Operating Instructions

Liquicap M

FMI52 HART

Capacitive
Continuous level measurement for liquids
1 About this document 6
 1.1 Document function 6
 1.2 Document conventions 6
 1.2.1 Safety symbols 6
 1.2.2 Electrical symbols 6
 1.2.3 Tool symbols 7
 1.2.4 Symbols for certain types of information and graphics 7
 1.3 Documentation 8
 1.3.1 Technical Information .. 8
 1.3.2 Certificates 8
 1.3.3 Hygienic compatibility .. 9
 1.4 Registered trademarks 9
2 Basic safety instructions 10
 2.1 Requirements for the personnel 10
 2.2 Workplace safety 10
 2.3 Operational safety 10
 2.3.1 Ex-area 10
 2.4 Product safety 10
3 Incoming acceptance and product identification 11
 3.1 Incoming acceptance 11
 3.2 Product identification 11
 3.3 Storage and transport 11
4 Mounting 12
 4.1 Quick installation guide 12
 4.2 Mounting requirements 12
 4.2.1 Mounting the sensor 12
 4.2.2 Measuring condition ... 13
 4.2.3 Minimum probe length for nonconductive media < 1 µS/cm 13
 4.2.4 Installation examples ... 14
 4.3 Probe with separate housing 16
 4.3.1 Extension heights: separate housing ... 16
 4.3.2 Wall bracket 17
 4.3.3 Wall mounting 18
 4.3.4 Pipe mounting 18
 4.3.5 Shortening the connecting cable ... 19
 4.4 Installation instructions 20
 4.4.1 Probe installation 21
 4.4.2 Aligning the housing ... 22
 4.4.3 Sealing the probe housing ... 22
 4.5 Post-installation check 22
5 Electrical connection 24
 5.1 Connecting requirements 24
 5.1.1 Potential equalization .. 24
 5.1.2 Electromagnetic compatibility (EMC) 24
 5.1.3 Cable specification ... 24
 5.1.4 Connector 25
 5.1.5 Supply voltage 25
5.2 Wiring and connecting 25
 5.2.1 Connection compartment ... 25
 5.2.2 Terminal assignment 26
 5.2.3 Connecting HART with other supply units 27
5.3 Post-connection check 27
6 Operation options 29
 6.1 Overview of operation options 29
 6.1.1 Display and operating elements at the FEI50H electronic insert 29
 6.1.2 Operation via the optional display and operating module 30
 6.1.3 The operating menu 32
 6.2 Error messages 35
 6.3 Locking and unlocking configuration 35
 6.3.1 Key locking 35
 6.3.2 Key unlocking 36
 6.3.3 Software locking 36
 6.4 Resetting to factory setting 36
 6.4.1 Using the reset 36
 6.4.2 Effects of a reset ... 36
 6.4.3 Performing a reset ... 36
 6.5 Operation via FieldCare Device Setup 37
 6.5.1 Function scope 37
 6.5.2 Source for device description files 37
7 Commissioning 38
 7.1 Installation and function check 38
 7.2 Basic setup without the display or operating module 38
 7.2.1 Function switch: position 1. Operation 39
 7.2.2 Function switch: position 2. Carry out empty calibration - for empty tanks 39
 7.2.3 Function switch: position 2. Carry out empty calibration - for almost empty tanks 39
 7.2.4 Function switch: position 3. Carry out full calibration - for full tanks 40
 7.2.5 Function switch: position 3. Carry out full calibration - for almost full tanks 40
 7.2.6 Function switch: position 4. Measuring modes 41
 7.2.7 Function switch: position 5. Measuring range 41
 7.2.8 Function switch: position 6. Proof test - self-test 42

8 Diagnostics and troubleshooting ... 74

8.1 Diagnostic information via LEDs 74

8.1.1 Green LED flashing 74

8.2 System error messages 74

8.2.1 Error signal 74

8.2.2 Last errors 74

8.2.3 Types of error 74

8.2.4 Error codes 75

8.3 Possible measuring errors 76

8.3.1 Measured value is incorrect 76

8.4 Firmware history 77

9 Maintenance 78

9.1 External cleaning 78

9.2 Cleaning the probe 78

9.3 Seals 78

9.4 Endress+Hauser services 78

10 Repair 79

10.1 General notes 79

10.2 Spare parts 79

10.3 Repairing Ex-certified devices 79

10.4 Replacement 80

10.5 Return 80

10.6 Disposal 80

10.6.1 Removing the measuring device 80

10.6.2 Disposing of the measuring device 80

11 Accessories 81

11.1 Protective cover 81

11.2 Shortening set for FMI52 81

11.3 Commubox FXA195 HART 81

11.4 Surge arresters 81

11.4.1 HAW569 81

11.4.2 HAW569 81

11.5 Weld-in adapter 81

12 Technical data 82

12.1 Probe 82

12.1.1 Capacitance values of the probe 82

12.1.2 Additional capacitance 82

12.1.3 Probe lengths for continuous measurement in conductive liquids 82

12.2 Input 83

12.2.1 Measured variable 83

12.2.2 Measuring range 83

12.2.3 Measuring condition 83

12.3 Output 84

12.3.1 Output signal 84

12.3.2 Signal on alarm 84

12.3.3 Linearization 84

12.4 Performance characteristics 84

12.4.1 Reference operating conditions 84

12.4.2 Maximum measured error 84

12.4.3 Influence of ambient temperature 84

12.4.4 Switch-on behavior 84

12.4.5 Measured value reaction time 85

12.4.6 Response time 85
12.4.7 Accuracy of factory calibration 85
12.4.8 Resolution 86
12.5 Operating conditions: Environment 86
 12.5.1 Ambient temperature range 86
 12.5.2 Climate class 86
 12.5.3 Vibration resistance 86
 12.5.4 Shock resistance 86
 12.5.5 Cleaning 87
 12.5.6 Degree of protection 87
 12.5.7 Electromagnetic compatibility (EMC) 88
12.6 Operating conditions: Process 88
 12.6.1 Process temperature range 88
 12.6.2 Process pressure limits 89
 12.6.3 Pressure and temperature derating 90

Index .. 92
1 About this document

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

These instructions provide all the information required for use of the software: from the product description, installation and use to system integration, operation, diagnostics and troubleshooting to software updates and disposal.

1.2 Document conventions

1.2.1 Safety symbols

⚠️ **DANGER**
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ **WARNING**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ **CAUTION**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ **NOTICE**
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

 sóc
Alternating current

교
Direct current and alternating current

교교교
Direct current

接地
Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

接地
Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:

- **Interior ground terminal**: protective earth is connected to the mains supply.
- **Exterior ground terminal**: device is connected to the plant grounding system.
1.2.3 Tool symbols

- Phillips head screwdriver
- Flat blade screwdriver
- Torx screwdriver
- Allen key
- Open-ended wrench

1.2.4 Symbols for certain types of information and graphics

- Permitted
 Procedures, processes or actions that are permitted
- Preferred
 Procedures, processes or actions that are preferred
- Forbidden
 Procedures, processes or actions that are forbidden
- Tip
 Indicates additional information
- Reference to documentation
- Reference to page
- Reference to graphic
- Notice or individual step to be observed
- Series of steps
- Result of a step
- Help in the event of a problem
- Visual inspection
- Operation via operating tool
- Write-protected parameter
- Item numbers
- Views
 - Hazardous area
 Indicates the hazardous area
 - Safe area (non-hazardous area)
 Indicates the non-hazardous area
Safety instructions
Observe the safety instructions contained in the associated Operating Instructions

Temperature resistance of the connection cables
Specifies the minimum value of the temperature resistance of the connection cables

- **LED not lit**
- **LED lit**
- **LED flashes**

1.3 Documentation

1.3.1 Technical Information
Liquicap M FMI52
TI01524F

1.3.2 Certificates

ATEX safety instructions
Liquicap M FMI52
- II 1/2 G Ex ia IIC T3...T6 Ga/Gb
- II 1/2 G Ex ia IIB T3...T6 Ga/Gb
- II 1/2 D Ex ia IIIc T90 °C Da/Db
 XA00327F
- II 1/2 Ex ia/db IIC T6...T3 Ga/Gb
- II 1/2 Ex ia/db eb IIC T6...T3 Ga/Gb
- II 1/2 D Ex ia /tb IIIc T90 °C Da/Db
 XA00328F
- Ga/Gb Ex ia IIC T3...T6
 Zone 20/21 Ex iaD 20/Ex tD A21 IP65 T 90 °C
 IECEx BVS 08.0027X
 XA00423F
- II 3 G Ex nA IIC T6 Gc
- II 3 G Ex nA nC IIC T5 Gc
- II 3C D Ex tc IIIc T100 °C Dc
 XA00346F

INMETRO safety instructions
Liquicap M FMI52
- Ex d [ja Ga] IIB T3...T6 Ga/Gb
- Ex d [ja Ga] IIC T3...T6 Ga/Gb
- Ex de [ja Ga] IIC T3...T6 Ga/Gb
 XA01171F
- Ex ia IIC T* Ga/Gb
- Ex ia IIB T* Ga/Gb
- Ex ia IIIc T90 °C Da/Db IP66
 XA01172F
NEPSI safety instructions
- Liquicap M FMI52
 Ex ia IIC/IIB T3...T6 Ga/Gb
 XA00417F
- Liquicap M FMI52
 Ex d ia IIC/IIB T3/T4/T6 Ga/Gb
 Ex de ia IIC/IIB T3/T4/T6 Ga/Gb
 XA00418F
- Liquicap M FMI52
 Ex nA IIC T3...T6 Gc
 Ex nA nC IIC T3...T6 Gc
 XA00430F

Overfill protection DiBt (WHG)
Liquicap M FMI52
ZE00265F

Functional safety (SIL2)
Liquicap M FMI52
SD00198F

Control Drawings (CSA and FM)
- Liquicap M FMI52
 FM IS
 ZD00220F
- Liquicap M FMI52
 CSA IS
 ZD00221F
- Liquicap M FMI52
 CSA XP
 ZD00233F

1.3.3 Hygienic compatibility
Information regarding device versions that meet the requirements of 3A Sanitary Standard No. 74 and/or are certified by the EHEDG:
SD02503F

Suitable fittings and seals must be used to ensure hygiene-compliant design according to 3A and EHEDG specifications.
Comply with the maximum permitted temperature of the process seal.
The gap-free connections can be cleaned of all residue using the typical cleaning methods within this industry (CIP and SIP).

1.4 Registered trademarks
HART®
Registered trademark of the FieldComm Group, Austin, USA
TRI CLAMP®
Registered trademark of Alfa Laval Inc., Kenosha, USA
2 Basic safety instructions

2.1 Requirements for the personnel
The personnel must fulfill the following requirements to carry out the necessary tasks:

- Are trained, qualified to perform specific functions and tasks.
- Are authorized by the plant owner or operator to perform specific tasks.
- Are familiar with federal or national regulations.
- Have read and understood the instructions in the manual and supplementary documentation.
- They follow instructions and comply with conditions.

2.2 Workplace safety
For work on and with the device:

- Wear the required protective equipment according to federal or national regulations.

2.3 Operational safety
When performing configuration, testing, and maintenance work on the device, alternative supervisory measures must be taken to guarantee the operational safety and process safety.

2.3.1 Ex-area
When using the measuring system in Ex-areas, the appropriate national standards and regulations must be observed. Separate Ex-documentation, which constitutes an integral part of this documentation, is supplied with the device. The installation procedures, connection data and safety instructions it contains must be observed.

- Make sure that the technical staff has adequate training.
- The special measuring and safety-related requirements for the measuring points must be observed.

2.4 Product safety
This measuring device is designed following good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It is compliant with the EC directives listed in the device-specific EC Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.
3 Incoming acceptance and product identification

3.1 Incoming acceptance

Check whether the packaging or content is damaged. Check that the goods delivered are complete and compare the scope of delivery with the information in your order.

3.2 Product identification

The measuring device can be identified in the following ways:

- nameplate data
- extended order code with a breakdown of the device features on the delivery note
- the serial number from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): all of the information on the measuring device is displayed along with an overview of the scope of the technical documentation provided
- the serial number on the nameplate into the *Endress+Hauser Operations App* or use the *Endress+Hauser Operations App* to scan the 2-D matrix code (QR Code) on the nameplate

<table>
<thead>
<tr>
<th>1</th>
<th>The nameplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Order number</td>
</tr>
<tr>
<td>3</td>
<td>Serial number</td>
</tr>
<tr>
<td>4</td>
<td>Electronic insert</td>
</tr>
<tr>
<td>5</td>
<td>Electronic insert output value</td>
</tr>
<tr>
<td>6</td>
<td>Ambient temperature at housing</td>
</tr>
<tr>
<td>7</td>
<td>Max. permissible pressure in a tank</td>
</tr>
<tr>
<td>8</td>
<td>Safety certificates</td>
</tr>
<tr>
<td>9</td>
<td>Functional safety</td>
</tr>
<tr>
<td>10</td>
<td>Probe length values</td>
</tr>
<tr>
<td>11</td>
<td>ATEX approval</td>
</tr>
<tr>
<td>12</td>
<td>WHG approval (German Water Resources Act)</td>
</tr>
<tr>
<td>13</td>
<td>Safety information</td>
</tr>
<tr>
<td>14</td>
<td>Production date</td>
</tr>
<tr>
<td>15</td>
<td>Bar code</td>
</tr>
</tbody>
</table>

3.3 Storage and transport

For storage and transportation, pack the device to protect it against impact. The original packing offers the best protection for this. The permitted storage temperature is –50 to +85 °C (–58 to +185 °F).
4 Mounting

4.1 Quick installation guide

* A probe installation *

1. Screw the probe onto the proper place.
2. Fasten the probe with proper torque in accordance with the thread size.

Thread size and torque value
- G½: < 80 Nm (59.0 lbf ft)
- G¾: < 100 Nm (73.7 lbf ft)
- G1: < 180 Nm (132.8 lbf ft)
- G1½: < 500 Nm (368.7 lbf ft)

Aligning the housing

1. → 2. → 3. → ...270°

- Loosen the clamping screw.
- Align the housing into the needed position.
- Tighten the clamping screw with torque < 1 Nm (0.74 lbf ft)

4.2 Mounting requirements

4.2.1 Mounting the sensor

The Liquicap M FMI52 can be installed vertically from above.

