Refining: H₂O in propane/propylene mix

Fractionation and recovery of propane and propylene from an FCCU $\,$

Benefits at a glance

- Fast response to H₂O concentration changes
- Patented differential spectroscopy technique measures H₂O at low ppmv
- Laser-based measurement is highly selective and accurate for H₂O in C₃ mixtures
- Integrated permeation tube supports automated validation checks

FCCU propylene production

Refinery Fluidized Catalytic Cracking Units (FCCU) are a major source of the propylene feedstock used in petrochemical plants. The yield of propylene from an FCCU varies with feedstock and operating conditions. Refineries operate FCCUs to achieve a balance of gasoline and propylene production, maximizing the production of one decreases the yield of the other. The gas plant associated with an FCCU separates fuel gas from C₃ and C₄ gases and gasoline, and contains treatment equipment to remove H₂S and other sulfur compounds from these products.

On-line H₂S monitoring

Many downstream petrochemical processes employ catalysts that are highly sensitive to H_2O and other contaminants. H_2O must be removed from C_3 propane/propylene mixtures to avoid carryover into the separated propane and propylene product streams. On-line monitoring of H_2O concentration in C_3 mix, and the separated propane and propylene

products streams ensures purity specifications are met for downstream petrochemical production processes.

Endress+Hauser's solution

Tunable diode laser absorption spectroscopy (TDLAS) is a SpectraSensors technology proven highly effective in this critical measurement. TDLAS analyzers have an exceptionally fast response to changes in H₂O concentration, an important performance characteristic for monitoring and controlling H₂O levels in propane and propylene streams. Endress+Hauser's patented differential spectroscopy technique enables detection and quantitation of low ppmv levels of H₂O in propane/ propylene mixtures. Laser and detector components are isolated and protected from the process gas and entrained contaminants avoiding fouling and corrosion, and ensuring stable long-term operation and accurate measurements.

^{**} Repeatability is based on a stream composition with minimal variation. If the stream composition varies, the factory should be consulted for specifications.

Typical background stream composition					
Background 1 - propane					
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)		
Ethane (C ₂ H ₆)	0	1	2		
Propane (C ₃ H ₈)	65	90	100		
Propylene (C ₃ H ₆)	0	8	35		
Butanes and heavier (C ₄ +)	0	1	2.5		
Background 2 - 35/65 propage/propylene mix					

Background 2 - 35/65 propane/propylene mix					
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)		
Ethane (C ₂ H ₆)	0	1	2		
Propane (C ₃ H ₈)	0	34	50		
Propylene (C ₃ H ₆)	50	64	100		
Butanes and heavier (C ₄ +)	0	1	2		

Background 3 - 65/35 propane/propylene mix					
Component	Minimum (Mol%)	Typical (Mol%)	Maximum (Mol%)		
Ethane (C ₂ H ₆)	0	1	2		
Propane (C ₃ H ₈)	50	64	80		
Propylene (C ₃ H ₆)	20	34	50		
Butanes and heavier (C4+)	0	1	2.5		

The background stream composition must be specified for proper calibration and measurement performance. Specify the normal composition, along with the minimum and maximum expected values for each component, especially H_2O , the measured component. Other stream compositions may be allowable with approval from Endress+Hauser.

www.addresses.endress.com

^{*}Consult factory for alternate ranges.