 + 2 000 °C (+ 2 2 + 2 6 2 2 °E)	≤ 0,66 °C (1,19 °F)	0,55 °C (1 °F) + 0,0055% * MW	≤ 0,33 °C (0,59 °F)
ASTM E988-96	Typ D (33)	0 12 000 C (192 19 092 F)	≤ 0,75 ℃ (1,35 ℉)	0,75 °C (1,44 °F) - 0,008% * MW	≤ 0,41 °C (0,74 °F)
	Тур Е (34)	−150 +1 000 °C (−238 +2 192 °F)	≤ 0,22 °C (0,4 °F)	0,22 °C (0,40 °F) - 0,006% * (MW - MBA)	≤ 0,07 °C (0,13 °F)
	Тур Ј (35)	−150 +1200 °C	≤ 0,27 °C (0,49 °F)	0,27 °C (0,49 °F) - 0,005% * (MW - MBA)	≤ 0,08 °C (0,14 °F)
	Тур К (36)	(−238 +2 192 °F)	≤ 0,35 ℃ (0,63 ℉)	0,35 ℃ (0,63 ℉) - 0,005% * (MW - MBA)	≤ 0,11 °C (0,20 °F)
IEC 60584-1	Тур N (37)	-150 +1 300 ℃ (-238 +2 372 ℉)	≤ 0,48 °C (0,86 °F)	0,48 °C (0,86 °F) - 0,014% * (MW - MBA)	≤ 0,16 °C (0,29 °F)
	Typ R (38)	+50 +1 768 °C	≤ 1,12 °C (2,00 °F)	1,12 °C (2,00 °F) - 0,03% * MW	≤ 0,76 °C (1,37 °F)
	Тур S (39)	(+122 +3 214 °F)	≤ 1,15 °C (2,07 °F)	1,15 °C (2,07 °F) - 0,022% * MW	≤ 0,74 °C (1,33 °F)
	Тур Т (40)	–150 +400 °C (–238 +752 °F)	≤ 0,36 °C (0,47 °F)	0,36 °C (0,47 °F) - 0,04% * (MW - MBA)	≤ 0,11 °C (0,20 °F)
DIN 42710	Typ L (41)	−150 +900 °C (−238 +1652 °F)	≤ 0,29 °C (0,52 °F)	0,29 °C (0,52 °F) - 0,009% * (MW - MBA)	≤ 0,07 °C (0,13 °F)
45/10	Тур U (42)	−150 +600 °C (−238 +1112 °F)	≤ 0,33 °C (0,6 °F)	0,33 °C (0,6 °F) - 0,028% * (MW - MBA)	≤ 0,10 °C (0,18 °F)
GOST R8.585-2001	Typ L (43)	−200 +800 °C (−328 +1472 °F)	≤ 2,20 °C (4,00 °F)	2,2 °C (4,00 °F) - 0,015% * (MW - MBA)	≤ 0,15 °C (0,27 °F)
Spannungsgeber (mV)		-20 +100 mV	10 µV	-	4 µV

Messabweichung für Thermoelemente	(TC)	und S	pannungsgeber
-----------------------------------	------	-------	---------------

1) Mittels Feldbus übertragener Messwert.

2) Maximale Messabweichung auf den angegebenen Messbereich.

3) Abweichungen von maximaler Messabweichung durch Rundung möglich.

MW = Messwert

MBA = Messbereichsanfang des jeweiligen Sensors

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{(Messabweichung digital^2 + Messabweichung D/A^2)}$

Beispielrechnung mit Pt100, Messbereich 0 ... +200 °C (+32 ... +392 °F), Umgebungstemperatur +25 °C (+77 °F), Versorgungsspannung 24 V:

Messabweichung = 0,06 °C + 0,006% x (200 °C - (-200 °C)):	0,084 °C (0,151 °F)
---	---------------------

Beispielrechnung mit Pt100, Messbereich 0 ... +200 °C (+32 ... +392 °F), Umgebungstemperatur +35 °C (+95 °F), Versorgungsspannung 30 V:

Messabweichung = 0,06 °C + 0,006% x (200 °C - (-200 °C)):	0,084 °C (0,151 °F)
Einfluss der Umgebungstemperatur = (35 - 25) x (0,002% x 200 °C - (-200 °C)), mind. 0,005 °C	0,08 °C (0,144 °F)
Einfluss der Versorgungsspannung = (30 - 24) x (0,002% x 200 °C - (-200 °C)), mind. 0,005 °C	0,048 °C (0,086 °F)
Messabweichung: √(Messabweichung² + Einfluss Umgebungstemperatur² + Einfluss Versorgungs- spannung²	0,126 °C (0,227 °F)

Sensorabgleich

Sensor-Transmitter-Matching

RTD-Sensoren gehören zu den linearsten Temperaturmesselementen. Dennoch muss der Ausgang linearisiert werden. Zur signifikanten Verbesserung der Temperaturmessgenauigkeit ermöglicht das Gerät die Verwendung zweier Methoden:

• Callendar-Van-Dusen-Koeffizienten (Pt100 Widerstandsthermometer) Die Callendar-Van-Dusen-Gleichung wird beschrieben als: $R_T = R_0[1+AT+BT^2+C(T-100)T^3]$

Die Koeffizienten A, B und C dienen zur Anpassung von Sensor (Platin) und Messumformer, um die Genauigkeit des Messsystems zu verbessern. Die Koeffizienten sind für einen Standardsensor in der IEC 751 angegeben. Wenn kein Standardsensor zur Verfügung steht oder eine höhere Genauigkeit gefordert ist, können die Koeffizienten für jeden Sensor mit Hilfe der Sensorkalibrierung spezifisch ermittelt werden.

• Linearisierung für Kupfer/Nickel Widerstandsthermometer (RTD) Die Gleichung des Polynoms für Kupfer/Nickel wird beschrieben als: $R_T = R_0(1+AT+BT^2)$

Die Koeffizienten A und B dienen zur Linearisierung von Nickel oder Kupfer Widerstandsthermometern (RTD). Die genauen Werte der Koeffizienten stammen aus den Kalibrationsdaten und sind für jeden Sensor spezifisch. Die sensorspezifischen Koeffizienten werden anschließend an den Transmitter übertragen.

Das Sensor-Transmitter-Matching mit einer der oben genannten Methoden verbessert die Genauigkeit der Temperaturmessung des gesamten Systems erheblich. Dies ergibt sich daraus, dass der Messumformer, anstelle der standardisierten Sensorkurvendaten, die spezifischen Daten des angeschlossenen Sensors zur Berechnung der gemessenen Temperatur verwendet.

Betriebseinflüsse Die Angaben zur Messabweichung entsprechen $\pm 2 \sigma$ (Gauß'sche-Normalverteilung).

Betriebseinflüsse Umgebungstemperatur und Versorgungsspannung für Widerstandsthermometer (RTD) und Widerstandsgeber

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung			Versorgungsspannung: Effekt (±) pro V Änderung
		Digital ¹⁾		Digital ¹⁾	
		Maximal	Messwertbezogen	Maximal	Messwertbezogen
Pt100 (1)		≤ 0,02 °C (0,036 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)	≤ 0,12 °C (0,021 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)
Pt200 (2)	IEC 60751:2008	≤ 0,026 °C (0,047 °F)	-	≤ 0,026 °C (0,047 °F)	-
Pt500 (3)		≤ 0,014 °C (0,025 °F)	0,002% * (MW -MBA), mind. 0,009 °C (0,016 °F)	≤ 0,014 °C (0,025 °F)	0,002% * (MW -MBA), mind. 0,009 °C (0,016 °F)

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 ℃ (1,8 °F) Änderung		Versorgungsspannung: Effekt (±) pro V Änderung	
Pt1000 (4)		≤ 0,01 °C	0,002% * (MW -MBA), mind. 0,004 °C (0,007 °F)	≤ 0,01 °C	0,002% * (MW -MBA), mind. 0,004 °C (0,007 °F)
Pt100 (5)	JIS C1604:1984	(0,018 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)	(0,018 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)
Pt50 (8)	COST 6651-04	≤ 0,03 °C (0,054 °F)	0,002% * (MW -MBA), mind. 0,01 °C (0,018 °F)	≤ 0,03 °C (0,054 °F)	0,002% * (MW -MBA), mind. 0,01 °C (0,018 °F)
Pt100 (9)	0031 0031-94	≤ 0,02 °C (0,036 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)	≤ 0,02 °C (0,036 °F)	0,002% * (MW -MBA), mind. 0,005 °C (0,009 °F)
Ni100 (6)	DIN 43760 IPTS-68	≤ 0,005 °C	-	≤ 0,005 °C (0,009 °F)	-
Ni1000		(0,009 °F)	-		-
Cu50 (10)	OIML R84:		-		-
Cu100 (11)	2003 / GOST 6651-2009	≤ 0,008 °C (0,014 °F)	0,002% * (MW -MBA), mind. 0,004 ℃ (0,007 ℉)	≤ 0,008 °C (0,014 °F)	0,002% * (MW -MBA), mind. 0,004 °C (0,007 °F)
Widerstandsgeber (Ω)					
10 400 Ω		≤ 6 mΩ	0,0015% * (MW -MBA), mind. 1,5 mΩ	≤ 6 mΩ	0,0015% * (MW -MBA), mind. 1,5 mΩ
10 2 000 Ω		≤ 30 mΩ	0,0015% * (MW -MBA), mind. 15 mΩ	≤ 30 mΩ	0,0015% * (MW -MBA), mind. 15 mΩ

1) Mittels Feldbus übertragener Messwert.

Betriebseinflüsse Umgebungstemperatur und Versorgungsspannung für Thermoelemente (TC) und Spannungsgeber

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung			Versorgungsspannung: Effekt (±) pro V Änderung
			Digital ¹⁾	Digital	
		Maximal	Messwertbezogen	Maximal	Messwertbezogen
Тур А (30)	IEC 60594-1	≤ 0,14 °C (0,25 °F)	0,0055% * MW, mind. 0,03 °C (0,005 °F)	≤ 0,14 °C (0,25 °F)	0,0055% * MW, mind. 0,03 °C (0,005 °F)
Тур В (31)	- IEC 00584-1	≤ 0,06 °C (0,11 °F)	-	≤ 0,06 °C (0,11 °F)	-
Тур С (32)	IEC 60584-1 / ASTM E988-96	≤ 0,09 °C (0,16 °F)	0,0045% * MW, mind. 0,03 °C (0,005 °F)	≤ 0,09 °C (0,16 °F)	0,0045% * MW, mind. 0,03 °C (0,005 °F)
Тур D (33)	ASTM E988-96	≤ 0,08 °C (0,14 °F)	0,004% * MW, mind. 0,035 °C (0,063 °F)	≤ 0,08 °C (0,14 °F)	0,004% * MW, mind. 0,035 °C (0,063 °F)
Тур Е (34)		≤ 0,03 °C (0,05 °F)	0,003% * (MW - MBA), mind. 0,016 °C (0,029 °F)	≤ 0,03 °C (0,05 °F)	0,003% * (MW - MBA), mind. 0,016 °C (0,029 °F)
Тур Ј (35)		≤ 0,02 °C (0,04 °F)	0,0028% * (MW - MBA), mind. 0,02 °C (0,036 °F)	≤ 0,02 °C (0,04 °F)	0,0028% * (MW - MBA), mind. 0,02 °C (0,036 °F)
Тур К (36)		≤ 0,04 °C	0,003% * (MW - MBA), mind. 0,013 °C (0,023 °F)	≤ 0,04 °C	0,003% * (MW - MBA), mind. 0,013 °C (0,023 °F)
Тур N (37)	IEC 60584-1	(0,07 °F)	0,0028% * (MW - MBA), mind. 0,020 °C (0,036 °F)	(0,07 °F)	0,0028% * (MW - MBA), mind. 0,020 °C (0,036 °F)
Typ R (38)		≤ 0,06 °C (0,11 °F)	0,0035% * MW, mind. 0,047 °C (0,085 °F)	≤ 0,06 °C (0,11 °F)	0,0035% * MW, mind. 0,047 °C (0,085 °F)
Typ S (39)		≤ 0,05 °C (0,09 °F)	-	≤ 0,05 °C (0,09 °F)	-
Тур Т (40)		≤ 0,01 °C (0,02 °F)	-	≤ 0,01 °C (0,02 °F)	-

Bezeichnung	Standard	Umgebungstemperatur: Effekt (±) pro 1 °C (1,8 °F) Änderung			Versorgungsspannung: Effekt (±) pro V Änderung
Typ L (41)	rp L (41) DIN 43710 rp U (42)	≤ 0,02 °C (0,04 °F)	-	≤ 0,02 °C (0,04 °F)	-
Typ U (42)		≤ 0,01 °C (0,02 °F)	-	≤ 0,01 °C (0,02 °F)	-
Typ L (43)	GOST R8.585-2001	≤ 0,02 °C (0,04 °F)	-	≤ 0,02 °C (0,04 °F)	-
Spannungsgeber (mV)					
-20 100 mV	-	≤ 3 µV	-	≤ 3 µV	-

1) Mittels Feldbus übertragener Messwert.

MW = Messwert

MBA = Messbereichsanfang des jeweiligen Sensors

Gesamtmessabweichung des Transmitters am Stromausgang = $\sqrt{(Messabweichung digital^2 + Messabweichung D/A^2)}$

Langzeitdrift Widerstandsthermometer (RTD) und Widerstandsgeber

Bezeichnung	Standard	Langzeitdrift (±)		
		nach 1 Jahr	nach 3 Jahren	nach 5 Jahren
		Maximal		
Pt100 (1)	_	≤ 0,03 °C (0,05 °F) + 0,024% * Messspanne	≤ 0,042 °C (0,076 °F) + 0,035% * Messspanne	≤ 0,051 °C (0,092 °F) + 0,037% * Messspanne
Pt200 (2)		≤ 0,17 °C (0,31 °F) + 0,016% * Messspanne	≤ 0,28 °C (0,5 °F) + 0,022% * Messspanne	≤ 0,343 °C (0,617 °F) + 0,025% * Messspanne
Pt500 (3)	- IEC 00751.2008	≤ 0,067 °C (0,121 °F) + 0,018% * Messspanne	≤ 0,111 °C (0,2 °F) + 0,025% * Messspanne	≤ 0,137 °C (0,246 °F) + 0,028% * Messspanne
Pt1000 (4)		≤ 0,034 °C (0,06 °F) + 0,02% * Messspanne	≤ 0,056 °C (0,1 °F) + 0,029% * Messspanne	≤ 0,069 °C (0,124 °F) + 0,032% * Messspanne
Pt100 (5)	JIS C1604:1984	≤ 0,03 °C (0,054 °F) + 0,022% * Messspanne	≤ 0,042 °C (0,076 °F) + 0,032% * Messspanne	≤ 0,051 °C (0,092 °F) + 0,034% * Messspanne
Pt50 (8)	GOST 6651-94	≤ 0,055 °C (0,01 °F) + 0,023% * Messspanne	≤ 0,089 °C (0,16 °F) + 0,032% * Messspanne	≤ 0,1 °C (0,18 °F) + 0,035% * Messspanne
Pt100 (9)	GOST 6651-94	≤ 0,03 °C (0,054 °F) + 0,024% * Messspanne	≤ 0,042 °C (0,076 °F) + 0,034% * Messspanne	≤ 0,051 °C (0,092 °F) + 0,037% * Messspanne
Ni100 (6)	DIN 43760 IPTS-68	≤ 0,025 °C (0,045 °F) + 0,016% * Messspanne	≤ 0,042 °C (0,076 °F) + 0,02% * Messspanne	≤ 0,047 °C (0,085 °F) + 0,021% * Messspanne
Ni1000	DIN 43760 IPTS-68	≤ 0,02 °C (0,036 °F) + 0,018% * Messspanne	≤ 0,032 °C (0,058 °F) + 0,024% * Messspanne	≤ 0,036 °C (0,065 °F) + 0,025% * Messspanne
Cu50 (10)	OIML R84:2003 / GOST 6651-2009	≤ 0,053 °C (0,095 °F) + 0,013% * Messspanne	≤ 0,084 °C (0,151 °F) + 0,016% * Messspanne	≤ 0,094 °C (0,169 °F) + 0,016% * Messspanne
Cu100 (11)		≤ 0,027 °C (0,049 °F) + 0,019% * Messspanne	≤ 0,042 °C (0,076 °F) + 0,026% * Messspanne	≤ 0,047 °C (0,085 °F) + 0,027% * Messspanne
Widerstandsgeber				
10 400 Ω	-	≤ 10 mΩ + 0,022% * Mess- spanne	≤ 14 mΩ + 0,031% * Mess- spanne	≤ 16 mΩ + 0,033% * Mess- spanne
10 2 000 Ω	-	≤ 144 mΩ + 0,019% * Mess- spanne	\leq 238 m Ω + 0,026% * Mess-spanne	\leq 294 m Ω + 0,028% * Mess-spanne