ℹ️ Make sure that:
- the probe is not installed in the area of the filling curtain
- the probe is not in contact with the container wall
- the distance from the container floor is ≥ 10 mm (0.39 in)
- multiple probes are mounted next to each other at the minimum distance between the probes of 500 mm (19.7 in)
4.2.2 Measuring condition

Measuring range L1 is possible from the tip of the probe to the process connection.

When installing in a nozzle, use inactive length L3.

The 0 % and 100 % calibration can be inverted.

4.2.3 Minimum probe length for nonconductive media < 1 µS/cm

The minimum probe length can be calculated using the formula:
\[l_{\text{min}} = \frac{\Delta C_{\text{min}}}{C_s \cdot (\varepsilon_r - 1)} \]

- \(l_{\text{min}} \): minimum probe length
- \(\Delta C_{\text{min}} \): 5 pF
- \(C_s \): probe capacitance in air
- \(\varepsilon_r \): dielectric constant, e.g., oil = 2.0

To check the probe capacitance in the air, go to the chapter → 82.

4.2.4 Installation examples

Rope probes

The probe can be installed from above in conductive tanks made from metal.

If the process connection of the probe is insulated from the metal tank using a seal material, then the ground connection on the probe housing must be connected to the tank using a short line.

- The probe may not come into contact with the container wall! Do not install probes in the area of the filling curtain.
- If multiple probes are mounted next to each other, a minimum distance of 500 mm (19.7 in) between the probes must be observed.
- When mounting, ensure there is a good electrically conductive connection between the process connection and the tank. Use an electrically conductive sealing band for example.

A fully insulated rope probe may be neither shortened nor extended.

Damaged insulation of the probe rope causes improper measurements.

The following application examples show the vertical installation for continuous level measurement.
A probe with inactive length for the insulated tanks

A probe with fully insulated inactive length for mounting nozzles

Shortening the rope

For information about the shortening kit, see Brief Operating Instructions KA061F/00.

Tensioning weight with tension

The end of the probe needs to be secured if the probe would otherwise touch the silo wall or another part in the tank. This is what the internal thread in the probe weight is intended for. The bracing can be conductive or insulating to the tank wall.

To avoid too high tensile load, the rope should be loose or guyed with a spring. The maximum tensile load may not exceed 200 Nm (147.5 lbf ft).
4.3 Probe with separate housing

The maximum cable length L4 and rope length L1 cannot exceed 10 m (33 ft).

The maximum cable length between the probe and separate housing is 6 m (20 ft). The required cable length must be indicated in the ordering process of a Liquicap M with separate housing.

If the cable connection has to be shortened or led through a wall, then it must be separated from the process connection.

4.3.1 Extension heights: separate housing

The cable:
- has a minimum bending radius of r ≥ 100 mm (3.94 in)
- diameter Ø 10.5 mm (0.14 in)
- outer jacket made of silicone, notch resistance
Values of parameters ¹):

Polyester housing (F16)
- B: 76 mm (2.99 in)
- H1: 172 mm (6.77 in)

Polyester housing (F15)
- B: 64 mm (2.52 in)
- H1: 166 mm (6.54 in)

Aluminum housing (F17)
- B: 65 mm (2.56 in)
- H1: 177 mm (6.97 in)

D and H5 parameter
- rope probe without fully insulated inactive length and threads G¾", G1", NPT¾", NPT1", Clamp 1", Clamp 1½", Universal Ø44 mm (1.73 in), flange < DN50, ANSI 2", 10K50:
 - D: 38 mm (1.5 in)
 - H5: 66 mm (2.6 in)
- rope probe without fully insulated inactive length and threads G1½", NPT1½", Clamp 2", DIN 11851, flange ≥ DN50, ANSI 2", 10K50
 - D: 50 mm (1.97 in)
 - H5: 89 mm (3.5 in)
- rope probe with fully insulated inactive length:
 - D: 38 mm (1.5 in)
 - H5: 89 mm (3.5 in)

4.3.2 Wall bracket
- The wall bracket is a part of the scope of delivery.
- To use the wall bracket as a drill template, the wall bracket must be first screwed to the separate housing.
- The distance between the holes is reduced by screwing it to the separate housing.

¹) See parameters on the drawings.
4.3.3 Wall mounting

1 → Mark the distance between the holes on the wall before drilling.
2 → Screw together the wall bracket on the tube.
3 → Screw the separate housing on the wall.

4.3.4 Pipe mounting

The maximum pipe diameter is 50.8 mm (2 in).

1 → Screw together the wall bracket on the tube.
2 → Screw the separate housing on a pipe.
4.3.5 Shortening the connecting cable

NOTICE
Risk of damage to connections and cable.

- Make sure that neither the connecting cable nor the probe is turning with the pressing screw!

Recalibration must be performed before commissioning.

The maximum connection length between the probe and the separate housing is 6 m (20 ft).

When ordering a device with separate housing, the desired length must be specified.

If the cable connection has to be shortened or led through a wall, it must be separated from the process connection.

Disconnecting the connection cable

- Make sure that the connecting cable and the probe is not turning with the pressing screw.

1. Loosen the pressing screw with an open-end wrench AF22.
2. Pull the insert seal out of the cable gland.
3. Block the adapter disk with the open-end wrench AF34 and loosen the cable gland with the open-end wrench AF22.
4. Pull out the cable with the cone.
5. Remove the seal and loosen the adapter disk with the open-end wrench AF34.
6. Remove the snap ring with a snap ring pliers.
Remove the blade plug from the socket.

Loosen the screw to disconnect the yellow and yellow-green cables.

Loosen the nut (M4) of the blade plug.

7 Cable connections
1. External screening (not required)
2. Strand black (bk) (not required)
3. Coaxial cable with central core and screening
4. Solder the red (rd) strand with the central core of the coaxial cable (probe)
5. Solder the strand with the screening of the yellow (ye) coaxial cable (ground)
6. Strand yellow and green (gn/ye) with a ring terminal

- We recommend reusing all strands with ring terminals in case of shortening the connecting cable
- To avoid the risk of short-circuiting when the strands are not to be reused, the connections of the new ring terminals must be insulated with a heat shrinking sleeve
- Use heat-shrink tubes to insulate all soldered joints

4.4 Installation instructions

NOTICE

Do not damage the probe insulation during installation!

Check the rope insulation.
NOTICE

Do not screw the probe using the probe housing!

- Use an open-end wrench to screw the probe.

4.4.1 Probe installation

Probe with thread

Cylindrical threads G½, G¾, G1, G1½

To be used with the elastomer fiber seal supplied or another chemically resistant seal. Make sure that the temperature resistance of a seal is correct.

The following applies to probes with a parallel thread and supplied seal:

- **Thread G½**
 - for pressures up to 25 bar (362.5 psi): 25 Nm (18.4 lbf ft)
 - maximum torque: 80 Nm (59.0 lbf ft)

- **Thread G¾**
 - for pressures up to 25 bar (362.5 psi): 30 Nm (22.1 lbf ft)
 - maximum torque: 100 Nm (73.8 lbf ft)

- **Thread G1**
 - for pressures up to 25 bar (362.5 psi): 50 Nm (36.9 lbf ft)
 - maximum torque: 180 Nm (132.8 lbf ft)

- **Thread G1½**
 - for pressures up to 100 bar (1450 psi): 300 Nm (221.3 lbf ft)
 - maximum torque: 500 Nm (368.8 lbf ft)

Conical threads ½ NPT, ¾ NPT, 1 NPT, 1½ NPT

Wrap the thread with a suitable sealing material. Use conductive sealing material only.

Probe with Tri-Clamp, sanitary connection or flange

The process seal must meet the specifications of the application. Check the seal’s resistance to temperature and medium.

If the flange is PTFE-clad, this generally suffices as the seal up to the permitted operating pressure.

Probe with PTFE-clad flange

- Use spring washers!

Depending on process pressure and process temperature, check and re-tighten the screws at regular intervals.

Recommended torque: 60 to 100 Nm (44.3 to 73.8 lbf ft).
4.4.2 Aligning the housing

The housing can be rotated 270° to align with the cable entry. To prevent moisture penetration, route the connecting cable downwards in front of the cable gland and secure it with a cable tie. This is particularly recommended for outdoor mounting.

Aligning the housing

1 → 2 → 3

- Loosen the clamping screw.
- Align the housing into the needed position.
- Tighten the clamping screw with torque < 1 Nm (0.74 lbf ft).

4.4.3 Sealing the probe housing

Make sure that the cover is sealed. Water cannot enter into the device when performing installation, connection and configuration tasks. Always seal the housing cover and cable entries securely.

The O-ring seal on the housing cover is shipped with a coat of special lubricant applied. In this way, the cover can be sealed tight and the aluminum thread does not bite when screwing down.

Never use mineral oil-based grease as this destroys the O-ring.

4.5 Post-installation check

After installing the measuring device, carry out the following checks:

- Do a visual check for damages.
- Does the device meet the specifications at the measuring point with regard to process temperature and pressure, ambient temperature, measuring range?
- Has the process connection been tightened with the tightening torque?
☐ Check if the measuring points are correctly labeled.
☐ Is the device adequately protected against precipitation and direct sunlight?
5 Electrical connection

Before connecting the power supply, note the following:

- the supply voltage must match the data specified on the nameplate
- switch off the supply voltage before connecting the device
- connect the potential equalization to the ground terminal on the sensor

When using the probe in hazardous areas, the relevant national standards and the information in the safety instructions (XA) must be observed. Use the specified cable gland only.

5.1 Connecting requirements

5.1.1 Potential equalization

DANGER

Risk of explosion!
- Connect the cable screen on the sensor side only if installing the probe in Ex-areas!

Connect the potential equalization to the outer ground terminal of the housing (T13, F13, F16, F17, F27). In the case of the stainless steel housing F15, the ground terminal can also be located in the housing. For further safety instructions, please refer to the separate documentation for applications in hazardous areas.

5.1.2 Electromagnetic compatibility (EMC)

Interference emission to EN 61326, Electrical Equipment Class B. Interference immunity to EN 61326, Annex A (Industrial) and NAMUR Recommendation NE 21 (EMC).

Failure current is in accordance with NAMUR NE43: FEI50H = 22 mA.

A standard commercial instrument cable can be used.

Information on connecting shielded cables is provided in Technical Information TI00241F "EMC test procedures”.

5.1.3 Cable specification

Connect the electronic inserts by using commercially available instrument cables. If a potential equalization is present, and the shielded instrument cables are used, connect the shielding on both sides to optimize the shielding effect.

![Diagram](image)

A Cable entry
B Electronic insert connections: cable size max. 2.5 mm² (14 AWG)
C The ground connection outside the housing, cable size max. 4 mm² (12 AWG)
ød Cable diameter
Cable entries
- Nickel-plated brass: \(\varnothing d = 7 \) to 10.5 mm (0.28 to 0.41 in)
- Synthetic material: \(\varnothing d = 5 \) to 10 mm (0.2 to 0.38 in)
- Stainless steel: \(\varnothing d = 7 \) to 12 mm (0.28 to 0.47 in)

5.1.4 Connector
For the version with a connector M12, the housing does not have to be opened for connecting the signal line.

PIN assignment for M12 connector

1. Positive potential
2. Not used
3. Negative potential
4. Ground

5.1.5 Supply voltage
All of the following voltages are terminal voltages directly at the device:
- 12.0 to 36.0 V\(_{DC}\) in the non-hazardous area
- 12.0 to 30.0 V\(_{DC}\) in the Ex ia hazardous area
- 14.4 to 30.0 V\(_{DC}\) in the Ex d hazardous area

5.2 Wiring and connecting

5.2.1 Connection compartment
Depending on explosion protection, the connection compartment is available in the following variants:

Standard protection, Ex ia protection
- polyester housing F16
- stainless steel housing F15
- aluminum housing F17
- aluminum housing F13 with gas-tight process seal
- stainless steel housing F27
- aluminum housing T13, with the separate connection compartment

Ex d protection, Gas-tight process seal
- aluminum housing F13 with gas-tight process seal
- stainless steel housing F27 with gas-tight process seal
- aluminum housing T13, with the separate connection compartment

Connecting the electronic insert to the power supply:
1. Unscrew the housing cover.
2. Remove the housing cover.
3. Release the cable gland.
4. Insert the cable.

Connecting the electronic insert to the power supply mounted in the housing T13:

1. Unscrew the housing cover.
2. Remove the housing cover.
3. Release the cable gland.
4. Insert the cable.

5.2.2 Terminal assignment

2-wire, 4 to 20 mA with HART

The twin-core connecting cable is connected to the screw terminals with conductor cross-section 0.5 to 2.5 mm² (20 to 13 AWG) in the connection compartment at the
electronic insert. If the superimposed communication signal (HART) is used, a shielded cable must be used with the shielding connected at the sensor and power supply. Protective circuits against reverse polarity, HF influences, and overvoltage peaks are integrated.

5.2.3 Connecting HART with other supply units

If the HART communication resistor is not integrated with the supply unit, a 250 Ω communication resistor must be included in the 2-wire line.

