Informazioni tecniche iTHERM TT131

Pozzetto saldato per un'ampia gamma di applicazioni industriali

Pozzetto per armature con inserto RTD e TC, progettato per applicazioni industriali e in particolare per l'industria chimica e petrolchimica e la produzione dell'energia

Applicazione

- Protegge il sensore di temperatura dalle sollecitazioni fisiche e chimiche
- Costruzione estremamente robusta per condizioni di processo difficili
- Campo di pressione fino a 100 bar (1450 psi)
- Per applicazioni in tubi, sili o serbatoi
- Manutenzione e ritaratura del punto di misura più semplici (il sensore può essere sostituito senza interrompere il processo)

Vantaggi

- Configurazione modulare secondo DIN 43772
- iTHERM QuickNeck riduzione dei costi e risparmio di tempo grazie alla possibilità di ritarare l'inserto in modo semplice, senza attrezzi
- L'estensione, la lunghezza di immersione e la lunghezza totale possono essere selezionate in base ai requisiti del processo
- Ampia gamma di formati, materiali e connessioni al processo
- Puntale studiato per assicurare tempi di risposta rapidi

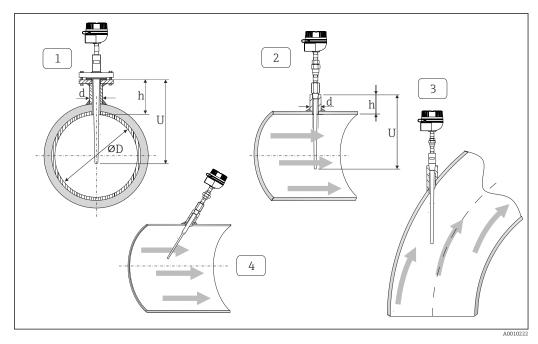
Indice

Funzionamento e struttura dei sistema	
Dati costruttivi	3
Progettazione modulare	3
Installazione	3
Posizione di montaggio	
Orientamento	3
Istruzioni d'installazione	3
Processo	4
Campo di temperatura di processo	
Campo pressione di processo	
Fluido - stato di aggregazione	
Costruzione meccanica	7
Struttura, dimensioni	
Peso	
	10
	12
	21
Certificati ed approvazioni	22
	22
	22
Servizio	22
Certificazione dei materiali	22
Esecuzione di prove relative al pozzetto	22
Informazioni per l'ordine	23
Accessori	23
	24
	24
Documentazione	25

2

Funzionamento e struttura del sistema

Dati costruttivi


I pozzetti sono progettati in conformità alla norma DIN 43772, pertanto possono garantire un buon livello di resistenza ai processi industriali più tipici e comuni. Il pozzetto comprende un tubo con diametro di 9, 11, 12, 14 o 16 mm, oppure un tubo da $\frac{1}{4}$ " o $\frac{1}{2}$ ". Il puntale del pozzetto può essere diritto, rastremato o ridotto (a gradini). Per i pozzetti con puntale diritto è possibile fornire una guaina in PTFE, mentre per la versione diritta o rastremata è disponibile una guaina in tantalio. I pozzetti possono essere montati su un tubo o silo nell'impianto utilizzando varie connessioni al processo flangiate, filettature o giunti a compressione di uso comune.

Progettazione modulare

Design		Opzioni			
	1: Connessione al termometro	 ■ Filettatura femmina per connessione con collo di estensione rimovibile o nipplo ■ Filettatura maschio, generalmente M24 x 1,5 o NPT ½", per montaggio diretto del pozzetto sulla testa terminale 			
	2: Rivestimento	Estensione che non può essere rimossa dal pozzetto. Consente di disporre di più spazio per l'installazione, soprattutto se viene utilizzata una flangia. Può anche proteggere la testa terminale e il modulo dell'elettronica dal calore durante il processo.			
2 3 TLA	3: Connessione al processo	Elemento di collegamento sul lato del processo. Può essere qualsiasi tip di filettatura, flangia o giunto a compressione. La connessione al proces deve essere progettata per resistere alla pressione, alla temperatura e a fluido di processo.			
4 U U A0039202	4: Parte di immersione	Parte del pozzetto che viene inserita nel processo. Disponibile in vari diametri e materiali, per soddisfare i requisiti di varie applicazioni. Il materiale e la resistenza selezionati devono essere in grado di sopportare il carico statico e dinamico derivante dalle condizioni di processo. Inoltre, gli elementi devono essere resistenti agli agenti chimici, agli urti meccanici e alle vibrazioni.			
	5: Puntale del pozzetto	Sono disponibili vari tipi di puntali. Per i pozzetti impiegati nei tubi di piccolo diametro, è disponibile un puntale ridotto o rastremato per ridurre la resistenza di flusso. I puntali ridotti assicurano anche un tempo di risposta più rapido, mentre per tempi di risposta ancora superiori sono disponibili puntali di forma speciale.			

Installazione

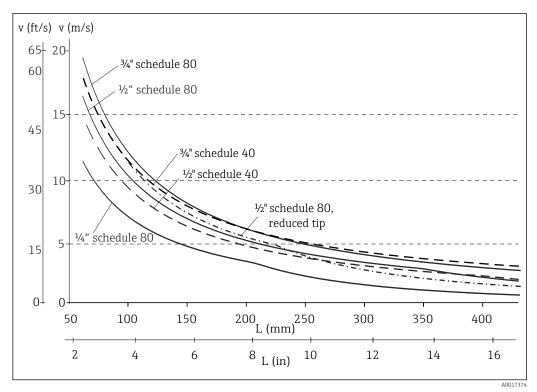
Posizione di montaggio	I pozzetti possono essere installati in tubazioni, serbatoi o sili.
Orientamento	Nessuna restrizione. Tuttavia, deve essere garantito lo scarico automatico nel processo, in funzione dell'applicazione.
Istruzioni d'installazione	La lunghezza di immersione del termometro può influenzarne l'accuratezza. Se la lunghezza di immersione è troppo ridotta, si possono verificare errori di misura dovuti alla conduzione del calore nella connessione al processo. In caso di installazione in un tubo, la lunghezza di immersione idealmente dovrebbe essere pari alla metà del diametro del tubo. Anche se la posizione di installazione può variare in base alle esigenze, l'elemento di misura deve essere completamente esposto al fluido e non deve essere schermato dall'ugello. Nei tubi di piccolo diametro è possibile montare un espansore per tubo attorno al punto di misura per assicurare una lunghezza di immersione sufficiente. Possibilità di installazione: tubi, serbatoi o altri componenti dell'impianto

- 1 Esempi di installazione
- 1 2 Nei tubi di sezione ridotta il puntale del sensore deve raggiungere o superare leggermente l'asse del tubo (= II).
- 3 4 Orientamento inclinato.
- In caso di tubi con diametro nominale piccolo, è consigliabile che il puntale del termometro sia bene inserito nel processo in modo da estendersi oltre l'asse del tubo. In alternativa, il termometro può essere installato con orientamento inclinato (4). Per determinare la lunghezza di immersione o la profondità di installazione, si devono considerare tutti i parametri del termometro e del fluido da misurare (ad es. velocità di deflusso, pressione di processo).
 - Per lunghezze di immersione $U < 70 \ mm$ (27,6 in) si consiglia l'uso di inserti iTHERM QuickSens.
- I controelementi per la connessione al processo e le guarnizioni o gli anelli di tenuta non sono inclusi nella fornitura per il termometro.

Processo

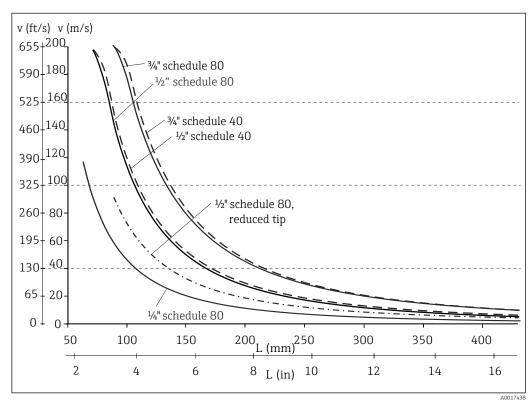
Campo di temperatura di processo

Dipende dal tipo di pozzetto e dal materiale impiegato, max. $-200 \dots +1100 \,^{\circ}\text{C}$ ($-328 \dots +2012 \,^{\circ}\text{F}$).