Langzeitdrift Thermoelemente (TC) und Spannungsgeber

Bezeichnung	Standard	Langzeitdrift (±)		
		nach 1 Jahr	nach 3 Jahren	nach 5 Jahren
		Maximal	•	
Тур А (30)	IEC 60584-1	≤ 0,17 °C (0,306 °F) + 0,021% * Messspanne	≤ 0,27 °C (0,486 °F) + 0,03% * Messspanne	≤ 0,38 °C (0,683 °F) + 0,035% * Messspanne
Тур В (31)		≤ 0,5 °C (0,9 °F)	≤ 0,75 °C (1,35 °F)	≤ 1,0 °C (1,8 °F)
Тур С (32)	IEC 60584-1 / ASTM E988-96	≤ 0,15 °C (0,27 °F) + 0,018% * Messspanne	≤ 0,24 °C (0,43 °F) + 0,026% * Messspanne	≤ 0,34 °C (0,61 °F) + 0,027% * Messspanne
Typ D (33)	ASTM E988-96	≤ 0,21 °C (0,38 °F) + 0,015% * Messspanne	≤ 0,34 °C (0,61 °F) + 0,02% * Messspanne	≤ 0,47 °C (0,85 °F) + 0,02% * Messspanne
Тур Е (34)	IEC 60584-1	≤ 0,06 °C (0,11 °F) + 0,018% * Messspanne	≤ 0,09 °C (0,162 °F) + 0,025% * Messspanne	≤ 0,13 °C (0,234 °F) + 0,026% * Messspanne
Тур Ј (35)	152 (050) 1	≤ 0,06 °C (0,11 °F) + 0,019% * Messspanne	≤ 0,1 °C (0,18 °F) + 0,025% * Messspanne	≤ 0,14 °C (0,252 °F) + 0,027% * Messspanne
Тур К (36)	- IEC 00304-1	≤ 0,09 °C (0,162 °F) + 0,017% * (MW + 150 °C (270 °F))	≤ 0,14 °C (0,252 °F) + 0,023% * Messspanne	≤ 0,19 °C (0,342 °F) + 0,024% * Messspanne
Typ N (37)		≤ 0,13 °C (0,234 °F) + 0,015% * (MW + 150 °C (270 °F))	≤ 0,2 °C (0,36 °F) + 0,02% * Messspanne	≤ 0,28 °C (0,5 °F) + 0,02% * Messspanne
Typ R (38)	- IEC 00304-1	≤ 0,31 °C (0,558 °F) + 0,011% * (MW - 50 °C (90 °F))	≤ 0,5 °C (0,9 °F) + 0,013% * Messspanne	≤ 0,69 °C (1,241 °F) + 0,011% * Messspanne
Тур S (39)		≤ 0,31 °C (0,558 °F) + 0,011% * Messspanne	≤ 0,5 °C (0,9 °F) + 0,013% * Messspanne	≤ 0,7 °C (1,259 °F) + 0,011% * Messspanne
Тур Т (40)	IEC 60594-1	≤ 0,09 °C (0,162 °F) + 0,011% * Messspanne	≤ 0,15 °C (0,27 °F) + 0,013% * Messspanne	≤ 0,2 °C (0,36 °F) + 0,012% * Messspanne
Typ L (41)	- IEC 00504-1	≤ 0,06 °C (0,108 °F) + 0,017% * Messspanne	≤ 0,1 °C (0,18 °F) + 0,022% * Messspanne	≤ 0,14 °C (0,252 °F) + 0,022% * Messspanne
Typ U (42)		≤ 0,09 °C (0,162 °F) + 0,013% * Messspanne	≤ 0,14 °C (0,252 °F) + 0,017% * Messspanne	≤ 0,2 °C (0,360 °F) + 0,015% * Messspanne
Typ L (43)	GOST R8.585-2001	≤ 0,08 °C (0,144 °F) + 0,015% * Messspanne	≤ 0,12 °C (0,216 °F) + 0,02% * Messspanne	≤ 0,17 °C (0,306 °F) + 0,02% * Messspanne
Spannungsgeber (mV	Spannungsgeber (mV)			
-20 100 mV	-	\leq 2 µV + 0,022% * Messspanne	≤ 3,5 µV + 0,03% * Messspanne	≤ 4,7 µV + 0,033% * Mess- spanne

Einfluss der Referenzstelle Pt100 DIN IEC 60751 Kl. B (interne Vergleichsstelle bei Thermoelementen TC)

12.5 Umgebung

Umgebungstemperaturbe- reich	–40 +85 °C (–40 +185 °F), für Ex-Bereich siehe Ex-Dokumentation
Lagerungstemperatur	-40 +100 °C (-40 +212 °F)
Einsatzhöhe	Bis 4000 m (4374,5 yards) über Normal-Null
Relative Luftfeuchte	 Betauung nach IEC 60 068-2-33 zulässig Max. rel. Feuchte: 95% nach IEC 60068-2-30

Klimaklasse	C nach EN 60654-1			
Schutzart	 Kopftransmitter mit Schraubklemmen: IP 00, mit Federklemmen: IP 30. Im eingebauten Zustand vom verwendeten Anschlusskopf oder Feldgehäuse abhängig. Bei Einbau in Feldgehäuse TA30A, TA30D oder TA30H: IP 66/67 (NEMA Type 4x encl.) 			
Stoß- und Schwingungsfes- tigkeit	Schwingungsfestigkeit nach IEC 60068-2-6 10 2 000 Hz bei 5g (erhöhte Schwingungsbeanspruchung)			
Elektromagnetische Ver-	CE Konformität			
träglichkeit (EMV)	Elektromagnetische Verträglichkeit gemäß allen relevanten Anforderungen der IEC/EN 61326-Serie und NAMUR Empfehlung EMV (NE21). Details sind aus der Konformitätser- klärung ersichtlich.			
	Maximale Messabweichung < 1% vom Messbereich.			
	Störfestigkeit nach IEC/EN 61326-Serie, Anforderung Industrieller Bereich			
	Störaussendung nach IEC/EN 61326-Serie, Betriebsmittel der Klasse B			
Überspannungskategorie	Messkategorie II			
Verschmutzungsgrad	Verschmutzungsgrad 2			

Konstruktiver Aufbau 12.6

Bauform, Maße

Angaben in mm (in)

Kopftransmitter

🖻 17 Ausführung mit Schraubklemmen

- Α
- Federweg $L \ge 5 mm$ (nicht bei US M4 Befestigungsschrauben) Befestigungselemente für aufsteckbare Messwertanzeige TID10 В
- С Service-Schnittstelle zur Kontaktierung von Messwertanzeige oder Konfigurationstool

I8 Ausführung mit Federklemmen. Abmessungen sind identisch der Ausführung mit Schraubklemmen, außer Gehäusehöhe.

Feldgehäuse

Alle Feldgehäuse weisen eine interne Geometrie gemäß DIN EN 50446, Form B auf. Kabelverschraubungen in den Abbildungen: M20x1,5

Maximale Umgebungstemperaturen für Kabelverschraubungen			
Тур	Temperaturbereich		
Kabelverschraubung Polyamid ½" NPT, M20x1,5 (non Ex)	-40 +100 °C (-40 212 °F)		
Kabelverschraubung Polyamid M20x1,5 (für Staub-Ex Bereich)	−20 +95 °C (−4 203 °F)		
Kabelverschraubung Messing ½" NPT, M20x1,5 (für Staub-Ex Bereich)	−20 +130 °C (−4 +266 °F)		
Feldbusstecker (M12x1 PA, 7/8" FF)	-40 +105 °C (-40 +221 °F)		

	TA30D	Spezifikation		
	107.5 (4.23) (6; †) (9; 0) (9; 0) (9; 0) (9; 0) (1,1) 78 (3,1) A0009622	 2 Kabeleingänge Temperatur: -50 +150 °C (-58 +302 °F) ohne Kabelverschraubung Material: Aluminium, Beschichtung aus Polyesterpulver Dichtungen: Silikon Kabeleingang Verschraubungen: 1/2" NPT und M20x1,5 Es können zwei Kopftransmitter montiert werden. Standardmäßig ist ein Transmitter, montiert im Anschlusskopfdeckel, sowie ein zusätzlicher Anschlussklemmenblock direkt am Messeinsatz installiert. Farbe Kopf: Blau, RAL 5012 Farbe Kappe: Grau, RAL 7035 Gewicht: 390 g (13.75 oz) 		
Gewicht	 Kopftransmitter: ca. 40 50 g (1,4 . Feldgehäuse: siehe Spezifikationen 	1,8 oz)		
Werkstoffe	 Alle verwendeten Werkstoffe sind RoHS-konform. Gehäuse: Polycarbonat (PC), entspricht UL94 HB (Brandschutzeigenschaften) Anschlussklemmen: Schraubklemmen: Messing vernickelt und Kontakt vergoldet Federklemmen: Messing verzinnt, Kontaktfeder 1.4310, 301 (AISI) Verguss: PU, entspricht UL94 V0 WEVO PU 403 FP / FL (Brandschutzeigenschaften) Feldgehäuse: siehe Spezifikationen 12.7 Zertifikate und Zulassungen			
CE-Zeichen	Das Produkt erfüllt die Anforderungen der harmonisierten europäischen Normen. Damit erfüllt es die gesetzlichen Vorgaben der EU-Richtlinien. Der Hersteller bestätigt die erfolg- reiche Prüfung des Produkts durch die Anbringung des CE-Zeichens.			
Ex-Zulassung	Über die aktuell lieferbaren Ex-Ausführungen (ATEX, FM, CSA, usw.) erhalten Sie bei Ihrer E+H-Vertriebsstelle Auskunft. Alle für den Explosionsschutz relevanten Daten finden Sie in separaten Ex-Dokumentationen, die Sie bei Bedarf anfordern können.			
Externe Normen und Richt- linien	 IEC 60529: Schutzarten durch Gehäuse (IP-Code) IEC 61158-2: Feldbusstandard IEC 61326-1:2007: Elektromagnetische Verträglichkeit (EMV-Anforderungen) IEC 60068-2-27 und IEC 60068-2-6: Stoß- und Schwingungsfestigkeit NAMUR Interessengemeinschaft Automatisierungstechnik der Prozessindustrie IEC 61010-1: Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte 			

UL-Zulassung	Weitere Informationen unter UL Product iq™, Suche nach Keyword "E225237"		
CSA GP	CSA General Purpose		
Zertifizierung PROFIBUS® PA	Der Temperaturtransmitter ist von der PNO (PROFIBUS [®] Nutzerorganisation e. V.) zertifi- ziert und registriert. Das Gerät erfüllt die Anforderungen der folgenden Spezifikationen:		
	 Zertifiziert gemäß PROFIBUS[®] PA Profile 3.02 Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität) 		
	12.8 Ergänzende Dokumentation		
	 Betriebsanleitung 'iTEMP TMT84' (BA00257R) und zugehörige gedruckte Kurzanleitung 'iTEMP TMT84' (KA00258R) Zusatzdokumentation ATEX: ATEX II 1G Ex ia IIC: XA00069R ATEX II 2(1)G Ex ia IIC: XA01012T ATEX II 2G Ex d IIC und ATEX II 2D Ex tb IIIC: XA01007T Betriebsanleitung "Display TID10" (BA00262R) Leitfaden zur Projektierung und Inbetriebnahme "PROFIBUS® DP/PA" (BA00034S) 		

 \rightarrow Anzeige/Betrieb $\rightarrow \cong 69$

13 Bedienung über PROFIBUS[®] PA

Die Bedienung orientiert sich an der jeweiligen Nutzerrolle des Bedieners und fasst die Bedienparameter in entsprechende Bedienmenüs zusammen.

In diesem nutzerorientierten Bediensystem stehen zwei Setup-Modi zur Verfügung: Das Standard-Setup und das Experten-Setup.

Alle Grundeinstellungen, die für den Betrieb des Gerätes notwendig sind, können im Standard-Setup vorgenommen werden.

Das Experten-Setup ist für erfahrene Anwender oder dem Servicepersonal vorbehalten. Im Experten-Setup stehen alle Einstellmöglichkeiten des Standard-Setup zur Verfügung. Außerdem können dort durch zusätzlichen Parameter spezielle Geräteeinstellungen vorgenommen werden. Neben diesen beiden Obermenüpunkten stehen noch die Menüs Anzeige/Betrieb, für die Einstellungen des optionalen Displays, und Diagnose, für die System- und Diagnoseinformationen, zur Verfügung.

Nachfolgend werden die Geräteparameter anhand des nutzerorientierten Bediensystems beschrieben. Alle Geräteparameter, die nicht in dieser Bedienstruktur aufgeführt sind, können nur mit Hilfe entsprechender Tools und den Angaben in den Slot-Index-Listen (\rightarrow Kap. 14.4 $\rightarrow \square$ 98) verändert werden.

13.1 Bedienstruktur

→ Setup → 🗎 70	\rightarrow Erweiterter Setup $\rightarrow \square$ 74	\rightarrow Sensor 1
		\rightarrow Sensor 2
		→ Sicherheitseinstellungen

→ Diagnose → 🗎 76	\rightarrow Systeminformationen $\rightarrow \cong 77$		
	→ Messwert → 🗎 78	→ Min./ MaxWerte	
	→ Gerätetest/Reset → 🗎 79		

→ Experte → 🖺 79	\rightarrow System $\rightarrow \cong 80$	→ Anzeige		
	\rightarrow Sensorik $\rightarrow \square 81$	→ Sensor 1	\rightarrow Spezielle Linearisierung 1	
		→ Sensor 2	→ Spezielle Linearisierung 2	
	→ Kommunikation→ 🖺 86	→ Analog Input 1		
		→ Analog Input 2		
		→ Analog Input 3		
		→ Analog Input 4		
	→ Diagnose → 🗎 96	→ Systeminformation		
		→ Messwert	\rightarrow Min./ MaxWerte	
		→ Gerätetest/Reset		

13.2 Standard Setup

Die folgenden Parametergruppen sind im Standard-Setup vorhanden. Diese Parameter dienen der Grundeinstellung des Gerätes. Mit diesem eingeschränkten Parametersatz kann der Kopftransmitter in Betrieb genommen werden.

13.2.1 Gruppe Anzeige/Betrieb

Im Menü Anzeige/Betrieb werden die Einstellungen für die Messwertdarstellung auf dem optionalen Aufsteckdisplay TID10 vorgenommen. Folgenden Parameter sind in der Gruppe **Anzeige/Betrieb** und Experte \rightarrow System \rightarrow Anzeige zu finden.