5.3 Post-connection check

After wiring the measuring device, carry out the following checks:

- Is the terminal assignment correct?
☐ Is the cable gland sealed tight?
☐ Is the housing cover fully screwed?
☐ Is the device operational and is the green LED flashing when the device is on?
6 Operation options

6.1 Overview of operation options
This device can operate with:
- the operating elements at the FEI50H electronic insert
- the display and operating module
- the HART protocol with Commubox FXA195 and FieldCare operating program

6.1.1 Display and operating elements at the FEI50H electronic insert

![Diagram of FEI50H electronic insert]

<table>
<thead>
<tr>
<th>9 FEI50H electronic insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Key (1)</td>
</tr>
<tr>
<td>2 Green LED - operational status</td>
</tr>
<tr>
<td>3 Function switch</td>
</tr>
<tr>
<td>4 Red LED - fault</td>
</tr>
<tr>
<td>5 Key (2)</td>
</tr>
<tr>
<td>6 Current pick-off 4 to 20 mA</td>
</tr>
</tbody>
</table>

Function switch
- 1: Operation: select for normal operation
- 2: Empty calibration: select to set empty calibration
- 3: Full calibration: select to set full calibration
- 4: Measuring modes: select to choose between operation for media that form buildup (e.g. yogurt) or for media without buildup (e.g. water)
- 5: Measuring range: select the measuring range in pF for:
 - measuring range probe length < 6 m (20 ft) corresponds to 2,000 pF
 - measuring range probe length > 6 m (20 ft) corresponds to 4,000 pF
- 6: Self-test: select to activate the self-test
- 7: Reset - factory settings: select to restore the factory settings
- 8: Upload sensor DAT (EEPROM)
 - select to transfer the calibration values in the electronic insert to the sensor DAT (EEPROM) if replacing the probe
 - select to transfer the calibration values of the sensor DAT (EEPROM) to the electronics if replacing the electronic insert

Red LED - indicates a fault or malfunction
- Flashes 5x per second:
 - capacity at probe is too large, short-circuit at the probe or FEI50H is defective
- Flashes 1x per second:
 - the temperature in the electronic insert is outside the permitted temperature range

Key
Press to execute the functions set via the function switch

Display connector
Connector dedicated for optional onsite display and operating module

Current pick-off 4 to 20 mA
Connect the multimeter for full or empty calibration without disconnecting the main circuit

Key
Press to execute the functions set via the function switch

Green LED - indicates operation
- Flashes 5x per second: the device operates
- Flashes 1x per second: the device is in the calibration mode

6.1.2 Operation via the optional display and operating module

Display and operating elements

1. **Menu title**
2. **Item code of a displayed function**
3. **Key symbols**
4. **Hardware keys**
Symbols on the display

Operating mode of the device
- **User**
 user parameters can be edited
- **Lock**
 all parameters are locked
- **Scrollbar**
 scroll up or down to access more functions

Locking state of the currently displayed parameter
- **Display parameter**
 the parameter cannot be edited in the current operating mode of the device
- **Write parameter**
 the parameter can be edited

Key symbols
The keys work as softkeys. This means that their function and meaning depend on the current position in the operating menu. The key functions are indicated by symbols in the bottom line of the display.

- **Down**
 moves the bar downwards in a picklist
- **Up**
 moves the bar upwards in a picklist
- **Enter**
 - enter the selected submenu or selected function
 - confirm the edited function value
- **Previous function**
 go to the previous function within the function group
- **Next function**
 go to the next function within the function group
- **Confirm selection**
 select the option from the picklist
- **Increase value**
 increases the selected position of an alphanumeric function
- **Decrease value**
 decreases the selected position of an alphanumeric function
- **Error list**
 - opens the list of the errors currently present
 - the symbol is inverted and flashes if a warning is present
 - the symbol appears constantly if an alarm is present

Hardware key combinations
The following hardware key combinations apply regardless of the menu item in question:

Escape

1. Due to editing a function: exits the editing mode for the current function
2. Due to navigating: returns to the next-highest menu level

Increase contrast
Operation options

Liquicap M FMI52 HART

Operation options

- **Liquicap M FMI52 HART**

32

Endress+Hauser

A0032710

Increases the contrast of the display module

Decrease contrast

A0032711

Decreases the contrast of the display module

Locking and unlocking

A0032712

1. **Locks the device against parameter changes**
2. **Press all three keys to unlock the device**

6.1.3 The operating menu

Function codes

The functions of Liquicap M are arranged in an operating menu. 5-digit item code is shown on the display for every function to aid orientation within the menu.

CX001

1. **Function group**
2. **Channel**
3. **Number of the function within the group**
The first position refers to ²):
- C: Basic setup
- S: Safety setting
- L: Linearization
- O: Output
- D: Device properties

The second position refers to
the position is out of function

The third position refers to
the individual functions within the function group

Launching menus

1. Press the center key to display the currently pending errors list.

Selecting a submenu

1. Press ✈️ or ✈️ to select the submenu.
2. Press ✈️ to enter the selected menu.

²) The available function groups depend on the device version, the installation environment and the operating mode selected.
If the submenu contains additional submenus, continue in the same manner until you reach the function level.

- Press \[\text{func} \] or \[\text{func} \] to select the function in submenu.

Return to the next-highest menu level any time by pressing "Escape" → 31.

If the menu has only one submenu then the soft keys are not displayed.

Selecting a function and subfunction

If the function level has been reached, it is possible to navigate through the functions with \[\text{func} \] and \[\text{func} \]. The current values of all the related subfunctions are displayed.

1. Press \[\text{func} \] or \[\text{func} \] to select the ordered function.
2. Press \[\text{func} \] to enter the selected function.
3. Press \[\text{func} \] or \[\text{func} \] to select the ordered subfunction.
4. Press \[\text{func} \] to enter the selected function.

If the function has only one subfunction, then the soft keys are not displayed.

Return to the next-highest menu level any time by pressing "Escape" → 31.

Editing functions with the picklist

1. Press \[\text{func} \] or \[\text{func} \] to select the ordered option.
2. Press \[\text{func} \] to select this option.

The new value is now transferred to the device.

Edit another subfunction in the same way.

Return to the next-highest menu level any time by pressing "Escape" → 31.

Editing numeric and alphanumeric functions

If you select a numeric function like "Empty calibration", "Full calibration" or an alphanumeric function like "Device marking", the editor for numbers or alphanumeric characters opens.

1. Press \[\text{func} \] or \[\text{func} \] until this position shows the ordered value.
2. Press \[\text{func} \] to enter the value and go to the next position.
3. Repeat step for the next position.
4. Once all the necessary positions have been entered, press \[\text{func} \] or \[\text{func} \] until \[\text{func} \] appears at the marker.
5. Press \[\text{func} \] to transfer the entire value to the device.

Special functions when making entries

They also call up the following symbols for special editing tasks which make inputting information easier and make it possible to make corrections quickly.

In the editor for numbers and alphanumeric characters, the \[\text{func} \] and \[\text{func} \] keys not only call up numbers and letters.
11 The number to the left of the marker is transferred to the device.

12 Exit the editor. The old function value remains.

13 The marker jumps to the next position.

14 The marker jumps back to the previous position.

15 The current position and all positions to the right are deleted.

Return to the measured value display

Pressing the left and center key simultaneously has the following effect:
- it takes you from the editing mode to the display mode of the functions
- it takes you from the display mode of the functions to the submenu
- it takes you from the submenu to the main menu
- it takes you from the main menu to the measured value display

6.2 Error messages

If the automatic monitoring function of Liquicap M detects an error, the related softkey symbol appears over the center key.

If the softkey symbol is flashing, only "Warning"-type errors are present.

If the symbol is displayed continuously, at least one "Alarm"-type error is present.

Press the key in the center to display the currently pending errors list.

To find information about the differences between "Alarm" and "Warning" → 74

6.3 Locking and unlocking configuration

6.3.1 Key locking

Press all three keys simultaneously. The device is then locked.
6.3.2 **Key unlocking**
Press all three keys simultaneously. The device is then unlocked.

6.3.3 **Software locking**

Information: Locking the device is described in "Safety settings" → 51.

In the menu, the current locking status of the device is displayed in the "Status" subfunction under "Safety settings" SAX01.

The following values can appear:

- **Unlocked**
 All parameters can be modified

- **Locked**
 The device is locked from the operating menu. It can only be enabled again by entering "100" in the "Safety settings" function. If an attempt is made to change a parameter, the device goes to the "Safety settings" function. "Key locking" is displayed in the "Status" subfunction. Press all the keys simultaneously. The device then goes back to the default settings and all parameters can be changed again.

- **Key locked**
 The device has been locked with the operating keys. It can only be enabled again by pressing all three keys simultaneously.

 Information: A key symbol is shown on the display when locked.

6.4 **Resetting to factory setting**

Information: The reset can affect the measurement as the current values are overwritten by factory values: 0% (4 mA) and 100% (20 mA).

6.4.1 **Using the reset**

A reset is always recommended if a device with an unknown history is used.

6.4.2 **Effects of a reset**

- all parameters are reset to the factory setting
- the linearization is reset to "linear"

 Information: The linearization table is retained and can be activated again where necessary.

 The factory settings of the parameters are marked in bold in the menu overview.

 For more information go to the chapter "Basic setup" → 30.

6.4.3 **Performing a reset**

To do a reset, enter the value "333" in the "Device properties → Diagnosis → Password reset / Reset" function.
6.5 Operation via FieldCare Device Setup

6.5.1 Function scope
FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

For additional information about FieldCare, see Operating Instructions BA00027S and BA00059S

Connection options: HART via Commubox FXA195 and the USB port of a computer

6.5.2 Source for device description files
- www.endress.com → Downloads
- CD–ROM (contact Endress+Hauser)
- DVD (contact Endress+Hauser)
7 Commissioning

The device is operated via the electronic insert, the display or with FieldCare. If a display is attached to the electronic insert, the function keys \(\square \) or \(\checkmark \) and the Mode switch at the electronic insert are deactivated. All other settings can be made using the function keys on the display or with FieldCare.

7.1 Installation and function check

Make sure that the post-installation check and final check have been completed before you start your measuring point:

- go to the chapter "Post-installation check" → 22
- go to the chapter "Post-connection check" → 27

7.2 Basic setup without the display or operating module

This section describes how to commission the device with the function switch and the operating keys \(\square \) and \(\checkmark \) on the FEI50H electronic insert.

On leaving the factory, Liquicap M devices are calibrated for media with a conductivity of \(\geq \) 100 µS/cm for all water-based liquids such as acids and alkalis.

A recalibration is only necessary if the 0 to 100 % value should be adjusted to suit customer-specific requirements, the distance to the tank wall is less than 250 mm (9.84 in) or if the liquid is not conductive.

Only the "Wet-type" calibration can be carried out without the display and operating module.

During the "Wet-type" calibration, the 0 % value or the 100 % value is adjusted to customer-specific requirements. This calibration can be carried out if the tank is empty, full or partially filled.

During full calibration, the probe must be covered by the liquid in the installed state.

An empty and full calibration must be performed.
7.2.1 Function switch: position 1. Operation
In normal operation, the function switch must be set to position 1.

7.2.2 Function switch: position 2. Carry out empty calibration - for empty tanks
When the tank is empty (0 %), the empty calibration sets the signal current to the lower value of 4 mA. When empty calibration is completed, the electric current value of 4 mA is displayed at the ammeter.

To perform empty tank calibration:
1. Turn the function switch to position 2.
2. Press the □ and ▼ keys together for 2 s until the green or red LED flashes.
3. Release the two keys.
4. The flashing stops after 5 s.
 ➜ Empty calibration is saved.

7.2.3 Function switch: position 2. Carry out empty calibration - for almost empty tanks
If possible, the exact tank level should be known and should not exceed < 30 %.

Exceeding the permitted tank level reduces the accuracy of the zero-point that corresponds to the empty tank. An ammeter must be connected to the current pick-off at the electronic insert. For example, the level was determined for 15 %, the electric current value that corresponds to that 15 % must be determined.
The lower current value can be adjusted with the ▼ and ▲ keys.

The following must also be considered:
- the lower current value means that the tank is empty, 0 % is 4 mA.
- the upper current value means that the tank is full, 100 % is 20 mA.
- this results in a measuring range of 16 mA for a change from 0 to 100 %. For example 0.16 mA increase in the current for every 1 % increase in the level.
- for a 15 % level, this is 15 % × 0.16 mA per % which equals the 2.4 mA. This must be added to 4 mA to obtain the current value to be set: 2.4 mA + 4 mA = 6.4 mA.

To perform empty tank calibration on a partially filled tank:
1. Turn the function switch to position 2.
2. Press the ▼ or ▲ keys for 2 s.
3. Set the desired current value (>4 mA) using the multimeter connected.
4. Release the key.
 ▼ Empty calibration is saved.

7.2.4 Function switch: position 3. Carry out full calibration - for full tanks

If the tank is full (100 %), the full calibration sets the signal current to the upper value of 20 mA.

When full calibration is completed, the current value of 20 mA is displayed at the ammeter.

To perform full tank calibration:
1. Turn the function switch to position 3.
2. Press the ▼ and ▲ keys together for 2 s until the green or red LED flashes.
3. Release the two keys again.
4. The flashing stops after 10 s.
 ▼ Full calibration is saved.

7.2.5 Function switch: position 3. Carry out full calibration - for almost full tanks

If possible, the exact level of the tank should be known and should be as large as possible (> 70 %).

Too low level reduces the accuracy of the upper point which corresponds to the full tank. An ammeter must be connected to the current pick-off at the electronic insert.

For example, the level was determined for 90 %, the electric current value that corresponds to the level of 90 % must be determined. The upper current value can be adjusted with the ▼ and ▲ keys. The ▲ key increases the value, the ▼ key reduces the value.

The following must also be considered:
- the lower current value means that the tank is empty, 0 % is 4 mA.
- the upper current value means that the tank is full, 100 % is 20 mA.
- this results in a measuring range of 16 mA for a change from 0 to 100 %. For example 0.16 mA increase in the current for every 1 % increase in the level.
- for a 90 % level, this is 90 % × 0.16 mA per % which equals the 14.4 mA. This must be added to 4 mA to obtain the current value to be set: 4 mA + 14.4 mA = 18.4 mA. It is possible to take the upper current value and then subtract 10 % x 0.16 mA per % which equals 1.6 mA from 20 mA.
To perform full calibration on a partially filled tank:

1. Turn the function switch to position 3.
2. Press or key for 2 s.
3. Connect the multimeter to the current pick-off.
4. Set the ordered electric current value < 20 mA.
5. Release the key.

The full calibration is saved.

7.2.6 Function switch: position 4. Measuring modes

Before carrying out empty and full calibration, the medium properties must be configured. If the medium is conductive and tends to form buildup, the "Buildup" operating mode must be selected.

In this operating mode, the buildup on the probe rope is compensated. The "No buildup" operating mode is set at the factory.

Subfunction: "Medium property"

The **No buildup** operating mode should be set for media that do not tend to form buildup on the probe rope (e.g. water, beverages). As of conductivity of 100 µS/cm like all water-based liquids such as acids, alkalis, the measured value is independent of the conductivity of the liquid (independent of concentration fluctuations).

In the **Buildup** operating mode, the buildup compensation function integrated into the software is activated. In this operating mode, the measured value is independent of the conductivity of the liquid as of conductivity of 1000 µS/cm (independent of concentration fluctuations).

