KA01525F/46/KO/02.21

71536712 2021-08-30

사용 설명서 요약 Micropilot FMR20 Modbus RS485

Free Space 레이다 분체용

이 설명서는 사용 설명서(요약본)이며, 기기별 사용 설명서를 대체하지 않습니다.

자세한 정보는 사용 설명서와 기타 문서를 참조하십시오.

모든 기기 버전에 대해 제공:

- 인터넷: www.endress.com/deviceviewer
- 스마트폰/태블릿: Endress+Hauser Operations App

A0023555

목차

1 1.1 1.2 1.3 1.4	문서 정보 사용된 기호 문서	4 4 5 5
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	기본 안전 지침 작업자 요건 작업자 요건	5 66777
3 3.1	제품 설명 제품 디자인	8 8
4 4.1 4.2 4.3 4.4	입고 승인 및 제품 식별	8 9 9
5 5.1 5.2	설치	. 1 12 24
6 6.1 6.2 6.3 6.4	전기 연결	25 25 26 28
7 7.1 7.2 7.3	작동성	28 28 28 29
8 8.1 8.2	Modbus 프로토콜을 통한 시스템 통합 2 Modbus R5485 정보 2 Modbus 프로토콜을 통해 측정한 변수 2	29 31
9 9.1 9.2	시운전 및 작동	31 34
10 10.1 10.2 10.3	진단 및 문제 해결	35 35 36

1 문서 정보

1.1 사용된 기호

1.1.1 안전 기호

🛕 위험

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 경고

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 심각한 인명 피해가 발생할 수 있습니다.

🛕 주의

위험 상황을 알리는 기호입니다. 이 상황을 방지하지 못하면 경미한 부상이나 중상을 당할 수 있습니다.

주의

신체적 상해가 발생하지 않는 과정 및 기타 요인에 대해 알려주는 기호입니다.

1.1.2 특정 정보 및 그래픽 관련 기호

허용

허용된 절차, 프로세스 또는 작업입니다.

🔀 금지

금지된 절차, 프로세스 또는 작업입니다.

<u>립</u>

추가 정보를 알려줍니다.

그래픽 참조

►

따라야 할 주의 사항 또는 개별 단계

1., 2., 3.

일련의 단계

┕►

한 단계의 결과

1, 2, 3, ...

항목 번호

A, B, C, ... 보기

1.2 문서

Endress+Hauser 웹 사이트의 다운로드 섹션(www.endress.com/downloads)에서 다음 유형의 문서를 제공합니다.

💽 관련 기술 문서의 범위는 다음을 참조하십시오.

- W@M Device Viewer (www.endress.com/deviceviewer): 명판의 일련 번호를 입력하십 시오.
- Endress+Hauser Operations App: 명판의 일련 번호를 입력하거나 명판의 매트릭스 코 드를 스캔하십시오.

1.3 보조 문서

BA02115F

사용 설명서 분체용 FMR20 Modbus

TI01043K

기술 정보 RIA15

BA01170K

사용 설명서 RIA15

1.4 등록 상표

Modbus®

SCHNEIDER AUTOMATION, INC.의 등록 상표

Apple®

Apple, Apple 로고, iPhone 및 iPod touch는 미국과 다른 국가에서 등록된 Apple Inc.의 상표입니다. App Store는 Apple Inc.의 서비스 마크입니다.

Android®

Android, Google Play 및 Google Play 로고는 Google Inc.의 상표입니다.

Bluetooth®

Bluetooth[®] 워드 마크 및 로고는 Bluetooth SIG, Inc.에서 소유한 등록 상표이고 Endress+Hauser는 라이선스 하에 이 마크 및 로고를 사용합니다. 기타 상표 및 상호는 각 해 당 소유자의 상표 및 상호입니다.

2 기본 안전 지침

2.1 작업자 요건

설치, 시험 사용, 진단, 유지관리 담당자는 아래의 요건을 충족해야 합니다.

- ▶ 일정 교육을 받은 전문가가 기능 및 작업에 대한 자격을 보유해야 합니다.
- ▶ 설비 소유자 및 작업자의 승인을 받아야 합니다.
- ▶ 관련 규정을 숙지해야 합니다.
- ▶ 작업을 시작하기 전에 작업 내용에 따라 매뉴얼과 보조 자료 및 인증서에 나온 지침을 읽고 숙지해야 합니다.
- ▶ 지침을 따르고 일반 정책을 준수해야 합니다.

작업자는 다음과 같은 작업별 요건을 충족해야 합니다.

- ▶ 작업 요건에 따라 시설 소유자 및 작업자의 지침을 따르고 승인을 받아야 합니다.
- ▶ 본 설명서의 지침을 따라야 합니다.