Diese Einstellung haben keinen Einfluss auf den Ausgangswerte des Transmitters. Sie dienen allein der Darstellungsform auf dem Display.

Anzeige/Betrieb

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Experte → System → Anzeige	Display Intervall	lesen/schreiben	Eingabe (in s), wie lange ein Wert auf dem Display ange- zeigt werden soll. Einstellung von 4 bis 60 s. Werkseinstellung: 6 s
	Quelle Anzeigewert n	lesen/schreiben	Auswahl des anzuzeigenden Werts. Mögliche Einstellun- gen: • Off • Primary Value 1 • Sensor Value 1 • Primary Value 2 • Sensor Value 2 • RJ Value Werkseinstellung: Primary Value 1 • Sind alle 3 Display Kanäle ausgeschaltet (Auswahl 'Off'), erscheint im Display automatisch der Wert des Primary value 1. Ist dieser Wert nicht vorhanden (z. B. Auswahl 'No Sensor' im Sensor Transducer Block 1 Parameter 'Kennlinientyp 1'), wird der Primary Value 2 angezeigt.
	Beschreibung Anzeigewert n	lesen/schreiben	Beschreibung des angezeigten Displaywertes. Werkseinstellung: "P1" Maximal 16 Buchstaben. Wert wird nicht auf dem Display angezeigt.
	Format Anzeigewert n	lesen/schreiben	Auswahl der Anzahl angezeigter Dezimalstellen. Einstell- möglichkeit von 0 bis 4. Wobei die Auswahl 4 'AUTO' bedeutet. Dabei wird auf dem Display immer die maximal mögliche Anzahl der Nachkommastellen angezeigt. Mögliche Einstellungen: • 0 - xxxxx • 1 - xxxx.x • 2 - xxx.xx • 3 - xx.xxx • 4 - Auto Werkseinstellung: 1 - xxxx.x

n = Anzahl der Displaykanäle (1 bis 4)

Parametrierungsbeispiel:

Folgende Messwerte sollen auf dem Display angezeigt werden:

Wert 1

Anzuzeigender Messwert:	Primary Value 1 (Hauptmesswert) des Sensor Transducer 1 (PV1)
Einheit Messwert:	°C
Nachkommastellen:	2

Wert 2

Anzuzeigender Messwert:	RJ Value
Einheit Messwert:	°C
Nachkommastellen:	1

Wert 3

Anzuzeigender Messwert:	Sensor Value 2 (Messwert) des Sensor Transducer 2 (SV2)
Einheit Messwert:	°C
Nachkommastellen:	2

Jeder Messwert soll 12 Sekunden auf dem Display sichtbar sein. Dafür sind im Bedienmenü **Anzeige/Betrieb** folgende Einstellungen vorzunehmen

Parameter	Wert
Display Intervall	12
Quelle Anzeigewert 1	'Primary Value 1'
Beschreibung Anzeigewert 1	TEMP PIPE 11
Format Anzeigewert 1	'xxx.xx'
Quelle Anzeigewert 2	'RJ Value'
Beschreibung Anzeigewert 2	INTERN TEMP
Format Anzeigewert 2	'xxxx.x'
Quelle Anzeigewert 3	'Sensor value 2'
Beschreibung Anzeigewert 3	PIPE 11 BACK
Format Anzeigewert 3	'xxx.xx'

13.2.2 Gruppe Setup

Informationen zum Gerätemodus, wie Zielmodus, und Parameter zur Grundeinstellung der Messeingänge, wie z.B. der Sensortyp. Alle Einstellungen, die für den Betrieb des Gerätes notwendig sind, können im Standard-Setup vorgenommen werden. Die einzelnen Parameter sind im Setup-Menü in Kapitel zusammengefasst:

Standard Setup	Grundeinstellungen für die Messeingänge, die für die Inbetriebnahme des Geräts notwendig sind.
Erweiterter Setup	Einstellungen von spezielle Diagnosefunktionen, wie Drift- oder Korrosionserkennung.

→ Setup	\rightarrow Erweiterter Setup $\rightarrow \square$ 74	\rightarrow Sensor 1	
		\rightarrow Sensor 2	
		→ Sicherheitseinstellungen	

Auswahl der Betriebsart

Die Einstellung der Betriebsart erfolgt über die Parametergruppe **Physical Block - Zielmodus** ($\rightarrow \bigoplus 71$). Der Physical Block unterstützt folgende Betriebsarten:

- AUTO (Automatikbetrieb)
- Out of Service (OOS) (Außer Betrieb)

OOS kann nur eingestellt werden, wenn Condensed Status und Diagnosis (nach Profile 3.01 Am2) aktiviert ist. Ansonsten wird nur AUTO unterstützt.

Vorgehensweise zur Konfiguration eines Messeingangs:

1. Start
▼
2. Sensortyp (Linearisierungtyp) z. B. Pt100 auswählen
▼
3. Einheit (°C) auswählen
▼
4. Anschlussart z.B. 3-Leiter auswählen
▼
5. Messart z.B. PV=SV1 einstellen
▼
6. Offset eingeben (optional)
▼
7. Referenzmessstelle auswählen und bei externer Referenzmessung den Wert eingeben (nur bei TC-Messung)
▼
8. Wenn ein zweiter Messkanal verwendet wird, die Schritte 2 bis 5 wiederholen
▼
9. Ende

Setup

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Block Modus	Allgemeine Informationen zum Block Modus: Der Block Modus enthält drei Elemente:	
		 den aktuellen Betriebsmodus (Actual Mode) des Blocks die vom Block unterstützten Modi (Permitted Mode): Analog Input (AI): AUTO, MAN, OOS Physical Block: AUTO, OOS Transducer Block: AUTO den Normalbetriebsmodus (Normal Mode) Im Menü wird nur der aktuelle Block Modus angezeigt. Im Regelfall besteht bei einem Funktionsblock die Möglichkeit zwischen mehreren Betriebsarten ungwu	
		auszuwählen, während die anderen Blocktypen z. B. nur in der Betriebs AUTO arbeiten.	
	Physical Block - Aktueller Modus	lesen	Anzeige des aktuellen Betriebsmodus des Physical Blocks.
	Physical Block - Zielmodus	lesen/schreiben	Auswahl der gewünschten Betriebsart. Im Physical Block kann nur der Automatikbetrieb ausge- wählt werden. Falls Diagnose nach Profile 3.01 Am2 akti- viert ist (Physical Block Parameter "COND_STATUS_DIAG" = 1), kann der Physical Block auch auf OOS gesetzt wer- den. Auswahl:
			 0x08 - AUTO 0x80 - Out of Service (OOS) - Außer Betrieb
			Werkseinstellung: AUTO

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Kennlinientyp n ¹⁾	lesen/schreiben	Einstellung des Sensortyps.
			 Kennlinientyp 1: Einstellungen für Sensoreingang Kennlinientyp 2: Einstellungen für Sensoreingang 2
			Werkseinstellung: Kanal 1: Pt100 IEC751 Kanal 2: No Sensor
			Beim Anschluss der einzelnen Sensoren ist die Klemmenbelegung in Kap. 5.2 → 16 zu beachten. Bei 2-Kanal Betrieb sind außerdem die möglichen Anschlusskombinationen in Kap. 5.2.1 → 17 zu beachten.
	Eingangsbereich n	lesen/schreiben	Einstellung des Eingangsmessbereichs.
			 0: mV, Bereich 1: -5 30 mV; Bereich: -5 30 mV; Min.Span: 1 mV 1: mV, Bereich 2: -20 100 mV; Min.Span: 1 mV 128: Ω, Bereich 1: 10 400 Ω; Min.Span: 10 Ω 129: Ω, Bereich 2: 10 2 000 Ω; Min.Span: 10 Ω
			Werkseinstellung: 128: Ω, Bereich 1: 10 400 Ω; Min.Span: 10 Ω
	Einheit n	lesen/schreiben	Einstellung der Temperatureinheit für PV Wert n • 1000 - K • 1001 - °C • 1002 - °F • 1003 - Rk • 1281 - Ohm • 1243 - mV • 1342 - %
			Werkseinstellung: °C
	Anschlussart n	lesen/schreiben	Anschlussart des Sensors: Sensor Transducer 1 (Anschlussart 1):
			 0 - Zweileiter-Anschluss 1 - Dreileiter-Anschluss 2 - Vierleiter-Anschluss
			Werkseinstellung: 3-Leiter Sensor Transducer 2 (Anschlussart 2):
			0 - Zweileiter-Anschluss1 - Dreileiter-Anschluss
			Werkseinstellung: 3-Leiter
Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
--------------	-------------------------	-----------------------	---
	Messart n	lesen/schreiben	Anzeige des Berechnungsverfahrens für den PV Wert 1. Auswahl: Sensor Transducer 1 (Messart 1):
			 PV = SV1: Secondary value 1 PV = SV1-SV2: Differenz PV = 0.5 x (SV1+SV2): Mittelwert PV = 0.5 x (SV1+SV2) Redundancy: Mittelwert bzw.Secondary Value 1 oder Secondary Value 2 bei Sensorfehler des jeweils anderen Sensors. PV = SV1 (OR SV2): Backupfunktion: Bei Ausfall von Sensor 1 wird automatisch der Wert von Sensor 2 zum Primary value. PV = SV1 (OR SV2 if SV1>T): PV wechselt von SV1 auf SV2 wenn SV1 > Wert T (Parameter: Sensorumschal- tung Schwelle n) PV = ABS(SV1-SV2) if PV> Driftvalue: PV ist der Drift- wert zwischen Sensor 1 und Sensor 2. Falls PV den ein- gestellten Driftwert (Sensor Drifterkennung Grenzwert) überschreitet, wird ein Driftalarm ausgegeben. PV = ABS(SV1-SV2) if PV< Driftvalue: PV ist der Drift- wert zwischen Sensor 1 und Sensor 2. Falls PV den ein- gestellten Driftwert (Sensor Drifterkennung Grenzwert) überschreitet, wird ein Driftalarm ausgegeben.
			Werkseinstellung: PV = SV1 Sensor Transducer 2 (Messart 2):
	2-Leiter Kompensation n	lesen/schreiben	 PV = SV2: Secondary value 2 PV = SV2: Secondary value 2 PV = SV2-SV1: Differenz PV = 0.5 x (SV2+SV1): Mittelwert PV = 0.5 x (SV2+SV1) Redundancy: Mittelwert bzw. Secondary Value 1 oder Secondary Value 2 bei Sensorfehler des jeweils anderen Sensors. PV = SV2 (OR SV1): Backupfunktion: Bei Aufall von Sensor 2 wird automatisch der Wert von Sensor 1 zum Primary value. PV = SV2 (OR SV 1): Backupfunktion: Bei Aufall von SV2 auf SV1 wenn SV2 > Wert T (Parameter: Sensorumschaltung Schwelle n) PV = ABS(SV1-SV2) if PV> Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) überschreitet, wird ein Driftalarm ausgegeben. PV = ABS(SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben. PV = ABS(SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben. PV = ABS(SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben. Werkseinstellung: PV = SV1 = Sensor 2
	2-Leiter Kompensation n	lesen/schreiben	Zwei-Leiter-Kompensation bei RTDs. Folgende Werte sind zulässig: 0 30 Ω Werkseinstellung: 0
	Offset n	lesen/schreiben	Offset für den PV Wert 1 Folgende Werte sind zulässig:
			 -10 bis +10 bei Celsius, Kelvin, mV und Ohm -18 bis +18 bei Fahrenheit, Rankine
			Werkseinstellung: 0.0

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Sensorumschaltung Schwelle n	lesen/schreiben	Wert für Umschaltung im PV-Modus für Sensorumschal- tung. Eingabe im Bereich von −270 2 200 °C (−454 3 992 °F). Werkseinstellung: 0
	RJ Art n	lesen/schreiben	Einstellung der Vergleichsstellenmessung zur Temperatur- kompensation bei Thermoelementen:
			 0 - keine Vergleichsstelle: Es wird keine Temperatur- kompensation verwendet. 1 - interne Ermittlung der Vergleichstemperatur: Interne Vergleichsstellentemperatur wird für die Tem- peraturkompensation verwendet. 2 - extern vorgegebene Vergleichstemperatur: "Ext. Reference Junction Temperature" wird zur Temperatur- kompensation verwendet.
			Werkseinstellung: 1 - interne Ermittlung der Vergleichstemperatur
	Fixe RJ Temperatur n	lesen/schreiben	Wert für die Temperaturkompensation (siehe Parameter RJ Art n). Werkseinstellung: 0.0

1) Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Untermenü Setup - Erweiterter Setup

Korrosionsüberwachung

Die Korrosion von Sensoranschlussleitungen kann zu einer Verfälschung des Messwertes führen. Das Gerät bietet Ihnen deshalb die Möglichkeit, die Korrosion zu erkennen, bevor eine Messwertverfälschung eintritt. Die Korrosionsüberwachung ist nur bei RTD mit 4-Leiter Anschluss und Thermoelementen möglich.

Sensordrifterkennung

Unterscheiden sich, bei zwei angeschlossenen Sensoren, die Messwerte um eine vorgegebenen Wert, wird ein Fehler oder eine Wartungsaufforderung an (Sensordrifterkennung) das Leitsystem gesendet. Mit der Drifterkennung kann die Richtigkeit der Messwerte verifiziert werden und eine gegenseitige Überwachung der angeschlossenen Sensoren durchgeführt werden.

Die Drifterkennung kann mit dem Parameter **Messart** aktiviert werden. Man unterscheidet zwischen zwei unterschiedlichen Modi. Bei Messart **PV =(|SV1-SV2|) if PV < Sensor Drifterkennung Grenzwert** wird eine Statusmeldung ausgegeben wenn der Grenzwert unterschritten, bzw. bei **PV =(|SV1-SV2|) if PV> Sensor Drifterkennung Grenzwert**, wenn der Grenzwert überschritten wird.

Vorgehensweise zur Konfiguration der Drifterkennung für den Sensor 1:

1. Start
▼
2. Messart PV =ABS(SV1-SV) if PV < Sensor Drifterkennung Grenzwert oder PV =ABS(SV1-SV2) if PV > Sensor Drifterkennung Grenzwert auswählen
▼
3. Sensor Drifterkennung Grenzwert 1 auf gewünschten Wert einstellen.
▼
4. Sensordrifterkennung nach Bedarf auf Warning oder Failure stellen.

🖻 19 Drifterkennung

- A Modus 'Grenzwertunterschreitung'
- B Modus 'Grenzwertüberschreitung'
- D Drift
- L+, Oberer (+) bzw. unterer (-) Grenzwert
- L-
- t Zeit
- *x* Fehler (Failure) oder Wartungsaufforderung (Warning), je nach Einstellung

Schreibschutz

Ein Hardware-Schreibschutz für die Geräteparameter wird über einen DIP-Schalter auf der Rückseite des optionalen Displays aktiviert bzw. deaktiviert.