This compensates measuring errors caused by conductive media sticking to the probe rope such as yogurt. This corresponds to buildup compensation.

To choose between media forming buildup and media not forming buildup:

1. Turn the function switch to position 4.
2. Press key for media that tend to form buildup.
 - The green LED confirms your entry by flashing three times.
3. Press key for media that do not form buildup.
 - The green LED confirms your entry by flashing three times.

7.2.7 Function switch: position 5. Measuring range

At the factory, the measuring range is always calibrated to the ordered probe length. If the electronic insert is used in another probe, the measuring range must be configured in accordance with the probe length.

To configure the measuring range 2000 pF for probe length < 6 m (20 ft) or 4000 pF for probe length > 6 m (20 ft):

1. Turn the function switch to position 5.
2. Press to set measuring range 2000 pF
 - The green LED flashes three times - the value is set.
3. Press to set measuring range 4000 pF
 - The green LED flashes three times - the value is set.
7.2.8 **Function switch: position 6. Proof test - self-test**

Before and after the automatic proof test, it is essential to check whether the level value displayed corresponds to the actual level value \(^3\).

When the self-test is activated, the current output is set to 4 mA and follows a ramp function up to 22 mA. This test is completed after approximately 40 s.

To activate the device self-test:

1. Turn the function switch to position 6.
2. Press \(\square\) and \(\square\) keys together to start the function test.
 - The green LED flashes quickly until the current error is reached.
 - The red LED flashes until the test is completed.

 After the self-test, the device automatically returns to the operating mode.

7.2.9 **Function switch: position 7. Reset - restore factory settings**

The reset can affect the measurement as the current values are overwritten by the factory values of calibration 0% (4 mA) and 100% (20 mA).

To restore the factory settings:

1. Disconnect the electronic insert from the power supply.
2. Turn the function switch to position 7.
3. Press and hold the \(\square\) and \(\square\) keys together while the device is being reconnected to the power supply.
 - Red LED flashes slowly and then starts to flash quickly.
4. Wait until the red LED stops flashing.
5. Release the \(\square\) and \(\square\) keys.

7.2.10 **Function switch: position 8. Download or upload sensor DAT (EEPROM)**

Calibration values can be transmitted with this function.

A distinction is made between two types:
- the sensor has been replaced and the electronic insert should continue to be used
- the electronic insert has been replaced but the sensor should continue to be used

The calibration values already set can be transferred from the sensor to the electronic insert or from the electronic insert to the sensor.

Download

To transfer the calibration values from the electronic insert to the sensor:

1. Turn the function switch to position 8.
2. Press the \(\square\) key to start downloading from the electronic insert to the sensor.
 - The green LED flashes for 2 s, confirming your entry.
 - The device restarts.

Upload

To transfer the calibration values from the sensor to the electronic insert:

1. Turn the function switch to position 8.

\(^3\) This applies from version FW: V 01.03.00
2. Press the \(\text{key} \) to start uploading from the sensor to the electronic insert. The green LED flashes for 2 s, confirming your entry.

The device restarts.

7.3 **Menu: "Basic setup". Commissioning with display and operating module**

This section describes how to commission the Liquicap M, the display and the operating module. The procedure for commissioning through FieldCare, DeviceCare or FieldXpert handheld terminal is the same. More detailed information can be found in the Operating Instructions for FieldCare BA 224F/00 supplied together with the handheld terminal.

7.3.1 **Initial commissioning**

On the first power-up, you are requested to select the language for the display texts. After this selection, the measured value is displayed.

If a reset is performed at the device and if the power supply is switched off and on again, the language of the display texts has to be selected again.
Menu structures: Main menu

The main menu is activated by means of the right Enter key. The following menu headings appear. These are explained in more detail over the following pages:

- Basic setup → 45
- Safety setting → 51
- Linearization → 55
- Output → 62
- Device properties → 65

Liquicap M devices are calibrated on leaving the factory for media with a conductivity of ≥ 100 µS/cm. Recalibration is only necessary if the 0 % value or the 100 % value should be adjusted to suit customer-specific requirements, the distance to the tank wall is < 250 mm (9.84 in) or if the liquid is not conductive.

A distinction is generally made between two types of calibration:

- **Wet calibration**
 During wet calibration, the probe must be covered by a liquid in the installed state. This calibration can be done if the tank is empty, full or partially full. Empty and full calibration must be performed.
- **Dry calibration**
 During dry calibration, empty and full calibration can be done without the probe being in contact with the liquid. The calibration values can be entered directly in units of length.

Diagram:

A. Customer specified 0% level (empty tank)
B. Factory setting for 0% level (empty tank)
C. Factory setting for 100% level (full tank)
D. Customer specified 100% level (full tank)

Configure the settings in the "Basic setup" menu:

- The factory settings are shown in bold.

<table>
<thead>
<tr>
<th>A</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Function</td>
</tr>
<tr>
<td>C</td>
<td>Subfunction</td>
</tr>
<tr>
<td>D</td>
<td>Function value</td>
</tr>
</tbody>
</table>
7.3.2 Function: "Basic setup"

Subfunction: "Medium property"

The 'No buildup' operating mode should be set for media that do not tend to form buildup on the probe rope, like water, beverages, etc. For conductivity of 100 µS/cm, the measured value is independent of the conductivity of the liquid.

In the 'Buildup' operating mode, the buildup compensation function integrated with the software is activated. In this operating mode, the measured value is independent of the conductivity of the liquid conductivity of 1000 µS/cm.

This compensates measuring errors caused by conductive media sticking to the probe rope such as yogurt. This corresponds to buildup compensation.

Subfunction: "Cal. type"

In the 'Dry' Cal. type empty and full calibration can be carried out without the probe being in contact with the liquid. The calibration values can be entered directly in units of length.

1) Function is only displayed if the function value 'Dry' was selected under the subfunction 'Cal. type'.
2) Can only be selected for probes with a ground tube.
3) Subfunction is only displayed if the function value 'Nonconductive' was selected under the subfunction 'Medium property'.
4) Subfunction is only displayed if the function value 'Nonconductive' or 'Conductive' was selected under the subfunction 'Medium property'.
In the "Wet" Cal. Type, the probe must be covered by the liquid in the installed state for a full calibration. This calibration can also be carried out if the tank is partially full. Both the empty calibration and full calibration must be performed.

7.3.3 Function: "Medium property"

This function is only displayed if the function value 'Dry' was selected under the subfunction 'Cal. type'.

Subfunction: "Medium property"
The properties of the medium are entered here.
- "Nonconductive": the conductivity of the medium is ≤ 1 µS/cm - only with the ground tube
- "Conductive": the conductivity of the medium is ≥ 100 µS/cm
- "Interface": the properties of the two media can be entered in the operating program of ToF Tool. The associated calibration values are then calculated
- "Unknown": the medium properties are not known. The capacitance values of the "Empty calibr." and "Full calibr." functions can be entered directly

Subfunction: "DC value"
This subfunction is only displayed if the function value 'Nonconductive' was selected under the subfunction 'Medium property'.

The dielectric constant for the liquid to be measured is entered here, go to the "Measuring condition" → 13.

Subfunction: "Unit level"
This subfunction is only displayed if the function value "Conductive" or "Nonconductive" was selected under "Medium property".
The desired level unit for Basic setup is entered here.

7.3.4 Operating mode: "Empty calibr." and function - "Wet"

The calibration data can be calculated with CapCalc.xls

With "Empty calibration", the 0% value or the 4 mA value is assigned to the level value.

The procedure applies to the "Wet" type of calibration. Information on 'Dry' calibration is provided below.

Subfunction: "Value empty"
The current level value is entered here, for example 5% partial filling → "Value empty" 5% or 0% partial filling → "Value empty" 0%.

To keep the calibration error to a minimum, the level should be between 0% and 30%.

Subfunction: "Measure capacity"
The capacitance value currently measured is displayed here.

Subfunction: "Confirm cal."
In this function, empty calibration is confirmed and the 'Measure capacity' currently measured is assigned to the percentage level value entered as 'Value empty'.

Endress+Hauser
7.3.5 Operating mode: "Full calibr." and function - "Wet"

With "Full calibration", the 100% value or the 20 mA value is assigned to the level value.

The procedure applies to the "Wet" type of calibration. Information on "Dry" calibration is provided further below.

Subfunction: "Value full"

The current level value is entered here, for example 90% partial filling → "Value full" 90% or 100% filling → "Value full" 100%.

To keep the calibration error to a minimum, the level should be between 70% and 100%.

Subfunction: "Measure capacity"

The capacitance value currently measured is displayed here.

Subfunction: "Confirm cal."

Full calibration must be confirmed with this function.

7.3.6 Operating mode: "Empty calibr." and function - "Dry"

The "Empty" value can be entered directly in units of length if the medium property has been set to conductive or nonconductive.

Subfunction: "Value empty", medium property for the conductive and nonconductive medium

Value E:

Empty calibration ≤ active probe length

\[E \leq L_1 - (\text{thread length} L_3 + \text{plug}) \]

Thread length:

\[L_3 \text{ for } G1\frac{1}{2} = 25 \text{ mm (0.98 in)} \]
\[L_3 \text{ for } G <1\frac{1}{2} = 19 \text{ mm (0.75 in)} \]

Plug for rope probes: 18 mm (0.71 in)
Subfunction: "Cap. empty"
The calculated capacitance value is displayed here. This field cannot be edited.

Subfunction: "Confirm cal."
Empty calibration is confirmed with this subfunction.

7.3.7 Operating mode: "Full calibration" and function - "Dry" for conductive and nonconductive media
The "Full" value can be entered directly in units of length.

Subfunction: "Value full", medium property - conductive, nonconductive

Value full:
\[E \leq \text{Empty value} \rightarrow \] 47

Subfunction: "Cap. full"
The calculated capacitance value is displayed here. This field cannot be edited.

Subfunction: "Confirm cal."
Full calibration is confirmed with this subfunction.

7.3.8 Operating mode: "Empty calibration" and function - "Dry" for "Interface" or "Unknown" medium properties

Subfunction: "Value empty"
This field displays 0% and cannot be edited.

Subfunction: "Cap. empty"
Enter the capacitance value, for example calculated with CapCalc.xls.

Subfunction: "Confirm cal."
Empty calibration must be confirmed with this subfunction.
7.3.9 Operating mode: "Full calibration" and function - "Dry" for "Interface" or "Unknown" medium properties

Subfunction: "Value full"
This field displays 100% and cannot be edited.

Subfunction: "Cap. full"
Enter the capacitance value, for example calculated with CapCalc.xls.

Subfunction: "Confirm cal."
Empty calibration must be confirmed with this subfunction.

7.3.10 Function: "Output damping"
With this function, you can set the reaction time of your measuring device to changes in the level. If surfaces are turbulent, a higher response time 5) should be selected.

5) In the software, the name for 'Respone time' is 'Output damping'. For more information see the chapter 'Response time' → 85.
7.4 **Menu: "Safety setting"**

Follow the settings in the 'Safety settings' menu.

> The factory settings are shown in bold.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Menu</td>
<td>B</td>
<td>Function</td>
</tr>
<tr>
<td>C</td>
<td>Subfunction</td>
<td>D</td>
<td>Function value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety settings</td>
<td>Safety settings</td>
<td>Code</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status</td>
<td>Unlocked</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Locked</td>
</tr>
<tr>
<td>Safety settings</td>
<td>Operating mode</td>
<td>Standard</td>
<td>SIL/WHG</td>
</tr>
<tr>
<td>Output damping</td>
<td>1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1</td>
<td>MAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter okay</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety settings</td>
<td>Cap. empty</td>
<td>x.xx pF</td>
<td></td>
</tr>
<tr>
<td>Value empty</td>
<td>x.xxx %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap. full</td>
<td>2 000.00 pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value full</td>
<td>100.000 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter okay</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode</td>
<td>Operating mode</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>SIL/WHG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIL op. mode</td>
<td>1) Unlocked</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Unlocked</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output on alarm</td>
<td>Output</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User-spec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output value</td>
<td>xx.xx mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proof test</td>
<td>Proof test</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) This subfunction is only displayed if the 'SIL/WHG' option was selected under the 'Operating mode' subfunction.

2) This subfunction is only displayed if the 'User-specific' option was selected under the 'Output' subfunction.
7.4.1 Function: "Safety settings"

Subfunction: "Code"
With this subfunction, you can lock the device against unpermitted or unintentional changes.

Enter a number that is not equal 100 to lock the device. The parameters cannot be modified.
Enter 100 to unlock the device. Parameters can be modified again.

Subfunction: "Status"
This subfunction displays the current locking status of the device.
The following values can appear:
- Unlocked
 All writeable parameters can be modified.
- Locked
 The device has been locked via the operating menu. It can only be unlocked by entering '100' in the 'Code' subfunction.

7.4.2 Function: "Safety settings"

Subfunction: "Operating mode"
This subfunction displays the set operating mode and cannot be edited.
Operating modes:
- Standard
- SIL/WHG

Subfunction: "Output damping"
This subfunction displays the response time setting. Response time is the time during which the measuring system reacts to changes in level of the liquid and is between 0 to 60 s.

Subfunction: "Output 1"
This subfunction displays the set value which the output assumes in an alarm condition.
Values:
- MAX (22 mA)
- Hold - the last value is held
- User-spec.

Subfunction: "Parameter okay"
With this subfunction, you confirm that the parameter values displayed under the "Safety settings II" function are correct.

The 'Parameter okay' subfunction has to be confirmed with 'Yes' so the device can be locked for the SIL/WHG operating mode. In addition, the SIL/WHG function value has to be selected for the 'Operating mode' subfunction and 'Locked' must be set for the 'Status' subfunction. The device can be unlocked using the special release code. The release code is "7452".

6) In the software, the name for 'Respone time' is 'Output damping'. For more information see the chapter 'Response time' → 85.
7.4.3 Function: "Safety settings"

Subfunction: "Cap. empty"
This subfunction displays the measured capacitance during empty calibration in pF.

Subfunction: "Value empty"
This subfunction displays the empty calibration value in %.

Subfunction: "Cap. full"
This subfunction displays the measured capacitance during full calibration in pF.

