Description of Device Parameters

FTL64

HART

Vibronic
Table of contents

1 About this document 3
 1.1 Document function 3
 1.2 Target group 3
 1.3 Using this document 3
 1.4 Symbols 4
 1.5 Documentation 4

2 Overview of the operating menu 5

3 Description of device parameters . . 17
 3.1 “Guidance” menu 19
 3.2 “Diagnostics” menu 29
 3.3 “Application” menu 50
 3.4 “System” menu 70

Index .. 88
1 About this document

1.1 Document function

The document is part of the Operating Instructions and serves as a reference for parameters. The document provides a detailed explanation of each individual parameter. Performance of tasks that require detailed knowledge of the functioning of the device:
- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group

The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure

This document lists the submenus and parameters that are available when the "Maintenance" option user role is enabled.

For the operating concept of the operating menus, see the Operating Instructions.

1.3.2 Structure of a parameter description

The individual parts of a parameter description are described in the following section:
- Navigation: Navigation path to the parameter via the local display
- Prerequisite: The parameter is only available under these specific conditions
- Description: Description of the parameter function
- Selection: List of the individual options for the parameter
- User entry: Input range for the parameter
- User interface: Display value/data of the parameter
- Factory setting: Default setting on leaving the factory
- Additional information:
 - On individual options
 - On display values/data
 - On the input range
 - On the factory setting
 - On the parameter function
1.4 Symbols

1.4.1 Symbols for certain types of information

Additional information:

Reference to documentation:

Operation via local display:

Operation via operating tool:

Write-protected parameter:

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

The Operating Instructions are available via the Internet: www.endress.com → Download

1.5.2 Supplementary device-dependent documentation

Special Documentation

The Special Documentation is available via the Internet: www.endress.com → Download
2 Overview of the operating menu

<table>
<thead>
<tr>
<th>Guidance</th>
<th>→ 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Commissioning</td>
<td>→ 19</td>
</tr>
<tr>
<td>Device tag</td>
<td>→ 19</td>
</tr>
<tr>
<td>Temperature unit</td>
<td>→ 19</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>→ 19</td>
</tr>
<tr>
<td>Safety function</td>
<td>→ 19</td>
</tr>
<tr>
<td>Density setting</td>
<td>→ 20</td>
</tr>
<tr>
<td>Lower range value output</td>
<td>→ 20</td>
</tr>
<tr>
<td>Upper range value output</td>
<td>→ 20</td>
</tr>
<tr>
<td>Current range output</td>
<td>→ 21</td>
</tr>
<tr>
<td>Failure behavior current output</td>
<td>→ 21</td>
</tr>
<tr>
<td>→ Safety lock</td>
<td>→ 21</td>
</tr>
<tr>
<td>Proof test via Bluetooth allowed?</td>
<td>→ 21</td>
</tr>
<tr>
<td>Enter safety locking code</td>
<td>→ 22</td>
</tr>
<tr>
<td>Locking status</td>
<td>→ 26</td>
</tr>
<tr>
<td>SIL status</td>
<td>→ 22</td>
</tr>
<tr>
<td>Character test string</td>
<td>→ 22</td>
</tr>
<tr>
<td>Device tag</td>
<td>→ 22</td>
</tr>
<tr>
<td>Device name</td>
<td>→ 23</td>
</tr>
<tr>
<td>Serial number</td>
<td>→ 23</td>
</tr>
<tr>
<td>CRC device configuration</td>
<td>→ 23</td>
</tr>
<tr>
<td>Stored CRC device configuration</td>
<td>→ 23</td>
</tr>
<tr>
<td>Feature</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Operating time</td>
<td>24</td>
</tr>
<tr>
<td>Timestamp stored CRC device config.</td>
<td>24</td>
</tr>
<tr>
<td>Operating time</td>
<td>24</td>
</tr>
<tr>
<td>Configuration counter</td>
<td>24</td>
</tr>
<tr>
<td>Density setting</td>
<td>24</td>
</tr>
<tr>
<td>Safety function</td>
<td>24</td>
</tr>
<tr>
<td>Switching delay uncovered to covered</td>
<td>24</td>
</tr>
<tr>
<td>Switching delay uncovered to covered</td>
<td>25</td>
</tr>
<tr>
<td>Switching delay covered to uncovered</td>
<td>25</td>
</tr>
<tr>
<td>Switching delay covered to uncovered</td>
<td>25</td>
</tr>
<tr>
<td>Failure behavior current output</td>
<td>25</td>
</tr>
<tr>
<td>Current range output</td>
<td>26</td>
</tr>
<tr>
<td>Lower range value output</td>
<td>26</td>
</tr>
<tr>
<td>Upper range value output</td>
<td>26</td>
</tr>
<tr>
<td>Enter safety locking code</td>
<td>22</td>
</tr>
<tr>
<td>Code incorrect</td>
<td>27</td>
</tr>
<tr>
<td>Locking status</td>
<td>26</td>
</tr>
<tr>
<td>Safety unlock</td>
<td>27</td>
</tr>
<tr>
<td>Enter safety unlocking code</td>
<td>27</td>
</tr>
<tr>
<td>Code incorrect</td>
<td>27</td>
</tr>
<tr>
<td>Locking status</td>
<td>28</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>29</td>
</tr>
<tr>
<td>Active diagnostics</td>
<td>29</td>
</tr>
<tr>
<td>Active diagnostics</td>
<td>29</td>
</tr>
<tr>
<td>Timestamp</td>
<td>29</td>
</tr>
</tbody>
</table>
Previous diagnostics

- Timestamp
- Operating time from restart
- Operating time

Minimum/maximum values

- Frequency min
- Frequency max
- Minimum terminal voltage
- Maximum terminal voltage
- Minimum electronics temperature
- Maximum electronics temperature
- Minimum sensor temperature
- Maximum sensor temperature

Simulation

- Value current output
- Simulation
- Frequency simulation value
- Fork state simulation value
- Diagnostic event category
- Diagnostic event simulation

Heartbeat Technology

Heartbeat Verification

- Start verification
- Date/time Heartbeat Verification
- Operating time (Verification)
<table>
<thead>
<tr>
<th>Frequency history</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor frequency 1</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 2</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 3</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 4</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 5</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 6</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 7</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 8</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 9</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 10</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 11</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 12</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 13</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 14</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 15</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency 16</td>
<td></td>
</tr>
<tr>
<td>Date 1</td>
<td></td>
</tr>
<tr>
<td>Date 2</td>
<td></td>
</tr>
<tr>
<td>Date 3</td>
<td></td>
</tr>
<tr>
<td>Date 4</td>
<td></td>
</tr>
<tr>
<td>Date 5</td>
<td></td>
</tr>
<tr>
<td>Date 6</td>
<td></td>
</tr>
<tr>
<td>Date 7</td>
<td>→ 39</td>
</tr>
<tr>
<td>Date 8</td>
<td>→ 39</td>
</tr>
<tr>
<td>Date 9</td>
<td>→ 39</td>
</tr>
<tr>
<td>Date 10</td>
<td>→ 39</td>
</tr>
<tr>
<td>Date 11</td>
<td>→ 40</td>
</tr>
<tr>
<td>Date 12</td>
<td>→ 40</td>
</tr>
<tr>
<td>Date 13</td>
<td>→ 40</td>
</tr>
<tr>
<td>Date 14</td>
<td>→ 40</td>
</tr>
<tr>
<td>Date 15</td>
<td>→ 40</td>
</tr>
<tr>
<td>Date 16</td>
<td>→ 40</td>
</tr>
</tbody>
</table>

Loop diagnostics

- Rebuild baseline
- Tolerated deviation +/-
- Baseline status
- Loop diagnostics
- Terminal voltage 1
- Clamping voltage lower threshold
- Clamping voltage upper threshold
- 806 Alarm delay

Process window

- Sensor frequency
- 900 Process alert frequency too low
- 900 Alarm delay
- Low alert value
- 901 Process alert frequency too high
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the operating menu</td>
<td></td>
</tr>
<tr>
<td>901 Alarm delay</td>
<td>44</td>
</tr>
<tr>
<td>High alert value</td>
<td>44</td>
</tr>
<tr>
<td>▶ Proof test</td>
<td></td>
</tr>
<tr>
<td>Date/time proof test</td>
<td>44</td>
</tr>
<tr>
<td>Time stamp of last proof test</td>
<td>45</td>
</tr>
<tr>
<td>▶ Diagnostic settings</td>
<td></td>
</tr>
<tr>
<td>▶ Properties</td>
<td></td>
</tr>
<tr>
<td>49 Corrosion warning</td>
<td>45</td>
</tr>
<tr>
<td>Upper warning frequency</td>
<td>45</td>
</tr>
<tr>
<td>825 Electronics temperature</td>
<td>46</td>
</tr>
<tr>
<td>826 Sensor temperature</td>
<td>46</td>
</tr>
<tr>
<td>▶ Sensor</td>
<td></td>
</tr>
<tr>
<td>49 Diagnostic behavior</td>
<td>46</td>
</tr>
<tr>
<td>49 Event category</td>
<td>47</td>
</tr>
<tr>
<td>▶ Process</td>
<td></td>
</tr>
<tr>
<td>806 Diagnostic behavior</td>
<td>47</td>
</tr>
<tr>
<td>806 Event category</td>
<td>47</td>
</tr>
<tr>
<td>900 Diagnostic behavior</td>
<td>48</td>
</tr>
<tr>
<td>900 Event category</td>
<td>48</td>
</tr>
<tr>
<td>901 Diagnostic behavior</td>
<td>48</td>
</tr>
<tr>
<td>901 Event category</td>
<td>49</td>
</tr>
<tr>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>▶ Measured values</td>
<td></td>
</tr>
<tr>
<td>Sensor frequency</td>
<td>50</td>
</tr>
<tr>
<td>Fork state</td>
<td>50</td>
</tr>
</tbody>
</table>
Overview of the operating menu

Measurement parameters:
- Terminal voltage 1
- Terminal current
- Sensor temperature
- Electronics temperature

Measurement units:
- Temperature unit

Sensor configuration:
- Mode of operation
- Safety function
- Density setting
- Damping
- Switching delay uncovered to covered
- Customer delay to covered
- Switching delay covered to uncovered
- Customer delay to uncovered