Der Parameter **Hardware Schreibschutz** ($\rightarrow \square$ 75) zeigt den Statuszustand des Hardware-Schreibschutzes an. Folgende Statuszustände sind möglich:

- $1 \rightarrow$ Hardwareschreibschutz aktiv, Gerätedaten können nicht verändert werden
- $0 \rightarrow$ Hardwareschreibschutz deaktiv, Gerätedaten können verändert werden

Es ist kein Software-Schreibschutz vorhanden, der das azyklische Schreiben aller Parameter verhindert. n: Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Erweiterter Setup	Hardware-Schreibschutz	lesen	Anzeige des Status des Hardware-Schreibschutz. Anzeige:
			 0 - Off → Schreibschutz nicht aktiv, Parameter können verändert werden. 1 - On → Schreibschutz aktiv, Parameter können nicht verändert werden.
			Werkseinstellung: 0
	Umgebungstemperatur Alarm	lesen/schreiben	Statusmeldung bei Über-/Unterschreiten der Betriebstem- peratur des Transmitters < -40 °C (-40 °F) oder > +85 °C (185 °F):
			 0 - Maintenance: Über-/Unterschreiten der int. Temperatur führt zu einer Warnung. 1 - Failure: Über-/Unterschreiten der int. Temperatur führt zu einem Alarm.
			Werkseinstellung: 0 - Maintenance

Setup

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Sensordriftüberwachung	lesen/schreiben	Abweichung zwischen SV1 und SV2 wird als Fehler (Fai- lure) oder als Wartungsaufforderung (Warning) erkannt:
			 1- FAILURE: (Sensorabweichung > Sensor Drifterkennung Grenzwert n) → Failure. Sensor-Drift wird als Fehler angezeigt 0 - Warning: (Sensorabweichung > Sensor Drifterkennung Grenzwert n) → Warning. Sensor-Drift wird als Warnung angezeigt
			Werkseinstellung: 0 - Warning
	Sensor Drifterkennung Grenzwert n	lesen/schreiben	Einstellung der max. zulässigen Messwertabweichung zwi- schen Sensor 1 und Sensor 2. Dieser Wert ist relevant wenn bei der Messart "PV =ABS(SV1- SV2) if PV< Drift- value" gewählt wurde. Zulässige Abweichung von 0.1 bis 999. Werkseinstellung: 999
	Korrosionserkennung n	lesen/schreiben	 0 - OFF: Korrosionserkennung aus 1 - ON: Korrosionserkennung ein Werkseinstellung: 0 - OFF
			Nur bei RTD 4-Leiter Anschluss und Thermoelemen- ten (TC) möglich.

13.2.3 Gruppe Diagnose

Alle Informationen, die das Gerät, den Gerätestatus und die Prozessbedingungen beschreiben, sind in dieser Gruppe zu finden. Die einzelnen Parameter sind im Menü Diagnose ($\rightarrow \square$ 77) zusammengefasst:

→ Diagnose	\rightarrow Systeminformationen $\rightarrow \square 77$	
	\rightarrow Messwert $\rightarrow \square 78$	\rightarrow Min./ MaxWerte
	→ Gerätetest/Reset → 🖺 79	

Systeminformationen	Standard Setup/Experte	Grundeinstellungen, die für den Betrieb des Geräts not- wendig sind.
Messwerte → Min-/Max- Werte	Standard Setup/Experte	Einstellungen des Messein- gangs von Kanal 1 und Kanal 2.
Gerätetest/Reset	Standard Setup/Experte	Einstellungen für spezielle Diagnosefunktionen wie Drift- oder Korrosionserkennung.

Menü Diagnose

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Experte → Diagnose	Aktuelle Diagnose	lesen	Anzeige des Diagnose-Codes. Der Diagnose-Code setzt sich aus dem "Aktueller Status" und dem "Aktueller Fehlercode" zusammen. Beispiel: F041 (Failure + Sensorbruch)
	Aktuelle Diagnose Beschreibung	lesen	Anzeige der Statusinformation als Beschreibungstext, siehe Kapitel 11.3 $\rightarrow \textcircled{B}$ 45
	Status Kanalinfo	lesen	 Anzeige, wo im Gerät der höchst priore Fehler entsteht. 0: Gerät / Device 1: Sensor 1 2: Sensor 2
	Status Anzahl	lesen	Anzahl der aktuell im Gerät anliegenden Statusmeldun- gen.
	Busadresse	lesen	Zeigt die Busadresse des Gerätes an. Werkseinstellung: 126

Untermenü Diagnose - Systeminformationen

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Systeminfor-	Firmware Version	lesen	Revisionsstand der Firmware des Gerätes.
mationen	Seriennummer	lesen 1)	Anzeige der Seriennummer des Gerätes.
	Bestellnummer	lesen 1)	Anzeige des Geräte-Bestellcodes.
	Bestellkennung	lesen 1)	Anzeige der Bestellidentnummer als Beschreibung für den Geräteauslieferzustand
	Messstellenbezeichnung (TAG)	lesen/schreiben	Eingabe eines anwenderspezifischen Text von max. 32 Zeichen, zur eindeutigen Identifizierung und Zuordnung des Blocks. Werkseinstellung: " " ohne Text
	ENP Version	lesen	Anzeige der ENP (Electronic name plate) Version
	Profil	lesen	0x4002 - PROFIBUS PA, Compact Class B
	Profil-Revision	lesen	Anzeige der im Gerät implementierten Profileversion.
	Hersteller	lesen	Anzeige der Herstelleridentifikations-Nummer. Anzeige: 0x11(hex);17 (dezimal): Endress+Hauser

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Produktname	lesen	Anzeige der herstellerspezifische Geräteidentifikation. Anzeige: iTEMP TMT84
	PROFIBUS Ident Number	lesen	 Anzeige der PNO-Identnummer des Gerätes. 0x1523 → TMT184 0x1551 → TMT84 0x9700 → Profile Ident Number 1x AI-Block 0x9701 → Profile Ident Number 2x AI-Block 0x9702 → Profile Ident Number 3x AI-Block 0x9703 → Profile Ident Number 4x AI-Block Werkseinstellung: 0x1551 Werkseinstellung: 0x1551

1) Diese Parameter können geändert werden, wenn der Parameter "Service Verriegelung" im Menü Experte-System entsprechend eingestellt ist.

Untermenü Diagnose - Messwerte

Dieses Menü ist nur im Online-Modus sichtbar.

n: Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Messwerte	PV Wert n	lesen	Anzeige des primären Ausgangswerts des Transducer Blocks.
			Der Wert PV Wert n kann einem AI-Block zur Wei- terverarbeitung zur Verfügung gestellt werden.
	Prozesstemperatur n	lesen	Anzeige des Messwerts von Sensor n
	RJ Temperatur	lesen	Interne Referenztemperaturmessung

Untermenü Diagnose - Messwerte - Min-/Max-Wert

Dieses Menü ist nur im Online-Modus sichtbar.

In diesem Menü können die Schleppzeiger der PV Werte, der beiden Messeingänge und der internen Referenzmessung eingesehen werden. Außerdem können die gespeicherten PV Werte zurückgesetzt werden.

n: Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Messwerte - Min-/Max-Wert	PV n Min.	lesen/schreiben	Min. Schleppzeiger für PV. Wird im Abstand von 10 Minuten im nicht flüchtigen Speicher abgelegt. Kann zurückgesetzt werden.
	PV n Max.	lesen/schreiben	Max. Schleppzeiger für PV. Wird im Abstand von 10 Minuten im nicht flüchtigen Speicher abgelegt. Kann zurückgesetzt werden.
	Messwert n Min.	lesen	Anzeige des minimalen Sensorwertes. Wird im Abstand von 10 Minuten im nicht flüchtigen Speicher abgelegt. Kann zurückgesetzt werden.

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Messwert n Max.	lesen	Anzeige des maximalen Sensorwertes. Wird im Abstand von 10 Minuten im nicht flüchtigen Speicher abgelegt. Kann zurückgesetzt werden.
	RJ Min.	lesen	Schleppzeiger für den minimal aufgetretenen Wert an der internen Referenztemperaturmessstelle.
	RJ Max.	lesen	Schleppzeiger für den maximal aufgetretenen Wert an der internen Referenztemperaturmessstelle.

Untermenü Diagnose - Gerätetest/Reset

Dieses Menü ist nur im Online-Modus sichtbar.

Mit einem Reset kann das Gerät, je nach Reset-Code in einen definierten Zustand gebracht werden.

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Gerätetest/ Reset	Rücksetzen in Auslieferzustand	lesen/schreiben	 Rücksetzen oder Neu starten des Gerätes. Eingabe: 0 → Keine Funktion / keine Aktion 1 → Standardkonfiguration / Rücksetzen aller busspezifischen Parameter auf Werkseinstellungen, mit Ausnahme der eingestellten Stationsadresse. Das Gerät zeigt den folgenden Kaltstart im entsprechenden Bit der Parameter-gruppe DIAGNOSIS für 10 Sekunden an. 2506 → Warmstart / Ausführen eines Warmstarts. Das Gerät zeigt den folgenden Warmstart im entsprechenden Bit der Parametergruppe DIAGNOSIS für 10 Sekunden an. 2712 → Rücksetzen der Adresse auf '126' / Rücksetzen der Stationsadresse auf die übliche PROFIBUS Defaultadresse 126. 32769 → Bestellte Konfiguration / Rücksetzen auf Auslieferungszustand. Werkseinstellung: 0 Bei der Auswahl 1 werden die Einheiten gemäß der Werkseinstellung und nicht auf den Auslieferungszustands zurückgesetzt. Kontrollieren Sie nach dem Rücksetzen die Einheiten und stellen die von Ihnen gewünschte Einheit ein. Führen Sie anschließend den Parameter Set Unit To Bus aus (→) 87).

13.3 Setup Experte

Die Parametergruppen für den Experten-Setup beinhalten alle Parameter des Standard-Setup und zusätzlich noch Parameter, die ausschließlich für die Experten vorbehalten sind.

• Experte → System → 🗎 80 Einstellungen und Beschreibung der Messstelle	→ Anzeige → 🗎 69		
	→ Sensorik → 🗎 81 Einstellungen der beiden Messein- gänge → Kommunikation → 🗎 86 Einstellungen der Profibus Adresse und Setup der 4 Analog Input Blöcke	→ Sensor 1	\rightarrow Spezielle Linearisierung 1
		\rightarrow Sensor 2	\rightarrow Spezielle Linearisierung 2
		→ Analog Input 1	
		→ Analog Input 2	
		→ Analog Input 3	

	→ Analog Input 4		
→ Diagnose → 🗎 96	\rightarrow Systeminformation $\rightarrow \square 77$		
Anzeige von Geräteinformationen - und -status zu Service- und War-	\rightarrow Messwert \rightarrow Min./ MaxWerte		
tungszwecken.	→ Gerätetest/Reset → 🗎 79		

13.3.1 Gruppe System

In der Gruppe "System" können alle Parameter, die die Messstelle genauer beschreiben, eingesehen bzw. eingestellt werden.

System

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Zielmodus	lesen/schreiben	Auswahl der gewünschten Betriebsart. Im Physical Block kann nur der Automatikbetrieb ausgewählt werden. Falls Diagnose nach Profile 3.02 aktiviert ist (Physical Block Parameter "COND_STATUS_DIAG" = 1) kann der Physical Block auch auf OOS gesetzt werden. Auswahl:
			 0x08 - AUTO 0x80 - Out of Service (OOS)
			Werkseinstellung: AUTO
	Block Modus	Allgemeine Infor Der Block Modus e	mationen zum Block Modus: enthält drei Elemente:
		 den aktuellen B die vom Block u Analog Input (A Physical Block: Transducer Bloc den Normalbetr 	etriebsmodus (Actual Mode) des Blocks Interstützten Modi (Permitted Mode): AI): AUTO, MAN, OOS AUTO, OOS ck: AUTO riebsmodus (Normal Mode)
		Im Menü wird nur bei einem Funktio auszuwählen, wäh AUTO arbeiten.	der aktuelle Block Modus angezeigt. Im Regelfall besteht nsblock die Möglichkeit zwischen mehreren Betriebsarten nrend die anderen Blocktypen z. B. nur in der Betriebsart
	Aktueller Modus	lesen	Anzeige des aktuellen Betriebsmodus. Anzeige: AUTO
	PROFIBUS Ident Number Selector	lesen/schreiben	Auswahl des Konfigurierungsverhalten. Jedes PROFIBUS-Gerät muss eine von der PNO (PRO- FIBUS Nutzerorganisation) vergebene Identnummer in der Konfigurierungsphase überprüfen. Neben die- ser gerätespezifischen Identnummer gibt es auch PROFIL-Identnummern, die zwecks Austauschbar- keit über Herstellergrenzen hinweg, ebenso während der Konfigurierungsphase akzeptiert werden müs- sen. In diesem Fall reduziert das Gerät u. U. die Funktionalität bezüglich der zyklischen Daten auf
			einen profildefinierten Umfang. Auswahl:
			 0 → Profile specific Ident Number 9703 (1xAI) 1 → Manuf. specific Indent Number 1551 (TMT84) 127 → Automatik (0x9700, 0x9701, 0x9702, 0x9703, 0x1551, 0x1523) 128 → Manuf. specific Indent Number 1523 (TMT184) 129 → Profile specific Ident Number 9700(1xAI) 130 → Profile specific Ident Number 9701 (2xAI) 131 → Profile specific Ident Number 9702 (3xAI)
			Werkseinstellung: 127

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Beschreibung	lesen/schreiben	Eingabe einer Beschreibung der Anwendung, für welches das Gerät eingesetzt wird. Werkseinstellung: Keine Beschreibung (32 x Leerzeichen)
	Nachricht	lesen/schreiben	Eingabe einer Nachricht über die Anwendung, für welches das Gerät eingesetzt wird. Werkseinstellung: Keine Nachricht (32 x Leerzeichen)
	Einbaudatum	lesen/schreiben	Eingabe des Installationsdatum des Gerätes. Werkseinstellung: Kein Datum (16 x Leerzeichen)
	TAG Location	lesen/schreiben	I&M Parameter TAG_LOCATION
	Signatur	lesen/schreiben	I&M Parameter SIGNATURE
nur im Online- Modus sichtbar	Hardware-Schreibschutz	lesen	Anzeige des Status des Hardware-Schreibschutz. Anzeige:
			 0 → Schreibschutz nicht aktiv, Parameter können verändert werden. 1 → Schreibschutz aktiv, Parameter können nicht verändert werden.
			Werkseinstellung: 0
			Der Schreibschutz wird über einen DIP-Schalter aktiviert bzw. deaktiviert (siehe Kap. 6.2.2). → 🗎 26
	System Alarmverzögerung		Alarmhysterese: Wert, um welche Zeit ein Gerätestatus (Failure oder Maintenance) und Messwertstatus (Bad oder Uncertain) verzögert wird, bevor dieser ausgegeben wird. Einstellbar zwischen 0 und 10 Sekunden. Werkseinstellung: 2s
			Diese Einstellung wirkt sich nicht auf das Display aus.
	Netzfrequenzfilter	lesen/schreiben	Netzfilter für A/D-Wandler. Auswahl:
			 0 50 Hz 1 60 Hz
			Werkseinstellung: 0 50 Hz
	Umgebungstemperatur Alarm	lesen/schreiben	Statusmeldung bei Über-/Unterschreiten der Betriebstem- peratur des Transmitters < -40 °C (-40 °F) oder > +85 °C (185 °F):
			 0 - Maintenance: Über-/Unterschreiten der int. Temperatur führt zu einer Warnung. 1 - Failure: Über-/Unterschreiten der int. Temperatur führt zu einem Alarm.
			Werkseinstellung: 0 - Maintenance