Subfunction: "Value full"
This subfunction displays the full calibration value in %.

Subfunction: "Parameter okay"
With this subfunction, you confirm that the parameter values displayed under the "Safety settings II" function are correct.

The "Parameter okay" subfunction has to be confirmed with "Yes" so the device can be locked for the SIL/WHG operating mode. In addition, the SIL/WHG function value has to be selected for the "Operating mode" subfunction and "Locked" must be set for the "Status" subfunction. The device can be unlocked using the special release code. The release code is "7452".

7.4.4 Function: "Operating mode"

Subfunction: "Operating mode"
With this subfunction, you can switch from the Standard operating mode to the SIL/WHG operating mode:

- Standard
- SIL/WHG

The following parameters are set to defined values in the ‘SIL/WHG’ operating mode:

- Output damping: response time \(^7\) is fixed at 1 s.
- Output on alarm: The "Output on alarm" function is fixed at 22 mA.

In the 'SIL/WHG' operating mode, cyclic self-monitoring of the device is like a memory test, processor test, current output, etc.

Subfunction: "SIL operating mode"
You can lock or unlock the device in this subfunction. No parameters can be changed in the locked state.

Subfunction: "Status"
This subfunction displays the current locking status of the device.

The following values can appear:

\(^7\) In the software, the name for 'Respone time' is 'Output damping'. For more information see the chapter 'Response time' → 85.
7.4.5 Function: "Safety settings"

Subfunction: "Operating mode"
The 'Standard' or 'SIL/WHG' operating mode entered is displayed here.

Subfunction: "Output damping"
The response time\(^8\) entered is displayed here.

Subfunction: "Value empty"
The capacitance of the empty calibration is displayed here.

Subfunction: "Value full"
The capacitance of the full calibration is displayed here.

Subfunction: "Parameter okay"
With this subfunction, you confirm that the parameter values displayed under the "Safety settings II" function are correct.

The "Parameter okay" subfunction has to be confirmed with 'Yes' so the device can be locked for the SIL/WHG operating mode. In addition, the SIL/WHG function value has to be selected for the "Operating mode" subfunction and "Locked" must be set for the "Status" subfunction. The device can be unlocked using the special release code. The release code is "7452".

7.4.6 Function: "Output on alarm"

Subfunction: "Output"
This function determines the value the output in question assumes when an alarm condition occurs.

Options:
- Max
 22 mA
- Hold
 the last value is retained
- User-spec.
 as defined in the "Output value" subfunction

\(^8\) In the software, the name for 'Response time' is 'Output damping'. For more information see the chapter 'Response time' \(\rightarrow 85\).
Subfunction: "Output value" - only for "Output" and "User-specific"

In this function, specify the user-specific value the current output should assume in an alarm condition.

Value range: 3.8 to 22 mA.

7.4.7 Function: "Proof test" - self-test

From version FW: V 01.03.00:
- before and after the automatic proof test, it is essential to check whether the level value displayed corresponds to the actual level value
- after the self-test, the device automatically returns to the operating mode

Subfunction: "Proof test"

With this subfunction, you activate the device self-test. All electronic components relevant to the function are tested. Within approximately 40 s, the current output goes through the range of 4 to 22 mA.
7.5 Menu: "Linearization"

"Linearization" is used for converting the level to any unit. You can determine the volume or the mass in a tank of any shape. Liquicap M makes various linearization modes available for situations that occur frequently. Furthermore, a linearization table can be entered for tanks and containers of any shape.

The number and type of subfunctions depend on the type of linearization selected. Only the "Type" and "Mode" subfunctions are always available.

The factory settings are shown in bold.

You can make the following settings in the "Linearization" menu.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearization</td>
<td>Linearization</td>
<td>Type</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Horizontal cyl</td>
<td>Sphere</td>
<td>Pyramid bottom</td>
<td>Conical bottom</td>
</tr>
<tr>
<td>Table</td>
<td>Mode</td>
<td>level</td>
<td>Ullage</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>Sim. off</td>
<td>Sim. level</td>
<td>Sim. volume</td>
<td></td>
</tr>
<tr>
<td>Sim. level value</td>
<td>xx.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sim. vol. value</td>
<td>xx.%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linearization</td>
<td>Customer unit</td>
<td>% (percentage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>hl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>dm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cm³</td>
<td>ft³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>usgal</td>
<td>igal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ft³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>user-spec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customized text</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>xxxx m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermed. height</td>
<td>xx m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit | Read

- **Input level**: x m
- **Input volume**: %

- **Manual**
 - **Table No.**: 1
 - **Input level**: x m
 - **Input volume**: %

- **Semi-automat.**
 - **Table No.**: 1
 - **Input level**: x m
 - **Input volume**: %

Delete

- **Status table**
 - **Enabled**
 - **Disabled**

Max. scale | 100 %

1) If you enter a value for this function, you must also enter a value for the "Diameter" subfunction in another step.
2) If you enter a value for this function, you must also enter a value for the "Intermed. height" subfunction in another step.
3) The function is displayed if the 'Sim. off' option was not selected under the "Simulation" subfunction.
4) The function is displayed if the "User-spec." option was selected under the "Custom unit" subfunction.
5) The function is displayed if the "Horizontal cyl" or "Sphere" option was selected under the "Type" subfunction.
6) The function is displayed if the "Pyramid bottom", "Conical bottom" or "Angled bottom" option was selected under the "Type" subfunction.
7) The function is displayed if the "Table" option was selected under the "Type" subfunction.
8) This function is not displayed if the "Table" option was selected under the "Type" subfunction.

7.5.1 Function: "Linearization"

Subfunction: "Type"

Select the type of linearization in this subfunction.

Options:
- **None**
 - In this type of linearization, the measured level is not converted but instead is output linearly in the level unit selected → 46.
- **Linear**
 - In this type of linearization, the measured value output is linear to the measured level.
The following parameters must be specified:

- the unit for the linearized value
- the maximum tank contents measured in a customer unit

Options:

- Horizontal cyl.
- Sphere

In these types of linearization, the volume in a spherical tank or in a horizontal cylindrical tank is calculated from the liquid level.

The following parameters must be specified:

- the unit for the linearized value
- the tank diameter
- the maximum tank contents measured in a customer unit

Options:

- Pyramid bottom
- Conical bottom
- Angled bottom

In these types of linearization, the volume in a spherical tank or in a horizontal cylindrical tank is calculated from the liquid level.
The following parameters must be specified:
- the unit for the linearized value
- The intermediate height in accordance with the diagram
- the maximum tank contents measured in a customer unit

Options:
Table

In this type of linearization, the measured value is calculated using a linearization table. The table can comprise up to 32 "Level - Volume" value pairs. The table must be monotone.

Subfunction: "Mode"

In this subfunction, specify whether the measurement should refer to level A or to the empty area B.
Subfunction: "Simulation"

In this subfunction, you can simulate the level or the volume by entering a level under "Sim. level value" or a volume under "Sim. vol. value".

Subfunction: "Sim. level value" or "Sim. vol. value"

In this subfunction, you can enter the level or volume value to be simulated.

7.5.2 Function: "Linearization"

Subfunction: "Customer unit"

In this subfunction, enter the desired unit for the linearized values, for example: kg, m³, ft³.

Subfunction: "Customized text"

In this subfunction, enter your specific name for the unit. The measured value indicated in the main screen will then be displayed in this unit.

Subfunction: "Diameter"

In this subfunction, specify the diameter of the horizontal cylindrical tank or the spherical tank. Subfunction is available only for the "dry" type of basic setup.

Subfunction: "Intermed. height"

In this function, specify the intermediate height H (→ 56) of the container in question. The probe length L1 must be entered here in the event of a wet calibration.

Subfunction: "Edit"

Use this function to enter, modify or read the linearization table.

The following options are available:
- **Read**
 The table editor is opened. The existing table can be read but not edited.
- **Manual**
 The table editor is opened. Table values can be entered or modified.
- **Semi-automat.**
 The table editor is opened. The level value is read in automatically. The related measured value must be entered by the user.
- **Delete**
 The linearization table is deleted.

The linearization table can only be edited if it is disabled.

The table editor

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

A **Row number**
B **Level column**
C **Value column**

1. Press to go to the next row.
2. Press to go to the previous row.
3. Press to open marked row for editing.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>...</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

A **Row number**
B **Level column**
C **Value column**

1. Press or to navigate within the table.
2. Press or to navigate on No. column.
3. Press to "Delete", "Insert" or "Move" the entire row.

You can return to the previous step by pressing Escape → 31.

Subfunction: "Status table"

In this function, you can specify whether the linearization table should be used or not.

Options:
- **Enabled**
 The table is used.
- **Disabled**
 The table is not used. The measured value is output linearly with regard to the level unit.
Subfunction: "Max. scale"

In this function, specify the maximum contents of the tank in the customer unit.
7.6 Menu: "Output"

The factory settings are shown in bold.

You can make the following settings in the "Output" menu:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Menu</td>
<td>Function</td>
<td>Subfunction</td>
<td>Additional value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Extended calibr.</th>
<th>Extended calibr.</th>
<th>Measuring range</th>
<th>2000 pF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4000 pF</td>
</tr>
<tr>
<td>Sensor DAT Stat.</td>
<td>Upload</td>
<td></td>
<td></td>
<td>Download</td>
</tr>
<tr>
<td>Output/Calculat</td>
<td>Curr. turn down</td>
<td>On</td>
<td></td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Turn down 4 mA</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turn down 2 mA</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 mA threshold</td>
<td>On</td>
<td></td>
<td>Off</td>
</tr>
<tr>
<td>HART setting</td>
<td>HART setting</td>
<td>HART address</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of preambles</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short TAG HART</td>
<td>TAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output/Calculat</td>
<td>Current span</td>
<td>4 to 20 mA</td>
<td></td>
<td>Fix. curr. HART</td>
</tr>
<tr>
<td></td>
<td>mA value</td>
<td>4 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>Simulation</td>
<td>Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simulation value</td>
<td>xx.xx mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) This function is only displayed if the "On" option was selected under the "Curr. turn down" subfunction.
2) This function is only displayed if the function value "Fix. curr. HART" was selected under the "Current span" subfunction.
3) This function is only displayed if the "On" option was selected under the "Simulation" function.

7.6.1 Submenu: "Extended calibr."

Function: "Extended calibr."

In this function, you can specify the measuring range.

Subfunction: "Measuring range"

Specify the measuring range in this subfunction.
• $C_A = 0$ to $2\,000$ pF for probe length < 6 m (20 ft)
• $C_A = 0$ to $4\,000$ pF for probe length > 6 m (20 ft)

At the factory, the measuring range is always calibrated to the probe length ordered. If the electronic insert is used in another probe, the measuring range must be configured in accordance with the probe length.

Function: "Output/Calculat."

Subfunction: "Sensor DAT stat."
This subfunction shows the status of the sensor DAT.
• OK - sensor DAT is ready for use
• Error - sensor DAT is not ready for use or missing

Subfunction: "Sensor DAT*"
Calibration values can be transmitted with this function. A distinction is made between two types:
• the sensor has been replaced and the electronic insert should continue to be used
• the electronic insert has been replaced but the sensor should continue to be used

For these instances, the calibration values already set can be transferred from the sensor to the electronic insert or from the electronic insert to the sensor.

Upload
To transfer the calibration values from the sensor to the electronic insert.

Download
To transfer the calibration values from the electronic insert to the sensor.

Subfunction: "Curr. turn down"**

This subfunction is not available for "Current span", "Fix. curr. HART".

This function can switch on the current turn down. The current output refers only to a freely definable part of the measuring range. This is then magnified when displayed.

Subfunction: "Turn down 4 mA"**

This subfunction is available only for "Curr. turn down", "On".

Enter the measured value at which the current should be 4 mA.

Subfunction: "Turn down 20 mA"**

This subfunction is available only for "Curr. turn down", "On".

Enter the measured value at which the current should be 20 mA.

<table>
<thead>
<tr>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

A Turn down 4 mA
B Turn down 20 mA
Subfunction: "4 mA threshold" - for Current span = 4 to 20 mA

It is possible to switch on the 4 mA threshold in this subfunction. The 4 mA threshold means that the current never is below 4 mA even if the measured value is negative.

Options:
- Off
 The threshold is switched off. Currents under 4 mA can occur.
- On
 The threshold is switched on. The current is never below 4 mA.

7.6.2 Submenu: "HART setting"

Function: "HART settings"

Subfunction: "HART address"

In this subfunction, specify the HART communication address for the device.

Possible values:
- for standard operation: 0
- for multidrop operation: 1 - 15

In multidrop operation, the output current is 4 mA as standard. However, it can be changed in the "mA value" function.

Subfunction: "No. of preambles"

In this subfunction, specify the number of preambles for the HART protocol. Increase the value if there are communication problems on the lines.

Subfunction: "Short TAG HART"

Here, you can enter the TAG name for HART communication in the device.

Function: Output / Calculat.

Subfunction: "Current span"

In this subfunction, select the current span to which the measuring range should be mapped.

Options:
- 4 to 20 mA
 the measuring range 0 to 100 % is mapped to the 4 to 20 mA current span
- Fix. curr. HART
 a fixed current is the output. Its value can be specified in the 'mA value' subfunction. The measured value is only transmitted via the HART signal
Current span = 4 to 20 mA.
Current span = fix. curr. HART.
mA value

7.6.3 Menu: "Simulation"

Function: "Simulation"

Subfunction: "Simulation"
This function switches on or off the simulation of output current.

Options:
• Off
 The device is not in the simulation mode. The device is in the measuring mode.
• On
 The device is in the simulation mode. A measured value is not output. Instead, the current output assumes the value defined in the "Simulation value" subfunction.

Subfunction: "Simulation value" - only for "Simulation On" mode
Specify the current value to be simulated in this function.

7.7 Menu: "Device properties"

The factory settings are shown in bold.