2.2 용도

용도 및 유체

이 사용 설명서에서 설명하는 계기는 고체의 레벨을 비접촉식으로 연속 측정하는 용도로 사 용해야 합니다. 계기의 작동 주파수가 약 26 GHz, 최대 방사 펄스 전력이 5.7 mW 그리고 평 균 전력 출력이 0.015 mW이기 때문에 밀펴된 금속 탱크 밖에서의 사용도 허용됩니다. 밀펴 된 탱크 밖에서 작동할 경우 "설치" 섹션의 지침에 따라 계기를 설치해야 합니다. 계기의 작동 은 건강에 해를 끼치지 않습니다.

이 계기는 "기술 정보"에 명시된 제한 값과 사용 설명서 및 추가 문서에 명시된 조건을 준수할 경우에 다음 측정용으로만 사용할 수 있습니다.

- ▶ 측정 프로세스 변수: 거리
- ▶ 계산 프로세스 변수: 임의 모양 탱크의 부피 또는 질량

계기가 작동 시간 동안 올바른 상태를 유지하게 하려면 다음과 같이 하십시오.

- ▶ 프로세스 유체에 닿는 재질이 충분한 저항성을 갖는 유체에만 계기를 사용하십시오.
- ▶ 제한 값을 준수하십시오("기술 정보" 참조).

잘못된 사용

지정되지 않은 용도로 사용하여 발생하는 손상에 대해서는 제조사가 책임을 지지 않습니다.

경계 사례 분류:

▶ 특수 유체 및 세척에 사용되는 유체에 관한 정보는 제조사에게 문의하십시오. Endress+Hauser는 유체에 닿는 재질의 내부식성을 명확히 하는 데 도움을 주지만 어떠한 보증 또는 책임도 지지 않습니다.

잔존 위험

프로세스로부터의 열 전달과 전자 장치 내의 전력 소모 때문에 전자 장치 하우징과 하우징에 포함된 어셈블리의 온도가 작동 중에 80 °C (176 °F)까지 가열될 수 있습니다. 작동 중에 센서 온도가 유체 온도에 가깝게 상승할 수 있습니다.

표면 접촉으로 인한 화상 위험!

▶ 유체 온도가 상승하면 접촉으로부터 보호하여 화상을 방지하십시오.

2.3 작업장 안전

기기 작업 시:

▶ 국가 규정에 따라 필수 개인 보호 장비를 착용하십시오.

2.4 작동 안전

부상 위험이 있습니다!

- ▶ 기술적 조건이 적절하고 오류와 결함이 없는 경우에만 계기를 작동하십시오.
- 계기의 무간섭 작동은 오퍼레이터의 책임입니다.

방폭 지역

계기를 승인이 필요한 부분에서 사용할 때(예: 방폭, 압력 장비 안전) 사람과 시설에 대한 위 험을 방지하려면 다음과 같이 하십시오.

- ▶ 주문한 계기가 승인이 필요한 부분에서 지정된 용도로 사용할 수 있는지 확인하려면 명판 을 확인하십시오.
- ▶ 이 설명서의 필수 요소인 별도의 보조 문서에 명시된 사양을 준수하십시오.

2.5 제품 안전

이 계기는 최신 안전 요건을 충족시키기 위해 우수한 엔지니어링 관행에 따라 설계 및 테스 트되었으며, 작동하기에 안전한 상태로 공장에서 출하되었습니다. 일반 안전 기준 및 법적 요건을 충족합니다.

2.5.1 CE 마크

이 측정 시스템은 해당 EU 지침의 법적 요건을 준수합니다. 이는 해당 EU 적합성 선언에 적용 표준과 함께 명시되어 있습니다.

제조사는 CE 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

2.5.2 EAC 적합성

이 측정 시스템은 관련 EAC 가이드라인의 법적 요건을 준수합니다. 이는 해당 EAC 적합성 선 언에 적용 표준과 함께 명시되어 있습니다.

제조사는 EAC 마크를 부착해 계기를 성공적으로 테스트했음을 확인합니다.

2.6 IT 보안

사용 설명서에 따라 계기를 설치하고 사용하는 경우에만 보증이 적용됩니다. 계기에는 계기 설정의 부주의한 변경으로부터 계기를 보호하는 보안 메커니즘이 있습니다.

오퍼레이터의 보안 기준을 따르고 계기 및 계기 데이터 전송에 추가적인 보호를 제공하는 IT 보안 조치를 오퍼레이터가 직접 구현해야 합니다.

2.7 계기별 IT 보안

2.7.1 Bluetooth[®] 무선 기술을 통한 액세스

Bluetooth[®] 무선 기술을 통한 신호 전송은 Fraunhofer AISEC에서 테스트한 암호화 기술을 사용합니다.

- SmartBlue 앱이 없으면 Bluetooth[®] 무선 기술을 통해 계기를 볼 수 없습니다.
- 하나의 센서와 하나의 스마트폰 또는 태블릿 간에 하나의 점대점(point-to-point) 연결만 설정할 수 있습니다.
- SmartBlue 앱을 통해 Bluetooth[®] 무선 기술 인터페이스를 비활성화할 수 있습니다.