13.3.2 Gruppe Sensorik

n: Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Sensorik

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü "Sensorik 1" und "Sensorik 2"	Kennlinientyp n	lesen/schreiben	 Einstellung des Sensortyps. Kennlinientyp 1: Einstellungen für Sensoreingang 1 Sensor Kennlinientyp 2: Einstellungen für Sensoreingang 2 Werkseinstellung: Kanal 1: Pt100 IEC751 Kanal 2: No Sensor Beim Anschluss der einzelnen Sensoren ist die Klemmenbelegung in Kap. 5.2 zu beachten. Bei 2-Kanal Betrieb sind außerdem die möglichen Anschlusskombinationen in Kap. 5.2.1 zu beachten.
	Eingangsbereich n	lesen/schreiben	 Einstellung des Eingangsmessbereichs. 0: mV, Bereich 1: -5 30 mV; Bereich: -5 30 mV; Min.Span: 1 mV 1: mV, Bereich 2: -20 100 mV; Min.Span: 1 mV 128: Ω, Bereich 1: 10 400 Ω; Min.Span: 10 Ω
			 129: Ω, Bereich 2: 10 2 000 Ω; Min.Span: 10 Ω Werkseinstellung: 128: Ω, Bereich 1: 10 400 Ω; Min.Span: 10 Ω
	Einheit n	lesen/schreiben	Einstellung der Temperatureinheit für PV Wert n 1000 - K 1001 - °C 1002 - °F 1003 - Rk 1281 - Ohm 1243 - mV 1342 - % Werkseinstellung: °C
	Anschlussart n	lesen/schreiben	Anschlussart des Sensors: Sensor Transducer 1 (Anschlussart 1): • 0 - Zweileiter-Anschluss • 1 - Dreileiter-Anschluss • 2 - Vierleiter-Anschluss
			Werkseinstellung: 3-Leiter Sensor Transducer 2 (Anschlussart 2):
			 0 - Zweileiter-Anschluss 1 - Dreileiter-Anschluss
			Werkseinstellung: 3-Leiter

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Messart n	lesen/schreiben	Anzeige des Berechnungsverfahrens für den PV Wert 1. siehe auch $\rightarrow \square 70$
			SV1 = Secondary Value 1 = Sensorwert 1 in Tempe- ratur Transducer Block 1 = Sensorwert 2 in Tempe- ratur Transducer Block 2 SV2 = Secondary Value 2 = Sensorwert 2 in Tempe- ratur Transducer Block 1 = Sensorwert 1 in Tempe- ratur Transducer Block 2
			Auswahl: Sensor Transducer 1 (Messart 1):
			 PV = SV1: Secondary value 1 PV = SV1-SV2: Differenz PV = 0.5 x (SV1+SV2): Mittelwert PV = 0.5 x (SV1+SV2) Redundancy: Mittelwert bzw.Secondary Value 1 oder Secondary Value 2 bei Sensorfehler des jeweils anderen Sensors. PV = SV1 (OR SV2): Backupfunktion: Bei Ausfall von Sensor 1 wird automatisch der Wert von Sensor 2 zum Primary value. PV = SV1 (OR SV2 if SV1>T): PV wechselt von SV1 auf SV2 wenn SV1 > Wert T (Parameter: Sensorumschal- tung Schwelle n) PV = (SV1-SV2) if PV> Driftvalue: PV ist der Drift- wert zwischen Sensor 1 und Sensor 2. Falls PV den ein- gestellten Driftwert (Sensor Driftrakennung Grenzwert) überschreitet, wird ein Driftalarm ausgegeben. PV = (SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den einge- stellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben.
			Werkseinstellung: PV = SV1
			 Sensor Transducer 2 (Messart 2): PV = SV2: Secondary value 2 PV = SV2-SV1: Differenz PV = 0.5 x (SV2+SV1): Mittelwert PV = 0.5 x (SV2+SV1) Redundancy: Mittelwert bzw. Secondary Value 1 oder Secondary Value 2 bei Sensorfehler des jeweils anderen Sensors. PV = SV2 (OR SV1): Backupfunktion: Bei Aufall von Sensor 2 wird automatisch der Wert von Sensor 1 zum Primary value. PV = SV2 (OR SV 1 if SV2>T): PV wechselt von SV2 auf SV1 wenn SV2 > Wert T (Parameter: Sensorumschaltung Schwelle n) PV = (SV1-SV2) if PV> Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) überschreitet, wird ein Driftalarm ausgegeben. PV = (SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben. PV = (SV1-SV2) if PV< Driftvalue: PV ist der Driftwert zwischen Sensor 1 und Sensor 2. Falls PV den eingestellten Driftwert (Sensor Drifterkennung Grenzwert) unterschreitet, wird ein Driftalarm ausgegeben. PV = (SV1-SV2) if PV PV = SV1 = Sensor 2
	2-Leiter Kompensation n	lesen/schreiben	Zwei-Leiter-Kompensation bei RTDs. Folgende Werte sind zulässig: 0 30 Ω

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Offset n	lesen/schreiben	Offset für den PV Wert 1 Folgende Werte sind zulässig:
			 -10 bis +10 bei Celsius, Kelvin, mV und Ohm -18 bis +18 bei Fahrenheit, Rankine
			Werkseinstellung: 0.0
(nur im Online- Modus sichtbar)	Untere Sensorgrenze n	lesen	Anzeige des unteren physikalischen Messbereichsend- werts.
(nur im Online- Modus sichtbar)	Obere Sensorgrenze n	lesen	Anzeige des oberen physikalischen Messbereichsendwer- tes.
	Sensorumschaltung Schwelle n	lesen/schreiben	Wert für Umschaltung im PV-Modus für Sensorumschal- tung. Eingabe im Bereich von −270 2 200 °C (−454 3 992 °F).
	RJ Art n	lesen/schreiben	Einstellung der Vergleichsstellenmessung zur Temperatur- kompensation bei Thermoelementen:
			 0 - keine Vergleichsstelle: Es wird keine Temperatur- kompensation verwendet. 1 - interne Ermittlung der Vergleichstemperatur: Interne Vergleichsstellentemperatur wird für die Tem- peraturkompensation verwendet. 2 - extern vorgegebene Vergleichstemperatur: "Ext. Reference Junction Temperature" wird zur Temperatur- kompensation verwendet.
			Werkseinstellung: 1 - interne Ermittlung der Vergleichstemperatur
	Fixe RJ Temperatur n	lesen/schreiben	Wert für die Temperaturkompensation (siehe Parameter Reference Junction). Werkseinstellung: 0.0
	Sensordriftüberwachung	lesen/schreiben	Abweichung zwischen SV1 und SV2 wird als Fehler (Fai- lure) oder als Wartungsaufforderung (Warning) erkannt:
			 1 - FAILURE: (Sensorabweichung > Sensor Drifterkennung Grenzwert n) → Failure. Sensor-Drift wird als Fehler angezeigt 0 - Warning: (Sensorabweichung > Sensor Drifterkennung Grenzwert n) → Warning. Sensor-Drift wird als Warnung angezeigt
			Werkseinstellung: 0 - Warning
	Sensor Drifterkennung Grenzwert n	lesen/schreiben	Einstellung der max. zulässigen Messwertabweichung zwi- schen Sensor 1 und Sensor 2. Dieser Wert ist relevant wenn bei der Messart "PV =ABS(SV1- SV2) if PV< Drift- value" gewählt wurde. Zulässigen Abweichung von 0.1 bis 999. Werkseinstellung: 999
	Korrosionserkennung n	lesen/schreiben	 0 - OFF: Korrosionserkennung aus 1 - ON: Korrosionserkennung ein
			Werkseinstellung: 0 - OFF
			Nur bei RTD 4-Leiter-Anschluss und Thermoelemen- ten (TC) möglich.

Untermenü "Spezielle Linearisierung 1" oder "Spezielle Linearisierung 2"

Vorgehensweise zur Einstellung einer speziellen Linearisierung unter Verwendung der Callendar- Van Dusen Koeffizienten aus einem Kalibrierzertifikat:

1. Start
▼
2. Messart z.B. PV=SV1 einstellen
▼
3. Einheit (°C) auswählen
▼
4. Sensortyp (Linearisierungtyp) "RTD-Platinium (Callendar-Van Dusen)" auswählen
▼
5. Anschlussart z.B. 4-Leiter auswählen
▼
6. Die 4 Koeffizienten A, B, C und R0 eintragen
▼
7. Wird bei einem zweiten Sensor ebenfalls eine spezielle Linearisierung verwendet, Schritte 2 bis 6 wiederho- len
▼
8. Ende

Sensorik

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü "Spezielle Linearisierung n"	Callv. Dusen Bereichsanfang	lesen/schreiben	Untere Berechnungsgrenze für die Callendar-Van Dusen Linearisierung. Werkseinstellung: 0.0
	Callv. Dusen Bereichsende	lesen/schreiben	Obere Berechnungsgrenze für die Callendar-Van Dusen Linearisierung. Werkseinstellung: 100.0
	Callv. Dusen Koeff. RO	lesen/schreiben	Die Werte für den RO-Wert müssen zwischen 40 1050 Ω liegen.
			Werkseinstellung: 100
	Callv. Dusen Koeff. A	lesen/schreiben	Sensorlinearisierung nach der Callendar-Van Dusen
	Callv. Dusen Koeff. B	lesen/schreiben	Methode.
	Callv. Dusen Koeff. C	lesen/schreiben	Berechnung der Sensorkennlinie herangezogen, wenn im Parameter Kennlinientyp 1 "RTD- Callen- dar- Van Dusen" eingestellt ist.
			Werkseinstellung Callv. Dusen Koeff. A: 3.9083E-03 Werkseinstellung Callv. Dusen Koeff. B: -5.775E-07 Werkseinstellung Callv. Dusen Koeff. C:

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
(nur im Online- Modus sichtbar)	Sensor Trimmung	lesen/schreiben	 Factory trim standard calibration: Sensorlinearisierung mit den Werkskalibrierwerten User trim standard calibration: Sensorlinearisierung mit den Werten "Calibration Highest Point" und "Calibration Lowest Point" Durch Zurücksetzen dieses Parameters auf "factory trim standard calibration" kann wieder die ursprüngen
			liche Linearisierung hergestellt werden.
	Sensor Trimmung Anfangswert	lesen/schreiben	Unterer Punkt für linearen Kennlinienabgleich (Offset und Steigung werden dadurch beeinflusst).
			Um diesen Parameter schreiben zu können, muss "Sensor Trimmung" auf "user trim standard calibra- tion" eingestellt sein.
	Sensor Trimmung Endwert	lesen/schreiben	Oberer Punkt für linearen Kennlinienabgleich (Offset und Steigung werden dadurch beeinflusst).
			Um diesen Parameter schreiben zu können, muss "Sensor Calibration Method" auf "user trim standard calibration" eingestellt sein.
	Sensor Trimmung Min. Spanne	lesen	Span des Messbereichs, abhängig vom eingestellten Sen- sortyp
	Polynom Bereichsanfang	lesen/schreiben	Untere Berechnungsgrenze für die RTD Polynom (Nickel/ Kupfer) Linearisierung. Werkseinstellung: bei Senstype = Kupfer: 0 bei Senstype = Nickel: -60
	Polynom Bereichsende	lesen/schreiben	Obere Berechnungsgrenze für die RTD Polynom (Nickel/ Kupfer) Linearisierung. Werkseinstellung: bei Senstype = Kupfer: 200 bei Senstype = Nickel: 100
	Polynom Koeff. RO	lesen/schreiben	Die Werte für den RO-Wert müssen zwischen 40 1050 Ω liegen.
			Werkseinstellung: bei Senstype = Kupfer: 100 bei Senstype = Nickel: 100
	Polynom Koeff. A	lesen/schreiben	Sensorlinearisierung von Kupfer-/Nickelwiderstandsther-
	Polynom Koeff. B	lesen/schreiben	Die POLY_COEFF_XX Parameter werden zur Berech-
	Polynom Koeff. C	lesen/schreiben	nung der Sensorkennlinie herangezogen, wenn im Parameter Kennlinientyp n "RTD- Polynom Nickel oder RTD- Polynom Copper" eingestellt ist.
			Werkseinstellung: Polynom Koeff. A Kupfer = 0.00428 Nickel = 5.4963E-03 Polynom Koeff. B Kupfer = 6.2032E-07 Nickel = 6.7556E-06 Polynom Koeff. C Kupfer = 8.5154E-10 Nickel = 0
	Sensor Seriennummer	lesen/schreiben	Seriennummer des angeschlossenen Sensors.

13.3.3 Gruppe Kommunikation

Einheitenänderung

Eine Änderung der Systemeinheit für die Temperatur kann im Menü Sensor 1 oder Sensor 2 für den jeweiligen Kanal eingestellt werden.

Diese Einheitenänderung hat zunächst noch keinen Einfluss auf den Messwert, der zum Automatisierungssystem übertragen wird. Dadurch wird gewährleistet, dass keine sprunghafte Messwertänderung auf die nachfolgende Regelung Einfluss nehmen kann.

Kommunikation

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Busadresse	lesen	Zeigt die Busadresse des Geräts an. Werkseinstellung: 126
(nur im Online- Modus sichtbar)	Set Unit To Bus	lesen/schreiben	Übertragung der eingestellten Systemeinheiten an das Automatisierungssystem. Bei der Übertragung wird die Skalierung des OUT SCALE Wertes im Analog Input Block automatisch mit dem einge- stellten PV SCALE überschrieben und die Einheit vom Transducer Block wird auf die "Out Scale - Einheit" (Aus- gangseinheit) kopiert. Auswahl:
			0 - OFF1 - ON
			Werkseinstellung: 0 - OFF
			Das Aktivieren dieses Parameters kann zu einer sprunghaften Änderung des Ausgangswertes "Out value" führen und hat somit auch Auswirkungen auf nachfolgende Regelungen.

Untermenüs "Analog Input 1" bis "Analog Input 4"

Die Standard-Parameter für das Menü "Sicherheitseinstellung" sind im Untermenü Setup \rightarrow Erweiterter Setup $\rightarrow \square$ 74 zu finden. Die Experten-Parameter sind in der folgenden Tabelle aufgeführt.

Status des Ausgangswertes Output value

Der Status der Parametergruppe **Output value** teilt den nachfolgenden Funktionsblöcken den Zustand des Analog Input Funktionsblocks und die Gültigkeit des Ausgangswertes **Output value** mit.

Status des Ausgangswerts OUT:	Bedeutung des Ausgangswertes:	
GOOD NON CASCADE	ightarrow OUT ist gültig und kann zur Weiterverarbeitung verwendet werden.	
UNCERTAIN	\rightarrow OUT kann nur begrenzt zur Weiterverarbeitung verwendet werden.	
BAD	→ OUT ist ungültig.	
Der Statuswert BAD tritt bei Umschaltung des Analog Input Funktionsblocks in die Betriebsart OOS (Out of Service) oder bei schwierigen Fehlern auf (siehe Statuscode und System-/Prozessfehlermel- dungen, → 🗎 45).		

Simulation des Ein-/Ausgangs

Über verschiedene Parameter der Menüs Analog Input 1-4 besteht die Möglichkeit, den Ein- und Ausgang des Funktionsblocks zu simulieren:

• Den Eingang des Analog Input Funktionsblock simulieren:

Über die Parameter "AI Simulation / AI Simulation Wert / AI Simulation Status" kann der Eingangswert (Messwert und Status) vorgegeben werden. Da der Simulationswert den kompletten Funktionsblock durchläuft können alle Parametereinstellungen des Blocks überprüft werden.

• Den Ausgang des Analog Input Funktionsblock simulieren:

Die Betriebsart mit dem Parameter **Aktueller Modus** ($\rightarrow \square$ 70) auf MAN setzen und den gewünschten Ausgangswert im Parameter **Output value** ($\rightarrow \square$ 89) direkt vorgeben.

Ausfallverhalten (Fail Safe Mode)

Bei einem Eingangs- bzw. der Simulationswert mit schlechtem Status (BAD), arbeitet der Analog Input Funktionsblock mit dem im Parameter "Ausfallverhalten" (Fail Safe Mode) definierten Fehlerverhalten weiter. Im Parameter "Ausfallverhalten" (Fail Safe Mode; $\rightarrow \square$ 89) stehen folgende Fehlerverhalten zur Auswahl:

Auswahl im Parameter FAIL- SAFE TYPE (Fail Safe Mode):	Fehlerverhalten:
FSAFE VALUE	Der im Parameter "Sicherheits-Vorgabewert" vorgegebene Wert wird zur Weiterverarbeitung verwendet.
LAST GOOD VALUE	Der letzte gültige Wert wird zur Weiterverarbeitung verwendet.
WRONG VALUE	Der aktuelle Wert wird, ungeachtet des Status BAD, zur Weiterverarbeitung verwendet.
Die Werkseinstellung ist WR	DNG VALUE.