You can configure the following settings in the "Device properties" menu:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu</td>
<td>Submenu</td>
<td>Function</td>
<td>Subfunction</td>
<td>Function value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device properties</td>
<td>Display</td>
<td>Language</td>
<td>English</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Français</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Italiano</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Español</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Display format</td>
<td>Format</td>
<td>Decimal</td>
<td>ft-in-1/16’</td>
<td></td>
</tr>
<tr>
<td>No of decimals</td>
<td>x</td>
<td>x</td>
<td>x.xx</td>
<td>x.xxx</td>
</tr>
<tr>
<td>Sep. character</td>
<td>. (dot)</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Back to home</td>
<td>900 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Actual error</td>
<td>Actual error 1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actual error 2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actual error 3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Last error</td>
<td>reset errorlist</td>
<td>Keep</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last error 2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last error 3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Password/reset</td>
<td>Reset</td>
<td>12345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Unlocked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic temp.</td>
<td>Electronic temp.</td>
<td>xx.x °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. temp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min. temp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature unit</td>
<td>°C</td>
<td>°F</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>Min/Max temp.</td>
<td>Keep</td>
<td>Delete</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reset Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reset Max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure capacity</td>
<td>Measure capacity</td>
<td>xxxx.xx pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxxx.xx pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxxx.xx pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min/Max capacity</td>
<td>Keep</td>
<td>Delete</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reset Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reset Max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System parameters</td>
<td>Device information</td>
<td>Device designation</td>
<td>Liquicap-FMI5x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial No.</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC Serial No.</td>
<td>xxxxxxxxxxxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device marking</td>
<td>FMI52 - OrderCode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device information</td>
<td>Dev. rev</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software version</td>
<td>V01.xx.xx.xxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DD version</td>
<td>xx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.7.1 Submenu: "Display"

Function: "Language"
Select the language for the display and operating module.

Options:
- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands

Function: "Display format"
The 'Display format' refers to how the measured value is displayed.

Subfunction: "Format"
Select the display format for displaying numbers.

Options:
- Decimal
- ft-in-1/16"

Subfunction: "No. of decimals"
Select the number of places after the decimal point for displaying numbers.

Options:
- x
- x.x
- x.xx
- x.xxx

Subfunction: "Sep. character"
Select the separator for displaying decimal numbers.

Options:
- . (dot)
- , (comma)

7.7.2 Submenu: "Diagnosis"

Function: "Actual error"
With this function, you can call up the list of all currently pending errors. The errors are arranged by priority.

If you select an error, a text field appears with a brief description of the error.

Error code list → 75
Function: "Last error"
With this function, you can call up the list of all rectified errors. The option of resetting the error list with 'Reset error list' is also available. It overwrites the last three error codes with 0.

Function: "Password / reset"
This function restores the factory settings. All parameters are reset to factory settings.

Subfunction: "Reset"
The factory settings are bold in the menu overview.

Enter the reset code "333" or "7864" to reset all the parameters to the factory settings.

During a "333" reset, linearization is reset to "linear". However, any linearization table available is retained and can be activated again where necessary.

During a "7864" reset, linearization is reset to "linear" and the linearization table is deleted.

The subfunctions are also reset:
- "Electronic temp."
- "Max. temp."
- "Max. capacity val."
- "Min. capacity val."
- "Min/Max capacity"

Function: "Electronic temp."
This function displays the temperature measured by the electronic insert.

Subfunction: "Electronic temp."
The subfunction displays the current electronics temperature.

Subfunction: "Max. temp."
The subfunction displays the highest temperature value measured by the device.

Subfunction: "Min. temp."
The subfunction displays the lowest temperature value measured by the device.

Subfunction: "Temperature unit"
The subfunction determines the temperature unit.

Options:
- °C
- °F
- K

Subfunction: "Min/Max temp."
The subfunction resets the "Min/Max temp."

Function: "Measure capacity"
This function displays measuring capacities that were measured by the electronic insert during operation.

Subfunction: "Measure capacity"
This subfunction displays the currently measured capacity.
Subfunction: "Max. capacity val."
This subfunction displays the highest capacitance value measured by the device.

Subfunction: "Min. capacity val."
This subfunction displays the lowest capacitance value measured by the device.

Subfunction: "Min/Max capacity"
The subfunction resets the "Min. or Max. capacity".

7.7.3 Submenu: "System parameters"

All functions listed in this section can be viewed only.

Function: "Device information"
This function displays all device information with which the device can be identified.

Subfunction: "Device marking"
This subfunction displays the device name e.g. Liquicap M-FMI52.

Subfunction: "Serial No."
This subfunction displays the serial number of the device that was assigned in the factory.

Subfunction: "EC Serial No."
This subfunction displays the serial number of the electronic insert.

Subfunction: "Device marking"
This subfunction displays the device marking and the order code.

Subfunction: "Dev. rev"
This subfunction displays the version of the electronic-hardware.

Subfunction: "Software version"
This subfunction displays the software version of the device that was assigned in the factory.

Subfunction: "DD version"
This function indicates the DD version with which this device can be operated using FieldCare.

Subfunction: "Working hour"
This subfunction displays the number of operating hours.

Subfunction: "Current run time"
This subfunction displays the "current run time" of the device. The first three digits display the number of days, followed by "d". The next two digits display the hours, followed by "h". The last two digits indicate the minutes.

Function: "Probe length"
In this function, more probe information can be displayed.

Subfunction: "Probe length"
You can read the current probe length in this subfunction.

Probe length (L1) = A – (thread length – plug)
More information are provided → 47.

Subfunction: "Sensitivity"

You can read off the current sensitivity in mm/pF in this subfunction.

7.8 Operation

After Basic setup, Liquicap M outputs the measured value via:

- the display and operating module
- the current output
- the digital HART signal

7.9 FieldCare: operating program from Endress+Hauser

The FieldCare operating program is Endress+Hauser plant asset management tool based on FDT technology. It is possible to use FieldCare to configure all Endress+Hauser devices as well as third-party devices which support the FDT standard. The following operating systems are supported:

- Windows 7 Professional SP1 (x32+x64)
- Windows 7 Ultimate SP1 (x32+x64)
- Windows 7 Enterprise SP1 (x32+x64)
- Windows Server 2008 R2 SP2
- Windows 8.1
- Windows 8.1 Professional
- Windows 8.1 Enterprise
- Windows 10 Professional
- Windows 10 Enterprise

FieldCare supports the following functions:

- configuration of transmitters in online operation
- tank linearization
- loading and saving device data by upload and download
- documentation of the measuring point

Connection options:

HART via Commubox FXA195 and the USB port of a computer.

After reinstalling FieldCare, or by clicking a link in the Help menu, a video can be activated that explains the possible applications of the program in just a few minutes.

7.9.1 FieldCare

Function scope

FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

For additional information about FieldCare, see Operating Instructions BA00027S and BA00059S

Connection options: HART via Commubox FXA195 and the USB port of a computer
Source for device description files

- www.endress.com → Downloads
- CD-ROM (contact Endress+Hauser)
- DVD (contact Endress+Hauser)

7.9.2 Interface measurement

If there are different media in the container like water and oil, the capacitance values for 'Empty calibration' and 'Full calibration' can be calculated.

CapCalc.xls is a capacitance calculation program in FieldCare which can be used to calculate the calibration values for level measurement and interface measurement.

- Conductive medium ≥100 µS/cm
- Emulsion
- Nonconductive medium < 1 µS/cm, DC < 5

The program calculates the calibration values on the basis of the entered data. The secure functioning of interface measurement can already be determined at this time. The calculated calibration values can be transmitted to the FEI50H electronic insert via the display or FieldCare.

Capacitance interface measurement is also suitable for very pronounced emulsion layers. The emulsion layer average is always measured.

7.9.3 Dry calibration for interface measurement

Calculating the calibration data with CapCalc

1. Click the 'CA' button in the toolbar to start CapCalc.
Click "Activate macros" button.

Click the 'Next' button in the top right.

Editing the probe and application-specific data

Click the 'Probe type' button.

1. Select the probe type.
2. Enter the length probe L1 in accordance with the nameplate.
3. Enter the inactive length L3 in accordance with the nameplate.
4. Enter the "Value empty E".
5. Enter the "Value full F".
6. Enter the "Wall distance".
7. Enter the conductivity value of the medium in the 'Medium top'.
8. Enter the dielectric constant value of the medium in the 'Medium top'.
10. Enter the conductivity value of the medium in the "Medium bottom".
11. Enter the dielectric constant value of the medium in the "Medium bottom".
12. Click the "Calibration data interface measurement" button to obtain the capacitance values for the calibration.
 The capacitance values for empty calibration and full calibration are calculated and displayed as a result.

Use the "DC handbook" button to transfer the DC values and the conductivity of the corresponding media to the calculation program, if the medium properties are not known.

7.9.4 Wet calibration for interface measurement

This chapter describes the wet calibration procedure for "Empty calibration" and "Full calibration".

Empty calibration
1. Fill the container with the top medium.
2. Perform "Empty calibration 0%" regarding procedure → 38.
3. If it is not possible to fill the tank, perform the 'Empty calibration' with the probe exposed in the air, however expect a calibration inaccuracy approximately 2.5 % per meter. The water and oil are the reference media.

Full calibration
1. Fill the container with the bottom medium.
2. Perform "Full calibration 100%" regarding procedure → 38.

The empty and full calibration is completed and all data are saved in the electronic insert and DAT sensor.
8 Diagnostics and troubleshooting

The operating status of the device is indicated by the LEDs on the electronic insert.

8.1 Diagnostic information via LEDs

8.1.1 Green LED flashing

Green LED indicates operation:
- flashes every 5 s
 the device is in the operation mode
- flashes once per 1 s
 the device is in the calibration mode
- flashes 4x:
 the device confirms a parameter change, function switch position 4, 5, 6

8.1.2 Red LED flashing

\[\text{To analyze the errors find the list in the chapter "Error codes" → 75}\]

Red LED indicates a fault.
- Warning: LED flashes 5x per second
- capacitance at probe is too high
- probe insulation break detection
- FEI50H is defective
- Alarm: LED flashes 1x per second
 the temperature in the electronic insert is over the permitted range

8.2 System error messages

8.2.1 Error signal

Errors occurring during commissioning or during operation are displayed as follows:
- error symbol, error code and error description on the display and operating module
- current output, can be set:
 - Max: 110%, 22 mA
 - Hold - last value is retained
 - User-spec. value

8.2.2 Last errors

This function enables to call up a list of most recent errors.

8.2.3 Types of error

The alarm is represented by the symbol ↓ which appears on the display. An error message is also shown on the display.

The output signal assumes a value that can be specified with the "Output on alarm" function:
- Max: 110%, 22 mA
- Hold - last value is retained
- User-spec. value
The warning is represented by the flashing symbol \(\downarrow \) which appears on the display. An error message is shown on the display.

The device continues measuring.

8.2.4 Error codes

The error codes shown on the display are 4-digit codes:

Position 1: Type of error
- A - alarm
- W - warning

Positions 2-4: refers to the error in according to with the error list

Alarm codes

- **A 101, A 102, A 110, A 152**
 - Checksum error
 - total reset and recalibration is necessary
- **A 106**
 - Downloading - please wait
 - wait until the downloading is complete
 - Electronics defective
 - switch the device off and then on
 - if the error persists contact Endress+Hauser Service
- **A 116**
 - Download error
 - repeat download or perform a total reset
- **A 426**
 - Data of Sensor-DAT (EEPROM) not consistent
 - repeat download from the electronic insert or perform a total reset
- **A 427**
 - Current output not calibrated
 - repeat download or perform a total reset
- **A 1121**
 - current output not calibrated
 - contact Endress+Hauser-Service
- **A 400**
 - Measured capacitance too high
 - change measuring range, verify probe
- **A 403**
 - Measured capacitance too low
 - verify probe
- **A 420**
 - No sensor DAT (EEPROM) available
 - exchange sensor
- **A 428**
 - Probe insulation break detection
 - verify probe
- **A 1601**
 - Linearization curve not monotone for level
 - re-enter linearization
- **A 1604**
 - Calibration faulty
 - correct calibration
Warning codes

- **W103, W153**
 - Initializing - Please wait
 - if the message does not disappear after a few seconds replace the electronics

- **W153**
 - Initializing
 - if the message does not disappear after a few seconds replace the electronics

- **W 425**
 - Warning insulation defective
 - check insulation

- **W 429**
 - Proof test active
 - wait until the proof test is completed

- **W 1601**
 - Linearization curve not monotone for level
 - re-enter linearization

- **W 1611**
 - Level linearization points
 - enter additional linearization points

- **W 1662**
 - The temperature at electronic insert too high (max. temp. at sensor exceeded)
 - lower ambient temperature by suitable measures

- **W 430**
 - Data of probe and electronic insert not compatible
 - check probe, perform a total reset

- **W 1671**
 - Linearization table entered incorrectly
 - re-adjust table

- **W 1681**
 - Current outside measuring range
 - perform basic setup and check linearization

- **W 1683**
 - Current turn down calibration faulty
 - repeat calibration

- **W 1801**
 - Level simulation switched on
 - switch off level simulation

- **W 1802**
 - Simulation switched on
 - switch off simulation

- **W 1806**
 - The current output is in simulation mode
 - set the current output to normal mode

- **W 511**
 - The electronic insert has lost calibration data
 - contact Endress+Hauser-Service

8.3 Possible measuring errors

8.3.1 Measured value is incorrect

If the measured values are incorrect, follow this procedure:

1. Verify empty and full calibration.
2. Clean the probe.

If none of the proposed remedial measures achieves the desired result, perform the reset → [42]
3. Verify the probe.
4. Change the installation position. Do not mount the probe in a filling curtain.
5. Check ground from process connection to the tank wall. Resistance measurement must be < 1 Ω.
6. For conductive media, check the probe insulation. Resistance measurement must be > 800 kΩ.
7. Increase the response time, if the surface is turbulent.

8.4 Firmware history

Firmware V 01.00.zz / 08.2005
Updates:
- original-firmware
- operable with FieldCare version 2.08.00 and higher

Firmware V 01.03.zz / 02.2007
Updates:
- expansion feature suitable for SIL 2 applications
9 Maintenance
No special maintenance work is required for the Liquicap M level transmitter.

9.1 External cleaning
Do not use a corrosive or aggressive cleaning agent to clean the housing surface and seals.

9.2 Cleaning the probe
Depending on the application, buildup of contamination or soiling can form on the probe rope. A high level of material buildup can affect the measurement result.
The regular cleaning of the probe rope is recommended if the medium tends to create a high level of buildup.
Make sure that the insulation of the probe rope is not damaged if hosing down or during mechanical cleaning.
Make sure that the probe rope insulation is resistant to cleaning agents.