Stored frequency:
- Stored uncovered frequency
- Stored covered frequency

Sensor calibration:
- Lower switching point at density
- Upper switching point at density
- Frequency at delivery status
- Upper warning frequency
- Upper alarm frequency
Overview of the operating menu

Current output

- Assign PV
- Current range output
- Lower range value output
- Upper range value output
- Failure behavior current output
- Failure current
- Output current
- Terminal current

HART output

Configuration

- HART address
- HART short tag
- Device tag
- No. of preambles
- Loop current mode

HART output

- Assign PV
- Primary variable (PV)
- Assign SV
- Secondary variable (SV)
- Assign TV
- Tertiary variable (TV)
- Assign QV
- Quaternary variable (QV)
Burst configuration 1

- Burst mode 1 → 62
- Burst command 1 → 62
- Burst variable 0 → 63
- Burst variable 1 → 63
- Burst variable 2 → 64
- Burst variable 3 → 64
- Burst variable 4 → 65
- Burst variable 5 → 65
- Burst variable 6 → 65
- Burst variable 7 → 66
- Burst trigger mode → 66
- Burst trigger level → 67
- Min. update period → 67
- Max. update period → 67

Information

- Device ID → 67
- Device type → 68
- Device revision → 68
- HART short tag → 68
- HART revision → 68
- HART descriptor → 68
- HART message → 69
- HART date code → 69

System

→ 70
Overview of the operating menu

Device management

- Device tag
- Locking status
- Configuration counter
- Reset device

User management

- User role

Change user role

- Enter access code

Define password

- Start
- New password
- Confirm new password

Change password

- Start
- Old password
- New password
<table>
<thead>
<tr>
<th>Menu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm new password</td>
<td>75</td>
</tr>
<tr>
<td>Status password entry</td>
<td>75</td>
</tr>
<tr>
<td>Delete password</td>
<td>76</td>
</tr>
<tr>
<td>Start</td>
<td>76</td>
</tr>
<tr>
<td>Old password</td>
<td>76</td>
</tr>
<tr>
<td>Status password entry</td>
<td>76</td>
</tr>
<tr>
<td>Reset password</td>
<td>77</td>
</tr>
<tr>
<td>Start</td>
<td>77</td>
</tr>
<tr>
<td>Reset password</td>
<td>77</td>
</tr>
<tr>
<td>Status password entry</td>
<td>77</td>
</tr>
<tr>
<td>Logout</td>
<td>78</td>
</tr>
<tr>
<td>Start</td>
<td>78</td>
</tr>
<tr>
<td>User role</td>
<td>78</td>
</tr>
<tr>
<td>Bluetooth configuration</td>
<td>78</td>
</tr>
<tr>
<td>Bluetooth activation</td>
<td>78</td>
</tr>
<tr>
<td>Display</td>
<td>79</td>
</tr>
<tr>
<td>Language</td>
<td>79</td>
</tr>
<tr>
<td>Format display</td>
<td>79</td>
</tr>
<tr>
<td>Value 1 display</td>
<td>79</td>
</tr>
<tr>
<td>Decimal places 1</td>
<td>80</td>
</tr>
<tr>
<td>Value 2 display</td>
<td>80</td>
</tr>
<tr>
<td>Decimal places 2</td>
<td>80</td>
</tr>
<tr>
<td>Value 3 display</td>
<td>81</td>
</tr>
<tr>
<td>Decimal places 3</td>
<td>81</td>
</tr>
<tr>
<td>Value 4 display</td>
<td>81</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Decimal places 4</td>
<td>81</td>
</tr>
<tr>
<td>Contrast display</td>
<td>82</td>
</tr>
<tr>
<td>Geolocation</td>
<td></td>
</tr>
<tr>
<td>Process Unit Tag</td>
<td>82</td>
</tr>
<tr>
<td>Location Description</td>
<td>82</td>
</tr>
<tr>
<td>Longitude</td>
<td>82</td>
</tr>
<tr>
<td>Latitude</td>
<td>83</td>
</tr>
<tr>
<td>Altitude</td>
<td>83</td>
</tr>
<tr>
<td>Location method</td>
<td>83</td>
</tr>
<tr>
<td>Information</td>
<td></td>
</tr>
<tr>
<td>Device name</td>
<td>84</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>84</td>
</tr>
<tr>
<td>Serial number</td>
<td>84</td>
</tr>
<tr>
<td>Order code</td>
<td>84</td>
</tr>
<tr>
<td>Firmware version</td>
<td>85</td>
</tr>
<tr>
<td>Hardware version</td>
<td>85</td>
</tr>
<tr>
<td>Extended order code 1</td>
<td>85</td>
</tr>
<tr>
<td>Extended order code 2</td>
<td>85</td>
</tr>
<tr>
<td>Extended order code 3</td>
<td>85</td>
</tr>
<tr>
<td>Software configuration</td>
<td></td>
</tr>
</tbody>
</table>
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display.

The operating menu is dynamic and adapts the choice of parameters to the selected options.

The parameter description of the operating tool is contained in the operating tool.

Navigation
- System → Display

Navigation
- System → User manag. → User role

Language

Navigation
- System → Display → Language

Description
- Set display language

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Arabic) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

User role

Navigation
- System → User manag. → User role

Description
- Shows the access authorization to the parameters via the operating tool

* Visibility depends on order options or device settings
User interface

- Operator
- Maintenance
- Expert
- Production
- Development
3.1 "Guidance" menu

Navigation ➤ Guidance

3.1.1 "Commissioning" wizard

Navigation ➤ Guidance ➤ Commissioning

Temperature unit

Navigation ➤ Guidance ➤ Commissioning ➤ Temperature unit

Description Used to display the electronics temperature.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

Mode of operation

Navigation ➤ Guidance ➤ Commissioning ➤ Mode of operat.

Description Level limit detection: Switching mode, output is either 8 mA (demand) or 16 mA (good). Sensor frequency: Continuous mode, output between 4 mA and 20 mA proportional to sensor frequency.

Selection

- Level limit detection
- Sensor frequency

Safety function

Navigation ➤ Guidance ➤ Commissioning ➤ Safety function

Description MIN: Use for dry run protection. MAX: Use for overfill protection.

Selection

- MIN
- MAX
Density setting

Navigation
Guidance → Commissioning → Density setting

Selection
- > 0.4 g/cm³ *
- > 0.4 g/cm³ *
- > 0.5 g/cm³
- > 0.7 g/cm³

Additional information

Selection
- > 0.4 g/cm³ option
For liquids with a density of 0.4...0.6 g/cm³
- > 0.4 g/cm³ option
For liquids with a density of 0.4...0.6 g/cm³
- > 0.5 g/cm³ option
For liquids with a density 0.5...0.8 g/cm³
- > 0.7 g/cm³ option
Standard setting for liquids with a density > 0.7 g/cm³

Lower range value output

Navigation
Guidance → Commissioning → Low.range outp

Description
Depending of which variable has been selected as PV, define the related lower and upper range values.
Assignment PV value to 4 mA and 20 mA.

User entry
4 to 23 mA

Upper range value output

Navigation
Guidance → Commissioning → Upp.range outp

Description
Depending of which variable has been selected as PV, define the related lower and upper range values.
Assignment PV value to 4 mA and 20 mA.

User entry
4 to 23 mA

* Visibility depends on order options or device settings
Current range output

Navigation
- Guidance → Commissioning → Cur.range outp

Description
Defines the current range used to transmit the measured or calculated value. In brackets are indicated the “low saturation value” and the “high saturation value”. If Measured value \(\leq \) “low saturation”, the output current is set to “low saturation”. If Measured value \(\geq \) “high saturation”, the output current is set to “high saturation”.

Note: Currents below 3.6 mA or above 21.5 mA can be used to signal an alarm.

Selection
- 4...20 mA (4... 20.5 mA)
- 4...20 mA NE (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)

Failure behavior current output

Navigation
- Guidance → Commissioning → Fail.behav.out

Description
Defines which current the output assumes in the case of an error.

- Min: < 3.6 mA
- Max: >21.5 mA

Selection
- Min.
- Max.

"Safety lock" wizard

Navigation
- Guidance → Safety lock

Proof test via Bluetooth allowed?

Navigation
- Guidance → Safety lock → Bluetooth

Description
After completion of the Safety mode wizard, the device will be write protected via software lock.

To use the proof test wizard (optional), the device does not have to be unlocked.

It must be defined, if the proof test wizard via Bluetooth is allowed.

Selection
- No
- Yes
Description of device parameters

Enter safety locking code

Navigation

 Guidance → Safety lock → Safety code

Description

The Safety locking/unlocking code can be found in the corresponding safety manual or the WHG documentation.

User entry

0 to 65535

SIL status

Navigation

 Guidance → Safety lock → SIL status

User interface

- Not active
- SIL sequence active
- Active
- Failed
- Finished

Character test string

Navigation

 Guidance → Safety lock → Char.test string

Description

The following character string is displayed:

0123456789+-...

Set the 'Confirm' parameter to 'Yes' if this string is rendered correctly. Set the 'Confirm' parameter to 'No' if this string is not rendered correctly. Safety locking is not possible in this case.

User interface

Character string comprising numbers, letters and special characters

Device tag

Navigation

 Guidance → Safety lock → Device tag

Description

Enter the name for the measuring point.

User interface

Character string comprising numbers, letters and special characters
Device name

Navigation
Guidance → Safety lock → Device name

Description
Use this function to display the device name. It can also be found on the nameplate.

User interface
Character string comprising numbers, letters and special characters

Serial number

Navigation
Guidance → Safety lock → Serial number

Description
The serial number is a unique alphanumerical code identifying the device. It is printed on the nameplate. In combination with the Operations app it allows to access all device related documentation.

User interface
Character string comprising numbers, letters and special characters

CRC device configuration

Navigation
Guidance → Safety lock → CRC device conf.

Description
CRC device configuration based on current settings of safety relevant parameters. The CRC device configuration is unique and can be used to detect changes in safety relevant parameter settings.

User interface
0 to 65535

Stored CRC device configuration

Navigation
Guidance → Safety lock → Stored CRC conf.

Description
Stored CRC after the last safety lock. Factory delivery is 65535 means that the device has not yet been safety locked.