3 제품 설명

3.1 제품 디자인

☑ 1 재질 정보

80 mm (3 in) 안테나

- 1 센서 하우징; PVDF
- 2 씰; EPDM
- 3 프로세스 연결부, 후면; PVDF
- 4 케이블 글랜드; PA
- 5 도관 어댑터; CuZn 니켈 도금
- 6 0링; EPDM
- 7 카운터 너트; PA6.6
- 8 디자인 링; PBT-PC
- 9 프로세스 연결부, 전면; PVDF

4 입고 승인 및 제품 식별

4.1 제품 승인

제품 승인 중 다음 사항을 확인하십시오.

- 납품서와 제품 스티커의 주문 코드가 동일합니까?
- 제품이 손상되지 않았습니까?
- 명판 데이터가 납품서의 주문 정보와 일치합니까?
- 필요한 경우(명판 참조) 안전 지침(XA)이 제공됩니까?

😭 이러한 조건들 중 하나라도 충족되지 않으면 제조사 세일즈 센터로 문의하십시오.

4.2 제품식별

측정 기기의 식별을 위해 다음 옵션을 사용할 수 있습니다.

- 명판 사양
- 납품서의 확장 주문 코드와 기기 기능 내역
- ▶ W@M Device Viewer (www.endress.com/deviceviewer)에 명판의 일련 번호를 입력하십시 오.
 - ▶ 측정 기기에 대한 모든 정보와 관련 기술 문서의 범위가 표시됩니다.
- ► Endress+Hauser Operations App에 명판의 일련 번호를 입력하거나 Endress+Hauser Operations App을 사용해 명판의 2D 매트릭스 코드(QR 코드)를 스캔하십 시오.
 - ▶ 측정 기기에 대한 모든 정보와 관련 기술 문서의 범위가 표시됩니다.

4.3 제조사 주소

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany 제조 장소: 명판을 참조하십시오.

4.4 명판

- 图 2 Micropilot 명판
- 1 제조사 주소
- 2 계기이름
- 3 주문 코드
- 4 일련 번호(Ser. no.)
- 5 확장 주문 코드(Ext. ord. cd.)
- 6 공급 전압
- 7 신호 출력
- 8 프로세스 압력
- 9 허용 외기 온도(T_a)
- 10 최대 프로세스 온도
- 11 계기 ID
- 12 펌웨어 버전(FW)
- 13 계기 버전(Dev.Rev.)
- 14 CE 마크
- 15 계기 버전 관련 추가 정보(인증, 승인)
- 16 RCM
- 17 프로세스 접촉 재질
- 18 로고
- 19 보호 등급: IP, NEMA 등
- 20 인증 기호
- 21 인증 및 승인 데이터
- 22 안전 지침 문서 번호: XA, ZD, ZE 등

- 23 개조 마크
- 24 2D 매트릭스 코드(QR 코드)
- 25 제조 일자: 년-월
- 확장 주문 코드의 최대 33자만 명판에 표시됩니다. 확장 주문 코드에 추가 문자가 있는 경우 표시되지 않습니다.

전체 확장 주문 코드는 계기 작업 메뉴의 **확장 오더 코드 1~3** 파라미터에서 확인할 수 있습니다.

5 설치

케이블 운반 보호 장치 제거

후면 프로세스 연결부 "FNPT1/2 도관"이 있는 계기의 경우 설치하기 전에 케이블 보호 플러 그를 제거해야 합니다.

5.1 설치 조건

5.1.1 설치 유형

🖻 3 벽, 천장 또는 노즐 설치

- A 벽 또는 천장 설치, 조정 가능
- B 후면 나사에 설치
- C 좁은 공간에 수평 설치
- D 카운터 너트(제품 구성에 포함)를 사용한 천장 설치
- E 조정식 플랜지 씰을 사용한 설치
- F FAU40 정렬 장치를 사용한 설치

💽 주의!

- 센서 케이블은 지지 케이블로 설계되지 않았습니다. 매다는 용도로 사용하지 마십시 오.
- 항상 자유 공간에서 수직 위치로 계기를 작동하십시오.

5.1.2 노즐 설치

최적의 측정을 위해서는 안테나가 노즐 밖으로 돌출되어야 합니다. 노즐 내부는 매끄러워야 하고 모서리나 용접 이음부가 있으면 안 됩니다. 노즐 모서리는 가능하면 둥근 형태여야 합 니다.

🖻 4 노즐 설치

최대 노즐 길이 L은 노즐 직경 D에 따라 달라집니다.

노즐 직경 및 길이 제한을 준수하십시오.