9.3 Seals
The process seals of the sensor must be replaced periodically, especially when using molded aseptic seals!
The intervals between seal replacement depend on the frequency of the cleaning cycles and on the fluid and cleaning temperature.

9.4 Endress+Hauser services
Endress+Hauser offers a wide range of services.

ℹ Your Endress+Hauser Sales Center can provide detailed information on the services.
10 Repair

10.1 General notes
The Endress+Hauser repair and conversion concept provides the following:
- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers.
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory.

10.2 Spare parts
Find spare parts
Check whether it is possible to use the spare part for the measuring device.

1. Launch the Endress+Hauser Device Viewer via a web browser:
 www.endress.com/deviceviewer
2. Enter the order code or the product root in the respective field.
 Once the order code or the product root has been entered, all the suitable spare parts are listed.
 The product status is displayed.
 Available drawings of the spare parts are displayed.
3. Locate the order code of the spare part set (on the product label on the package).
 NOTE!
 The order code of the spare part set (on the product label on the package) can differ from the production number (on the label directly on the spare part)!
4. Check whether the order code of the spare part set appears in the list of the spare parts displayed:
 YES: The spare part set may be used for the measuring device.
 NO: The spare part set may not be used for the measuring device.
 If you have any questions please contact your Endress+Hauser Service organization.
5. On the Spare parts tab click the PDF symbol in the MH column.
 The Installation Instructions attached to the listed spare part are opened as a PDF file and can also be saved as a PDF file.
6. Click one of the drawings shown on the Spare part drawings tab.
 The corresponding exploded drawing is opened as a PDF file and can also be saved as a PDF file.

10.3 Repairing Ex-certified devices
If repairing Ex-certified devices remember that:
- Ex-certified devices may only be repaired by experienced and skilled staff or by Endress+Hauser Service
- observe all applicable standards, certificates, national Ex-area regulations and all Safety Instructions (XA)
- use only genuine spare parts from Endress+Hauser
- note the device designation on the nameplate to order the spare parts
- replace the component by the same type
- carry out the replacing in accordance with the instructions
• carry out the individual test for the device
• change the device only with a device certificated by Endress+Hauser
• report every change and repair of the device

10.4 Replacement
After replacing a Liquicap M or the electronic insert, the calibration values must be
transferred to the replacement device.

Options:
• if the probe is replaced, the calibration values in the electronic insert can be transferred
to the sensor DAT (EEPROM) module via a manual download
• if the electronic insert is replaced, the calibration values of the sensor DAT (EEPROM)
module can be transferred to the electronics via a manual upload

It is possible to restart the device without having to carry out a new calibration \(\Rightarrow \) 63.

10.5 Return
The requirements for safe device return can vary depending on the device type and
national legislation.

1. Refer to the website for more information:
 http://www.endress.com/support/return-material
2. Return the device if repairs or a factory calibration are required, or if the wrong
device was ordered or delivered.

10.6 Disposal

10.6.1 Removing the measuring device
1. Switch off the device.

\[\text{WARNING}\]
Danger to personnel from process conditions.

• Beware of hazardous process conditions such as pressure in the measuring device, high
temperatures or aggressive fluids.

2. Carry out the mounting and connection steps from the 'Mounting the measuring
device' and 'Connecting the measuring device' sections in reverse order. Observe the
safety instructions.

10.6.2 Disposing of the measuring device

\[\text{WARNING}\]
Danger to personnel and environment from fluids that are hazardous to health.

• Ensure that the measuring device and all cavities are free of fluid residues that are
hazardous to health or the environment, e.g. substances that have permeated into
crevices or diffused through plastic.

Observe the following notes during disposal:

• Observe valid federal/national regulations.
• Ensure proper separation and reuse of the device components.
11 Accessories

11.1 Protective cover
Protective cover for F13, F17 and F27 housing
order number: 71040497
Protective cover for F16 housing
order number: 71127760

11.2 Shortening set for FMI52
Shortening set for Liquicap M FMI52.
Order number: 942901-0001

11.3 Commubox FXA195 HART
For intrinsically safe HART communication with FieldCare via the RS232C interface or USB.

11.4 Surge arresters

11.4.1 HAW562
- For supply lines: BA00302K.
- For signal lines: BA00303K.

11.4.2 HAW569
- For signal lines in field housing: BA00304K.
- For signal or supply lines in field housing: BA00305K.

11.5 Weld-in adapter
All available weld-in adapters are described in the document TI00426F.
The documentation is available in the Download section on Endress+Hauser web site: www.endress.com
12 Technical data

12.1 Probe

12.1.1 Capacitance values of the probe
The basic capacitance of the probe is approximately 18 pF.

12.1.2 Additional capacitance
Mount the probe at a minimum distance of 50 mm (1.97 in) from a conductive container
wall:
 approximately 1.0 pF/100 mm (3.94 in) in the air for a rope probe
Fully insulated probe rope in water:
 approximately 19 pF/100 mm (3.94 in)

12.1.3 Probe lengths for continuous measurement in conductive
 liquids
The maximum length of the probe is:
 ■ < 6 m (20 ft) for capacitive range 0 to 2 000 pF.
 ■ > 6 m (20 ft) for capacitive range 0 to 4 000 pF.
12.2 Input

12.2.1 Measured variable
Continuous measurement of change in capacitance between the probe rope and container wall, depending on the level of a liquid.
The probe covered -> high capacitance.
The probe not covered -> low capacitance.

12.2.2 Measuring range
- measuring frequency: 500 kHz
- span ΔC
 - recommended: 25 to 4 000 pF
 - possible: 2 to 4 000 pF
- final capacitance Cₑ:
 - max. 4 000 pF
- adjustable initial capacitance Cₐ:
 - < 6 m (20 ft) 0 to 2 000 pF
 - > 6 m (20 ft) 0 to 4 000 pF

12.2.3 Measuring condition
Measuring range L1 is possible from the tip of the probe to the process connection.

When installing in a nozzle, use inactive length L₃.

The 0 % and 100 % calibration can be inverted.
12.3 Output

12.3.1 Output signal

FEI50H (4 to 20 mA / HART version 5)
3.8 to 20.5 mA with HART protocol

12.3.2 Signal on alarm

FEI50H (4 to 20 mA / HART version 5)
Fault diagnosis can be called up via:
- red LED on the local display
- error symbol on the local display
- plain text on the display
- current output 22 mA
- digital interface: HART status error message

12.3.3 Linearization

FEI50H (4 to 20 mA / HART version 5)
The Liquicap M linearization function enables conversion of the measured value into any desired length or volume units. Linearization tables for volume calculation of horizontal cylindrical tanks and spherical tanks are pre-programmed. Any other tables with up to 32 value pairs can be input manually or semi-automatically.

12.4 Performance characteristics

12.4.1 Reference operating conditions
Room temperature: +20 °C (+68 °F) ± 5 °C (± 8 °F).
Span: ΔC = 25 to 4 000 pF recommended, 2 to 4 000 pF possible.

12.4.2 Maximum measured error
Non-repeatability (reproducibility) as per DIN 61298-2:
maximum ± 0.1 %
Non-linearity for limit point setting (linearity) as per DIN 61298-2:
maximum ± 0.25 %

12.4.3 Influence of ambient temperature
Electronic insert
< 0.06 %/10 K related to the full-scale value
Separate housing
Change in capacitance of connecting cable 0.015 pF / m per K

12.4.4 Switch-on behavior
14 s, the stable measured value after the switch-on procedure, a start-up in safe status 22 mA
12.4.5 Measured value reaction time

Operating mode: $t_1 \leq 0.3 \text{ s}$
SIL operating mode: $t_1 \leq 0.5 \text{ s}$

![Diagram showing time constant and dead time]

τ \hspace{1em} Time constant

τ \hspace{1em} Dead time

12.4.6 Response time

FEI50H (4 to 20 mA / HART version 5)

The response time affects the speed at which the display and the current output react to changes in the level.

The factory setting for time constant $\tau = 1 \text{ s}$; 0 to 60 s can be set.

ℹ️ In the software, the name for Response time is Output damping.

12.4.7 Accuracy of factory calibration

Empty calibration (0 %) and full calibration (100 %):
- probe length $< 2 \text{ m (6.6 ft)}$
 - $\leq 5 \text{ mm (0.2 in)}$
- probe length $> 2 \text{ m (6.6 ft)}$
 approximately $\leq 2 \%$

Reference conditions for the factory calibration:
- medium conductivity $\geq 100 \mu \text{S/cm}$
- minimum distance to tank wall $= 250 \text{ mm (9.84 in)}$
In an installed state, recalibration is only necessary when:
- the 0 % or the 100 % values have to be adjusted specifically for the customer
- the liquid is not conductive
- the probe distance to the tank wall is < 250 mm (9.84 in)

12.4.8 Resolution
Analog in % (4 to 20 mA)
- 11 bit/ 2,048 steps, 8 µA
- the resolution of the electronics can be directly converted to units of length of the probe
 e.g. rope probe length is 1,000 mm, resolution equals 1,000 mm/2,048 = 0.48 mm

12.5 Operating conditions: Environment

12.5.1 Ambient temperature range
- F16 housing: –40 to +70 °C (–40 to +158 °F)
- remaining housing: –50 to +70 °C (–58 to +158 °F)
- observe derating
- use a protective cover, when operating outdoors

12.5.2 Climate class
DIN EN 60068-2-38/IEC 68-2-38: Z/AD check

12.5.3 Vibration resistance
DIN EN 60068-2-64/IEC 68-2-64: 20 to 2,000 Hz, 0.01 g²/Hz

12.5.4 Shock resistance
DIN EN 60068-2-27/IEC 68-2-27: 30g acceleration
12.5.5 Cleaning

Housing:
Make sure that the housing surface and seals are resistant to cleaning agents.

Probe:
Depending on the application, buildup of contamination or soiling can form on the rope. A high level of material buildup can affect the measurement result.

The regular cleaning of the rope is recommended if the medium tends to create a high level of buildup.

Make sure that the insulation of the rope is not damaged if hosing down or during mechanical cleaning.

12.5.6 Degree of protection

All protection degree regarding EN60529.
NEMA4X protection degree regarding NEMA250.

Polyester housing F16
Protection degree:
- IP66
- IP67
- NEMA 4X

Stainless steel housing F15
Protection degree:
- IP66
- IP67
- NEMA 4X

Aluminum housing F17
Protection degree:
- IP66
- IP67
- NEMA 4X

Aluminum housing F13 with gas-tight process seal
Protection degree:
- IP66
- IP68 \(^{10}\)
- NEMA 4X

Stainless steel housing F27 with gas-tight process seal
Protection degree:
- IP66
- IP67
- IP68 \(^{10}\)
- NEMA 4X

Aluminum housing T13 with gas-tight process seal and separate connection compartment (Ex d)
Protection degree:
- IP66
- IP68 \(^{10}\)
- NEMA 4X

\(^{10}\) Only with M20 cable entry or G½ thread.
Separate housing
Protection degree:
- IP66
- IP68
- NEMA 4X

12.5.7 Electromagnetic compatibility (EMC)
Interference emission to EN 61326, Electrical Equipment Class B. Interference immunity to EN 61326, Annex A (Industrial) and NAMUR Recommendation NE 21 (EMC).
Failure current is in accordance with NAMUR NE43: FEI50H = 22 mA.
A standard commercial instrument cable can be used.
Information on connecting shielded cables is provided in Technical Information TI00241F "EMC test procedures".

12.6 Operating conditions: Process

12.6.1 Process temperature range
The following diagrams apply for:
- insulation
- PTFE
- PFA
- FEP
- standard applications outside hazardous areas

The temperature is restricted to $T_a \leq -40 \, ^\circ C (-40 \, ^\circ F)$ when the polyester housing F16 is used or if additional option B is selected: free from paint-wetting impairment substances, only FMI51.

Probe with compact housing

T_a Ambient temperature
T_p Process temperature
Probe with separate housing

\[\begin{align*}
 & T_a \quad \text{Ambient temperature} \\
 & T_p \quad \text{Process temperature} \\
 & 1 \quad \text{The permitted ambient temperature at the separate housing is the same as indicated for the compact housing.}
\end{align*} \]

Influence of process temperature

Error in case of fully insulated probes typically 0.13 %/K related to the full-scale value.

12.6.2 Process pressure limits

- The process pressure limits depend on process connections.
- See also chapter ‘Process connections’ in TI01521F.

Rope probe without inactive length or with inactive length in 316L

E+H Configurator settings:

- **Feature:** 20
- **Options:** 1, 2, 5
- –1 to 25 bar (–14.5 to 362.5 psi)
- –1 to 100 bar (–14.5 to 1450 psi)
- in regards to an inactive length, the maximum permitted process pressure is 63 bar (913.5 psi)
- for CRN approval and inactive length: the maximum permitted process pressure is 32 bar (464 psi)
Rope probe with fully insulated inactive length

E+H Configurator settings:
- Feature: 20
- Options: 3, 6

-1 to 50 bar (–14.5 to 725 psi)

Refer to the following standards for the pressure values permitted at higher temperatures:
- EN 1092-1: 2005 Table, Appendix G2
 With regard to its resistance and temperature property, the material 1.4435 is identical to 1.4404 (AISI 316L) which is grouped under 13E0 in EN 1092-1 Tab. 18. The chemical composition of the two materials can be identical.
- ASME B 16.5a - 1998 Tab. 2.2.2 F316
- ASME B 16.5a - 1998 Tab. 2.3.8 N10276
- JIS B 2220

The lowest value from the derating curves of the device and the selected flange applies.