Campo pressione di processo

La pressione di processo massima possibile dipende da vari fattori, tra cui il design, la connessione al processo e la temperatura di processo. Per informazioni sulle pressioni di processo massime possibili per le singole connessioni al processo, vedere la sezione "Connessione al processo".

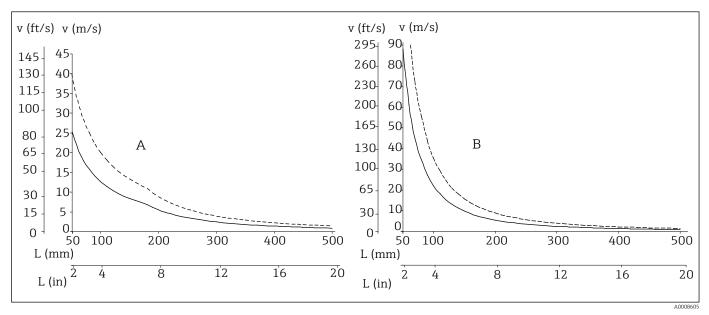
La capacità di carico meccanico può essere verificata online, in funzione delle condizioni di installazione e di processo, mediante lo strumento di calcolo del dimensionamento dei pozzetti (Sizing Thermowell) nel software Endress+Hauser Applicator. https://portal.endress.com/webapp/applicator


Velocità di deflusso consentita in base alla lunghezza di immersione

La velocità di deflusso massima tollerata dal termometro diminuisce all'aumentare della lunghezza di immersione del sensore esposta al liquido che defluisce. Dipende, inoltre, dal diametro del puntale del termometro e del pozzetto, dal tipo di fluido misurato, dalla temperatura e dalla pressione di processo. Le figure seguenti illustrano le velocità di deflusso massime in acqua e vapore surriscaldato a una pressione di processo di 50 bar (725,2 psi).

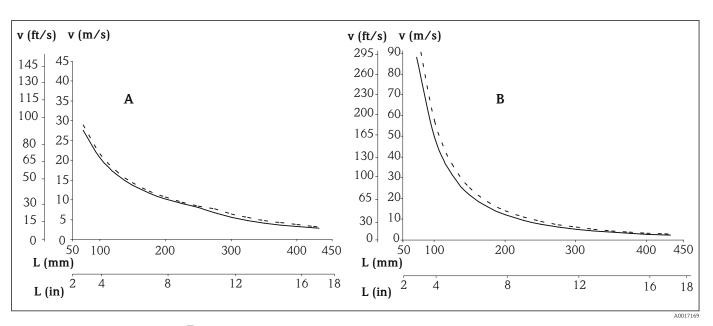
 \blacksquare 2 Velocità di deflusso ammesse con termometri di diverso diametro in acqua di processo a T = 50 °C (122 °F)

- L Lunghezza di immersione non supportata del pozzetto, materiale 1.4401 (316)
- v Velocità di deflusso



Velocità di deflusso ammesse con termometri di diverso diametro in vapore surriscaldato di processo a T = 400 °C (752 °F)

- L Lunghezza di immersione non supportata del pozzetto, materiale 1.4401 (316)
- v Velocità di deflusso


Velocità di deflusso consentita in base alla lunghezza di immersione e al fluido di processo

La velocità di deflusso massima tollerata dal termometro diminuisce all'aumentare della lunghezza di immersione dell'inserto esposta al liquido che defluisce. La velocità di deflusso dipende anche dal diametro del puntale del termometro, dal tipo di fluido misurato, dalla temperatura e dalla pressione di processo. Le figure seguenti illustrano le velocità di deflusso massime in acqua e vapore surriscaldato a una pressione di processo di 50 bar (725 psi).

Massima velocità di deflusso con pozzetto da 9 mm (0,35 in) (-----) o 12 mm (0,47 in) (-----) di diametro

- A Fluido: acqua a $T = 50 \,^{\circ}\text{C} (122 \,^{\circ}\text{F})$
- B Fluido: vapore surriscaldato a $T = 400 \,^{\circ}\text{C}$ (752 °F)
- L Lunghezza di immersione
- v Velocità di deflusso

■ 5 Massima velocità di deflusso con pozzetto da 14 mm (0,55 in) (------) o 15 mm (0,6 in) (------) di diametro

- A Fluido: acqua a $T = 50 \,^{\circ}\text{C}$ (122 °F)
- B Fluido: vapore surriscaldato a $T = 400 \,^{\circ}\text{C}$ (752 °F)
- L Lunghezza di immersione
- v Velocità di deflusso

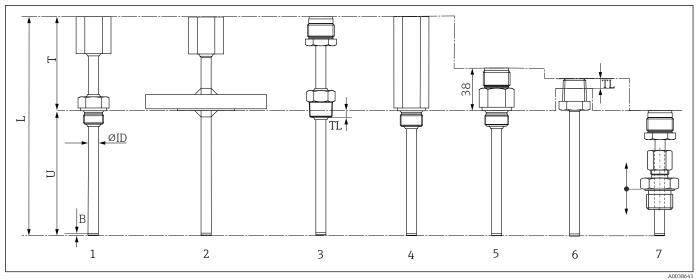
Fluido - stato di aggregazione

Gassoso o liquido (anche con alta viscosità, ad es. yogurt).

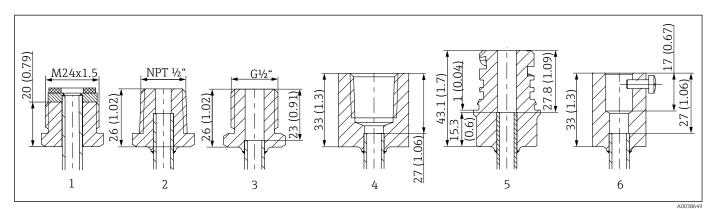
Costruzione meccanica

Struttura, dimensioni

Tutte le dimensioni sono espresse in mm (in). La costruzione del termometro varia a seconda della versione del pozzetto: il tipo di rivestimento è una caratteristica fondamentale.


Diametro del pozzetto:

Diametro	Forma del puntale	Materiale
9 mm x 1,25 mm	DirittoRidottoRastremato	316L316TiAlloyC276Alloy600
11 mm x 2 mm	DirittoRidotto	316L316TiAlloyC276Alloy600
12 mm x 2,5 mm	Diritto Rastremato	■ 316Ti ■ 321
14 mm x 2 mm	Diritto	316L
16 mm x 3,5 mm	Diritto	316L
1/4" SCH80, 13,7 mm x 3 mm	Diritto	316
1/2" SCH80, 21,3 mm x 3,7 mm	Diritto	316
1/2" SCH40, 21,3 mm x 2,7 mm	Diritto	446


Varie dimensioni, come la lunghezza di immersione U, hanno valori variabili e sono perciò indicate come elementi nei seguenti disegni dimensionali.

Dimensioni variabili:

Elemento	Descrizione
L	Lunghezza pozzetto termometrico (U+T)
TL	Lunghezza della filettatura (lunghezza di innesto)
В	Spessore della base del pozzetto: predefinito, in base alla versione del pozzetto (vedere anche i dati delle singole tabelle)
Т	Lunghezza del rivestimento: variabile o predefinita, in base alla versione del pozzetto (vedere anche i dati delle singole tabelle)
U	Lunghezza di immersione: variabile in base alla configurazione
D	Diametro del pozzetto

- .
- 1 Connessione al processo con filettatura metrica ed estensione (estensione del pozzetto: opzione A)
- 2 Connessione al processo flangiata con estensione (estensione del pozzetto: opzione A)
- 3 Connessione al processo con filettatura NPT ed estensione (estensione del pozzetto: opzione A)
- 4 Connessione al processo filettata con rivestimento esagonale (estensione del pozzetto: opzione B)
- 5 Connessione al processo filettata con rivestimento esagonale (estensione del pozzetto: opzione B)
- 6 Adattatore a saldare senza estensione (estensione del pozzetto: opzione 0)
- Giunto a compressione regolabile senza estensione (estensione del pozzetto: opzione 0)

- 6 Connessione del termometro
- 1 Filettatura maschio M24x1.5
- 2 Filettatura maschio NPT ½"
- 3 Filettatura maschio G ½"
- 4 Filettatura femmina M20x1.5, NPT ½" e G ½"
- 5 iTHERM QuickNeck con fissaggio rapido
- 6 Adattatore TA20L