80 mm (3 in) 안테나, 노즐 안 설치

- D: 최소 120 mm (4.72 in)
- L: 최대 205 mm (8.07 in) + D × 4.5

80 mm (3 in) 안테나, 노즐 밖 설치

- D: 최소 80 mm (3 in)
- L: 최대 D × 4.5

5.1.3 용기의 설치 위치

🖻 5 🛛 용기의 설치 위치

- 가능하면 센서의 하단 모서리가 용기 안에 있도록 센서를 설치하십시오.
- 벽 노즐 바깥 모서리 간 권장 거리 A: 용기 직경의 ~ ½. 어떤 경우에도 계기를 용기 벽까지 15 cm (5.91 in)보다 더 가깝게 설치하면 안 됩니다.
- 센서를 용기 중앙에 설치하지 마십시오.
- 충진 커튼을 통해 측정하지 마십시오.
- 리미트 스위치 같은 내부 고정 장치는 피하십시오.

불감대(BD) 내에서는 신호가 평가되지 않습니다. 따라서 안테나 가까이에서 간섭 신호 (예: 응축수의 영향)를 억제하는 데 사용할 수 있습니다. 최소 0.1 m (0.33 ft)의 자동 불감대가 기본으로 구성됩니다. 그러나 수동으로 이 값을 덮어 쓸 수 있습니다(0 m (0 ft)도 허용됨). 자동 계산: 불감대 = Empty 교정 - Full calibration - 0.2 m (0.656 ft).
Empty 교정 파라미터 또는 Full calibration 파라미터에 새로 입력할 때마다 불감대 파라미 터가 이 공식을 사용해 자동으로 다시 계산됩니다.

계산 결과가 0.1 m (0.33 ft)보다 작은 값이면 0.1 m (0.33 ft)의 불감대가 계속 사용됩니다.

5.1.4 용기 설치를 위한 계기 정렬

- 안테나를 제품 표면에 수직으로 맞춥니다.
- 아일렛을 용기 벽 쪽으로 최대한 러그와 정렬하십시오.

🖻 6 용기 설치를 위한 계기 정렬

🖻 7 센서를 제품 콘에 정렬

A 조정식 플랜지 씰을 사용한 설치

B FAU40 정렬 장치를 사용한 설치

1

방해 에코를 방지하려면 (필요한 곳에) 비스듬히 설치된 금속판을 사용하십시오.

5.1.5 빔 각도

A0046285

图 8 빔 각도 α, 거리 D 및 빔폭 직경 W 간의 관계

빔 각도는 레이다파의 출력 에너지가 최대 출력 밀도 값의 절반에 도달하는 각도 α로 정의됩 니다(3-dB 폭). 마이크로파도 신호 빔 밖에서 방출되고 간섭 설비에 반사될 수 있습니다.

빔 각도 α와 거리 D의 함수로 정의되는 빔 직경 W.

침수 방지 튜브가 있거나 없는 80 mm (3 in) 안테나, α 12 ° W = D × 0.21

5.1.6 플라스틱 탱크에서의 측정

🖻 9 탱크 밖 설치를 방해하는 금속이 있는 플라스틱 탱크에서의 측정

- 1 파이프, 튜브
- 2 사다리
- 3 쇠창살, 레일

탱크 외벽이 비전도성 재질(예: GFR)인 경우 마이크로파가 탱크 밖에 있는 간섭 설비에 반사 될 수 있습니다.

신호 빔에 전도성 재질로 만들어진 간섭 설비가 없게 하십시오(빔폭 직경 계산 정보는 빔 각 도 섹션 참조).

자세한 정보는 제조사로 문의하십시오.

5.1.7 내후성 커버

실외에서 사용할 때는 내후성 커버의 사용을 권장합니다.

내후성 커버는 제품 구조 "동봉된 액세서리"를 통해 액세서리로 주문하거나 계기와 함께 주 문할 수 있습니다.

🖻 10 내후성 커버

🚹 센서는 내후성 커버로 완전히 덮이지 않습니다.

5.1.8 침수 방지 튜브의 사용

프리 필드 설치나 침수 위험이 있는 애플리케이션에서는 침수 방지 튜브를 사용해야 합니다. 입자가 굵은 재료와 침수 방지 튜브를 사용하면 최적의 결과를 얻을 수 있습니다.

침수 방지 튜브는 제품 구조 "동봉된 액세서리"를 통해 액세서리로 주문하거나 계기와 함께 주문할 수 있습니다.

▶ 11 침수 방지 튜브의 기능

- 1 빈공간
- 2 O링(EPDM) 씰
- 3 불감대
- 4 최대레벨

튜브는 센서에 직접 끼우고 0링을 사용해 시스템을 밀펴합니다. 침수가 발생하면 튜브에 형 성된 빈 공간이 튜브 끝에서 직접 최대 레벨의 정확한 검출을 보장합니다. 튜브 안에 불감대 가 있기 때문에 다중 에코는 분석되지 않습니다.

침수 방지 튜브의 구성 파라미터

침수 방지 튜브 사용 시 불감대 설정

- ▶ 경로: 메인 메뉴 → 셋업 → 고급 설정 → 불감대
 - └→ 100 mm (4 in)를 입력하십시오.