12.6.3 Pressure and temperature derating

For rope probes without inactive length or with inactive length in 316L, process connections ¾", 1", flanges <DN50, <ANSI 2", <JIS 10K and process connections ¾", 1", flanges <DN50, <ANSI 2", <JIS 10K

Rope insulation: FEP, PFA

E+H Configurator settings:
- Feature: 20
- Options: 1, 2, 5

![Diagram showing derating curves for process pressure and temperature](image)

P_p Process pressure

T_p Process temperature
For rope probes without inactive length or with inactive length in 316L, process connections 1\(\frac{1}{2}\)", flanges ≥DN50, ≥ANSI 2", ≥JIS 50A

Rope insulation: FEP, PFA

E+H Configurator settings:
- Feature: 20
- Options: 1, 2, 5

\[
P_p \quad \text{Process pressure} \\
T_p \quad \text{Process temperature} \\
63 \quad \text{Process pressure for probes with an inactive length}
\]

For rope probe with a fully insulated inactive length

Rope insulation: FEP, PFA

E+H Configurator settings:
- Feature: 20
- Options: 3, 6

\[
P_p \quad \text{Process pressure} \\
T_p \quad \text{Process temperature}
\]
Index

<table>
<thead>
<tr>
<th>0 ... 9</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mA threshold</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>About this document</td>
<td>6</td>
</tr>
<tr>
<td>Accessories</td>
<td>81</td>
</tr>
<tr>
<td>Accuracy of factory calibration</td>
<td>85</td>
</tr>
<tr>
<td>Additional capacitance</td>
<td>82</td>
</tr>
<tr>
<td>Aligning the housing</td>
<td>22</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic safety instructions</td>
<td>10</td>
</tr>
<tr>
<td>Basic setup without the display or operating module</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable specification</td>
<td>24</td>
</tr>
<tr>
<td>Calculating the calibration data with CapCalc</td>
<td>71</td>
</tr>
<tr>
<td>Capacitance values of the probe</td>
<td>82</td>
</tr>
<tr>
<td>CE mark</td>
<td>10</td>
</tr>
<tr>
<td>Certificates</td>
<td>8</td>
</tr>
<tr>
<td>Cleaning the probe</td>
<td>78, 87</td>
</tr>
<tr>
<td>Climate class</td>
<td>86</td>
</tr>
<tr>
<td>Commissioning</td>
<td>38</td>
</tr>
<tr>
<td>Commubox FXA195 HART</td>
<td>81</td>
</tr>
<tr>
<td>Conical threads</td>
<td>21</td>
</tr>
<tr>
<td>Connecting HART</td>
<td>27</td>
</tr>
<tr>
<td>Connecting requirements</td>
<td>24</td>
</tr>
<tr>
<td>Connection compartment</td>
<td>25</td>
</tr>
<tr>
<td>Connector</td>
<td>25</td>
</tr>
<tr>
<td>Cylindrical threads</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration of Conformity</td>
<td>10</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>87</td>
</tr>
<tr>
<td>Diagnostic information via LEDs</td>
<td>74</td>
</tr>
<tr>
<td>Diagnostics and troubleshooting</td>
<td>74</td>
</tr>
<tr>
<td>Display and operating elements</td>
<td>30</td>
</tr>
<tr>
<td>Disposal</td>
<td>80</td>
</tr>
<tr>
<td>Document</td>
<td>6</td>
</tr>
<tr>
<td>Document conventions</td>
<td>6</td>
</tr>
<tr>
<td>Document function</td>
<td>6</td>
</tr>
<tr>
<td>Documentation</td>
<td>8</td>
</tr>
<tr>
<td>Dry calibration for interface measurement</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing functions with the picklist</td>
<td>34</td>
</tr>
<tr>
<td>Editing numeric and alphanumeric functions</td>
<td>34</td>
</tr>
<tr>
<td>Editing the probe and application-specific data</td>
<td>72</td>
</tr>
<tr>
<td>Effects of a reset</td>
<td>36</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>24</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>24, 88</td>
</tr>
<tr>
<td>Endress+Hauser services</td>
<td></td>
</tr>
<tr>
<td>Repair</td>
<td>78</td>
</tr>
<tr>
<td>Environment</td>
<td>86</td>
</tr>
<tr>
<td>Error codes</td>
<td>75</td>
</tr>
<tr>
<td>Error messages</td>
<td>35</td>
</tr>
<tr>
<td>Error signal</td>
<td>74</td>
</tr>
<tr>
<td>Ex-area</td>
<td></td>
</tr>
<tr>
<td>Explosive area</td>
<td>10</td>
</tr>
<tr>
<td>Extension heights: separate housing</td>
<td>16</td>
</tr>
<tr>
<td>External cleaning</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FEI50H electronic insert</td>
<td>29</td>
</tr>
<tr>
<td>FieldCare</td>
<td>70</td>
</tr>
<tr>
<td>Function</td>
<td>37, 70</td>
</tr>
<tr>
<td>Firmware history</td>
<td>77</td>
</tr>
<tr>
<td>Function codes</td>
<td>32</td>
</tr>
<tr>
<td>Function switch: position 1.</td>
<td>39</td>
</tr>
<tr>
<td>Operation</td>
<td>39</td>
</tr>
<tr>
<td>Function switch: position 2.</td>
<td></td>
</tr>
<tr>
<td>Carry out empty calibration - for almost empty tanks</td>
<td>39</td>
</tr>
<tr>
<td>Carry out empty calibration - for empty tanks</td>
<td>39</td>
</tr>
<tr>
<td>Function switch: position 3</td>
<td></td>
</tr>
<tr>
<td>Carry out full calibration - for almost full tanks</td>
<td>40</td>
</tr>
<tr>
<td>Carry out full calibration - for full tanks</td>
<td>40</td>
</tr>
<tr>
<td>Function switch: position 4</td>
<td></td>
</tr>
<tr>
<td>Measuring modes</td>
<td>41</td>
</tr>
<tr>
<td>Function switch: position 5</td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>41</td>
</tr>
<tr>
<td>Function switch: position 6</td>
<td></td>
</tr>
<tr>
<td>Proof test - self-test</td>
<td>42</td>
</tr>
<tr>
<td>Function switch: position 7</td>
<td></td>
</tr>
<tr>
<td>Reset - restore factory settings</td>
<td>42</td>
</tr>
<tr>
<td>Function switch: position 8</td>
<td></td>
</tr>
<tr>
<td>Download or upload sensor DAT (EEPROM)</td>
<td>42</td>
</tr>
<tr>
<td>Function: "Actual error"</td>
<td>67</td>
</tr>
<tr>
<td>Function: "Basic setup"</td>
<td>45</td>
</tr>
<tr>
<td>Function: "Device information"</td>
<td>69</td>
</tr>
<tr>
<td>Function: "Display format"</td>
<td>67</td>
</tr>
<tr>
<td>Function: "Electronic temp."</td>
<td>68</td>
</tr>
<tr>
<td>Function: "Extended calibr."</td>
<td>62</td>
</tr>
<tr>
<td>Function: "HART settings"</td>
<td>64</td>
</tr>
<tr>
<td>Function: "Language"</td>
<td>67</td>
</tr>
<tr>
<td>Function: "Last error"</td>
<td>68</td>
</tr>
<tr>
<td>Function: "Linearization"</td>
<td>56, 59</td>
</tr>
<tr>
<td>Function: "Measure capacity"</td>
<td>68</td>
</tr>
<tr>
<td>Function: "Medium property"</td>
<td>46</td>
</tr>
<tr>
<td>Function: "Operating mode"</td>
<td>52</td>
</tr>
<tr>
<td>Function: "Output damping"</td>
<td>49</td>
</tr>
<tr>
<td>Function: "Output on alarm"</td>
<td>53</td>
</tr>
<tr>
<td>Function: "Password / reset"</td>
<td>68</td>
</tr>
<tr>
<td>Function: "Proof test"</td>
<td></td>
</tr>
<tr>
<td>Self-test</td>
<td>54</td>
</tr>
<tr>
<td>Function: "Safety settings"</td>
<td>51, 52, 53</td>
</tr>
<tr>
<td>Function: "Simulation"</td>
<td>65</td>
</tr>
<tr>
<td>Function: Output / Calculat.</td>
<td>64</td>
</tr>
<tr>
<td>Funktion: "Output/Calculat."</td>
<td>63</td>
</tr>
</tbody>
</table>
Liquicap M FMI52 HART

Index

G
Green LED flashing 74
H
Hardware key combinations 31
Hygienic compatibility 9
I
Incoming acceptance 11
Influence of ambient temperature 84
Initial commissioning 43
Input 83
Installation and function check 38
Installation examples 14
Installation instructions 20
Interface measurement 71
K
Key locking 35
Key symbols 31
Key unlocking 36
L
Last errors 74
Launching menus 33
Linearization 84
Locking and unlocking configuration 35
M
M12 connector 25
Maintenance 78
Maximum
 measured error 84
 Measured value is incorrect 76
 Measured value reaction time 85
 Measured variable 83
 Measuring condition 13, 83
Measuring device
 Conversion 79
 Disposal 80
 Removing 80
 Repairs 79
Measuring range 83
Menu: "Basic setup" 44
 Commissioning with display and operating module 43
Menu: "Device properties" 65
Menu: "Linearization" 55
Menu: "Output" 62
Menu: "Safety setting" 50
Menu: "Simulation" 65
Minimum probe length for nonconductive media . 13
Mounting 12
Mounting requirements 12
Mounting the sensor 12
O
Operating conditions 86
Operating conditions: Process 88
Operating mode: "Empty calibr."
 Function - "Dry" 47
 Function - "Wet" 46
Operating mode: "Empty calibration"
 Function - "Dry" for "Interface" or "Unknown" medium properties 48
Operating mode: "Full calibr."
 Function - "Wet" 47
Operating mode: "Full calibration"
 Function - "Dry"
 Conductive and nonconductive media 48
 Function - "Dry" for "Interface" or "Unknown" medium properties 49
Operation 70
Operation options 29
Operation via FieldCare Device Setup 37
Operation via the optional display and operating module 30
Operational safety 10
Output 84
Output damping 85
Output signal 84
Overview of operation options 29
P
Performance characteristics 84
Performing a reset 36
Pipe mounting 18
Possible measuring errors 76
Post-connection check 27
Post-installation check 22
Potential equalization 24
Pressure and temperature derating 90
Probe installation 21
Probe length 69, 82
Probe with PTFE-clad flange 21
Probe with separate housing 16
Probe with Tri-Clamp 21
Process pressure limits 89
Process temperature range 88
Product identification 11
Product safety 10
Protective cover 81
Q
Quick installation guide 12
R
Red LED flashing 74
Reference operating conditions 84
Registered trademarks 9
Repair 79
Repairing Ex-certified devices 79
Replacement 80
 Device components 79
Requirements for the personnel 10
Resetting to factory setting - reset 36
Resolution 49, 51, 53, 85
Response time 49, 51, 53, 85
Index

Return .. 80
Return to the measured value display 35

S
Sealing the probe housing 22
Seals .. 78
Selecting a function and subfunction 34
Selecting a submenu 33
Shock resistance 86
Shortening set 81
Shortening the connecting cable 19
Signal on alarm 84
Software locking 36
Spare parts ... 79
Special functions when making entries 34
Storage .. 11
Subfunction: "Cal. type" 45
Subfunction: "Cap. empty" 48, 52
Subfunction: "Cap. full" 48, 49, 52
Subfunction: "Code" 51
Subfunction: "Confirm cal." 46, 47, 48, 49
Subfunction: "Curr. turn down" 63
Subfunction: "Current run time" 69
Subfunction: "Current span" 64
Subfunction: "Customer unit" 59
Subfunction: "Customized text" 59
Subfunction: "DC value" 46
Subfunction: "DD version" 69
Subfunction: "Dev. rev." 69
Subfunction: "Device marking" 69
Subfunction: "Diameter" 59
Subfunction: "EC Serial No." 69
Subfunction: "Edit" 59
Subfunction: "Electronic temp." 68
Subfunction: "Format" 67
Subfunction: "HART address" 64
Subfunction: "Intermed. height" 59
Subfunction: "Max. capacity val." 69
Subfunction: "Max. scale" 61
Subfunction: "Max. temp." 68
Subfunction: "Medium property" 48
Subfunction: "Medium property - conductive, nonconductive" 48
Subfunction: "Measure capacity" 46, 47, 68
Subfunction: "Medium property" 41, 45, 46
Subfunction: "Min. capacity val." 69
Subfunction: "Min. temp." 68
Subfunction: "Min/Max capacity" 69
Subfunction: "Min/Max temp." 68
Subfunction: "Mode" 58
Subfunction: "No. of decimals" 67
Subfunction: "No. of preambles" 64
Subfunction: "Operating mode" 51, 52, 53
Subfunction: "Output 1" 51
Subfunction: "Output damping" 51, 53
Subfunction: "Output value" 54
Subfunction: "Output" 53
Subfunction: "Parameter okay" 53
Subfunction: "Parameter okay" 51, 52
Subfunction: "Probe length" 69
Subfunction: "Proof test" 54
Subfunction: "Reset" 68
Subfunction: "Sensitivity" 70
Subfunction: "Sensor DAT stat." 63
Subfunction: "Sensor DAT" 63
Subfunction: "Sep. character" 67
Subfunction: "Serial No." 69
Subfunction: "Short TAG HART" 64
Subfunction: "SIL operating mode" 52
Subfunction: "Sim. level value" or "Sim. vol. value" ... 59
Subfunction: "Simulation value" 65
Subfunction: "Simulation" 65, 69
Subfunction: "Software version" 69
Subfunction: "Status table" 60
Subfunction: "Status" 51, 52
Subfunction: "Temperature unit" 68
Subfunction: "Type" 56
Subfunction: "Unit level" 46
Subfunction: "Value empty" 53
Subfunction: "Value full" 47, 49, 52, 53
Subfunction: "Value empty" 46, 48, 52, 53
Subfunction: "Value full" 47, 49, 52, 53
Medium property - conductive, nonconductive 48
Subfunction: "Working hour" 69
Submenu: "Diagnosis" 67
Submenu: "Display" 67
Submenu: "Extended calibr." 62
Submenu: "HART setting" 64
Submenu: "System parameters" 69
Supply voltage 25
Surge arrester 81
Switch-on behavior 84
Symbols for certain types of information and graphics 7
Symbols on the display 31
System error messages 74

T
Technical data 82
Technical data: probe 82
Technical Information 8
Terminal assignment 26
The operating menu 32
The table editor 60
Transport ... 11
Turn down 4 mA 63
Types of error 74

U
Using the reset 36

V
Vibration resistance 86

W
Wall bracket 17
Wall mounting 18
Weld-in adapter 81
Wet calibration for interface measurement 73
Wiring and connecting 25
Workplace safety 10

Endress+Hauser