Possibili combinazioni delle versioni dei pozzetti con le connessioni al processo disponibili

	Diametro del pozzetto								
Connessione al processo e dimensioni	9 x 1,25 mm	11 x 2 mm	12 x 2,5 mm	14 x 2 mm 316Ti	16 x 3,5 mm 316L	½" 316	½" 316	½" 446	
Tolleranze del diametro									
Soglia di tolleranza inferiore (mm)	0,0	0,0	0,0	0,0	0,0	-0,79	-0,79	-0,79	
Soglia di tolleranza superiore (mm)	+0,1	+0,1	+0,1	+0,1	+0,1	+0,4	+0,4	+0,4	

	Diametro del pozzetto									
Connessione al processo e dimensioni	9 x 1,25 mm	11 x 2 mm	12 x 2,5 mm	14 x 2 mm 316Ti	16 x 3,5 mm 316L	½" 316	½" 316	½" 446		
Filettatura								ı		
M18 x 1,5, 316L/316Ti	316L o 316Ti	316L o 316Ti	-	-	-	-	-	-		
M20 x 1,5, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	-	-	-	-		
M27 x 2, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	-	-	-		
M33 x 2, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	-	-	-		
NPT ½", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	-	316	-	-		
NPT ¾", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
NPT 1", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
G 3/8, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	-	-	-	-	-		
G ½", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	-	-	-	-		
G ¾", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	-	-	-		
G 1", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	-	-	-		
R ½", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	-	-	-	-		
R ¾", 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	-	-	-		
M20 x 1,55, 321	-	-	321	-	-	-	-	-		
M27 x 2, 321	-	-	321	-	-	-	-	-		
M33 x 2, 321	-	-	321	-	-	-	-	-		
NPT ½", 321	-	-	321	-	-	-	-	-		
G ½", 321	-	-	321	-	-	-	-	-		
M20 x 1,5, AlloyC276	AlloyC276	AlloyC276	-	-	-	-	-	-		
NPT ½", AlloyC276	AlloyC276	AlloyC276	-	-	-	-	-	-		
G ½", AlloyC276	AlloyC276	AlloyC276	-	-	-	-	-	-		
M20 x 1,5, AlloyC600	Alloy600	Alloy600	-	-	-	-	-	-		
NPT ½", AlloyC600	Alloy600	Alloy600	-	-	-	-	-	-		
G ½", AlloyC600	Alloy600	Alloy600	-	-	-	-	-	-		
Adattatore a saldare	1			1	1.	<u> </u>	ı	1		
Cilindrico, D = 30 mm (1,18 in), 316L	316L, 316Ti, Alloy600, AlloyC276	-	-	-	-	-	-	-		
Giunto a compressione				1			1	1		
NPT ½", 316L	316L, 316Ti, Alloy600, AlloyC276	316L o 316Ti	316Ti	316Ti	-	-	-	-		

	Diametro del pozzetto									
Connessione al processo e dimensioni	9 x 1,25 mm	11 x 2 mm	12 x 2,5 mm	14 x 2 mm 316Ti	16 x 3,5 mm 316L	½" 316	½" 316	½" 446		
G ½", 316L	316L, 316Ti, Alloy600, AlloyC276	316L o 316Ti	316Ti	316Ti	-	-	-	-		
G 1"', 316L	316L, 316Ti, Alloy600, AlloyC276	316L o 316Ti	316Ti	316Ti	-	-	-	-		
Con flangia	316L	316L	316Ti	316Ti	316L	316	316	446		
ANSI 1" 150 RF B16.5, 316L	316L	316L	316Ti	316Ti	316L	316	316	446		
ANSI 1 ½" 150 RF B16.5, 316L	316L	316L	316Ti	316Ti	316L	316	316	446		
ANSI 2" 150 RF B16.5, 316L	316L	316L	316Ti	316Ti	316L	316	316	446		
ANSI 2" 300 RF B16.5, 316L	316L	316L	316Ti	316Ti	316L	316	316	446		
DN15 PN40 B1 EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	-	-		
DN15 PN40 C EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	-	-		
DN25 PN20 B1 ISO7005-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN25 PN40 B1 EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN25 PN40 C EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN25 PN100 B2 EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN40 PN40 B1 EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN50 PN40 B1 EN1092-1, 316L/316Ti	316L o 316Ti	316L o 316Ti	316Ti	316Ti	316L	316	316	446		
DN25 PN40 B1 EN1092-1, AlloyC276 > 316L	AlloyC279	AlloyC280	-	-	-	-	-	-		
DN50 PN40 B1 EN1092-1, AlloyC276 > 316L	AlloyC280	AlloyC281	-	-	-	-	-	-		
DN25 PN40 B1 EN1092-1, AlloyC600 > 316L	Alloy600	Alloy600	-	-	-	-	-	-		
DN50 PN40 B1 EN1092-1, AlloyC600 > 316L	Alloy600	Alloy600	-	-	-	-	-	-		
DN25 PN40 B1 EN1092-1, tantalio > 316Ti	-	316Ti + 12 mm	316Ti + 13 mm	-	-	-	-	-		
DN50 PN40 B1 EN1092-1, tantalio > 316Ti	-	316Ti + 12 mm	316Ti + 13 mm	-	-	-	-	-		
DN25 PN40 B1 EN1092-1, PTFE > 316Ti	-	316Ti + 15 mm	-	-	-	-	-	-		
DN50 PN40 B1 EN1092-1, PTFE > 316Ti	-	316Ti + 15 mm	-	-	-	-	-	-		

Peso Tipicamente 0,2 ... 7,5 kg (0,44 ... 16,53 lbs) per le opzioni standard.

Materiale Pozzetto e connessioni al processo.

Le temperature per il funzionamento continuo specificate nella tabella seguente hanno un valore puramente indicativo, e si riferiscono all'uso dei vari materiali nell'aria in assenza di carichi meccanici di rilievo. Le temperature operative massime possono ridursi sensibilmente nel caso di condizioni anomale, ad esempio in presenza di un elevato carico meccanico o di fluidi aggressivi.

 $Considerare \ con \ attenzione \ che \ la \ temperatura \ massima \ dipende \ sempre \ anche \ dal \ sensore \ utilizzato!$

Nome del materiale	Abbreviazione	Temperatura max. consigliata per uso continuo nell'aria	Proprietà
AISI 316/1.4401	X5CrNiMo 17-12-2	650 °C (1202 °F) ¹⁾	 Acciaio inox, austenitico Elevata resistenza alla corrosione in generale Resistenza alla corrosione particolarmente elevata in ambienti clorurati e acidi non ossidanti grazie all'aggiunta di molibdeno (ad es. acidi fosforici e solforici, acidi acetici e tartarici in basse concentrazioni)
AISI 316L/1.4404 1.4435	X2CrNiMo17-12-2 X2CrNiMo18-14-3	650 °C (1202 °F) ¹⁾	 Acciaio inox, austenitico Elevata resistenza alla corrosione in generale Resistenza alla corrosione particolarmente elevata in ambienti clorurati e acidi non ossidanti grazie all'aggiunta di molibdeno (ad es. acidi fosforici e solforici, acidi acetici e tartarici in basse concentrazioni) Maggiore resistenza alla corrosione intergranulare e alla corrosione puntiforme Rispetto al 1.4404, il 1.4435 ha una resistenza alla corrosione ancora maggiore e un contenuto di delta ferrite inferiore
AISI 316Ti/1.4571	X6CrNiMoTi17-12-2	700 °C (1292 °F) ¹⁾	 Proprietà comparabili con AlSI316L L'aggiunta di titanio determina una maggiore resistenza alla corrosione intergranulare anche dopo la saldatura Ampia gamma di utilizzi nell'industria chimica, petrolchimica e del petrolio, nonché nell'industria del carbone Può essere solo limitatamente lucidato, in quanto possono formarsi striature di titanio
Alloy600/2.4816	NiCr15Fe	1100°C (2012°F)	 Lega nichel/cromo molto resistente ad ambienti aggressivi, ossidanti e riducenti, anche alle alte temperature Resistente alla corrosione dovuta a gas di cloro e agenti clorurati, nonché a molti acidi organici e minerali ossidanti, acqua marina, ecc. Corrosione provocata dall'acqua ultrapura Non può essere impiegato in presenza di zolfo
AlloyC276/2.4819	NiMo16Cr15W	1100°C (2012°F)	 Una lega a base di nichel con buona resistenza alle atmosfere ossidanti e riducenti, anche con elevate temperature Particolarmente resistente a gas di cloro, cloruro e a molti acidi organici e minerali ossidanti
AISI 321/1.4541	X6CrNiTi18-10	815 °C (1499 °F)	 Acciaio inox, austenitico Elevata resistenza alla corrosione intergranulare anche dopo la saldatura Buone caratteristiche di saldatura, adatto a tutti i metodi di saldatura standard È impiegato in molti rami dell'industria chimica e petrolchimica, e in sili in pressione