침수 방지 튜브를 설치하고 불감대를 설정한 후 매핑을 수행하십시오.

- 경로: 셋업 → 디스턴스 확인
 산섭 반향 맵의 기록을 시작하기 위해 표시된 거리를 실제 값과 비교합니다.
- 2. 경로: 셋업 → 매핑 끝점
 - ▶ 이 파라미터는 새로운 매핑이 기록되는 거리를 결정합니다.

3. 경로: 셋업 → 현재 매핑

▶ 매핑이 이미 기록된 거리를 표시합니다.

5.1.9 설치 브래킷을 사용한 설치, 조정 가능

설치 브래킷은 제품 구조 "동봉 액세서리"를 통해 액세서리로 주문하거나 계기와 함께 주문 할 수 있습니다.

- 🖻 12 설치 브래킷을 사용한 설치, 조정 가능
- 벽 또는 천장 설치가 가능합니다.
- 설치 브래킷을 사용해 제품 표면에 수직이 되도록 안테나를 배치하십시오.

주의

설치 브래킷과 트랜스미터 하우징 사이에는 전도성으로 연결되는 부분이 없습니다. 정전하가 발생할 수 있습니다.

설치 브래킷을 로컬 등전위화 시스템에 통합하십시오.

5.1.10 캔틸레버 설치, 피벗

캔틸레버, 벽 브래킷 및 설치 프레임은 액세서리로 제공됩니다.

🖻 13 캔틸레버 설치, 피벗

설치

- A 캔틸레버 및 벽 브래킷
- B 캔틸레버 및 설치 프레임
- C 캔틸레버, 피벗 가능

5.1.11 수평 설치 브래킷을 사용한 설치

설치 브래킷은 제품 구조 "동봉된 액세서리"를 통해 계기와 함께 주문할 수 있습니다.

☑ 14 수평 설치 브래킷을 사용한 설치(침수 방지 튜브 없음)

5.1.12 피벗 가능 설치 브래킷을 사용한 설치

피벗 가능 설치 브래킷은 제품 구조 "동봉된 액세서리"를 통해 계기와 함께 주문할 수 있습니 다.

🖻 15 설치, 피벗 및 조정 가능

- A 캔틸레버 및 벽 브래킷
- B 피벗 및 조정 가능 캔틸레버(계기를 측정할 유체에 정렬)

5.1.13 FAU40 정렬 장치

FAU40 정렬 장치를 사용해 안테나 축에 대해 모든 방향으로 최대 15 °의 경사각을 설정할 수 있습니다. 정렬 장치는 레이다 빔을 분체에 최적의 상태로 조준하는 데 사용합니다.

FAU40 정렬 장치는 액세서리로 제공됩니다.

If Micropilot FMR20 및 정렬 장치

5.1.14 조정식 플랜지 씰

조정식 플랜지 씰을 사용해 레이다 빔을 분체에 최적의 상태로 조준할 수 있습니다. 조정식 플랜지 씰은 제품 구조 "동봉된 액세서리"를 통해 계기와 함께 주문할 수 있습니다.

■ 17 Micropilot FMR20 및 조정식 플랜지 씰

5.2 설치 후 점검

기기 또는 케이블이 손상되었습니까(육안 검사)?
 기기가 습기와 직사광선으로부터 적절하게 보호되고 있습니까?
 기기를 적절히 고정했습니까?

설치

6.1 케이블 할당

☑ 18 FMR20 케이블 할당, Modbus

- 1 +, 갈색 전선
- 2 -, 파란색 전선
- 3 Modbus D0/A (+), 흰색 전선
- 4 Modbus D1/B (-), 검은색 전선

6.2 공급 전압

 $5\sim 30 V_{DC}$

외부 전원 공급 장치가 필요합니다.

배터리 작동

배터리 작동 수명을 늘리기 위해 센서의 Bluetooth[®] 무선 기술 통신을 비활성화할 수 있습니 다.

등전위화

등전위화를 위한 특별한 조치가 필요하지 않습니다.

6.3 기기 연결

6.3.1 Modbus RS485 연결 계통도

RS485 연결은 방폭 환경에서 사용하기 위한 RS485-IS 사양의 요건을 충족합니다.

☑ 19 Modbus RS485 연결 계통도

- 1 Modbus 통신 지원 기기
- 2 Modbus 마스터/RTU
- 3 전원 공급 장치

RS485 버스에서 최대 32명의 사용자를 연결할 수 있습니다.

☑ 20 Modbus RS485 연결 계통도, 여러 사용자

- 1 전원 공급 장치
- 2 Modbus 통신 지원 기기
- 3 버스 종단
- 4 Modbus 마스터/RTU
- 버스 케이블은 최대 길이가 1200 m (3937 ft)인 A 타입 Fieldbus 케이블이어야 합니다. 기기를 방폭 환경에 설치할 경우 케이블 길이는 1000 m (3281 ft)를 초과할 수 없습니다.