Das Fehlerverhalten wird ebenfalls aktiviert, wenn der Analog Input Funktionsblock in die Betriebsart "Ausser Betrieb" (OUT OF SERVICE) gesetzt wird.

Grenzwerte

Der Anwender kann zwei Vorwarn- und zwei Alarmgrenzen zur Überwachung seines Prozesses einstellen. Der Status des Messwertes und die Parameter der Grenzwertalarme geben einen Hinweis auf die Lage des Messwertes. Zusätzlich ist es möglich eine Alarmhysterese zu definieren, damit ein häufiges Wechseln der Grenzwertflags bzw. ein häufiges Wechseln zwischen aktiven und deaktiven Alarmeinstellungen vermieden wird (siehe $\rightarrow \cong$ 89).

Die Grenzwerte basieren auf dem Ausgangswert OUT. Über- bzw. unterschreitet der Ausgangswert OUT die definierten Grenzwerte, so erfolgt die Alarmierung an das Automatisierungssystem über die Grenzwert-Prozessalarme.

Prozessalarme geben Auskunft über bestimmte Blockzustände und -ereignisse. Folgende Prozessalarme können im Analog Input Funktionsblock definiert und generiert werden:

HI HI LIM	→ 🖺 89	LO LO LIM	→ 🖺 89
HI LIM	→ 🗎 89	LO LIM	→ 🗎 89

Grenzwert-Prozessalarme

Wird ein Grenzwert verletzt, so wird vor Übermittlung der Grenzwertverletzung an das Feldbus- Host System die festgelegte Priorität des Grenzwertalarms überprüft.

Umskalierung des Eingangswertes

Im Analog Input Funktionsblock kann der Eingangswert bzw. Eingangsbereich gemäß den Automatisierungsanforderungen skaliert werden.

Beispiel:

- Die Systemeinheit im Transducer Block ist °C.
- Der Messbereich des Sensors beträgt -200 bis 850°C.
- Der prozessrelevante Messbereich beträgt 0 bis 200°C.
- Der Ausgangsbereich zum Automatisierungssystem soll 0...100% betragen.

Der Messwert vom Transducer Block (Eingangswert) wird linear über die Eingangsskalierung PV SCALE auf den gewünschten Ausgangsbereich OUT SCALE umskaliert:

Parametergruppe PV	/ SCALE (→ 🗎 86)	Parametergruppe OUT SCALE ($\rightarrow \square 86$)		
PV SCALE MIN	$\rightarrow 0$	OUT SCALE MIN	$\rightarrow 0$	
PV SCALE MAX	→ 200	OUT SCALE MAX	→ 100	
		OUT UNIT	\rightarrow %	

Daraus ergibt sich, das z.B. bei einem Eingangswert von 100°C (212 °F) über den Parameter OUT ein Wert von 50% ausgegeben wird.

Skalierungsvorgang im Analog Input Funktionsblock

Kommunikation

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Analog Input	Statische RevNr.	lesen	Ein Block führt statische Parameter (Static Attribut), die nicht durch den Prozess verändert werden. Statische Para- meter, deren Wert sich während der Optimierung oder Konfiguration ändern, bewirk286en das Inkrementieren des Parameters ST REV um 1. Dies unterstützt die Parame- terversionsführung. Bei der Änderung mehrerer Parame- ter innerhalb kürzester Zeit, z. B. durch Laden von Parametern von FieldCare, PDM, etc. in das Gerät, kann der Static Revision Counter einen höheren Wert anzeigen. Dieser Zähler kann nie zurückgesetzt werden und wird auch nach einem Geräte-Reset nicht auf einen Defaultwert zurückgestellt. Läuft der Zähler über (16 Bit), beginnt er wieder bei 1.
	TAG	lesen/schreiben	Eingabe eines anwenderspezifischen Textes von max. 32 Zeichen, zur eindeutigen Identifizierung und Zuordnung des Blocks. Eingabe: max. 32-stelliger Text, Auswahl: A-Z, 0-9, +, –, Satzzei- chen Werkseinstellung: " " ohne Text
	Zielmodus	lesen/schreiben	Auswahl der gewünschten Betriebsart. Auswahl: 0x08 AUTO 0x10 MAN 0x80 Außer Betrieb Werkseinstellung: 0x08 AUTO

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	BLOCK MODE	Allgemeine Infor	mationen zur Parametergruppe MODE BLK: ruppe enthält drei Elemente:
		 den aktuellen Betriebsmodus (Actual Mode) des Blocks die vom Block unterstützten Modi (Permitted Mode) den Normalbetriebsmodus (Normal Mode) 	
		Man unterscheide durch den Anwend vice). Im Regelfall mehreren Betriebs nur in der Betriebs	t zwischen "Automatikbetrieb" (AUTO), manuellem Eingriff der (MAN) und dem Modus "Außer Betrieb" (O/S, out of ser- besteht bei einem Funktionsblock die Möglichkeit zwischen sarten auszuwählen, während die anderen Blocktypen z. B. sart AUTO arbeiten.
	Aktueller Modus	lesen	Anzeige des aktuellen Betriebsmodus. Auswahl: 0x08 AUTO 0x10 MAN 0x80 Außer Betrieb Werkseinstellung: 0x08 AUTO
	AI n Kanal	lesen/schreiben	Zuordnung zwischen dem logischen Hardware-Kanal des Transducer Blocks und dem Eingang des Analog Input Funktionsblocks. Der Transducer Block des TMT84 stellt fünf verschiedene Messwerte dem Eingangskanal des Analog Input Funktionsblocks zur Verfügung. Auswahl:
			 0x0108 (264) → Primary Value Transducer 1 0x010A (266) → Secondary Value 1 Transducer 1 0x015D (349) → Reference Junction Temperature 0x0208 (520) → Primary Value Transducer 2 0x020A (522) → Secondary Value 1 Transducer 2
			Werkseinstellung: Al1 Primary Value Transducer $1 \rightarrow 1$ Al2 Secondary Value Transducer $1 \rightarrow 2$ Al3 Primary Value Transducer $2 \rightarrow 2$ Al4 Secondary Value Transducer $2 \rightarrow 3$
	Summenalarm	Allgemeine Infor Es wird der Active ters mit statischen die Anzeige, dass o Block verletzt wur Anzeigewerte: 0x0000 Kein Alar 0x0200 Oberer Al 0x0400 Oberer M 0x0800 Unterer A 0x1000 Unterer W 0x8000 Paramete	mationen zur Parametergruppe "Summenalarm": Block Alarm unterstützt, der eine Änderung eines Parame- Parametern (Static Attribut) für 10 Sek. kennzeichnet und eine Vorwarn- bzw. Alarmgrenze im Analog Input Function de. m armgrenzwert armgrenzwert Jarmgrenzwert Varngrenzwert rsatz-Änderung
(nur im Online- Modus sichtbar)	Aktueller Summenalarm	lesen	Anzeige der aktuellen Alarme des Gerätes.
bicitioury	Unquittierter Summenalarm	lesen	Anzeige der unquittierten Alarme des Gerätes.
	Ungemeldete Summenalarm	lesen	
	Deaktivierter Summenalarm	lesen	Anzeige der quittierten Alarme des Gerätes.
	Out unit text	lesen/schreiben	Eingabe eines ASCII-Text, falls im Parameter OUT UNIT (Ausgangseinheit) nicht die gewünschte Einheit verfügbar ist.
(nur im Online- Modus sichtbar)	Output value	lesen	Anzeige des OUT (Ausgangs) Werts der im Parameter CHANNEL ausgewählten Prozessgröße

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
(nur im Online- Modus sichtbar)	Qualität	lesen	Anzeige der Qualität (Messwertstatus) für den "Output value". 0x80 - Gut 0x84 - Gut: Parametrierung geändert 0x86 - Gut: Warngrenze 0x90 - Gut: unquittierter Blockalarm (nur Pr. 3.0/ 3.01) 0x94 - Gut: unquittierte Warnung (nur Pr. 3.0/ 3.01) 0x94 - Gut: unquittierte Varnung (nur Pr. 3.0/ 3.01) 0x94 - Gut: unquittierte Alarm (nur Pr. 3.0/ 3.01) 0x40 - Gut: Gehe in Fail-Safe 0xA4 - Gut: Wartung efforderlich 0xA8 - Gut: Wartungs Anforderung (Pr. 3.02) 0xBC - Gut: Funktions Kontrolle/Lokale Überlagerung (3.02) 0x40 - Unsicher (nur Pr. 3.0/3.01) 0x44 - Unsicher: letzter brauchbarer Wert (nur Pr. 3.0/3.01) 0x44 - Unsicher: Initialwert (0x4B in Pr. 3.02) 0x40 - Unsicher: Wert ungenau (nur Pr. 3.0/3.01) 0x54 - Unsicher: Wert ungenau (nur Pr. 3.0/3.01) 0x54 - Unsicher: unnormal (nur Pr. 3.0/3.01) 0x58 - Unsicher: Simulations Wert (nur Pr. 3.0/ 3.01) 0x60 - Unsicher: Simulations Wert (nur Pr. 3.0/ 3.01) 0x60 - Unsicher: Wartungs Anforderung (Pr. 3.02) 0x73 - Unsicher: Simulierter Wert, Start 0x68 - Unsicher: Simulierter Wert, Start (Pr. 3.02) 0x74 - Unsicher: Simulierter Wert, Ende (Pr. 3.02) 0x74 - Unsicher: Simulierter Wert, Ende (Pr. 3.02) 0x74 - Unsicher: Simulierter Wert, Ende (Pr. 3.02) 0x74 - Unsicher: Simulierter Wert, Start (Pr. 3.02) 0x74 - Schlecht: keine Verbindung (nur Pr. 3.0/ 3.01) 0x00 - Schlecht (nur Pr. 3.0/3.01) 0x04 - Schlecht: keine Verbindung (nur Pr. 3.0/ 3.01) 0x04 - Schlecht: keine Verbindung (nur Pr. 3.0/ 3.01) 0x10 - Schlecht: keine Verbindurg (nur Pr. 3.0/ 3.01) 0x11 - Schlecht: keine brauchbarer Wert (keine Komm., nur Pr. 3.0/ 3.01) 0x12 - Schlecht: keine Betrieb (nur Pr. 3.0/ 3.01) 0x12 - Schlecht: Reinsten Betrieb (nur Pr. 3.0/ 3.01) 0x12 - Schlecht: Prozess-Störung/kein Wartungsbedarf (Pr. 3.02) 0x24 - Schlecht: Prozess-Störung/kein Wartungsbedarf (Pr. 3.02) 0x32 - Schlecht: Prozess-Störung/kein Wartungsbedarf (Pr. 3.02) 0x32 - Schlecht: Funktionskontrolle/Lokale Überlagerung (Pr. 3.02)
	Status	lesen	Anzeige des Limits (Messwertstatus) für den "Output value" 0x00 - OK 0x01 - Grenzwert unterschritten 0x02 - Grenzwert überschritten 0x03 - Wert konstant

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Filterzeitkonstante	lesen/schreiben	Eingabe der Filterzeitkonstante (in Sekunden) des digita- len Filters 1. Ordnung. Diese Zeit wird benötigt, um 63% einer Änderung des Analog Input (Eingangswert) im OUT (Ausgangswert) wirksam werden zu lassen. Das Diagramm zeigt die zeitabhängigen Signalverläufe des Analog Input Funktionsblocks: OUT (Betriebsart MAN) OUT (Betriebsart AUTO) AI Eingangswert A → Der Analog Input verändert sich. B → Der OUT hat zu 63% auf die Änderung des Analog-
			Input reagiert. Werkseinstellung: 0 s
	PV SCALE	In dieser Paramete dung der Paramet schlossenen Trans Ein Beispiel für die	ergruppe PV SCALE wird die Prozessgröße unter Verwen- er "Lower Value" und "Upper Value" mit der Einheit des ange- sducer Blocks auf einen Wert normiert. e Umskalierung des Eingangswertes → 🗎 86
	PV SCALE Anfangswert	lesen/schreiben	Mit diesem Parameter kann der untere Wert der Ein- gangsskalierung eingegeben werden. Werkseinstellung: 0
	PV SCALE Endwert	lesen/schreiben	Mit diesem Parameter kann der obere Wert der Eingangs- skalierung eingegeben werden. Werkseinstellung: 100
	OUT SCALE	In der Parameterg (Unter- und Oberg (Out value). Folge	ruppe OUT SCALE erfolgt die Definition des Messbereichs grenze) und der physikalischen Einheit des Ausgangswertes nde Parameter sind in dieser Parametergruppe vorhanden:
		 Out Scale - Anfa Out Scale - Enda Einheit Dezimalpunkt 	angswert wert
		Die Definitic Begrenzung wert "Out va dem übertra	n des Messbereichs in dieser Parametergruppe ist keine des Ausgangswerts "Out value". Befindet sich der Ausgangs- lue" außerhalb des Messbereichs, so wird dieser Wert trotz- gen.
	Out Scale - Endwert	lesen/schreiben	Eingabe oberer Wert der Ausgangsskalierung. Werkseinstellung: 100
	Out Scale - Anfangswert	lesen/schreiben	Eingabe unterer Wert der Ausgangsskalierung. Werkseinstellung: 0
	Einheit	lesen/schreiben	Auswahl der Ausgangseinheit. Werkseinstellung: Analog Input Funktionsblock = 0x07CD (1997)= none OUT UNIT (Ausgangseinheit) hat keine Auswirkung auf die Messwertskalierung.
	Dezimalpunkt	lesen/schreiben	Vorgabe Dezimalstellen des Ausgangswertes "Out value". Parameter wird vom Gerät nicht unterstützt.

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Oberer Grenzwert- Alarm	lesen/schreiben	Eingabe des Alarmgrenzwertes für den oberen Vorwarn- alarm (HI ALM). Überschreitet der Ausgangswert OUT die- sen Grenzwert, wird der Alarmstatusparameter HI ALM ausgegeben. Eingabe: Einheit von OUT SCALE Werkseinstellung: max value
	Oberer Grenzwert- Vorwarnalarm	lesen/schreiben	Eingabe des Alarmgrenzwertes für den oberen Alarm (HI HI ALM). Überschreitet der Ausgangswert OUT diesen Grenzwert, wird der Alarmstatusparameter HI HI ALM ausgegeben. Eingabe: Einheit von OUT SCALE Werkseinstellung: max value
	Unterer Grenzwert- Vorwarnalarm	lesen/schreiben	Eingabe des Alarmgrenzwertes für den unteren Vorwarn- alarm (LO ALM). Unterschreitet der Ausgangswert OUT diesen Grenzwert, wird der Alarmstatusparameter LO ALM ausgegeben. Eingabe: Einheit von OUT SCALE Werkseinstellung: min value
	Unterer Grenzwert- Alarm	lesen/schreiben	Eingabe des Alarmgrenzwertes für den unteren Alarm (LO LO ALM). Unterschreitet der Ausgangswert OUT diesen Grenzwert, wird der Alarmstatusparameter LO LO ALM ausgegeben. Eingabe: Einheit von OUT SCALE Werkseinstellung: min value

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Grenzwert- Hysterese	lesen/schreiben	Eingabe des Hysteresewertes für die oberen und unteren Vorwarnalarm- bzw. Alarmgrenzwerte. Die Alarmbedin- gungen bleiben aktiv, solange sich der Messwert innerhalb der Hysterese befindet. Der Hysteresewert wirkt sich auf folgende Vorwarnalarm- bzw. Alarmgrenzwerte des Analog Input Funktionsblocks aus: HI HI ALM \rightarrow oberer Grenzwert-Alarm HI ALM \rightarrow oberer Grenzwert-Vorwarnalarm LO LO ALM \rightarrow unterer Grenzwert-Alarm LO ALM \rightarrow unterer Grenzwert-Vorwarnalarm Eingabe: 050% Werkseinstellung: 0,5% des Messbereichs
			 Der Hysteresewert bezieht sich prozentual auf den Bereich der Parametergruppe OUT SCALE im Ana- log Input Funktionsblock. Werden die Grenzwerte in Fieldcare eingegeben, so muss darauf geachtet werden, dass absolute Werte angezeigt und eingegeben werden können.
			Beispiel:
			 Im oberen Diagramm sind die definierten Grenzwerte für die Vorwarnalarme LO LIM und HI LIM mit ihren jeweiligen Hysteresen (grau hinterlegt) und der Signal- verlauf des Ausgangswertes OUT dargestellt. Die beiden unteren Diagramme zeigen das Verhalten der zugehörigen Alarme HI ALM und LO ALM auf den sich ändernden Signalverlauf (0 = kein Alarm, 1 = Alarm wird ausgegeben).
			HI_LIM OUT LO_LIM HI_ALM
			 a Ausgangswert OUT überschreitet den Grenzwert HI LIM, der HI ALM wird aktiv. b Ausgangswert OUT unterschreitet den Hysteresewert von HI LIM, der HI ALM wird inaktiv. c Ausgangswert OUT unterschreitet den Grenzwert LO LIM, der LO ALM wird aktiv. d Ausgangswert OUT überschreitet den Hysteresewert von LO LIM, der LO ALM wird inaktiv.