Nome del materiale	Abbreviazione	Temperatura max. consigliata per uso continuo nell'aria	Proprietà
AISI 446/~1.4762/ ~1.4749	X10CrAl24 X18CrNi24	1100°C (2012°F)	 Acciaio inox ferritico, termoresistente e con elevato contenuto di cromo Estremamente resistente a sali e gas solforosi riducenti con basso contenuto di ossigeno Ottima resistenza ai carichi termici costanti e ciclici, alla cenere corrosiva degli inceneritori e alle colate di rame, piombo e stagno Scarsa resistenza ai gas azotati
Camicia			
PTFE (Teflon)	Politetrafluoroetilene	200 °C (392 °F)	 Resistente alla maggioranza delle sostanze chimiche Resistenza alle alte temperature
Tantalio	-	250 °C (482 °F)	 Il tantalio offre un'eccellente resistenza a molti acidi minerali e soluzioni saline, ad eccezione di acido fluoridrico, fluoro e fluoruri Possibilità di ossidazione e infragilimento alle temperature più elevate in aria

¹⁾ Può essere impiegato, seppur con dei limiti, fino a 800 °C (1472 °F) in presenza di carichi meccanici limitati e di fluidi non corrosivi. Per ulteriori informazioni contattare l'ufficio commerciale Endress+Hauser più vicino.

Connessioni al processo

Filettatura

Connessione al processo filettata Filettatura maschio				Lunghezza filettatura TL	Dim. chiave	Pressione di processo max.
	m M	М	M20x1,5	14 mm (0,55 in)	27 mm (1,06 in)	Pressione di
E	SW/AF TI TI L		M18x1,5	12 mm (0,47 in)	24 mm (0,95 in)	massima per la
			M27x2	16 mm (0,63 in)	32 mm (1,26 in)	connessione al processo filettata:
*			M33x2	18 mm (0,71 in)	41 mm (1,61 in)	■ 140 bar (2 031 psi) a
		G 1)	G ½" DIN / BSP	15 mm (0,6 in)	27 mm (1,06 in)	
T '			G 1" DIN / BSP	18 mm (0,71 in)	41 mm (1,61 in)	+40 °C (+140 °F) • 85 bar
			G 3/4" BSP	15 mm (0,6 in)	32 mm (1,26 in)	(1233 psi) a +400 °C
			G 3/8"	12 mm (0,47 in)	24 mm (0,95 in)	(+752 °F)
	A0008620	NPT	NPT ½"	8 mm (0,32 in)	22 mm (0,87 in)	
₩ /	■ 7 Versioni cilindrica (lato sinistro) e conica (lato destro)		NPT ¾"	8,5 mm (0,33 in)	27 mm (1,06 in)	
			NPT 1"	10,2 mm (0,4 in)	41 mm (1,61 in)	

Connessione al processo filettata Filettatura maschio	Versione		Lunghezza filettatura TL	Dim. chiave	Pressione di processo max.
	R	R ¾"	8 mm (0,32 in)	27 mm (1,06 in)	
		R ½"		22 mm (0,87 in)	

1) DIN ISO 228 BSPP

I giunti a compressione 316L possono essere utilizzati solo una volta a causa della deformazione. Questo vale per tutti i componenti dei giunti a compressione. Un giunto a compressione di ricambio deve essere fissato in un altro punto (scanalature nel pozzetto termometrico). I giunti a compressione PEEK non devono mai essere utilizzati a una temperatura inferiore a quella presente nel momento in cui vengono installati. Questo perché l'adattatore non sarebbe più a tenuta stagna a causa della contrazione termica del materiale PEEK.

Per requisiti più elevati, sono decisamente consigliabili adattatori SWAGELOCK o simili.

Adattatore a saldare

Tipo TK40	Versione	Dir	nensioni		Caratteristiche tecniche
11p0 1K40	Cilindrica	Φdi	ΦD	h	Caratteristiche techiche
Adattatore a saldare					
ØD	Materiale ferrula 316L Filettatura G½"	9,2 mm (0,36 in)	30 mm (1,18 in)	57 mm (2,24 in)	P_{max} = 10 bar (145 psi), T_{max} = +200 °C (+392 °F) per ferrula di ELASTOSIL, coppia di serraggio = 5 Nm

Giunto a compressione

Tipo TK40	Versione	Dir	nensioni		Caratteristiche tecniche
11p0 1K40	versione	Φdi	L	Dim. chiave	Caratteristiche techniche
		9 mm (0,35 in), coppia minima = 70 Nm			
331)	NPT ½", materiale ferrula 316L	11 mm (0,43 in), coppia minima = 70 Nm	G½": 56 mm (2,2 in)	G½": 27 mm (1,06 in)	 P_{max.} = 40 bar (104 psi) con T = +200 °C (+392 °F) per 316L
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G ½", materiale ferrula 316L	12 mm (0,47 in), coppia minima = 90 Nm	1/2" NPT: 60 mm (2,36 in)	1,00 m) 1/2" NPT: 24 mm (0,95 in)	■ P _{max.} = 25 bar (77 psi) con T = +400 °C (+752 °F) per
1 Dado 2 Ferrula 3 Connessione al processo		14 mm (0,55 in), coppia minima = 110 Nm			316L

Tipo TK40	Versione	Dir	nensioni		Caratteristiche tecniche
Tipo TK40	versione	Φdi	L	Dim. chiave	Caratteristiche techniche
Ødi 1		12 mm (0,47 in), coppia minima = 90 Nm			
2 1 1 0 8 1 A0038344	G 1", materiale ferrula 316L	14 mm (0,55 in), coppia minima = 110 Nm	64 mm (2,52 in)	41 mm (1,61 in)	■ P _{max.} = 40 bar (104 psi) con T = +200 °C (+392 °F) per 316L ■ P _{max.} = 25 bar (77 psi) con T = +400 °C (+752 °F) per 316L
1 Dado 2 Ferrula 3 Connessione al processo					

Flange

Le flange sono fornite in acciaio inox AISI 316L con numero di materiale 1.4404 o 1.4435. Per quanto riquarda la loro proprietà di stabilità alla temperatura, i materiali 1.4404 e 1.4435 sono raggruppati sotto 13E0 in DIN EN 1092-1 Tab.18 e sotto 023b in JIS B2220:2004 Tab. 5. Le flange ASME sono raggruppate nella Tab. 2-2.2 in ASME B16.5-2013. I pollici vengono convertiti in unità metriche (in - mm) usando il fattore 2,54. Nello standard ASME, i valori metrici vengono arrotondati a 0 o 5.

Versioni

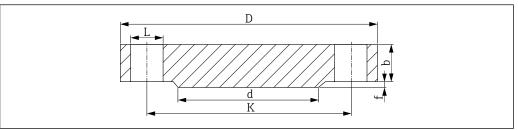
- Flange DIN: Istituto tedesco per la normalizzazione DIN 2527
- Flange EN: standard europeo DIN EN 1092-1:2002-06 e 2007
- Flange ASME: American Society of Mechanical Engineers ASME B16.5-2013
- Flange JIS: Japanese Industrial Standard B2220:2004

Geometria delle superfici di tenuta

Flange	Superficie di tenuta	DIN 2526 1)		DIN EN	1092-1	
		Forma	Rz (µm)	Forma	Rz (µm)	Ra (µm)
senza risalto semplice	A0043514	A B	- 40 160	A ²⁾	12,5 50	3,2 12,5
con risalto semplice	A0043516	C D E	40 160 40 16	B1 ³⁾	12,5 50 3,2 12,5	3,2 12,5 0,8 3,2
Molla	A0043517	F	-	С	3,2 12,5	0,8 3,2
Incameratura	A0043518	N		D		
Sporgenza	A0043519	V 13	-	E	12,5 50	3,2 12,5
Recesso	A0043520	R 13		F		

Flange	Superficie di tenuta	DIN 2526 1)		DIN EN 1092-1			
		Forma	Rz (µm)	Forma	Rz (µm)	Ra (µm)	
Sporgenza	A0043521	V 14	per O-ring	Н	3,2 12,5	3,2 12,5	
Recesso	A0043522	R 14		G			

- 1) Contenuto in DIN 2527
- 2) Generalmente PN2.5 ... PN40
- 3) Generalmente da PN63


Le flange secondo il vecchio standard DIN sono compatibili con il nuovo standard DIN EN 1092-1. Modifica dei valori di pressione: vecchi standard DIN PN64 \rightarrow DIN EN 1092-1 PN63.