RS485 버스의 양 끝에 종단 저항을 연결해야 합니다.

6.3.2 Modbus RS485 버스 종단 저항

버스 종단 저항은 RS485-IS 사양에 따라 설치해야 합니다.

☑ 21 RS485-IS 사양에 따른 버스 종단 저항

6.4 연결 후 점검

□ 기기 또는 케이블이 손상되었습니까(육안 검사)?
□ 설치된 케이블에 적절한 변형 방지 장치를 사용했습니까?
□ 케이블 글랜드를 설치하고 단단히 조였습니까?
□ 공급 전압이 명판의 사양과 일치합니까?
□ 역극성이 없고 단자 할당이 올바릅니까?

7 작동성

7.1 작동 방법

- Modbus
- Bluetooth[®] 무선 기술을 통한 SmartBlue(앱)
- 작업 도구에서 각 파라미터 기능에 대한 간략한 설명을 제공하는 메뉴 안내

7.2 Bluetooth[®] 무선 기술을 통한 작동

- ☑ 22 Bluetooth[®] 무선 기술을 통한 원격 작동
- 1 트랜스미터 전원 공급 장치
- 2 SmartBlue(앱)가 설치된 스마트폰 / 태블릿
- 3 Bluetooth[®] 무선 기술이 적용된 트랜스미터

7.3 Modbus 프로토콜을 통한 원격 작동

☑ 23 Modbus 프로토콜을 통한 원격 작동 옵션

- 1 Modbus 작업 도구가 설치된 컴퓨터(고객 응용 프로그램, 단말기 응용 프로그램 등)
- 2 Modbus를 지원하는 원격 송신 장치(RTU)(예: Fieldgate FXA42)
- 3 Memograph M RSG45
- 4 Modbus RS485
- 5 SmartBlue(앱)가 설치된 스마트폰 / 태블릿
- 6 Modbus 및 Bluetooth® 무선 기술이 적용된 트랜스미터

8 Modbus 프로토콜을 통한 시스템 통합

8.1 Modbus RS485 정보

8.1.1 Modbus 설정

Bluetooth 및 Modbus를 통해 다음 설정을 사용자 지정할 수 있습니다.

설정	옵션	기본값
데이터 비트	7,8	8
패리티	짝수, 홀수, 없음	짝수
정지 비트	1,2	1
전송 속도	1200, 2400, 4800, 9600, 19200	9600
프로토콜	RTU, ASCII	RTU
주소 지정	1~200	200
최소 폴링 간격	500 ms	

8.1.2 Modbus 기능 코드

기능 코드	작업	레지스터 유형	명령 유형
03 (0x03)	단일 / 다중 읽기	홀딩 레지스터	기본
06 (0x06)	단일 쓰기	홀딩 레지스터	기본
16 (0x10)	다중 쓰기	홀딩 레지스터	기본

8.1.3 Modbus 예외

예외	개수	설명
MB_EX_ILLEGAL_FUNCTION	01 (0x01)	기능 코드가 지원되지 않습니다.
MB_EX_ILLEGAL_DATA_ADDRESS	02 (0x02)	레지스터 주소를 사용할 수 없습니다.
MB_EX_ILLEGAL_DATA_VALUE 03 (0x0		데이터 값이 허용되지 않습니다(예: float32 ~ char8 레지스터 쓰 기). 읽기 전용 레지스터에 쓰는 경우에도 유효합니다.

8.1.4 Modbus 특수 데이터 형식

데이터 형식	파라 미터 당 레지 스터 수	설명			
float32 (IEEE754)	2 float32는 4바이트로 구성되기 때문에 데이터 형식으로 float32를 사용하는 파 Modbus를 통해 전송되는 2개의 16비트 워드로 나눠져야 합니다. 따라서 float 터를 읽으려면 2개의 연속된 Modbus 레지스터를 읽어야 합니다.			하는 파라미터는 서 float32 형식 파라미	
		Modbus 레지스터 [n]		Modbus 레지스터 [n+1	.]
		바이트 A	바이트 B	바이트 C	바이트 D
		float32 값			
uint32 / 2 float32 데이터 형식에 적용되는 것과 동 int32 니다.		적용되는 것과 동일한 3	^드 건이 uint32 / int32 데(이터 형식에도 적용됩	
		Modbus 레지스터 [n]		Modbus 레지스터 [n+1	.]
		바이트 A	바이트 B	바이트 C	바이트 D
		uint32 / Int32 값			
string(char8 배열)	0.5	string의 한 문자는 1바 다. 또한 데이터 형식으	이트만 필요하기 때문에 2로 string을 사용하는 피	두 문자가 항상 Modbus 라미터의 길이는 60자로	레지스터에 채워집니 에한됩니다.
		Modbus 레지스터 [n]		Modbus 레지스터 [n+1]
		char8 [n]	char8 [n+1]	char8 [n+2]	char8 [n+3]

Modbus 프로토콜을 통해 측정한 변수 8.2

8개의 가장 중요한 프로세스 파라미터는 Modbus 주소 범위의 첫 번째 주소에 버스트 파라미 터로 매핑됩니다. 즉, 이러한 파라미터는 하나의 측정 전송에서 읽을 수 있습니다. 모든 파라 미터는 Float32 형식으로 제공됩니다.