User interface
0 to 65535
Description of device parameters

Timestamp stored CRC device config.

Navigation
Guidance → Safety lock → TS stored CRC

Description
Gives the time stamp when the CRC was last stored following completion of the safety lock wizard.

User interface
Character string comprising numbers, letters and special characters

Operating time

Navigation
Guidance → Safety lock → Operating time

Description
Indicates how long the device has been in operation.

User interface
Days (d), hours (h), minutes (m), seconds (s)

Density setting

Navigation
Guidance → Safety lock → Density setting

User interface
- > 0.4 g/cm³ *
- > 0.4 g/cm³ *
- > 0.5 g/cm³
- > 0.7 g/cm³

Safety function

Navigation
Guidance → Safety lock → Safety function

User interface
- MIN
- MAX

Switching delay uncovered to covered

Navigation
Guidance → Safety lock → Time delay cover

User interface
- 0.25 s
- 0.50 s
- 1.00 s

Visibility depends on order options or device settings
Description of device parameters

- 1.50 s
- 5.00 s
- Customer specific

Switching delay uncovered to covered

Navigation
Guidance → Safety lock → Time delay cover

User interface
Character string comprising numbers, letters and special characters

Switching delay covered to uncovered

Navigation
Guidance → Safety lock → Time delay free

User interface
- 0.25 s
- 0.50 s
- 1.00 s
- 1.50 s
- 5.00 s
- Customer specific

Switching delay covered to uncovered

Navigation
Guidance → Safety lock → Time delay free

User interface
Character string comprising numbers, letters and special characters

Failure behavior current output

Navigation
Guidance → Safety lock → Fail.behav.out

Description
Assigned value of current output in case of an error.

User interface
- Min.
- Max.
Description of device parameters

Current range output

Navigation
Guidance → Safety lock → Cur.range outp

Description
Assigned current range used to transmit the measured value.

User interface
- 4...20 mA (4... 20.5 mA)
- 4...20 mA NE (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
- Customer specific

Lower range value output

Navigation
Guidance → Safety lock → Low.range outp

Description
Assigned value 4 mA.

User interface
Character string comprising numbers, letters and special characters

Upper range value output

Navigation
Guidance → Safety lock → Upp.range outp

Description
Assigned value 20 mA.

User interface
Character string comprising numbers, letters and special characters

Locking status

Navigation
Guidance → Safety lock → Locking status

Description
Indicates the type of locking.

- 'Hardware locked' (HW)
The device is locked by the 'WP' switch on the main electronics module. To unlock, set the switch into the OFF position.

- 'Safety locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter safety unlocking code'.

- 'Temporarily locked' (SW)
The device is temporarily locked by processes in the device (e.g. data upload/download, reset). The device will automatically be unlocked after completion of these processes.

User interface
- Hardware locked
- Safety locked
- Temporarily locked
Code incorrect

Navigation ➤ Guidance → Safety lock → Code incorrect
Description Abort SIL confirmation sequence or reenter SIL locking code.
Selection • Reenter code
• Abort sequence

3.1.3 "Safety unlock" wizard

Enter safety unlocking code

Navigation ➤ Guidance → Safety unlock → Safe.unlock code
Description The Safety locking/unlocking code can be found in the corresponding safety manual or the WHG documentation.
User entry 0 to 65535

Code incorrect

Navigation ➤ Guidance → Safety unlock → Code incorrect
Description Abort SIL confirmation sequence or reenter SIL locking code.
Selection • Reenter code
• Abort sequence
Description of device parameters

FTL64 HART

Locking status

Navigation

Guidance → Safety unlock → Locking status

Description

Indicates the type of locking.

'Hardware locked' (HW)
The device is locked by the 'WP' switch on the main electronics module. To unlock, set the switch into the OFF position.

'Safety locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter safety unlocking code'.

'Temporarily locked' (SW)
The device is temporarily locked by processes in the device (e.g. data upload/download, reset). The device will automatically be unlocked after completion of these processes.

User interface

- Hardware locked
- Safety locked
- Temporarily locked
3.2 "Diagnostics" menu

Navigation Diagnostics

3.2.1 "Active diagnostics" submenu

Navigation Diagnostics → Active diagnos.

Active diagnostics

Description Displays the currently active diagnostic message.
If there is more than one pending diagnostic event, the message for the diagnostic event with the highest priority is displayed.

User interface Positive integer

Timestamp

Description Displays the timestamp for the currently active diagnostic message.

User interface Days (d), hours (h), minutes (m), seconds (s)

Previous diagnostics

Description Displays the diagnostic message for the last diagnostic event that has ended.

User interface Positive integer

Timestamp

Description Displays the timestamp of the diagnostic message generated for the last diagnostic event that has ended.
Description of device parameters

FTL64 HART

Operating time from restart

Navigation

Diagnostics → Active diagnos. → Time fr. restart

Description

Indicates how long the device has been in operation since the last time the device was restarted.

User interface

Days (d), hours (h), minutes (m), seconds (s)

Operating time

Navigation

Diagnostics → Active diagnos. → Operating time

Description

Indicates how long the device has been in operation.

User interface

Days (d), hours (h), minutes (m), seconds (s)

3.2.2 "Minimum/maximum values" submenu

Navigation

Diagnostics → Min/max val.

Frequency min

Navigation

Diagnostics → Min/max val. → Frequency min

Description

Minimum or maximum measured sensor frequency.

User interface

Signed floating-point number

Frequency max

Navigation

Diagnostics → Min/max val. → Frequency max

Description

Minimum or maximum measured sensor frequency.

User interface

Signed floating-point number
Minimum terminal voltage

Navigation
Diagnostics → Min/max val. → Min.term.volt.

Description
Minimum or maximum measured terminal (supply) voltage.

User interface
0.0 to 50.0 V

Maximum terminal voltage

Navigation
Diagnostics → Min/max val. → Max.term.voltage

Description
Minimum or maximum measured terminal (supply) voltage.

User interface
0.0 to 50.0 V

Minimum electronics temperature

Navigation
Diagnostics → Min/max val. → Min.electr.temp.

Description
Minimum or maximum measured main electronics temperature.

User interface
Signed floating-point number

Maximum electronics temperature

Navigation
Diagnostics → Min/max val. → Max.electr.temp.

Description
Minimum or maximum measured main electronics temperature.

User interface
Signed floating-point number

Minimum sensor temperature

Navigation
Diagnostics → Min/max val. → Min. sensor temp

Description
Minimum or maximum measured sensor (sensor electronics) temperature.

User interface
Signed floating-point number
Description of device parameters

Maximum sensor temperature

Navigation

Diagnostics → Min/max val. → Max. Sensor temp

Description

Minimum or maximum measured sensor (sensor electronics) temperature.

User interface

Signed floating-point number

3.2.3 "Simulation" submenu

Navigation

Diagnostics → Simulation

Value current output

Navigation

Diagnostics → Simulation → Val. curr.outp

Description

Defines the value of the simulated output current.

User entry

3.59 to 23 mA

Simulation

Navigation

Diagnostics → Simulation → Simulation

Description

By activating the simulation, the following can be simulated:
- Fork state
- Sensor frequency
- Current output
- Diagnostic event simulation

The simulation can affect the output current.

Selection

- Off
- Fork state
- Sensor frequency
- Current output
- Diagnostic event simulation
Frequency simulation value

Navigation
Diagnostics → Simulation → Freq. simulation

Description
In level limit detection mode, output current and fork state are independent of frequency simulation value.

User entry
0 to 10000 Hz

Fork state simulation value

Navigation
Diagnostics → Simulation → Fork. simul.val.

Description
In sensor frequency mode, output current is independent of fork state simulation value. In level limit detection mode, sensor frequency is independent of fork state simulation value.

Selection
- Fork covered
- Fork uncovered

Diagnostic event category

Navigation
Diagnostics → Simulation → Event category

Description
Select which diagnostic events can be simulated.

Selection
- Sensor
- Electronics
- Configuration
- Process

Diagnostic event simulation

Navigation
Diagnostics → Simulation → Diag. event sim.

Description
Select the diagnostic event to be simulated.

Note:
To terminate the simulation, select "Off".

Selection
Off
3.2.4 "Heartbeat Technology" submenu

Navigation
Diagnostics → Heartbeat Techn.

"Heartbeat Verification" submenu

Navigation
Diagnostics → Heartbeat Techn. → Heartbeat Verif.

Date/time Heartbeat Verification

Navigation
Diagnostics → Heartbeat Techn. → Heartbeat Verif. → Date/time Heartbeat Verification

Description

Date and time of last Hearbeat Verification.
This value is updated with every Heartbeat verification.
Note:
If time information is not available, e.g. Heartbeat verification is started from display, '--------' is shown.

User interface

Character string comprising numbers, letters and special characters

Start verification

Navigation

Description

Start verification.

Selection

- Cancel
- Start

Operating time (Verification)

Navigation
Diagnostics → Heartbeat Techn. → Heartbeat Verif. → Operating time

User interface

Days (d), hours (h), minutes (m), seconds (s)
Overall result

Navigation
- Diagnostics → Heartbeat Techn. → Heartbeat Verif. → Overall result

User interface
- Not done
- Passed
- Not done
- Failed

Status

Navigation
- Diagnostics → Heartbeat Techn. → Heartbeat Verif. → Status

Description
Shows the actual status.