Altezza del risalto semplice 1)

Standard	Flange	Altezza del risalto semplice f	Tolleranza
DIN EN 1092-1:2002-06	tutti i tipi	2 (0,08)	0
DIN EN 1092-1:2007	≤ DN 32		-1 (-0,04)
	> DN 32 DN 250	3 (0,12)	0 -2 (-0,08)
	> DN 250 DN 500	4 (0,16)	0 -3 (-0,12)
	> DN 500	5 (0,19)	0 -4 (-0,16)
ASME B16.5 - 2013	≤ Classe 300	1,6 (0,06)	±0,75 (±0,03)
	≥ Classe 600	6,4 (0,25)	0,5 (0,02)
JIS B2220:2004	< DN 20	1,5 (0,06) 0	-
	> DN 20 DN 50	2 (0,08) 0	
	> DN 50	3 (0,12) 0	

1) Dimensioni in mm (in)

Flange EN (DIN EN 1092-1)

A002917

- 8 Risalto semplice B1
- L Diametro del foro
- d Diametro del risalto semplice
- K Diametro di foratura
- D Diametro della flangia
- b Spessore totale flangia
- f Altezza del risalto semplice (generalmente 2 mm (0,08 in))

PN16 1)

DN	D	b	K	d	L	kg (lb) circa
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	18 (0,71)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	2,90 (6,39)
65	185 (7,28)	18 (0,71)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	3,50 (7,72)
80	200 (7,87)	20 (0,79)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	4,50 (9,92)
100	220 (8,66)	20 (0,79)	180 (7,09)	158 (6,22)	8xØ18 (0,71)	5,50 (12,13)
125	250 (9,84)	22 (0,87)	210 (8,27)	188 (7,40)	8xØ18 (0,71)	8,00 (17,64)
150	285 (11,2)	22 (0,87)	240 (9,45)	212 (8,35)	8xØ22 (0,87)	10,5 (23,15)
200	340 (13,4)	24 (0,94)	295 (11,6)	268 (10,6)	12xØ22 (0,87)	16,5 (36,38)
250	405 (15,9)	26 (1,02)	355 (14,0)	320 (12,6)	12xØ26 (1,02)	25,0 (55,13)
300	460 (18,1)	28 (1,10)	410 (16,1)	378 (14,9)	12xØ26 (1,02)	35,0 (77,18)

1) Se non diversamente specificato, le dimensioni nelle tabelle seguenti sono in mm (in).

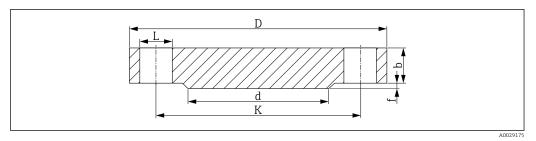
PN25

DN	D	b	K	d	L	kg (lb) circa
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	20 (0,79)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	3,00 (6,62)
65	185 (7,28)	22 (0,87)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	4,50 (9,92)
80	200 (7,87)	24 (0,94)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	5,50 (12,13)
100	235 (9,25)	24 (0,94)	190 (7,48)	162 (6,38)	8xØ22 (0,87)	7,50 (16,54)
125	270 (10,6)	26 (1,02)	220 (8,66)	188 (7,40)	8xØ26 (1,02)	11,0 (24,26)
150	300 (11,8)	28 (1,10)	250 (9,84)	218 (8,58)	8xØ26 (1,02)	14,5 (31,97)
200	360 (14,2)	30 (1,18)	310 (12,2)	278 (10,9)	12xØ26 (1,02)	22,5 (49,61)
250	425 (16,7)	32 (1,26)	370 (14,6)	335 (13,2)	12xØ30 (1,18)	33,5 (73,9)
300	485 (19,1)	34 (1,34)	430 (16,9)	395 (15,6)	16xØ30 (1,18)	46,5 (102,5)

PN40

DN	D	b	К	d	L	kg (lb) circa
25	115 (4,53)	18 (0,71)	85 (3,35)	68 (2,68)	4xØ14 (0,55)	1,50 (3,31)
32	140 (5,51)	18 (0,71)	100 (3,94)	78 (3,07)	4xØ18 (0,71)	2,00 (4,41)
40	150 (5,91)	18 (0,71)	110 (4,33)	88 (3,46)	4xØ18 (0,71)	2,50 (5,51)
50	165 (6,5)	20 (0,79)	125 (4,92)	102 (4,02)	4xØ18 (0,71)	3,00 (6,62)
65	185 (7,28)	22 (0,87)	145 (5,71)	122 (4,80)	8xØ18 (0,71)	4,50 (9,92)
80	200 (7,87)	24 (0,94)	160 (6,30)	138 (5,43)	8xØ18 (0,71)	5,50 (12,13)
100	235 (9,25)	24 (0,94)	190 (7,48)	162 (6,38)	8xØ22 (0,87)	7,50 (16,54)
125	270 (10,6)	26 (1,02)	220 (8,66)	188 (7,40)	8xØ26 (1,02)	11,0 (24,26)
150	300 (11,8)	28 (1,10)	250 (9,84)	218 (8,58)	8xØ26 (1,02)	14,5 (31,97)
200	375 (14,8)	36 (1,42)	320 (12,6)	285 (11,2)	12xØ30 (1,18)	29,0 (63,95)

DN	D	b	K	d	L	kg (lb) circa
250	450 (17,7)	38 (1,50)	385 (15,2)	345 (13,6)	12xØ33 (1,30)	44,5 (98,12)
300	515 (20,3)	42 (1,65)	450 (17,7)	410 (16,1)	16xØ33 (1,30)	64,0 (141,1)


PN63

DN	D	b	K	d	L	kg (lb) circa
25	140 (5,51)	24 (0,94)	100 (3,94)	68 (2,68)	4xØ18 (0,71)	2,50 (5,51)
32	155 (6,10)	24 (0,94)	110 (4,33)	78 (3,07)	4xØ22 (0,87)	3,50 (7,72)
40	170 (6,69)	26 (1,02)	125 (4,92)	88 (3,46)	4xØ22 (0,87)	4,50 (9,92)
50	180 (7,09)	26 (1,02)	135 (5,31)	102 (4,02)	4xØ22 (0,87)	5,00 (11,03)
65	205 (8,07)	26 (1,02)	160 (6,30)	122 (4,80)	8xØ22 (0,87)	6,00 (13,23)
80	215 (8,46)	28 (1,10)	170 (6,69)	138 (5,43)	8xØ22 (0,87)	7,50 (16,54)
100	250 (9,84)	30 (1,18)	200 (7,87)	162 (6,38)	8xØ26 (1,02)	10,5 (23,15)
125	295 (11,6)	34 (1,34)	240 (9,45)	188 (7,40)	8xØ30 (1,18)	16,5 (36,38)
150	345 (13,6)	36 (1,42)	280 (11,0)	218 (8,58)	8xø33 (1,30)	24,5 (54,02)
200	415 (16,3)	42 (1,65)	345 (13,6)	285 (11,2)	12xØ36 (1,42)	40,5 (89,3)
250	470 (18,5)	46 (1,81)	400 (15,7)	345 (13,6)	12xØ36 (1,42)	58,0 (127,9)
300	530 (20,9)	52 (2,05)	460 (18,1)	410 (16,1)	16xØ36 (1,42)	83,5 (184,1)