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Ausfallverhalten	lesen/schreiben	Auswahl des Fehlerverhaltens bei einem Gerätefehler oder schlechtem Messwert. Der ACTUAL MODE (aktuelle Betriebsart des Blocks) bleibt dabei im AUTO MODE (Automatikbetrieb).
			 Die Statusangaben gelten nur für Diagnose nach Profile 3.0/3.01. Für Profile 3.02 siehe Kap. 11.2.2 →
			Auswahl:
			 FSAFE VALUE (Der Ersatzwert wird in den Ausgangswert übernommen) Bei dieser Auswahl wird der Wert der im Parameter "Fail Safe Default Value" eingegeben wurde im OUT (Ausgangswert) angezeigt. Der Status ändert sich dabei auf UNCERTAIN - SUBSTI- TUTE VALUE (Ersatzwert). LAST GOOD VALUE (Der gespeicherte letzte gültige Ausgangswert wird in den Ausgangswert übernommen) Der vor dem Ausfall gültige Ausgangswert wird weiter verwendet. Der Status wird auf UNCERTAIN - LAST USABLE VALUE (letzter gültiger Wert) gesetzt. Gab es zuvor keinen gültigen Wert, so wird der Initialwert mit dem Status UNCERTAIN – INITIAL VALUE (für Werte die bei einem Geräte-Reset nicht gespeichert werden) geliefert. Der Initialwert des TMT84 Profibus PA ist "O". WRONG VALUE (Am Ausgangswert liegt der falsche Messwert an) Der Wert wird ungeachtet des schlechten Status für die weitere Berechnung verwendet.
			Werkseinstellung: WRONG VALUE
	Sicherheits-Vorgabewert	lesen/schreiben	In diesem Parameter kann ein Vorgabewert eingegeben werden, der bei einem Fehler im OUT (Aus Werkseinstellung: 0
	AI(n) Simulation Qualität	lesen/schreiben	Simulation der Qualität des Analog Input Funktionsblock. Auswahlliste → 🗎 86 Werkseinstellung: Schlecht
	AI(n) Simulation Status	lesen/schreiben	Simulation des Analog Input Funktionsblock Zustands. 0x00 - OK 0x01 - Grenzwert unterschritten 0x02 - Grenzwert überschritten 0x03 - Wert konstant
	AI(n) Simulation - Wert	lesen/schreiben	Simulation des Eingangswert. Da dieser Wert den kom- pletten Algorithmus durchläuft, kann das Verhalten des Analog Input Funktionsblocks überprüft werden. Werkseinstellung: 0.0
	AI(n) Simulation	lesen/schreiben	Aktivierung / Deaktivierung der Simulation. Auswahl: Simulation nicht aktiv Simulation aktiv Werkseinstellung: Simulation nicht aktiv

13.3.4 Gruppe Diagnose

Alle Informationen, die das Gerät, den Gerätestatus und die Prozessbedingungen beschreiben, sind in dieser Gruppe zu finden. Die einzelnen Parameter sind im Diagnose-Menü in diesem Kapitel zusammengefasst:

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
	Aktuelle Diagnose	lesen	Anzeige des Diagnose-Codes. Der Diagnose-Code setzt sich aus dem "Aktueller Status" und dem "Aktueller Fehlercode" zusammen. Beispiel: F041 (Failure + Sensorbruch)
	Aktuelle Diagnose Beschreibung	lesen	Anzeige der Statusinformation als Beschreibungstext, →
	Status Kanalinfo	lesen	 Anzeige, wo im Gerät der höchst priore Fehler entsteht. 0: Gerät / Device 1: Sensor 1 2: Sensor 2
	Status Anzahl	lesen	Anzahl der aktuell im Gerät anliegenden Statusmeldun- gen.
	Diagnose	lesen	Diagnose-Information des Gerätes bitweise codiert. Aktuelle Statusnummer:
			 0 - Status OK 0x01000000 -Hardware failure electronics. 0x02000000 - Hardware failure mechanics. 0x08000000 - Electronics temperature too high. 0x10000000 - Memory checksum error. 0x20000000 - Failure in measurement. 0x80000000 - Selfcalibration failed. 0x00040000 - Configuration not valid. 0x00080000 - New start-up (warm startup) carried out. 0x00100000 - Restart (cold startup) carried out. 0x00200000 - Maintenance required. 0x00800000 - Ident Number Violation. 0x00000100 - Failure of the device • 0x00000200 - Maintenance demanded 0x000004000 - Function check or simulation mode 0x00000800 - Out of Specification 0x00000080 - More information available.
	Letzte Diagnose	lesen	Anzeige des letzten Diagnose-Codes. Der Diagnose- Code setzt sich aus dem "Letzter Status" und dem "Letzer Fehler- code" zusammen. Beispiel: F041 (Failure + Sensorbruch)
	Letzter Status Kanalinfo	lesen	Anzeige, wo im Gerät der letzte höchst priore Fehler ent- standen ist. 0: Gerät / Device 1: Sensor 1 2: Sensor 2
	Letzte Diagnose löschen	lesen/schreiben	Die letzte Diagnoseinformation kann gelöscht werden. 0: Zeige den letzten Fehler 1: Lösche den letzten Fehler Werkseinstellung: 0
	Erweiterte Diagnose	lesen	Herstellerspezifische Diagnoseinformationen bitweise codiert. Es sind mehrere Meldungen möglich. siehe "Status - Diagnose Bits" am Ende dieser Anleitung.
	Erweiterte Diagnosemaske	lesen	Anzeige der Bitmaske, welche die herstellerspezifische Diagnosemeldungen ausgibt

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
(nur im Online-Modus sichtbar)	Freigegebene Funktionen	lesen	FEATURE.Enabled: $X=0 \rightarrow$ Sammelstatus und Diagnose wird unterstützt / Dia- gnose nach Profile 3.01/3.0. $X=1 \rightarrow$ Diagnose nach Profile 3.02 / Erweiterter Status/ Diagnose wird unterstützt. Werkseinstellung: X=1
	Unterstützte Funktionen	lesen	FEATURE.Enabled: $X=0 \rightarrow$ Sammelstatus und Diagnose wird unterstützt / Dia- gnose nach Profile 3.01/3.0. $X=1 \rightarrow$ Diagnose nach Profile 3.02 / Erweiterter Status/ Diagnose wird untstützt. Werkseinstellung: X=1
	Einstellungen Sammelstatus Diagnose	lesen/schreiben	Zeigt an, ob "Condensed Status & Diagnostic Messages" ver- wendet wird. 0=Status und Diagnose wie in Profile 3.01 beschrieben 1=Sammelstatus und Diagnose Unterstützung 2-255=reserviert für PNO Werkseinstellung: 1
(nur im Online-Modus sichtbar)	Service Locking	lesen/schreiben	Einstellung für die Freischaltung der ENP Serviceparame- ter.

Untermenü Systeminformationen

Zusätzlich zu den ab \rightarrow 🗎 77 beschriebenen Systeminformationen steht im Experten-Setup noch folgender Parameter zur Verfügung.

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Systeminfor- mationen	UpDown Feature Supported	lesen	0x00: Upload Supported 0x01: Parallel Upload Supported 0x02: Download Supported 0x03: Two Buffer Device Werkseinstellung: Upload Supported

Untermenü Messwerte

Dieses Menü ist nur im Online-Modus sichtbar.

Im Experten-Menü "Messwerte" werden alle Messwerte mit den dazugehörigen Status angezeigt. Außerdem kann über den Parameter "Raw value" der unskalierte, unlinearisierte Messwert des jeweiligen Sensoreingangs ausgelesen werden. So wird z.B. bei einem Pt100 der tatsächliche Ohm-Wert angezeigt, der für die Kalibrierung und Berechnung der Callendar- Van Dusen Koeffizienten verwendet werden kann.

n: Nummer des Transducer Blocks (1-2) bzw. des Sensoreingangs (1 oder 2)

Diagnose

Menüposition	Parameter-Bezeichnung	Parameterzu- griff	Beschreibung
Untermenü Messwerte	PV Wert n	lesen	Anzeige des primären Ausgangswerts des Transducer Blocks.
			Der Wert PV Wert n kann einem AI-Block zur Wei- terverarbeitung zur Verfügung gestellt werden. Die Güte des Messwertes wird mit den Parametern "Qualtity" und "Status" angezeigt.
	PV Wert n - Qualität	lesen	Anzeige der Qualität (Messwertstatus) für den PV Wert. Siehe Auswahlliste → 🗎 86
	PV Wert n - Status	lesen	Anzeige des Limits (Messwertstatus) für den PV Wert. 0x00 - OK 0x01 - Grenzwert unterschritten 0x02 - Grenzwert überschritten 0x03 - Wert konstant
	Prozesstemperatur n	lesen	Anzeige des Messwerts von Sensor n
	Prozesstemperatur n - Qualität	lesen	Anzeige der Qualität (Messwertstatus) der Prozesstempe- ratur für Sensor n. Wert siehe "PV Wert n - Qualität"
	Prozesstemperatur n - Status	lesen	Anzeige des Limits (Messwertstatus) der Prozesstempera- tur für Sensor n. Wert siehe "PV Wert n - Status"
	RJ Temperatur	lesen	Anzeige der internen Referenztemperatur
	RJ Temperatur - Qualität	lesen	Anzeige der Qualität (Messwertstatus) der internen Refe- renztemperatur. Wert siehe "PV Wert n - Qualität"
	RJ Temperatur - Status	lesen	Anzeige des Status (Messwertstatus) der internen Refe- renztemperatur. Wert siehe "PV Wert n - Status"
	Sensor Wert n (nicht linearisiert)	lesen	Anzeige des nicht linearisierten mV/Ohm des entsprech- enden Sensors.

13.4 Slot / Index Listen

13.4.1 Allgemeine Erläuterungen

Verwendete Abkürzungen in den Slot / Index Listen:

Endress+Hauser Matrix \rightarrow Angaben der Seite auf der Sie die Parametererklärung finden. Objekt Type (Objekttypen):

- Record \rightarrow beinhaltet Datenstrukturen (DS)
- Simple \rightarrow beinhaltet nur einzelne Datentypen (z.B. Float, Integer usw.)

Parameter:

- $M \rightarrow$ Mandatory, obligatorischer Parameter
- $0 \rightarrow$ Optional, optionaler Parameter

Data Types (Datentypen):

- DS \rightarrow Datenstruktur, beinhalten Datentypen z.B. Unsigned8, OctetString usw.
- Float \rightarrow IEEE 754 Format
- Integer \rightarrow 8 (Wertebereich -128...127), 16 (-327678...327678), 32 (-2³¹...2³¹)

- Octet String \rightarrow Binär codiert
- Unsigned $\rightarrow 8$ (Wertebereich 0...255), 16 (0...65535), 32 (0...4294967295)
- Visible String \rightarrow ISO 646, ISO 2375

Storage Class (Speicherklassen):

- $C \rightarrow Kalibrierdaten$
- Cst \rightarrow konstanter Parameter
- D \rightarrow dynamischer Parameter
- N → nicht flüchtiger Parameter. Eine Änderung eines Parameters dieser Klasse hat keine Auswirkungen auf den Parameter ST_REV des entsprechenden Blocks
- S → statischer Parameter. Eine Änderung eines Parameters dieser Klasse inkrementiert den Parameter ST_REV des entsprechenden Blocks
- V \rightarrow Storage class V bedeutet, dass der geänderte Parameterwert nicht im Gerät gespeichert wird

13.4.2 Device Management Slot 1

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter	Default Value		
Device Management Slot 1											
Directory Header/ Composite Directory Entries	0	Х		Record	Unsigned 16	12	Cst	М			
Composite Directory Entry/ Composite Directory Entries	1	Х		Record	Unsigned 16	28	Cst	М			
not used	2 - 15	-	-	-	-	-	-	-			

13.4.3 Physical Block Slot 0

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
			Pł	nysical Block Slo	t 0			
not used	0 - 15	Х	-	-	-	-	-	-
BLOCK_OBJEC T	16	Х	-	Record	DS-32	20	Cst	М
ST_REV	17	Х	-	Simple	Unsigned16	2	N	М
TAG_DESC	18	Х	Х	Simple	Octet String	32	S	М
STRATEGY	19	Х	Х	Simple	Unsigned 16	2	S	М
ALERT_KEY	20	Х	Х	Simple	Unsigned 8	1	S	М
TAR- GET_MODE	21	Х	Х	Simple	Unsigned 8	1	S	М
MODE_BLK	22	Х	-	Record	DS-37	3	D	М
ALARM_SUM	23	Х	-	Record	DS-42	8	D	М
SOFT- WARE_REVI- SION	24	Х	-	Simple	Visible String	16	Cst	М
HARD- WARE_REVI- SION	25	Х	-	Simple	Visible String	16	Cst	М
DEVICE MAN_ID	26	Х	-	Simple	Unsigned 16	2	Cst	М
DEVICE_ID	27	Х	-	Simple	Visible String	16	Cst	М
DEVICE SER NUM	28	Х	-	Simple	Visible String	16	Cst	М