User interface
- Done
- Busy
- Failed
- Not done

"Frequency history" submenu

Navigation
- Diagnostics → Heartbeat Techn. → Freq. history

Sensor frequency 1

Navigation
- Diagnostics → Heartbeat Techn. → Freq. history → Frequency 1

User interface
Signed floating-point number

Sensor frequency 2

Navigation
- Diagnostics → Heartbeat Techn. → Freq. history → Frequency 2

User interface
Signed floating-point number
Description of device parameters

Sensor frequency 3

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 3

User interface
Signed floating-point number

Sensor frequency 4

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 4

User interface
Signed floating-point number

Sensor frequency 5

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 5

User interface
Signed floating-point number

Sensor frequency 6

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 6

User interface
Signed floating-point number

Sensor frequency 7

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 7

User interface
Signed floating-point number

Sensor frequency 8

Navigation
Diagram: Diagnostics → Heartbeat Techn. → Freq. history → Frequency 8

User interface
Signed floating-point number
<table>
<thead>
<tr>
<th>Sensor frequency</th>
<th>Navigation</th>
<th>User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 9</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>10</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 10</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>11</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 11</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>12</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 12</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>13</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 13</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>14</td>
<td>🟢 🟢 Diagnostics → Heartbeat Techn. → Freq. history → Frequency 14</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Description of device parameters

Sensor frequency 15

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Frequency 15

User interface Signed floating-point number

Sensor frequency 16

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Frequency 16

User interface Signed floating-point number

Date 1

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Date 1

User interface Character string comprising numbers, letters and special characters

Date 2

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Date 2

User interface Character string comprising numbers, letters and special characters

Date 3

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Date 3

User interface Character string comprising numbers, letters and special characters

Date 4

Navigation Diagnostics → Heartbeat Techn. → Freq. history → Date 4

User interface Character string comprising numbers, letters and special characters
Date 5

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 5

User interface
Character string comprising numbers, letters and special characters

Date 6

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 6

User interface
Character string comprising numbers, letters and special characters

Date 7

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 7

User interface
Character string comprising numbers, letters and special characters

Date 8

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 8

User interface
Character string comprising numbers, letters and special characters

Date 9

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 9

User interface
Character string comprising numbers, letters and special characters

Date 10

Navigation
Diagnoses → Heartbeat Techn. → Freq. history → Date 10

User interface
Character string comprising numbers, letters and special characters
<table>
<thead>
<tr>
<th>Date</th>
<th>Navigation</th>
<th>User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 11</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 11</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Date 12</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 12</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Date 13</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 13</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Date 14</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 14</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Date 15</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 15</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
<tr>
<td>Date 16</td>
<td>Diagnostics → Heartbeat Techn. → Freq. history → Date 16</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
</tbody>
</table>
"Loop diagnostics" submenu

Navigation
Diagnostics → Heartbeat Techn. → Loop diagn.

Rebuild baseline

Navigation
Diagnostics → Heartbeat Techn. → Loop diagn. → Reb. baseline

Description
Notice
The current output is simulated.
Bridge the PLC or take other appropriate measures to prevent an erroneous triggering of alarm messages or changes in the control loop behavior.
The baseline should be rebuilt if planned changes have been made in the loop.

Selection
- No
- Yes

Tolerated deviation +/-

Navigation
Diagnostics → Heartbeat Techn. → Loop diagn. → Toler. deviation

Description
A value should be chosen to ensure that normal voltage deviations do not lead to unwanted messages.
Default
1.5 V DC

User entry
0.5 to 3.0 V

Baseline status

Navigation
Diagnostics → Heartbeat Techn. → Loop diagn. → Baseline status

Description
'Failed'
Means, baseline is not available or creation not possible.
'Passed'
Baseline is available.

User interface
- Failed
- Success
Loop diagnostics

Navigation
Diagnosics → Heartbeat Techn. → Loop diag. → Loop diagn.

Selection
- Disable
- Enable

Terminal voltage 1

Navigation
Diagnosics → Heartbeat Techn. → Loop diag. → Terminal volt. 1

Description
Shows the current terminal voltage that is applied at the output

User interface
0.0 to 50.0 V

Clamping voltage lower threshold

Navigation
Diagnosics → Heartbeat Techn. → Loop diag. → Lower threshold

User interface
0.0 to 50.0 V

Clamping voltage upper threshold

Navigation
Diagnosics → Heartbeat Techn. → Loop diag. → Upper threshold

User interface
0.0 to 50.0 V

806 Alarm delay

Navigation
Diagnosics → Heartbeat Techn. → Loop diag. → 806 Alarm delay

User entry
0 to 60 s
"Process window" submenu

Navigation

Diagnostics → Heartbeat Techn. → Process window

Sensor frequency

Navigation

Diagnostics → Heartbeat Techn. → Process window → Frequency

Description

Actual fork frequency.

User interface

0 to 10 000 Hz

900 Process alert frequency too low

Navigation

Diagnostics → Heartbeat Techn. → Process window → 900 Freq. too low

Description

Note: With the MAX safety function, no event for 'Process alert frequency too low' is triggered if the fork is covered.

Selection

- Disable
- Enable

900 Alarm delay

Navigation

Diagnostics → Heartbeat Techn. → Process window → 900 Alarm delay

User entry

0 to 300 s

Low alert value

Navigation

Diagnostics → Heartbeat Techn. → Process window → Low alert value

Description

If this limit value is undercut, an event is generated. There is no hysteresis. A typical value is 1% below the actual frequency.

User entry

0 to 2 000 Hz
901 Process alert frequency too high

Navigation
Diagnostics → Heartbeat Techn. → Process window → 901 Freq. high

Description
Note: With the MIN safety function, no event for 'Process alert frequency too high' is triggered if the fork is uncovered.

Selection
- Disable
- Enable

901 Alarm delay

Navigation
Diagnostics → Heartbeat Techn. → Process window → 901 Alarm delay

User entry
0 to 300 s

High alert value

Navigation
Diagnostics → Heartbeat Techn. → Process window → High alert value

Description
If this limit value is exceeded an event is generated. There is no hysteresis. With stable environmental conditions a typical value is 1% above the actual frequency.

User entry
0 to 2,000 Hz

3.2.5 "Proof test" submenu

Navigation
Diagnostics → Proof test

Date/time proof test

Navigation
Diagnostics → Proof test → Date/time

Description
This value is updated with every proof test and with inspector decision „Passed“.

User interface
Character string comprising numbers, letters and special characters
Time stamp of last proof test

<table>
<thead>
<tr>
<th>Navigation</th>
<th>📅 Diagnostics → Proof test → Last proof test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>As soon as key is pressed, actual operating hours counter is saved.</td>
</tr>
<tr>
<td>User interface</td>
<td>Character string comprising numbers, letters and special characters</td>
</tr>
</tbody>
</table>

3.2.6 "Diagnostic settings" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>📅 Diagnostics → Diag. settings</th>
</tr>
</thead>
</table>

"Properties" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>📅 Diagnostics → Diag. settings → Properties</th>
</tr>
</thead>
</table>

49 Corrosion warning

<table>
<thead>
<tr>
<th>Navigation</th>
<th>📅 Diagnostics → Diag. settings → Properties → 49 Corr. warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enables or disable the corrosion warning. The corrosion warning is set if sensor frequency exceeds frequency at delivery status by 5%. If turned on event category can be set in menu -> Diagnostics - > Diagnostic settings - > Configuration Diagnostic behaviour can be changed to 'Logbook entry only' in the same menu.</td>
</tr>
</tbody>
</table>
| Selection | • Off
• On |

Upper warning frequency

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>If the sensor frequency is currently greater than the upper warning frequency, then a warning is generated. The switching output remains in the current state. It is recommended to remove the sensor and check it for corrosion.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 10000 Hz</td>
</tr>
</tbody>
</table>
825 Electronics temperature

Navigation
- Diagnostics → Diag. settings → Properties → 825 Electr. temp

Description
Activates the monitoring of the electronics temperature. The limit values are fixed and depend on the order code of the device (+85°C and -40/-50/-60°C or 185°F and -40/-58/-76°F).

Selection
- Off
- On

826 Sensor temperature

Navigation
- Diagnostics → Diag. settings → Properties → 826 Sensor temp.

Description
Activates the monitoring of the sensor (electronics) temperature. The limit values are fixed and depend on the order code of the device (+85°C and -40/-50/-60°C or 185°F and -40/-58/-76°F).

Selection
- Off
- On

"Sensor" submenu

Navigation
- Diagnostics → Diag. settings → Sensor

49 Diagnostic behavior

Navigation
- Diagnostics → Diag. settings → Sensor → 49 Diag. behav.

Description
Select event behavior

- 'Logbook entry only': no digital or analog transmission of the message.
- 'Warning': Current output unchanged. Message is output digitally (default).

If the permissible conditions are reached again, the warning is no longer available in the instrument.

Selection
- Warning
- Logbook entry only
49 Event category

Navigation

- Diagnostics → Diag. settings → Sensor → 49 Event category

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

"Process" submenu

Navigation

- Diagnostics → Diag. settings → Process

806 Diagnostic behavior

Navigation

- Diagnostics → Diag. settings → Process → 806 Diag. behav.

Description

Select event behavior

- ‘Logbook entry only’: no digital or analog transmission of the message.
- ‘Warning’: Current output unchanged. Message is output digitally (default).

If the permissible conditions are reached again, the warning is no longer available in the instrument.

Selection

- Warning
- Logbook entry only

806 Event category

Navigation

- Diagnostics → Diag. settings → Process → 806 Event category

Description

Select category for diagnostic message.

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)
900 Diagnostic behavior

Navigation

Diagnostics → Diag. settings → Process → 900 Diag. behav.

Description

Select event behavior

'Logbook entry only': no digital or analog transmission of the message.

'Warning': Current output unchanged. Message is output digitally (default).

If the permissible conditions are reached again, the warning is no longer available in the instrument.

Selection

- Warning
- Logbook entry only

900 Event category

Navigation

Diagnostics → Diag. settings → Process → 900 Event category

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)

901 Diagnostic behavior

Navigation

Diagnostics → Diag. settings → Process → 901 Diag. behav.

Description

Select event behavior

'Logbook entry only': no digital or analog transmission of the message.

'Warning': Current output unchanged. Message is output digitally (default).

If the permissible conditions are reached again, the warning is no longer available in the instrument.

Selection

- Warning
- Logbook entry only
Description of device parameters

901 Event category

Navigation

Diagnostics → Diag. settings → Process → 901 Event category

Selection

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- No effect (N)
3.3 "Application" menu

Navigation Application

3.3.1 "Measured values" submenu

Navigation Application Measured values

Sensor frequency

Navigation Application Measured values Frequency
Description Actual fork frequency.
User interface 0 to 10 000 Hz

Fork state

Navigation Application Measured values Fork state
Description The condition of the fork is displayed.
User interface • Fork covered
 • Fork uncovered

Terminal voltage 1

Navigation Application Measured values Terminal volt. 1
Description Shows the current terminal voltage that is applied at the output.
User interface 0.0 to 50.0 V

Terminal current

Navigation Application Measured values Terminal curr.
Description Shows the current value of the current output which is currently measured.
User interface 0 to 30 mA
Sensor temperature

Navigation

![Diagram](Application → Measured values → Sensor temp.)