Remograph M RSG45 또는 Fieldgate FXA30b Modbus 마스터를 사용할 경우 레지스터 주소는 1씩 증가해야 합니다(레지스터 주소 + 1). 이는 다른 마스터에도 적용될 수 있습 니다.

Modbus 주소	파라미터 이름	설명	SI 단위
5000	MODB_PV_VALUE	Level linearized (PV)	선형화 유형에 따라 다름
5002	MODB_SV_VALUE	Distance (SV)	m
5004	MODB_TV_VALUE	Relative echo amplitude (TV)	dB
5006	MODB_QV_VALUE	Temperature (QV)	°C
5008	MODB_SIGNALQUALITY	Signal quality	-
5010	MODB_ACTUALDIAGNOSTIC S	Current diagnostics number	-
5012	MODB_LOCATION_LONGITU DE	Longitude coordinate	•
5014	MODB_LOCATION_LATITUD E	Latitude coordinate	0

시운전 및 작동 9

측정 포인트를 시운전하기 전에 설치 후 점검 및 연결 후 점검을 수행하십시오.

SmartBlue(앱)을 통한 시운전 9.1

기기 요구 사항 9.1.1

기기가 Bluetooth를 지원하는 경우에만 SmartBlue를 통한 시운전이 가능합니다(Bluetooth 모듈은 납품 전에 공장에서 설치되거나 장착됨).

9.1.2 SmartBlue 시스템 요구 사항

SmartBlue 시스템 요구 사항

Android 기기는 Google Play Store에서, iOS 기기는 iTunes Store에서 SmartBlue를 다운로드할 수 있습니다.

■ iOS 기기:

iPhone 4S 이상(iOS 9 이상), iPad 2 이상(iOS 9 이상), iPod Touch 5세대 이상(iOS 9 이상) Android 7/71:

Android 4.4 KitKat 및 Bluetooth® 4.0 이상

╘

9.1.3 SmartBlue 앱

1. QR 코드를 스캔하거나 App Store의 검색 필드에 "SmartBlue"를 입력하십시오.

🗷 24 다운로드 링크

- 2. SmartBlue를 시작하십시오.
- 3. 표시된 라이브 목록에서 계기를 선택하십시오.
- 4. 로그인 데이터를 입력하십시오.
 - └→ 사용자 이름: admin 암호: 계기의 일련 번호
- 5. 자세한 정보를 보려면 아이콘을 누르십시오.
- 🚹 처음 로그인한 후 암호를 변경하십시오!

9.1.4 SmartBlue에 엔벨로프 커브 표시

SmartBlue에 엔벨로프 커브를 표시하고 기록할 수 있습니다.

엔벨로프 커브 이외에 다음 값이 표시됩니다.

- D = 거리
- L = 레벨
- A = 절대 진폭
- 스크린샷에서는 표시된 영역(줌 기능)이 저장됩니다.
- 비디오 시퀀스에서는 줌 기능 없이 항상 전체 영역이 저장됩니다.

☑ 25 Android용 SmartBlue에서 엔벨로프 커브 표시(예)

- 1 비디오 녹화
- 2 스크린샷생성
- 3 매핑 메뉴 표시
- 4 비디오 녹화 시작/정지
- 5 시간 축에서 시간 이동

☑ 26 iOS용 SmartBlue에서 엔벨로프 커브 표시(예)

- 1 비디오 녹화
- 2 스크린샷 생성
- 3 매핑 메뉴 표시
- 4 비디오 녹화 시작/정지
- 5 시간 축에서 시간 이동

9.2 운영 소프트웨어를 통한 레벨 측정 구성

🖻 27 분체 레벨 측정 구성 파라미터

- R 측정 기준점
- D 디스턴스
- L 레벨
- E Empty 교정 (= 영점)
- F Full calibration (= 스팬)
- BD 불감대

9.2.1 SmartBlue를 통해

- 경로: 셋업 → 디스턴스 단위
 → 거리 계산을 위한 길이 단위를 선택합니다.
- 3. 경로: 셋업 → Full calibration
 - ▶ 전체 거리 F(범위: 최대 레벨 최소 레벨)를 지정합니다.
- 4. 경로: 셋업 → 디스턴스
 - ▷ 기준점(플랜지의 하단 모서리 / 마지막 센서 나사)에서 레벨까지 현재 측정한 거 리 D를 표시합니다.
- 5. 경로: 셋업 → 디스턴스 확인
 - ▶ 간섭 반향 맵의 기록을 시작하기 위해 표시된 거리를 실제 값과 비교합니다.