PN100

DN	D	b	К	d	L	kg (lb) circa
25	140 (5,51)	24 (0,94)	100 (3,94)	68 (2,68)	4xØ18 (0,71)	2,50 (5,51)
32	155 (6,10)	24 (0,94)	110 (4,33)	78 (3,07)	4xØ22 (0,87)	3,50 (7,72)
40	170 (6,69)	26 (1,02)	125 (4,92)	88 (3,46)	4xØ22 (0,87)	4,50 (9,92)
50	195 (7,68)	28 (1,10)	145 (5,71)	102 (4,02)	4xØ26 (1,02)	6,00 (13,23)
65	220 (8,66)	30 (1,18)	170 (6,69)	122 (4,80)	8xØ26 (1,02)	8,00 (17,64)
80	230 (9,06)	32 (1,26)	180 (7,09)	138 (5,43)	8xØ26 (1,02)	9,50 (20,95)
100	265 (10,4)	36 (1,42)	210 (8,27)	162 (6,38)	8xØ30 (1,18)	14,0 (30,87)
125	315 (12,4)	40 (1,57)	250 (9,84)	188 (7,40)	8xø33 (1,30)	22,5 (49,61)
150	355 (14,0)	44 (1,73)	290 (11,4)	218 (8,58)	12xØ33 (1,30)	30,5 (67,25)
200	430 (16,9)	52 (2,05)	360 (14,2)	285 (11,2)	12xØ36 (1,42)	54,5 (120,2)
250	505 (19,9)	60 (2,36)	430 (16,9)	345 (13,6)	12xØ39 (1,54)	87,5 (192,9)
300	585 (23,0)	68 (2,68)	500 (19,7)	410 (16,1)	16xØ42 (1,65)	131,5 (289,9)

Flange ASME (ASME B16.5-2013)

9 Risalto semplice RF

- L
- Diametro del foro Diametro del risalto semplice d
- Diametro di foratura K
- Diametro della flangia
- Spessore totale flangia b
- Altezza del risalto semplice, Classe 150/300: 1,6 mm (0,06 in) o dalla Classe 600: 6,4 mm (0,25 in)

Rugosità del risalto semplice Ra \leq 3,2 ... 6,3 μm (126 ... 248 $\mu in).$

Classe 150 1)

DN	D	b	K	d	L	kg (lb) circa
1"	108,0 (4,25)	14,2 (0,56)	79,2 (3,12)	50,8 (2,00)	4xØ15,7 (0,62)	0,86 (1,9)
11/4"	117,3 (4,62)	15,7 (0,62)	88,9 (3,50)	63,5 (2,50)	4xØ15,7 (0,62)	1,17 (2,58)
1½"	127,0 (5,00)	17,5 (0,69)	98,6 (3,88)	73,2 (2,88)	4xØ15,7 (0,62)	1,53 (3,37)
2"	152,4 (6,00)	19,1 (0,75)	120,7 (4,75)	91,9 (3,62)	4xØ19,1 (0,75)	2,42 (5,34)
21/2"	177,8 (7,00)	22,4 (0,88)	139,7 (5,50)	104,6 (4,12)	4xØ19,1 (0,75)	3,94 (8,69)
3"	190,5 (7,50)	23,9 (0,94)	152,4 (6,00)	127,0 (5,00)	4xØ19,1 (0,75)	4,93 (10,87)
31/2"	215,9 (8,50)	23,9 (0,94)	177,8 (7,00)	139,7 (5,50)	8xØ19,1 (0,75)	6,17 (13,60)
4"	228,6 (9,00)	23,9 (0,94)	190,5 (7,50)	157,2 (6,19)	8xØ19,1 (0,75)	7,00 (15,44)
5"	254,0 (10,0)	23,9 (0,94)	215,9 (8,50)	185,7 (7,31)	8xØ22,4 (0,88)	8,63 (19,03)
6"	279,4 (11,0)	25,4 (1,00)	241,3 (9,50)	215,9 (8,50)	8xØ22,4 (0,88)	11,3 (24,92)
8"	342,9 (13,5)	28,4 (1,12)	298,5 (11,8)	269,7 (10,6)	8xØ22,4 (0,88)	19,6 (43,22)
10"	406,4 (16,0)	30,2 (1,19)	362,0 (14,3)	323,8 (12,7)	12xØ25,4 (1,00)	28,8 (63,50)

Se non diversamente specificato, le dimensioni nelle tabelle seguenti sono in mm (in).

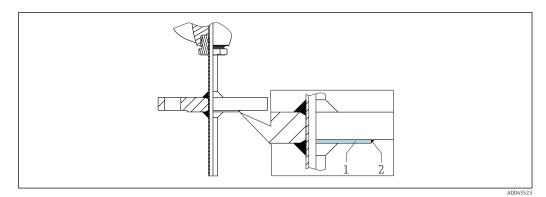
Classe 300

DN	D	b	K	d	L	kg (lb) circa
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,39 (3,06)
11/4"	133,4 (5,25)	19,1 (0,75)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	1,79 (3,95)
1½"	155,4 (6,12)	20,6 (0,81)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	2,66 (5,87)
2"	165,1 (6,50)	22,4 (0,88)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	3,18 (7,01)
21/2"	190,5 (7,50)	25,4 (1,00)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	4,85 (10,69)
3"	209,5 (8,25)	28,4 (1,12)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	6,81 (15,02)
31/2"	228,6 (9,00)	30,2 (1,19)	184,2 (7,25)	139,7 (5,50)	8xØ22,4 (0,88)	8,71 (19,21)
4"	254,0 (10,0)	31,8 (1,25)	200,2 (7,88)	157,2 (6,19)	8xØ22,4 (0,88)	11,5 (25,36)
5"	279,4 (11,0)	35,1 (1,38)	235,0 (9,25)	185,7 (7,31)	8xØ22,4 (0,88)	15,6 (34,4)
6"	317,5 (12,5)	36,6 (1,44)	269,7 (10,6)	215,9 (8,50)	12xØ22,4 (0,88)	20,9 (46,08)
8"	381,0 (15,0)	41,1 (1,62)	330,2 (13,0)	269,7 (10,6)	12xØ25,4 (1,00)	34,3 (75,63)
10"	444,5 (17,5)	47,8 (1,88)	387,4 (15,3)	323,8 (12,7)	16xØ28,4 (1,12)	53,3 (117,5)

Classe 600

DN	D	b	K	d	L	kg (lb) circa
1"	124,0 (4,88)	17,5 (0,69)	88,9 (3,50)	50,8 (2,00)	4xØ19,1 (0,75)	1,60 (3,53)
11/4"	133,4 (5,25)	20,6 (0,81)	98,6 (3,88)	63,5 (2,50)	4xØ19,1 (0,75)	2,23 (4,92)
1½"	155,4 (6,12)	22,4 (0,88)	114,3 (4,50)	73,2 (2,88)	4xØ22,4 (0,88)	3,25 (7,17)
2"	165,1 (6,50)	25,4 (1,00)	127,0 (5,00)	91,9 (3,62)	8xØ19,1 (0,75)	4,15 (9,15)
21/2"	190,5 (7,50)	28,4 (1,12)	149,4 (5,88)	104,6 (4,12)	8xØ22,4 (0,88)	6,13 (13,52)
3"	209,5 (8,25)	31,8 (1,25)	168,1 (6,62)	127,0 (5,00)	8xØ22,4 (0,88)	8,44 (18,61)
31/2"	228,6 (9,00)	35,1 (1,38)	184,2 (7,25)	139,7 (5,50)	8xØ25,4 (1,00)	11,0 (24,26)
4"	273,1 (10,8)	38,1 (1,50)	215,9 (8,50)	157,2 (6,19)	8xØ25,4 (1,00)	17,3 (38,15)
5"	330,2 (13,0)	44,5 (1,75)	266,7 (10,5)	185,7 (7,31)	8xØ28,4 (1,12)	29,4 (64,83)
6"	355,6 (14,0)	47,8 (1,88)	292,1 (11,5)	215,9 (8,50)	12xØ28,4 (1,12)	36,1 (79,6)
8"	419,1 (16,5)	55,6 (2,19)	349,3 (13,8)	269,7 (10,6)	12xØ31,8 (1,25)	58,9 (129,9)
10"	508,0 (20,0)	63,5 (2,50)	431,8 (17,0)	323,8 (12,7)	16xØ35,1 (1,38)	97,5 (214,9)