User interface

Signed floating-point number

Electronics temperature

Navigation

![Diagram](Application → Measured values → Electronics temp)

User interface

Signed floating-point number

3.3.2 "Measuring Units" submenu

Navigation

![Diagram](Application → Measuring Units)

Temperature unit

Navigation

![Diagram](Application → Measuring Units → Temperature unit)

Description

Used to display the electronics temperature.

Selection

- **SI units**
 - °C
 - K
- **US units**
 - °F
3.3.3 "Sensor" submenu

Navigation Application → Sensor

"Sensor configuration" submenu

Navigation Application → Sensor → Sensor conf.

Mode of operation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Level limit detection: Switching mode, output is either 8 mA (demand) or 16 mA (good). Sensor frequency: Continuous mode, output between 4 mA and 20 mA proportional to sensor frequency.</td>
</tr>
<tr>
<td>Selection</td>
<td>• Level limit detection</td>
</tr>
<tr>
<td></td>
<td>• Sensor frequency</td>
</tr>
</tbody>
</table>

Safety function

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Application → Sensor → Sensor conf. → Safety function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>MIN: Use for dry run protection. MAX: Use for overfill protection.</td>
</tr>
<tr>
<td>Selection</td>
<td>• MIN</td>
</tr>
<tr>
<td></td>
<td>• MAX</td>
</tr>
</tbody>
</table>

Density setting

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Application → Sensor → Sensor conf. → Density setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>• > 0.4 g/cm³</td>
</tr>
<tr>
<td></td>
<td>• > 0.4 g/cm³</td>
</tr>
<tr>
<td></td>
<td>• > 0.5 g/cm³</td>
</tr>
<tr>
<td></td>
<td>• > 0.7 g/cm³</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Additional information

- > 0.4 g/cm³ option
 For liquids with a density of 0.4...0.6 g/cm³
- > 0.4 g/cm³ option
 For liquids with a density of 0.4...0.6 g/cm³
- > 0.5 g/cm³ option
 For liquids with a density 0.5...0.8 g/cm³
- > 0.7 g/cm³ option
 Standard setting for liquids with a density > 0.7 g/cm³

Damping

Navigation

Application → Sensor → Sensor conf. → Damping

Description
Damping, used for Sensor frequency only. Does not affect Level limit detection and Fork state.

User entry
0 to 999 s

Switching delay uncovered to covered

Navigation

Application → Sensor → Sensor conf. → Delay to covered

Description
Choose between predefined values or select 'Customer specific' to enter a value between 1.00 s and 60.00 s.

Selection
- 0.25 s
- 0.50 s
- 1.00 s
- 1.50 s
- 5.00 s
- Customer specific

Customer delay to covered

Navigation

User entry
1 to 60 s
Description of device parameters

Switching delay covered to uncovered

Navigation
Application → Sensor → Sensor conf. → Delay to uncov.

Description
Choose between predefined values or select 'Customer specific' to enter a value between 1.00 s and 60.00 s.

Selection
- 0.25 s
- 0.50 s
- 1.00 s
- 1.50 s
- 5.00 s
- Customer specific

Customer delay to uncovered

Navigation

User entry
1 to 60 s

"Stored frequency" submenu

Navigation
Application → Sensor → Stored frequency

Stored uncovered frequency

Navigation
Application → Sensor → Stored frequency → St. uncov. freq

Description
In this parameter the actual sensor frequency can be stored, which is only possible if the fork is uncovered. The value is displayed on the Heartbeat Technology verification report and can be used as a reference for further/future analyses.

User interface
0 to 10000 Hz

Stored covered frequency

Navigation
Application → Sensor → Stored frequency → Stor. cov. freq

Description
In this parameter the actual sensor frequency can be stored, which is only possible if the fork is covered. The value is displayed on the Heartbeat Technology verification report and can be used as a reference for further/future analyses.
User interface 0 to 10000 Hz

"Sensor calibration" submenu

Lower switching point at density

Navigation Application → Sensor → Sensor cal. → Lower sw. point

Description This is the sensor frequency at which the fork status changes to covered (depending on the density selected).

User interface 0 to 2000 Hz

Upper switching point at density

Navigation Application → Sensor → Sensor cal. → Upper sw. point

Description This is the sensor frequency at which the fork status changes to uncovered (depending on the density selected).

User interface 0 to 2000 Hz

Frequency at delivery status

Navigation Application → Sensor → Sensor cal. → Freq. delivery

Description Sensor frequency at delivery status.

User interface 0 to 10000 Hz

Upper warning frequency

Description If the sensor frequency is currently greater than the upper warning frequency, then a warning is generated. The switching output remains in the current state. It is recommended to remove the sensor and check it for corrosion.
Description of device parameters

User interface

0 to 10 000 Hz

Upper alarm frequency

Navigation

Description

If the sensor frequency is currently greater than the upper alarm frequency, then an alarm is generated and the switching output switches to the safety related state.

User interface

0 to 10 000 Hz

3.3.4 "Current output" submenu

Navigation

Application → Curr.output

Assign PV

Navigation

Application → Curr.output → Assign PV

Description

Assign a measured variable to the primary dynamic variable (PV).

Additional information:
- The assigned measured variable is also used by the current output.

User interface

- Level limit detection
- Sensor frequency

Current range output

Navigation

Application → Curr.output → Cur.range outp

Description

Defines the current range used to transmit the measured or calculated value. In brackets are indicated the “low saturation value” and the “high saturation value”. If Measured value ≤ “low saturation”, the output current is set to “low saturation”. If Measured value ≥ “high saturation”, the output current is set to “high saturation”.

Note:
- Currents below 3.6 mA or above 21.5 mA can be used to signal an alarm.

Selection

- 4...20 mA (4... 20.5 mA)
- 4...20 mA NE (3.8...20.5 mA)
- 4...20 mA US (3.9...20.8 mA)
Lower range value output

Navigation
- Application → Curr.output → Low.range outp

Description
Depending of which variable has been selected as PV, define the related lower and upper range values.
Assignment PV value to 4 mA and 20 mA.

User entry
4 to 23 mA

Upper range value output

Navigation
- Application → Curr.output → Upp.range outp

Description
Depending of which variable has been selected as PV, define the related lower and upper range values.
Assignment PV value to 4 mA and 20 mA.

User entry
4 to 23 mA

Failure behavior current output

Navigation
- Application → Curr.output → Fail.behav.out

Description
Defines which current the output assumes in the case of an error.
- Min: < 3.6 mA
- Max: >21.5 mA

Selection
- Min.
- Max.

Failure current

Navigation
- Application → Curr.output → Failure current

Description
Enter current output value in alarm condition

User entry
21.5 to 23 mA
Description of device parameters

Output current

Navigation

Application → Curr.output → Output curr.

Description

Shows the value currently calculated for the current output

User interface

3.59 to 23 mA

Terminal current

Navigation

Application → Curr.output → Terminal curr.

Description

Shows the current value of the current output which is currently measured

User interface

0 to 30 mA

3.3.5 "HART output" submenu

Navigation

Application → HART output

"Configuration" submenu

Navigation

Application → HART output → Configuration

HART address

Navigation

Application → HART output → Configuration → HART address

Description

Enter the address to exchange data via the HART protocol.

User entry

0 to 63

HART short tag

Navigation

Application → HART output → Configuration → HART short tag

Description

Defines the short tag for the measuring point.

- Maximum length: 8 characters
- Allowed characters: A-Z, 0-9, certain special characters
Device tag

Navigation

Application → HART output → Configuration → Device tag

Description

Enter a unique name for the measuring point to identify the device quickly within the plant.

User entry

Character string comprising numbers, letters and special characters (32)

No. of preambles

Navigation

Application → HART output → Configuration → No. of preambles

Description

Defines the number of preambles in the HART telegram

User entry

5 to 20

Loop current mode

Navigation

Application → HART output → Configuration → Loop curr mode

Description

If Loop current mode is disabled, Multi-drop communication mode is activated. Multi-drop is a HART digital communication mode where multiple devices may share the same pair of wires for power and communications. In this mode the output current is fixed.

Selection

- Disable
- Enable
"HART output" submenu

Navigation
Application → HART output → HART output

Description
Assign a measured variable to the primary dynamic variable (PV).
Additional information:
The assigned measured variable is also used by the current output.

User interface
- Level limit detection
- Sensor frequency

Primary variable (PV)

Navigation
Application → HART output → HART output → Primary var (PV)

Description
Shows the current measured value of the primary dynamic variable (PV)

User interface
4 to 23 mA

Assign SV

Navigation
Application → HART output → HART output → Assign SV

Description
Assign a measured variable to the second dynamic variable (SV).

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current *
- Terminal voltage *
- Not used

Additional information
Selection
- **Fork state** option
 Indicates fork state 'Fork covered' (1) or 'Fork uncovered' (0).
- **Sensor temperature** option
 Temperature of sensor electronics in the housing.

* Visibility depends on order options or device settings
Secondary variable (SV)

Navigation

Application → HART output → HART output → Second.var(SV)

Description

Shows the current measured value of the secondary dynamic variable (SV)

User interface

0 to 10 000 Hertz

Assign TV

Navigation

Application → HART output → HART output → Assign TV

Description

Assign a measured variable to the tertiary dynamic variable (TV).

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current*
- Terminal voltage*
- Not used

Additional information

Selection

- Fork state option
 Indicates fork state 'Fork covered' (1) or 'Fork uncovered' (0).
- Sensor temperature option
 Temperature of sensor electronics in the housing.

Tertiary variable (TV)

Navigation

Application → HART output → HART output → Tertiary var(TV)

Description

Shows the current measured value of the tertiary (third) dynamic variable (TV)

User interface

0 to 1.0 ManufacturerNoUnit

Assign QV

Navigation

Application → HART output → HART output → Assign QV

Description

Assign a measured variable to the quaternary dynamic variable (QV).

* Visibility depends on order options or device settings
Description of device parameters

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current
- Terminal voltage
- Not used

Additional information
Selection
- Fork state option
 Indicates fork state 'Fork covered' (1) or 'Fork uncovered' (0).
- Sensor temperature option
 Temperature of sensor electronics in the housing.