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
DIAGNOSIS	29	Х	-	Simple	Octed String	4	D	М
DIAGNO- SIS_EXTEN- SION30	30	Х	-	Simple	Octed String	6	D	0
DIAGNO- SIS_MASK	31	Х	-	Simple	Octed String	4	Cst	М
DIAGNO- SIS_MASK_EX TENSION	32	Х	-	Simple	Octed String	6	Cst	0
DEVICE CER- TIFICATION	33	Х	-	Simple	Visible String	32	Cst	0
not used	34	-	-	-	-	-	-	-
FAC- TORY_RESET	35	Х	Х	Simple	Unsigned 16	2	S	0
DESCRIPTOR	36	Х	Х	Simple	Octed String	32	S	0
DEVICE MES- SAGE	37	Х	Х	Simple	Octed String	32	S	0
DEVICE INS- TAL DATE	38	Х	Х	Simple	Octed String	16	S	0
not used	39	-	-	-	-	-	-	-
IDENT_NUM- BER_SELEC- TION	40	Х	Х	Simple	Unsigned 8	1	S	0
HW_WRITE_P ROTECTION	41	Х	-	Simple	Unsigned 8	1	D	0
FEATURE	42	Х	-	Record	DS-68	8	N	М
COND_STA- TUS_DIAGNO- SIS	43	Х	Х		Unsigned 8	1	S	М
not used	44-53	-	-	-	-	-	-	-
ACTUAL_ERR OR_CODE	54	Х	-	Simple	Unsigned 16	2	D	М
LAST_ERROR _CODE	55	Х	-	Simple	Unsigned 16	2	D/S	М
UPDOWN_FE AT_SUPP	56	Х	-	Simple	Octed String	1	Const	М
not used	57-58	-	-	-	-	-	-	-
DEVICE_BUS_ ADDRESS	59	Х	-	Simple	Unsigned 8	1	D	М
not used	60	-	-	-	-	-	-	-
SET UNIT TO BUS	61	Х	Х	Simple	Unsigned 8	1	V	М
DIS- PLAY_VALUE	62	Х	-	Record	LocalDispVal	6	D	0
not used	63	-	-	-	-	-	-	-
PRO- FILE_REVI- SION	64	Х	_	Simple	Octed String	32	Cst(D)	М
CLEAR_LAST_ ERROR	65	Х	Х	Simple	Unsigned 8	1	V	М

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
IDENT_NUM- BER	66	Х	-	Simple	Unsigned 16	2	D	М
CHECK_CON- FIGURATION	67	Х	-	Simple	Unsigned 8	1	D	0
not used	68	-	-	-	-	-	-	-
ORDER_CODE	69	Х	-	Simple	Visible String	32	С	М
TAG_LOCA- TION	70	Х	Х	Simple	Visible String	22	С	0
SIGNATURE	71	Х	Х	Simple	Octed String	54	С	0
ENP_VERSION	72	Х	-	Simple	Visible String	16	Cst	М
DEVICE_DIAG NOSIS	73	Х	-	Simple	Octed String	10	D	М
EXTEN- DED_ORDER_ CODE	74	Х	-	Simple	Visible String	60	C	М
SER- VICE_LOCKIN G	75	Х	Х	Simple	Unsigned 16	2	D	М
not used	76 - 94	-	-	-	-	-	-	-
STATUS	95	Х	-	Simple	Octed String	16	D	0
DIAGNOS- TICS_CODE	96	Х	-	Simple	Octed String	4	D	0
STA- TUS_CHAN- NEL	97	Х	-	Simple	Unsigned 8	1	D	0
STA- TUS_COUNT	98	Х	-	Simple	Unsigned 8	1	D	0
LAST_STATUS	99	Х	-	Simple	Octed String	16	D/S	0
LAST_DIAG- NOS- TICS_CODE	100	Х	-	Simple	Octed String	4	D/S	0
LAST_STA- TUS_CHAN- NEL	101	Х	-	Simple	Unsigned 8	1	D/S	0
not used	102 - 103	-	-	-	-	-	-	-
VERSIONIN- FOSWREV	104	Х	-	Simple	Octed String	16	Ν	0
VERSIONIN- FOHWREV	105	Х	-	Simple	Octed String	16	Ν	Ο
VERSIONIN- FODEVREV	106	Х	-	Simple	Octed String	16	Ν	0
ELECTRONI- CAL_SERIAL_ NUMBER	107	Х	-	Simple	Visible String	16	Cst	М
not used	108 - 112	-	-	-	-	-	-	-
DEV_BUS_AD DR_CONFIG	113	Х	Х	Simple	Unsigned 8	1	Ν	0
CAL_IDENT- NUMBER	114	X	-	Simple	Unsigned 16	2	С	0
not used	115 - 118	-	-	-	-	-	-	-

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
SEN- SOR_DRIFT_M ONITORING	118	Х	Х	Simple	Unsigned 8	1	S	MS
SYS- TEM_ALARM _DELAY	119	Х	Х	Simple	Unsigned 8	1	S	0
MAINS_FIL- TER	120	Х	Х	Simple	Unsigned 8	1	S	0
AMBI- ENT_ALARM	121	Х	Х	Simple	Unsigned 8	1	S	0
not used	122 - 125	-	-	-	-	-	-	-
DISP_ALTER- NATING_TIM E	126	Х	Х	Simple	Unsigned 8	1	S	0
DISP_SOURCE _1	127	Х	Х	Simple	Unsigned 16	2	S	0
DISP_VALUE_ 1_DESC	128	Х	Х	Simple	Octed String	16	S	0
DIS_VALUE_1 _FORMAT	129	Х	Х	Simple	Unsigned 8	1	S	0
DISP_SOURCE _2	130	Х	Х	Simple	Unsigned 16	2	S	0
DISP_VALUE_ 2_DESC	131	Х	Х	Simple	Octed String	16	S	0
DISP_VALUE_ 2_FORMAT	132	Х	Х	Simple	Unsigned 8	1	S	0
DISP_SOURCE _3	133	Х	Х	Simple	Unsigned 16	2	S	0
DISP_VALUE_ 3_DESC	134	Х	Х	Simple	Octed String	16	S	0
DISP_VALUE_ 3_FORMAT	135	Х	Х	Simple	Unsigned 8	1	S	0
not used	136 - 139	-	-	-	-	-	-	_
VIEW_PHYSI- CAL_BLOCK	140	Х	Х	Simple	Unsigned16, DS-37, DS- 42, OctetString[4]	17	D	М

13.4.4 Transducer Block Slot 1

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
BLOCK_OBJEC T	70	Х	-	Record	DS-32	20	С	М
ST_REV	71	Х	-	Simple	Unsigned16	2	S	М
TAG_DESC	72	Х	Х	Simple	Octet String	32	S	М
STRATEGY	73	Х	Х	Simple	Unsigned 16	2	S	М
ALERT_KEY	74	Х	Х	Simple	Unsigned 8	1	S	М
TAR- GET_MODE	75	Х	Х	Simple	Unsigned 8	1	S	М
MODE_BLK	76	Х	-	Record	DS-37	3	D	М
ALARM_SUM	77	Х	-	Record	DS-42	8	D	М

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
PRI- MARY_VALU E	78	Х	-	Record	101	5	D	М
PRI- MARY_VALU E_UNIT	79	Х	Х	Simple	Unsigned 16	2	S	М
SECON- DARY_VALUE _1	80	Х	-	Record	101	5	D	М
SECON- DARY_VALUE _2	81	Х	-	Record	101	5	D	М
SEN- SOR_MEAS_T YPE	82	Х	Х	Simple	Unsigned 8	1	S	М
INPUT_RANG E	83	Х	Х	Simple	Unsigned 8	1	S	М
LIN_TAPE	84	Х	Х	Simple	Unsigned 8	1	S	М
not used	85 - 88	-	-	-	-	-	-	-
BIAS_1	89	Х	Х	Simple	Float	4	S	М
not used	90	-	-	-	-	-	-	-
UPPER_SEN- SOR_LIMIT	91	Х		Simple	Float	4	N	М
LOWER_SEN- SOR_LIMIT	92	Х		Simple	Float	4	Ν	М
not used	93	-	-	-	-	-	-	-
INPUT_FAULT _GEN	94	Х	-	Simple	Unsigned 8	1	D	М
INPUT_FAULT _1	95	Х	-	Simple	Unsigned 8	1	D	М
not used	96 - 98	-	-	-	-	-	-	-
MAX_SEN- SOR_VALUE_ 1	99	Х	Х	Simple	Float	4	Ν	0
MIN_SEN- SOR_VALUE_ 1	100	Х	Х	Simple	Float	4	N	0
not used	101 - 102	-	-	-	-	-	-	-
RJ_TEMP	103	Х	-	Simple	Float	4	D	0
RJ_TYPE	104	Х	Х	Simple	Unsigned 8	1	S	М
EXTER- NAL_RJ_VAL UE	105	Х	Х	Simple	Float	4	S	0
SENSOR_CON- NECTION	106	Х	Х	Simple	Unsigned 8	1	S	М
COMP_WIRE1	107	Х	-	Simple	Float	4	S	М
not used	108 - 131	-	-	-	-	-	-	-
MAX_PV	132	Х	Х	Simple	Float	4	Ν	М
MIN_PV	133	Х	Х	Simple	Float	4	N	М
CVD_COEFF_ A	134	Х	Х	Simple	Float	4	S	М

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
CVD_COEFF_ B	135	Х	Х	Simple	Float	4	S	М
CVD_COEFF_ C	136	Х	Х	Simple	Float	4	S	М
CVD_COEFF_ R0	137	Х	Х	Simple	Float	4	S	М
CVD_MAX	138	Х	Х	Simple	Float	4	S	М
CVD_MIN	139	Х	Х	Simple	Float	4	S	М
not used	140 - 144	-	-	-	-	-	-	-
CAL_POINT_H I	145	Х	Х	Simple	Float	4	S	М
CAL_POINT_L O	146	Х	Х	Simple	Float	4	S	М
CAL_POINT_S PAN	147	Х	-	Simple	Float	4	S	М
CAL_POINT_T EMP_LO	148	Х	Х	Simple	Float	4	S	М
CAL_POINT_T EMP_HI	149	Х	Х	Simple	Float	4	S	М
CAL_METHOD	150	Х	Х	Simple	Unsigned 8	2	S	М
SEN- SOR_SERIAL_ NUMBER	151	Х	Х	Simple	Octed String	32	S	М
POLY_COEFF_ A	152	Х	Х	Simple	Float	4	S	М
POLY_COEFF_ B	153	Х	X	Simple	Float	4	S	М
POLY_COEFF_ C	154	Х	Х	Simple	Float	4	S	М
POLY_COEFF_ R0	155	Х	X	Simple	Float	4	S	М
POLY_MEAS_ RANGE_MAX	156	Х	-	Simple	Float	4	S	М
POLY_MEAS_ RANGE_MIN	157	Х	-	Simple	Float	4	S	М
not used	158 - 161	-	-	-	-	-	-	-
CORRO- SION_DETEC- TION	162	Х	Х	Simple	Unsigned 8	2	S	М
CORRO- SION_CYCLES	163	Х	-	Simple	Unsigned 8	2	S	М
SEN- SOR_DRIFT_A LERT_VALUE	164	Х	Х	Simple	Float	4	S	М
not used	165 - 168	-	-	-	-	-	-	-
RJ_MAX_SEN- SOR_VALUE	169	Х	-	Simple	Float	4	Ν	М
RJ_MIN_SEN- SOR_VALUE	170	X	-	Simple	Float	4	N	М
not used	171	-	-	-	-	-	-	-

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
TEMPERA- TURE_TRES- HOLD	172	Х	Х	Simple	Float	4	S	М
RJ_OUT	173	Х	-	Record	101	5	D	М
SEN- SOR_RAW_V ALUE	174	Х	-	Simple	Float	4	D	М
not used	175 - 219	-	-	-	-	-	-	-
VIEW_TRANS DUCER_BLOC K	220	Х	-	Simple	Unsigned16, DS-37, DS- 42, 101, Unsig- ned8, Unsig- ned8	20	D	Μ

13.4.5 Transducer Block Slot 2

Der Transducer Block Slot 2 enthält die gleichen Parameter wie der Trancducer Block Slot 1. Die Einstellungen in Slot 2 betreffen den Sensoreingang 2.

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
Alle Parame- ter → 🗎 102	70 - 220	-	-	-	-	-	-	-

13.4.6 Analog Input Block (AI 1) Slot 1

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
not used	2 - 15	Х	-	-	-	-	-	-
BLOCK_OBJEC T	16	Х	-	Record	DS-32	20	С	М
ST_REV	17	Х	-	Simple	Unsigned 16	2	N	М
TAG_DESC	18	Х	Х	Simple	Octet String	32	S	М
STRATEGY	19	Х	Х	Simple	Unsigned 16	2	S	М
ALERT_KEY	20	Х	Х	Simple	Unsigned 8	1	S	М
TAR- GET_MODE	21	Х	Х	Simple	Unsigned 8	1	S	М
MODE_BLK	22	Х	-	Record	DS-37	3	D	М
ALARM_SUM	23	Х	-	Record	DS-42	8	D	М
BATCH	24	Х	Х	Record	DS-67	10	S	М
not used	25	Х	-	-	-	-	-	-
OUT	26	Х	-	Record	101	5	D	М
PV_SCALE	27	Х	Х	Array	Float	8	S	М
OUT_SCALE	28	Х	Х	Record	DS-36	11	S	М
LIN_TYPE	29	Х	Х	Simple	Unsigned 8	1	S	М
CHANNEL	30	Х	Х	Simple	Unsigned 16	2	S	М
not used	31	Х	-	-	-	-	-	-
PV_FTIME	32	Х	Х	Simple	Float	4	S	М
FSAFE_TYPE	33	Х	Х	Simple	Unsigned 8	1	S	0

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
FSAFE_VALU E	34	Х	X	Simple	Float	4	S	0
ALARM_HYS	35	Х	Х	Simple	Float	4	S	М
not used	36	Х	-	-	-	-	-	-
HI_HI_LIM	37	Х	Х	Simple	Float	4	S	М
not used	38	Х	-	-	-	-	-	-
HI_LIM	39	Х	Х	Simple	Float	4	S	М
not used	40	Х	-	-	-	-	-	-
LO_LIM	41	Х	Х	Simple	Float	4	S	М
not used	42	Х	-	-	-	-	-	-
LO_LO_LIM	43	Х	Х	Simple	Float	4	S	М
not used	44 - 45	-	-	-	-	-	-	-
HI_HI_ALM	46	Х	-	Record	DS-39	16	D	0
HI_ALM	47	Х	-	Record	DS-39	16	D	0
LO_ALM	48	Х	-	Record	DS-39	16	D	0
LO_LO_ALM	49	Х	-	Record	DS-39	16	D	0
SIMULATE	50	Х	Х	Record	DS-50	6	S	0
OUT UNIT TEXT	51	Х	Х	Simple	Octed String	16	S	0
not used	52 - 64	-	-	-	-	-	-	-
VIEW_AI	65	X	-	Record	Unsigned16, DS- 37, DS-42, 101	18	D	М
not used	66 - 69	-	-	-	-	-	-	-

13.4.7 Analog Input Block (AI 2) Slot 2

Der Analog Input Block Slot 2 enthält die gleichen Parameter wie der Analog Input Block Slot 1.

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
Alle Parame- ter → 🗎 105	0 - 65	-	-	-	-	-	-	-
not used	66 - 69	-	-	-	-	-	-	-

13.4.8 Analog Input Block (AI 3) Slot 3

Der Analog Input Block Slot 3 enthält die gleichen Parameter wie der Analog Input Block Slot 1.

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
Alle Parame- ter → 🗎 105	0 - 65	-	-	-	-	-	-	-
not used	66 - 225	-	-	-	-	-	-	-

13.4.9 Analog Input Block (AI 4) Slot 4

Der Analog Input Block Slot 4 enthält die gleichen Parameter wie der Analog Input Block Slot 1.

Parameter Name	Index	Read	Write	Object Type	Data Type	Byte Size	Storage Class	Parameter
Alle Parame- ter → 🗎 105	0 - 65	-	-	-	-	-	-	-
not used	66 - 225	-	-	-	-	-	-	-

Stichwortverzeichnis

A Anschlusskombinationen
Bedienungsmöglichkeiten Bedientool
C CE-Zeichen
Dokument Funktion
F Feldgeräte, Anzahl
G Gesamtkabellänge
K Kabeltyp
L Leiter ohne Aderendhülse
M Massivleiter
P Produktsicherheit
R Rücksendung
S Stichleitungslänge
T Typenschild
U UL-Zulassung

Z	
-	1

Zubehör	
Gerätespezifisch	Э
Kommunikationsspezifisch)

www.addresses.endress.com