- 6. 경로: 셋업 → 매핑 끝점
 ▶ 이 파라미터는 새로운 매핑이 기록되는 거리를 결정합니다.
- 8. 셋업 → 디스턴스 확인
- 9. 경로: 셋업 → 레벨
 측정한 레벨 L을 표시합니다.
- 10. 경로: 셋업 → 신호 품질
 - ▶ 분석한 레벨 반향의 신호 품질을 표시합니다.

10 진단 및 문제 해결

10.1 일반적인 오류

오류	예상 원인	조치
기기가 응답하지 않음	공급 전압이 명판의 사양과 일 치하지 않음	올바른 전압을 인가하십시오.
	공급 전압의 극성이 잘못됨	극성을 조정하십시오.
	케이블이 단자에 올바르게 접촉 하지 않음	케이블과 단자 사이의 전기 접촉을 확인하십시오.
Modbus 통신이 작동하지 않	Modbus 신호가 잘못 연결됨	Modbus 신호를 올바르게 연결하십시오.
Ē	액세스 코드가 활성화됨	액세스 코드를 입력하십시오.
기기 측정이 올바르지 않음	구성 오류	 파라미터 구성을 확인하고 수정하십시오. 매핑을 수행하십시오.
표시 값이 올바르지 않음(선 형화)	SmartBlue와 Modbus가 동시에 활성화됨	Modbus를 로그오프하고 연결을 끊으십시오. 또는 SmartBlue를 로그오프하고 연결을 끊으십시오 (SmartBlue를 통한 연결에 우선 순위가 있음).
선형화 출력 값이 올바르지 선형화 오류 않음		선형화 테이블을 확인하십시오. 선형화 모듈에서 탱크 선택을 확인하십시오.

10.2 오류 - SmartBlue 작동

오류	예상 원인	조치
기기가 Live List에 보이지 않음 Bluetooth 연결이 설정 되지 않음		스마트폰 또는 태블릿에서 Bluetooth 기능을 활성화하 십시오.
		센서의 Bluetooth 기능이 비활성화되어 있습니다. 복구 절차를 수행하십시오.

오류	예상 원인	조치	
기기가 Live List에 보이지 않음	기기가 이미 다른 스마 트폰/태블릿과 연결되 었습니다.	센서와 스마트폰 또는 태블릿 사이에 하나의 점대점 (point-to-point) 연결만 설정할 수 있습니다.	
기기가 Live List에 보이지만	Android 종단 장치	앱의 위치 기능이 허용됩니까? 처음 승인되었습니까?	
SmartBlue를 통해 액세스할 수 없 음		일부 Android 버전의 경우 Bluetooth와 함께 GPS 또는 위 치 기능을 활성화해야 합니다.	
		GPS를 활성화하십시오. 앱을 완전히 종료한 후 다시 시 작하십시오. 앱의 위치 기능을 활성화하십시오.	
기기가 Live List에 보이지만 SmartBlue를 통해 액세스할 수 없 음	Apple 종단 장치	표준으로 로그인하십시오. 사용자 이름 "admin"을 입력하십시오. 대소문자에 유의해 초기 암호(기기 일련 번호)를 입력하 십시오.	
SmartBlue를 통해 로그인할 수 없 음	기기가 처음으로 작동 중임	초기 암호(기기 일련 번호)를 입력한 후 암호를 변경하 십시오. 일련 번호를 입력할 때 대소문자에 유의하십시 오.	
SmartBlue를 통해 기기를 작동할 수 없음	잘못된 암호를 입력함	올바른 암호를 입력하십시오.	
SmartBlue를 통해 기기를 작동할 수 없음	암호를 잊어버림	제조사의 서비스 부서에 연락하십시오.	
SmartBlue를 통해 기기를 작동할 수 없음	센서 온도가 너무 높음	주변 온도로 인해 센서 온도가 60 ℃ (140 ℉) 이상으로 상승하면 Bluetooth 통신이 비활성화될 수 있습니다. 기기를 차펴 하고 분리한 후 필요한 경우 냉각시키십시 오.	

10.3 작업 도구의 진단 이벤트

기기에 진단 이벤트가 있는 경우 NAMUR NE 107에 따라 작업 도구의 왼쪽 상단 상태 영역에 해당 이벤트 레벨 기호와 함께 상태 신호가 나타납니다.

- 실패(F)
- 기능 확인(C)
- 사양을 벗어남(S)
- 유지보수 필요(M)

해결 조치 불러오기

- ▶ 진단 (Diagnostics) 메뉴로 이동하십시오.
 - ▶ 실제 진단 파라미터에 진단 이벤트가 이벤트 텍스트와 함께 표시됩니다.

71536712

www.addresses.endress.com