Quaternary variable (QV)

Navigation
Application → HART output → HART output → Quaterna.var(QV)

Description
Shows the current measured value of the quaternary (fourth) dynamic variable (QV)

User interface
Signed floating-point number

"Burst configuration 1" submenu

Navigation
Application → HART output → Burst config. 1

Burst mode

Navigation
Application → HART output → Burst config. 1 → Burst mode 1

Description
Switch HART burst mode for burst message on

Selection
- Off
- On

Burst command

Navigation
Application → HART output → Burst config. 1 → Burst command 1

Description
Select the HART command that is sent to the HART master

* Visibility depends on order options or device settings
Selection
- Primary variable (PV)
- Loop Current and Percent of Range
- Dynamic Variables
- Device variables with status
- Device variables
- Additional device status

Burst variable 0

Navigation
Application → HART output → Burst config. 1 → Burst variable 0

Description
For HART command 9 and 33, assign a HART device variable or process variable to burst variable

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current
- Terminal voltage 1
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Burst variable 1

Navigation
Application → HART output → Burst config. 1 → Burst variable 1

Description
For HART command 9 and 33, assign a HART device variable or process variable to burst variable

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current
- Terminal voltage 1
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)

* Visibility depends on order options or device settings
Description of device parameters

- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Burst variable 2

Navigation

Application → HART output → Burst config. 1 → Burst variable 2

Description

For HART command 9 and 33, assign a HART device variable or process variable to burst variable

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current *
- Terminal voltage 1 *
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Burst variable 3

Navigation

Application → HART output → Burst config. 1 → Burst variable 3

Description

For HART command 9 and 33, assign a HART device variable or process variable to burst variable

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current *
- Terminal voltage 1 *
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

* Visibility depends on order options or device settings
Burst variable 4

Navigation

Application → HART output → Burst config. 1 → Burst variable 4

Description

For HART command 33, assign a HART device variable or process variable to burst variable

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current *
- Terminal voltage 1 *
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

* Visibility depends on order options or device settings

Burst variable 5

Navigation

Application → HART output → Burst config. 1 → Burst variable 5

Description

For HART command 33, assign a HART device variable or process variable to burst variable

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current *
- Terminal voltage 1 *
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

* Visibility depends on order options or device settings

Burst variable 6

Navigation

Application → HART output → Burst config. 1 → Burst variable 6

Description

For HART command 33, assign a HART device variable or process variable to burst variable

* Visibility depends on order options or device settings
Description of device parameters

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current
- Terminal voltage 1
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Burst variable 7

Navigation
Application → HART output → Burst config. 1 → Burst variable 7

Description
For HART command 33, assign a HART device variable or process variable to burst variable

Selection
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Electronics temperature
- Measured current
- Terminal voltage 1
- Percent of range
- Measured current
- Primary variable (PV)
- Secondary variable (SV)
- Tertiary variable (TV)
- Quaternary variable (QV)
- Not used

Burst trigger mode

Navigation
Application → HART output → Burst config. 1 → Trigger mode

Description
Select the event that triggers the burst message

Selection
- Continuous
- Window
- Rising
- Falling
- On change

* Visibility depends on order options or device settings
Burst trigger level

Navigation

Application → HART output → Burst config. 1 → Trigger level

Description

Enter the burst trigger value that determines together with the option selected in 'Burst trigger mode' parameter the time of burst message

User entry

Signed floating-point number

Min. update period

Navigation

Application → HART output → Burst config. 1 → Min. upd. per.

Description

Enter the minimum time span between two burst responses of one burst message

User entry

Positive integer

Max. update period

Navigation

Application → HART output → Burst config. 1 → Max. upd. per.

Description

Enter the maximum time span between two burst responses of one burst message

User entry

Positive integer

"Information" submenu

Navigation

Application → HART output → Information

Device ID

Navigation

Application → HART output → Information → Device ID

Description

Shows the device ID for identifying the device in a HART network

User interface

Positive integer
Device type

Navigation

Application → HART output → Information → Device type

Description

Shows the device type with which the measuring device is registered with the HART Communication Foundation

User interface

0 to 65535

Device revision

Navigation

Application → HART output → Information → Device revision

Description

Shows the device revision with which the device is registered with the HART Communication Foundation

User interface

0 to 255

HART short tag

Navigation

Application → HART output → Information → HART short tag

Description

Defines the short tag for the measuring point.

Maximum length: 8 characters

Allowed characters: A-Z, 0-9, certain special characters

User entry

Character string comprising numbers, letters and special characters (8)

HART revision

Navigation

Application → HART output → Information → HART revision

User interface

5 to 7

HART descriptor

Navigation

Application → HART output → Information → HART descriptor

Description

Use this function to define a description for the measuring point.

Maximum length: 16 characters

Allowed characters: A-Z, 0-9, certain special characters
User entry
Character string comprising numbers, letters and special characters (16)

HART message

Navigation
Application → HART output → Information → HART message

Description
Use this function to define a HART message which is sent via the HART protocol when requested by the master.
Maximum length: 32 characters
Allowed characters: A-Z, 0-9, certain special characters

User entry
Character string comprising numbers, letters and special characters (32)

HART date code

Navigation
Application → HART output → Information → HART date code

Description
Enter date of the last configuration change. Use this format yyyy-mm-dd

User entry
Character string comprising numbers, letters and special characters (10)
3.4 "System" menu

Navigation System

3.4.1 "Device management" submenu

Navigation System → Device manag.

Device tag

Navigation System → Device manag. → Device tag

Description Enter a unique name for the measuring point to identify the device quickly within the plant.

User entry Character string comprising numbers, letters and special characters (32)

Locking status

Navigation System → Device manag. → Locking status

Description

Indicates the type of locking.

'Hardware locked' (HW)
The device is locked by the 'WP' switch on the main electronics module. To unlock, set the switch into the OFF position.

'Safety locked' (SW)
Unlock the device by entering the appropriate access code in 'Enter safety unlocking code'.

'Temporarily locked' (SW)
The device is temporarily locked by processes in the device (e.g. data upload/download, reset). The device will automatically be unlocked after completion of these processes.

User interface

- Hardware locked
- Safety locked
- Temporarily locked
Configuration counter

Navigation
System → Device manag. → Config. counter

Description
Displays the counter for changes to the device parameters.

Additional information:
- If the value for a static parameter is changed when optimizing or configuring the parameter, the counter is incremented by 1. This is to enable tracking different parameter versions.
- When multiple parameters are changed simultaneously, e.g. when loading parameters into the device from an external source such as FieldCare, the counter may display a higher value. The counter cannot be reset, nor is it reset to a default value on performing a device reset.
- Once the counter has reached the value 65535, it restarts at 0.

User interface
0 to 65535

Reset device

Navigation
System → Device manag. → Reset device

Description
Reset the device configuration - either entirely or in part - to a defined state

Selection
- Cancel
- To fieldbus defaults
- **To factory defaults**
- To delivery settings
- Restart device

3.4.2 "User management" submenu

Navigation
System → User manag.

User role

Navigation
System → User manag. → User role

Description
Shows the access authorization to the parameters via the operating tool

Visibility
- **Visibility depends on communication**
- *Visibility depends on order options or device settings*
User interface
- Operator
- Maintenance
- Expert
- Production
- Development

"Change user role" wizard

Navigation
System → User manag. → Change user role

Enter access code

Navigation
System → User manag. → Change user role → Ent. access code

Description
For authorized service personnel only.

User entry
0 to 9999

"Change user role" wizard

Navigation
System → User manag. → Change user role

Start

Navigation
System → User manag. → Change user role → Start

User interface
Character string comprising numbers, letters and special characters

Password

Navigation
System → User manag. → Change user role → Password

Description
Enter the password for the 'Maintenance' user role to get access to the functionality of this role.

User entry
Character string comprising numbers, letters and special characters (16)
Status password entry

Navigation

- System → User manag. → Change user role → Status pw entry

Description

Use this function to display the status of the password verification.

User interface

- Wrong password
- Password rule violated
- Password accepted
- Permission denied
- Confirm PW mismatch
- Reset password accepted
- Invalid user role
- Wrong sequence of entry

"Define password" wizard

Navigation

- System → User manag. → Define password

Start

Navigation

- System → User manag. → Define password → Start

User interface

Character string comprising numbers, letters and special characters

New password

Navigation

- System → User manag. → Define password → New password

Description

Define the new 'Maintenance' password.
A new password is valid after it has been confirmed within the 'Confirm new password' parameter.
Any valid password consists of 4 to 16 characters and can contain letters and numbers.

User entry

Character string comprising numbers, letters and special characters (16)

Status password entry

Navigation

- System → User manag. → Define password → Status pw entry

Description

Use this function to display the status of the password verification.
User interface

- Wrong password
- Password rule violated
- Password accepted
- Permission denied
- Confirm PW mismatch
- Reset password accepted
- Invalid user role
- Wrong sequence of entry

Confirm new password

Navigation

System → User manag. → Define password → Conf. new passw.

Description

Enter the new password again to confirm.

User entry

Character string comprising numbers, letters and special characters (16)

"Change password" wizard

Navigation

System → User manag. → Change password

Start

Navigation

System → User manag. → Change password → Start

User interface

Character string comprising numbers, letters and special characters

Old password

Navigation

System → User manag. → Change password → Old password

Description

Enter the current password, to subsequently change the existing password.

User entry

Character string comprising numbers, letters and special characters (16)
Status password entry

Navigation
System → User manag. → Change password → Status pw entry

Description
Use this function to display the status of the password verification.

User interface
- Wrong password
- Password rule violated
- Password accepted
- Permission denied
- Confirm PW mismatch
- Reset password accepted
- Invalid user role
- Wrong sequence of entry

New password

Navigation
System → User manag. → Change password → New password

Description
Define the new 'Maintenance' password.
A new password is valid after it has been confirmed within the 'Confirm new password' parameter.
Any valid password consists of 4 to 16 characters and can contain letters and numbers.

User entry
Character string comprising numbers, letters and special characters (16)

Confirm new password

Navigation
System → User manag. → Change password → Conf. new passw.

Description
Enter the new password again to confirm.

User entry
Character string comprising numbers, letters and special characters (16)
"Delete password" wizard

Navigation
System → User manag. → Delete password → Start

User interface
Character string comprising numbers, letters and special characters

Old password

Navigation
System → User manag. → Delete password → Old password

Description
Enter the current password, to subsequently change the existing password.