Classe 900

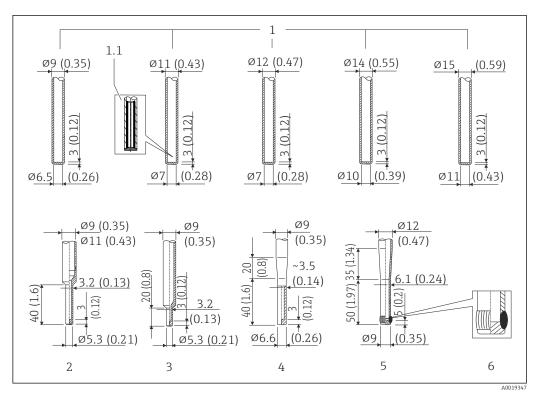

DN	D	b	K	d	L	kg (lb) circa
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
1½"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	241,3 (9,50)	38,1 (1,50)	190,5 (7,50)	127,0 (5,00)	8xØ25,4 (1,00)	13,1 (28,89)
4"	292,1 (11,50)	44,5 (1,75)	235,0 (9,25)	157,2 (6,19)	8xØ31,8 (1,25)	26,9 (59,31)
5"	349,3 (13,8)	50,8 (2,0)	279,4 (11,0)	185,7 (7,31)	8xØ35,1 (1,38)	36,5 (80,48)
6"	381,0 (15,0)	55,6 (2,19)	317,5 (12,5)	215,9 (8,50)	12xØ31,8 (1,25)	47,4 (104,5)
8"	469,9 (18,5)	63,5 (2,50)	393,7 (15,5)	269,7 (10,6)	12xØ38,1 (1,50)	82,5 (181,9)
10"	546,1 (21,50)	69,9 (2,75)	469,0 (18,5)	323,8 (12,7)	16xØ38,1 (1,50)	122 (269,0)

Classe 1500

DN	D	b	К	d	L	kg (lb) circa
1"	149,4 (5,88)	28,4 (1,12)	101,6 (4,0)	50,8 (2,00)	4xØ25,4 (1,00)	3,57 (7,87)
11/4"	158,8 (6,25)	28,4 (1,12)	111,3 (4,38)	63,5 (2,50)	4xØ25,4 (1,00)	4,14 (9,13)
1½"	177,8 (7,0)	31,8 (1,25)	124,0 (4,88)	73,2 (2,88)	4xØ28,4 (1,12)	5,75 (12,68)
2"	215,9 (8,50)	38,1 (1,50)	165,1 (6,50)	91,9 (3,62)	8xØ25,4 (1,00)	10,1 (22,27)
21/2"	244,4 (9,62)	41,1 (1,62)	190,5 (7,50)	104,6 (4,12)	8xØ28,4 (1,12)	14,0 (30,87)
3"	266,7 (10,5)	47,8 (1,88)	203,2 (8,00)	127,0 (5,00)	8xØ31,8 (1,25)	19,1 (42,12)
4"	311,2 (12,3)	53,8 (2,12)	241,3 (9,50)	157,2 (6,19)	8xØ35,1 (1,38)	29,9 (65,93)
5"	374,7 (14,8)	73,2 (2,88)	292,1 (11,5)	185,7 (7,31)	8xØ41,1 (1,62)	58,4 (128,8)
6"	393,7 (15,50)	82,6 (3,25)	317,5 (12,5)	215,9 (8,50)	12xØ38,1 (1,50)	71,8 (158,3)
8"	482,6 (19,0)	91,9 (3,62)	393,7 (15,5)	269,7 (10,6)	12xØ44,5 (1,75)	122 (269,0)
10"	584,2 (23,0)	108,0 (4,25)	482,6 (19,0)	323,8 (12,7)	12xØ50,8 (2,00)	210 (463,0)

Materiale del pozzetto, a base di nichel, con flangia

Se i materiali del pozzetto Alloy600 e Alloy C276 sono combinati con una connessione al processo flangiata, per ragioni di costo viene realizzato in lega solo il risalto semplice e non l'intera flangia. Questo viene saldato su una flangia con il materiale di base 316L. Identificato nel codice d'ordine dalla designazione del materiale Alloy600 > 316L o Alloy C276 > 316L.



- 1 Risalto semplice
- 2 Saldatura

Forma del puntale

I criteri importanti per la scelta della forma del puntale sono il tempo di risposta termico, la riduzione della sezione del flusso e il carico meccanico che si forma nel processo. Vantaggi dei puntali ridotti o rastremati nei termometri:

- Un puntale più piccolo ha un impatto minore sulle caratteristiche del flusso nel tubo attraversato dal fluido.
- Le caratteristiche del flusso, essendo ottimizzate, migliorano la stabilità del pozzetto.
- Endress+Hauser offre una gamma completa di puntali per pozzetti in grado di rispondere a qualsiasi esigenza:
 - Puntale ridotto con ϕ 4,3 mm (0,17 in) e ϕ 5,3 mm (0,21 in): le pareti di spessore inferiore riducono sensibilmente i tempi di risposta dell'intero punto di misura.
 - Puntale rastremato con ϕ 6,6 mm (0,26 in) e puntale ridotto con ϕ 9 mm (0,35 in): le pareti di spessore maggiore sono particolarmente indicate per le applicazioni caratterizzate da carichi meccanici o livelli di usura superiori (ad es. corrosione puntiforme, abrasione, ecc.).

■ 10 Puntali disponibili per i pozzetti (ridotto, rettilineo o rastremato). Rugosità massima Ra ≤ 0,76 µm (30 µin). Spessore inferiore = 3 mm (0,12 in)per versione rettilinea, a eccezione dello spessore inferiore delle versioni rettilinee schedula (SCH) = 4 mm (0,16 in)

Rif.	Forma del puntale	Diametro dell'inserto		
1	Diritto	6 mm (0,24 in)		
1.1	Dettaglio dell'armatura del puntale: è disponibile una versione opzionale con tempi di risposta rapidi per ϕ 11 mm (0,43 in) e ϕ 12 mm (0,47 in). Lo spazio libero tra inserto e pozzetto è riempito con materiale stabile al calore.			
2	Ridotto, U ≥ 70 mm (2,76 in)	3 mm (0,12 in)		
3	Ridotto, U ≥ 50 mm (1,97 in) 1)	3 mm (0,12 in)		
4	Rastremato, U ≥ 70 mm (2,76 in) 1)	3 mm (0,12 in)		
5	Rastremato DIN43772-3G, U \geq 90 mm (3,54 in) ^{1) 2)}	6 mm (0,24 in)		
6	Puntale saldato, qualità della saldatura conforme a EN ISO 5817 - classe B			

- 1) Non con i seguenti materiali: Alloy C276, Alloy600, 321, 316 e 446
- 2) Dettaglio dell'armatura del puntale: è disponibile una versione opzionale con tempi di risposta rapidi. Lo spazio libero tra inserto e pozzetto è riempito con materiale stabile al calore.
- È possibile controllare online la capacità di carico meccanico in funzione delle condizioni di installazione e di processo nel modulo di dimensionamento dei pozzetti termometrici nel software Endress+Hauser Applicator. Vedere la sezione 'Accessori'.

Rugosità

Valori per superfici bagnate:

Superficie standard	$R_a \le 0.76 \mu m (0.03 \mu in)$
-	-

Certificati ed approvazioni

Approvazione CRN

L'approvazione CRN è disponibile solo per determinate versioni di pozzetto termometrico. Queste versioni sono identificate e visualizzate durante la configurazione del dispositivo.

Informazioni dettagliate per l'ordine possono essere richieste all'Ufficio Endress+Hauser locale, v. contatti www.it.endress.com, o nell'Area download sempre sul sito www.it.endress.com:

- 1. Selezionare il paese
- 2. Selezionare Download
- 3. Nell'area di ricerca, selezionare Approvazioni/tipo di approvazione
- 4. Inserire il codice del prodotto o il nome del dispositivo
- 5. Avviare la ricerca

Altre norme e direttive

DIN 43772: Pozzetti termometrici

Servizio

- Esente da oli e grassi per applicazioni con O₂, su richiesta
- Esente da PWIS (PWIS = sostanze che intaccano l'impregnazione della vernice, secondo DIL0301), su richiesta

Certificazione dei materiali

Il certificato relativo al materiale 3.1 (secondo lo standard EN 10204) può essere richiesto separatamente. Il certificato in "versione breve" comprende una dichiarazione semplificata e non ha in allegato la documentazione dei materiali utilizzati per la costruzione del singolo sensore; in ogni caso garantisce la tracciabilità dei materiali tramite il numero di identificazione del termometro. Se necessario, i dati relativi all'origine dei materiali potranno essere richiesti successivamente.