User entry
Character string comprising numbers, letters and special characters (16)

Status password entry

Navigation
System → User manag. → Delete password → Status pw entry

Description
Use this function to display the status of the password verification.

User interface
- Wrong password
- Password rule violated
- Password accepted
- Permission denied
- Confirm PW mismatch
- Reset password accepted
- Invalid user role
- Wrong sequence of entry
"Reset password" wizard

Navigation
System → User manag. → Reset password

User interface
Character string comprising numbers, letters and special characters

Reset password

Navigation
System → User manag. → Reset password → Reset password

Description
Enter a code to reset the current 'Maintenance' password.
The code is delivered by your local support.

User entry
Character string comprising numbers, letters and special characters (16)

Status password entry

Navigation
System → User manag. → Reset password → Status pw entry

Description
Use this function to display the status of the password verification.

User interface

- Wrong password
- Password rule violated
- Password accepted
- Permission denied
- Confirm PW mismatch
- Reset password accepted
- Invalid user role
- Wrong sequence of entry
“Logout” wizard

start

Navigation

System → User manag. → Logout

User interface

Character string comprising numbers, letters and special characters

User role

__Navigation__

System → User manag. → Logout → User role

Description

Shows the access authorization to the parameters via the operating tool

User interface

- Operator
- Maintenance
- Expert
- Production
- Development

3.4.3 "Bluetooth configuration" submenu

start

Navigation

System → Bluetooth conf.

Bluetooth activation

Start

Navigation

System → Bluetooth conf. → Bluetooth active

Description

If Bluetooth is deactivated, it can only be reactivated via the display or the operating tool. Reactivating via the SmartBlue app is not possible.

Selection

- Disable
- Enable
3.4.4 "Display" submenu

Navigation

System → Display

Description

Set display language

Selection

- English
- Deutsch *
- Français *
- Español *
- Italiano *
- Nederlands *
- Portuguesa *
- Polski *
- русский язык (Russian) *
- Svenska *
- Türkçe *
- 中文 (Chinese) *
- 日本語 (Japanese) *
- 한국어 (Korean) *
- العربية (Arabic) *
- Bahasa Indonesia *
- ภาษาไทย (Thai) *
- tiếng Việt (Vietnamese) *
- čeština (Czech) *

Format display

Navigation

System → Display → Format display

Description

Select how measured values are shown on the display

Selection

- 1 value, max. size
- 1 bargraph + 1 value
- 2 values

Value 1 display

Navigation

System → Display → Value 1 display

Description

Select the measured value that is shown on the local display

* Visibility depends on order options or device settings
Description of device parameters

Selection

- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Current output
- Terminal voltage

Decimal places 1

Navigation

System → Display → Decimal places 1

Description

This selection does not affect the measurement and calculation accuracy of the device.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Value 2 display

Navigation

System → Display → Value 2 display

Description

Select the measured value that is shown on the local display

Selection

- None
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Current output
- Terminal voltage

Decimal places 2

Navigation

System → Display → Decimal places 2

Description

This selection does not affect the measurement and calculation accuracy of the device.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx
Value 3 display

Navigation

System → Display → Value 3 display

Description

Select the measured value that is shown on the local display

Selection

- None
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Current output
- Terminal voltage

Decimal places 3

Navigation

System → Display → Decimal places 3

Description

This selection does not affect the measurement and calculation accuracy of the device.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Value 4 display

Navigation

System → Display → Value 4 display

Description

Select the measured value that is shown on the local display

Selection

- None
- Level limit detection
- Sensor frequency
- Fork state
- Sensor temperature
- Current output
- Terminal voltage

Decimal places 4

Navigation

System → Display → Decimal places 4

Description

This selection does not affect the measurement and calculation accuracy of the device.
Contrast display

Navigation

System → Display → Contrast display

Description

Adjust local display contrast setting to ambient conditions (e.g. lighting or reading angle)

User entry

20 to 80 %

3.4.5 “Geolocation” submenu

Navigation

System → Geolocation

Process Unit Tag

Navigation

System → Geolocation → Process Unit Tag

Description

Enter the process unit in which the device is installed.

User entry

Character string comprising numbers, letters and special characters (32)

Location Description

Navigation

System → Geolocation → Location Descr.

Description

Use this function to enter a description of the location so that the device can be located in the plant.

User entry

Character string comprising numbers, letters and special characters (32)

Longitude

Navigation

System → Geolocation → Longitude

Description

Use this function to enter the longitude coordinates that describe the device location.
User entry

Latitude

-180 to 180°

<table>
<thead>
<tr>
<th>Navigation</th>
<th>System → Geolocation → Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the latitude coordinates that describe the device location.</td>
</tr>
<tr>
<td>User entry</td>
<td>-5 156.62015616066 to 5 156.62015616066°</td>
</tr>
</tbody>
</table>

Altitude

<table>
<thead>
<tr>
<th>Navigation</th>
<th>System → Geolocation → Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the altitude data that describe the device location.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

Location method

<table>
<thead>
<tr>
<th>Navigation</th>
<th>System → Geolocation → Location method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to select the data format for specifying the geographic location. The codes for specifying the location are based on the US National Marine Electronics Association (NMEA) Standard NMEA 0183.</td>
</tr>
</tbody>
</table>
| Selection | - No fix
- GPS or Standard Positioning Service fix
- Differential GPS fix
- Precise positioning service (PPS) fix
- Real Time Kinetic (RTK) fixed solution
- Real Time Kinetic (RTK) float solution
- Estimated dead reckoning
- Manual input mode
- Simulation Mode |
3.4.6 "Information" submenu

Navigation

System → Information

Description

Use this function to display the device name. It can also be found on the nameplate.

User interface

Character string comprising numbers, letters and special characters

<table>
<thead>
<tr>
<th>Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>
Firmware version

Navigation

System → Information → Firmware version

Description

Displays the device firmware version installed.

User interface

Character string comprising numbers, letters and special characters

Hardware version

Navigation

System → Information → Hardware version

User interface

Character string comprising numbers, letters and special characters

Extended order code 1

Navigation

System → Information → Ext. order cd. 1

Description

The extended order code is an alphanumeric code containing all information to identify the device and its options.

User interface

Character string comprising numbers, letters and special characters

Extended order code 2

Navigation

System → Information → Ext. order cd. 2

Description

The extended order code is an alphanumeric code containing all information to identify the device and its options.

User interface

Character string comprising numbers, letters and special characters

Extended order code 3

Navigation

System → Information → Ext. order cd. 3

Description

The extended order code is an alphanumeric code containing all information to identify the device and its options.

User interface

Character string comprising numbers, letters and special characters
3.4.7 "Software configuration" submenu

Navigation
System → Softw. config.

CRC device configuration

Navigation
System → Softw. config. → CRC device conf.

Description
CRC device configuration based on current settings of safety relevant parameters. The CRC device configuration is unique and can be used to detect changes in safety relevant parameter settings.

User interface
0 to 65535

Stored CRC device configuration

Navigation
System → Softw. config. → Stored CRC conf.

Description
Stored CRC after the last safety lock. Factory delivery is 65535 means that the device has not yet been safety locked.

User interface
0 to 65535

Timestamp stored CRC device config.

Navigation
System → Softw. config. → TS stored CRC

Description
Gives the time stamp when the CRC was last stored following completion of the safety lock wizard.

User interface
Character string comprising numbers, letters and special characters

Activate SW option

Navigation
System → Softw. config. → Activate SW opt.

Description
Enter the application package code or code of another re-ordered functionality to enable it

User entry
Positive integer
Software option overview

Navigation

System → Softw. config. → SW option overv.

Description
Shows all enabled software options

User interface
- SIL
- WHG
- Heartbeat Verification
- Heartbeat Monitoring
Index

0 ... 9
49 Corrosion warning (Parameter) 45
49 Diagnostic behavior (Parameter) .. 46
49 Event category (Parameter) 47
806 Alarm delay (Parameter) 42
806 Diagnostic behavior (Parameter) 47
806 Event category (Parameter) 47
825 Electronics temperature (Parameter) 46
826 Sensor temperature (Parameter) 46
900 Alarm delay (Parameter) 43
900 Diagnostic behavior (Parameter) 48
900 Event category (Parameter) ... 48
901 Alarm delay (Parameter) 44
901 Diagnostic behavior (Parameter) 48
901 Event category (Parameter) 49
901 Process alert frequency too high (Parameter) 44

A
Activate SW option (Parameter) 86
Active diagnostics (Parameter) . 29
Active diagnostics (Submenu) ... 29
Altitude (Parameter) 83
Application (Menu) 50
Assign PV (Parameter) 56, 60
Assign QV (Parameter) 61
Assign SV (Parameter) 60
Assign TV (Parameter) 61

B
Baseline status (Parameter) 41
Bluetooth activation (Parameter) 78
Bluetooth configuration (Submenu) 78
Burst command 1 (Parameter) 62
Burst configuration 1 (Submenu) 62
Burst mode 1 (Parameter) 62
Burst trigger level (Parameter) 67
Burst trigger mode (Parameter) ... 66
Burst variable 0 (Parameter) 63
Burst variable 1 (Parameter) 63
Burst variable 2 (Parameter) 64
Burst variable 3 (Parameter) 64
Burst variable 4 (Parameter) 65
Burst variable 5 (Parameter) 65
Burst variable 6 (Parameter) 65
Burst variable 7 (Parameter) 66

C
Change password (Wizard) 74
Change user role (Wizard) 72
Character test string (Parameter) 22
Clamping voltage lower threshold (Parameter) 42
Clamping voltage upper threshold (Parameter) 42
Code incorrect (Parameter) 27
Commissioning (Wizard) 19
Configuration (Submenu) 58

Configuration counter (Parameter) 71
Confirm new password (Parameter) ... 74, 75
Contrast display (Parameter) 82
CRC device configuration (Parameter) 23, 86
Current output (Submenu) 56
Current range output (Parameter) 21, 26, 56
Customer delay to covered (Parameter) 53
Customer delay to uncovered (Parameter) 54