Esecuzione di prove relative al pozzetto

Le prove di pressione dei pozzetti termometrici vengono eseguite in accordo alle specifiche della norma DIN 43772. In caso di pozzetti termometrici con puntali rastremati o ridotti e non conformi a questa norma, le prove sono eseguite utilizzando la pressione nominale di pozzetti termometrici rettilinei equivalenti. Inoltre, i sensori destinati all'impiego in aree pericolose vengono sempre sottoposti a una pressione equivalente durante le prove. Prove in base ad altre specifiche possono essere eseguite su richiesta. La prova con liquido penetrante garantisce l'assenza di incrinature nei punti di saldatura del pozzetto.

Prova di tenuta con elio secondo EN 1779	Prova di tenuta per pozzetti termometrici, saldature e giunti filettati. A seconda del tipo e delle dimensioni, il pozzetto termometrico può essere sottoposto a elio gassoso sia internamente che esternamente. Con certificato di ispezione.
Prova della pressione idrostatica	Prova di pressione esterna e interna con 400 bar (5 801 psi) max. per controllare la resistenza alla pressione e la tenuta dei pozzetti termometrici, senza flange. La prova della pressione interna può essere eseguita solo per i pozzetti con filettatura interna (tipo 1). Con certificato di ispezione.
Prova di identificazione positiva dei materiali (PMI)	Identificazione non distruttiva dei materiali e collaudo di giunti saldati. Controllo di identificazione dei materiali, analisi di fluorescenza ai raggi X. Con certificato di ispezione.
Calcolo della capacità di carico del pozzetto termometrico	Conformemente a DIN 43772 o ASME PTC19.3, con certificato di calcolo
Prova con liquido penetrante secondo ASME V e EN571-1	Adatta al controllo delle superfici dei giunti di saldatura, ad es. rilevamento di piccole fessurazioni, ecc. Con certificato di ispezione.
Prova di concentricità dei fori per pozzetti	Con certificato di ispezione.
Test radiografico secondo ASME V, VIII, saldatura TW	Con certificato di ispezione.

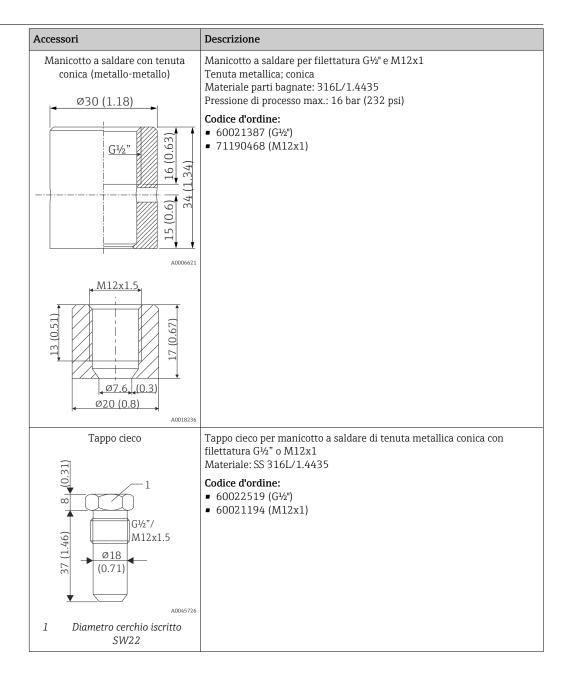
22

Informazioni per l'ordine

È possibile reperire informazioni dettagliate sull'ordine per l'attività commerciale locale su www.it.endress.com o nel Configuratore di prodotto su www.it.endress.com:

- 1. Fare clic su Corporate
- 2. Selezionare il paese
- 3. Fare clic su Prodotti
- 4. Selezionare il prodotto utilizzando i filtri e il campo di ricerca
- 5. Aprire la pagina del prodotto

Il pulsante di configurazione sulla destra dell'immagine del prodotto apre il Configuratore del prodotto.


Configuratore di prodotto - lo strumento per la configurazione del singolo prodotto

- Dati di configurazione più recenti
- A seconda del dispositivo: inserimento diretto di informazioni specifiche sul punto di misura come il campo di misura o la lingua operativa
- Verifica automatica dei criteri di esclusione
- Creazione automatica del codice d'ordine e sua scomposizione in formato output PDF o Excel
- Possibilità di ordinare direttamente nel negozio online di Endress+Hauser

Accessori

Sono disponibili diversi accessori Endress+Hauser che possono essere ordinati con il dispositivo o in un secondo tempo. Informazioni dettagliate sul relativo codice d'ordine possono essere richieste all'Ufficio commerciale Endress+Hauser locale o reperite sulla pagina del prodotto del sito Endress+Hauser: www.it.endress.com.

Accessori specifici del dispositivo

- Pressione di processo massima per adattatori a saldare:
 - 25 bar (362 PSI) a max. 150 °C (302 °F)
 - 40 bar (580 PSI) a max. 100 °C (212 °F)

Per maggiori informazioni sugli adattatori a saldare FTL20/31/33, FTL50, vedere le Informazioni tecniche (TI00426F/00).

Accessori specifici per l'assistenza

Accessori	Descrizione
Applicator	Software per selezionare e dimensionare i misuratori Endress+Hauser: Calcolo di tutti i dati necessari per individuare il misuratore più idoneo: ad es. perdita di carico, accuratezza o connessioni al processo. Illustrazione grafica dei risultati del calcolo
	Gestione, documentazione e consultazione di tutti i dati e parametri relativi a un progetto per tutto il ciclo di vita del progetto.
	Applicator è disponibile: Mediante Internet: https://portal.endress.com/webapp/applicator

Accessori	Descrizione
Configuratore	Product Configurator: strumento per la configurazione dei singoli prodotti Dati di configurazione sempre aggiornati A seconda del dispositivo: inserimento diretto di informazioni specifiche sul punto di misura come il campo di misura o la lingua operativa Verifica automatica dei criteri di esclusione Generazione automatica del codice d'ordine e salvataggio in formato PDF o Excel Possibilità di ordinare direttamente nell'Online Shop di Endress+Hauser Il Configuratore di prodotto è disponibile sul sito Endress+Hauser: www.it.endress.com -> Fare clic su "Corporate" -> Selezionare il paese -> Fare clic su "Prodotti" -> Selezionare il dispositivo utilizzando i filtri e la casella di ricerca -> Aprire la pagina del prodotto -> Il tasto "Configurare" a destra dell'immagine del dispositivo apre la relativa procedura di configurazione.
DeviceCare SFE100	Strumento di configurazione per dispositivi con protocolli Fieldbus e protocolli di servizio Endress+Hauser. DeviceCare è uno strumento sviluppato da Endress+Hauser per la configurazione dei dispositivi Endress+Hauser, che consente di configurare tutti i dispositivi intelligenti di un impianto tramite una connessione "point-to-point" o "point-to-bus". I menu intuitivi consentono di accedere ai dispositivi da campo in modo semplice e trasparente. Per i dettagli, consultare le Istruzioni di funzionamento BA00027S
FieldCare SFE500	Tool Endress+Hauser per il Plant Asset Management su base FDT. Consente la configurazione di tutti i dispositivi da campo intelligenti presenti nel sistema, e ne semplifica la gestione. Utilizzando le informazioni di stato, è anche uno strumento semplice, ma efficace per verificarne stato e condizioni. Per i dettagli, consultare le Istruzioni di funzionamento BA00027S e BA00065S
Accessori	Descrizione
W@M	Life Cycle Management per gli impianti W@M supporta l'operatore con un'ampia gamma di applicazioni software, utili durante l'intero processo: da pianificazione e acquisizione delle materie prime a installazione, messa in servizio e funzionamento dei misuratori. Tutte le informazioni sono disponibili per ogni misuratore e per tutto il suo ciclo di vita operativa, ad es. stato nel dispositivo, documentazione specifica e parti di ricambio. L'applicazione contiene già i dati relativi al dispositivo Endress+Hauser acquistato. Endress+Hauser si impegna inoltre a gestire e ad aggiornare i record di dati.

Documentazione

Istruzioni di funzionamento: Pozzetti per termometri in applicazioni industriali (BA02041T)

Via Internet: www.it.endress.com/lifecyclemanagement

Informazioni tecniche:

- Termometro con inserto RTD o TC modulare:
 - iTHERM TM131 (TI01373T)
 - iTHERM TM121 (TI01455T)
- Inserto:

iTHERM TS111 (TI01014T) e iTHERM TS211 (TI01411T)

W@M è disponibile:

www.addresses.endress.com