D
Damping (Parameter) 53
Date 1 (Parameter) 38
Date 2 (Parameter) 38
Date 3 (Parameter) 38
Date 4 (Parameter) 38
Date 5 (Parameter) 39
Date 6 (Parameter) 39
Date 7 (Parameter) 39
Date 8 (Parameter) 39
Date 9 (Parameter) 39
Date 10 (Parameter) 39
Date 11 (Parameter) 40
Date 12 (Parameter) 40
Date 13 (Parameter) 40
Date 14 (Parameter) 40
Date 15 (Parameter) 40
Date 16 (Parameter) 40
Date/time Heartbeat Verification (Parameter) 34
Date/time proof test (Parameter) 44
Decimal places 1 (Parameter) 80
Decimal places 2 (Parameter) 80
Decimal places 3 (Parameter) 81
Decimal places 4 (Parameter) 81
Define password (Wizard) 73
Delete password (Wizard) 76
Density setting (Parameter) 20, 24, 52
Description of device parameters 17
Device ID (Parameter) 67
Device management (Submenu) 70
Device name (Parameter) 23, 84
Device revision (Parameter) ... 68
Device tag (Parameter) 22, 59, 70
Device type (Parameter) 68
Diagnostic event category (Parameter) 33
Diagnostic event simulation (Parameter) 33
Diagnostic settings (Submenu) 45
Diagnostics (Menu) 29
Display (Submenu) 17, 79

Document
Explanation of the structure of a parameter description 3
Function 3
Structure 3
Symbols used ... 4
Target group 3
Using the document 3
<table>
<thead>
<tr>
<th>Document function</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Electronics temperature (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>Enter access code (Parameter)</td>
<td>72</td>
</tr>
<tr>
<td>Enter safety locking code (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Enter safety unlocking code (Parameter)</td>
<td>27</td>
</tr>
<tr>
<td>Extended order code 1 (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Extended order code 2 (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Extended order code 3 (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Failure behavior current output (Parameter)</td>
<td>21, 25, 57</td>
</tr>
<tr>
<td>Failure current (Parameter)</td>
<td>57</td>
</tr>
<tr>
<td>Firmware version (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>Fork state (Parameter)</td>
<td>50</td>
</tr>
<tr>
<td>Fork state simulation value (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Format display (Parameter)</td>
<td>79</td>
</tr>
<tr>
<td>Frequency at delivery status (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Frequency history (Submenu)</td>
<td>35</td>
</tr>
<tr>
<td>Frequency max (Parameter)</td>
<td>30</td>
</tr>
<tr>
<td>Frequency min (Parameter)</td>
<td>30</td>
</tr>
<tr>
<td>Frequency simulation value (Parameter)</td>
<td>33</td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>see Parameters</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Geolocation (Submenu)</td>
<td>82</td>
</tr>
<tr>
<td>Guidance (Menu)</td>
<td>19</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hardware version (Parameter)</td>
<td>85</td>
</tr>
<tr>
<td>HART address (Parameter)</td>
<td>58</td>
</tr>
<tr>
<td>HART date code (Parameter)</td>
<td>69</td>
</tr>
<tr>
<td>HART descriptor (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>HART message (Parameter)</td>
<td>69</td>
</tr>
<tr>
<td>HART output (Submenu)</td>
<td>58, 60</td>
</tr>
<tr>
<td>HART revision (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>HART short tag (Parameter)</td>
<td>58, 68</td>
</tr>
<tr>
<td>Heartbeat Technology (Submenu)</td>
<td>34</td>
</tr>
<tr>
<td>Heartbeat Verification (Submenu)</td>
<td>34</td>
</tr>
<tr>
<td>High alert value (Parameter)</td>
<td>44</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Information (Submenu)</td>
<td>67, 84</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Language (Parameter)</td>
<td>17, 79</td>
</tr>
<tr>
<td>Latitude (Parameter)</td>
<td>83</td>
</tr>
<tr>
<td>Location Description (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Location method (Parameter)</td>
<td>83</td>
</tr>
<tr>
<td>Locking status (Parameter)</td>
<td>26, 28, 70</td>
</tr>
<tr>
<td>Logout (Wizard)</td>
<td>78</td>
</tr>
<tr>
<td>Longitude (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Loop current mode (Parameter)</td>
<td>59</td>
</tr>
<tr>
<td>Loop diagnostics (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>Loop diagnostics (Submenu)</td>
<td>41</td>
</tr>
<tr>
<td>Low alert value (Parameter)</td>
<td>43</td>
</tr>
<tr>
<td>Lower range value output (Parameter)</td>
<td>20, 26, 57</td>
</tr>
<tr>
<td>Lower switching point at density (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Manufacturer (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Max. update period (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>Maximum electronics temperature (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Maximum sensor temperature (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Maximum terminal voltage (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Measured values (Submenu)</td>
<td>50</td>
</tr>
<tr>
<td>Measuring Units (Submenu)</td>
<td>51</td>
</tr>
<tr>
<td>Menu</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>50</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>29</td>
</tr>
<tr>
<td>Guidance</td>
<td>19</td>
</tr>
<tr>
<td>System</td>
<td>70</td>
</tr>
<tr>
<td>Min. update period (Parameter)</td>
<td>67</td>
</tr>
<tr>
<td>Minimum electronics temperature (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Minimum sensor temperature (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Minimum terminal voltage (Parameter)</td>
<td>31</td>
</tr>
<tr>
<td>Minimum/maximum values (Submenu)</td>
<td>30</td>
</tr>
<tr>
<td>Mode of operation (Parameter)</td>
<td>19, 52</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>New password (Parameter)</td>
<td>73, 75</td>
</tr>
<tr>
<td>No. of preambles (Parameter)</td>
<td>59</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Old password (Parameter)</td>
<td>74, 76</td>
</tr>
<tr>
<td>Operating time (Parameter)</td>
<td>24, 30</td>
</tr>
<tr>
<td>Operating time (Verification) (Parameter)</td>
<td>34</td>
</tr>
<tr>
<td>Operating time from restart (Parameter)</td>
<td>30</td>
</tr>
<tr>
<td>Order code (Parameter)</td>
<td>84</td>
</tr>
<tr>
<td>Output current (Parameter)</td>
<td>58</td>
</tr>
<tr>
<td>Overall result (Parameter)</td>
<td>35</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Structure of a parameter description</td>
<td>3</td>
</tr>
<tr>
<td>Password (Parameter)</td>
<td>72</td>
</tr>
<tr>
<td>Previous diagnostics (Parameter)</td>
<td>29</td>
</tr>
<tr>
<td>Primary variable (PV) (Parameter)</td>
<td>60</td>
</tr>
<tr>
<td>Process (Submenu)</td>
<td>47</td>
</tr>
<tr>
<td>Process Unit Tag (Parameter)</td>
<td>82</td>
</tr>
<tr>
<td>Process window (Submenu)</td>
<td>43</td>
</tr>
<tr>
<td>Proof test (Submenu)</td>
<td>44</td>
</tr>
<tr>
<td>Proof test via Bluetooth allowed? (Parameter)</td>
<td>21</td>
</tr>
<tr>
<td>Properties (Submenu)</td>
<td>45</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quaternary variable (QV) (Parameter)</td>
<td>62</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rebuild baseline (Parameter)</td>
<td>41</td>
</tr>
<tr>
<td>Reset device (Parameter)</td>
<td>71</td>
</tr>
<tr>
<td>Reset password (Parameter)</td>
<td>77</td>
</tr>
<tr>
<td>Reset password (Wizard)</td>
<td>77</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Safety function (Parameter)</td>
<td>19, 24, 52</td>
</tr>
<tr>
<td>Safety lock (Wizard)</td>
<td>21</td>
</tr>
<tr>
<td>Safety unlock (Wizard)</td>
<td>27</td>
</tr>
<tr>
<td>Secondary variable (SV) (Parameter)</td>
<td>61</td>
</tr>
<tr>
<td>Index</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Sensor (Submenu)</td>
<td>46, 52</td>
</tr>
<tr>
<td>Sensor calibration (Submenu)</td>
<td>55</td>
</tr>
<tr>
<td>Sensor calibration</td>
<td>55</td>
</tr>
<tr>
<td>Sensor configuration (Submenu)</td>
<td>52</td>
</tr>
<tr>
<td>Sensor configuration</td>
<td>52</td>
</tr>
<tr>
<td>Sensor frequency (Parameter)</td>
<td>43, 50</td>
</tr>
<tr>
<td>Sensor frequency 1 (Parameter)</td>
<td>35</td>
</tr>
<tr>
<td>Sensor frequency 2 (Parameter)</td>
<td>35</td>
</tr>
<tr>
<td>Sensor frequency 3 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 4 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 5 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 6 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 7 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 8 (Parameter)</td>
<td>36</td>
</tr>
<tr>
<td>Sensor frequency 9 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 10 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 11 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 12 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 13 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 14 (Parameter)</td>
<td>37</td>
</tr>
<tr>
<td>Sensor frequency 15 (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Sensor frequency 16 (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Sensor frequency 17 (Parameter)</td>
<td>38</td>
</tr>
<tr>
<td>Sensor temperature (Parameter)</td>
<td>51</td>
</tr>
<tr>
<td>Serial number (Parameter)</td>
<td>23, 84</td>
</tr>
<tr>
<td>SILL status (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Simulation (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Simulation (Submenu)</td>
<td>32</td>
</tr>
<tr>
<td>Software configuration (Submenu)</td>
<td>86</td>
</tr>
<tr>
<td>Software option overview (Parameter)</td>
<td>87</td>
</tr>
<tr>
<td>Start (Parameter)</td>
<td>72, 73, 74, 76, 77, 78</td>
</tr>
<tr>
<td>Start verification (Parameter)</td>
<td>34</td>
</tr>
<tr>
<td>Status (Parameter)</td>
<td>35</td>
</tr>
<tr>
<td>Status password entry (Parameter)</td>
<td>73, 75, 76, 77</td>
</tr>
<tr>
<td>Stored covered frequency (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>Stored CRC device configuration (Parameter)</td>
<td>23, 86</td>
</tr>
<tr>
<td>Stored frequency (Submenu)</td>
<td>54</td>
</tr>
<tr>
<td>Stored uncovered frequency (Parameter)</td>
<td>54</td>
</tr>
<tr>
<td>Submenu</td>
<td></td>
</tr>
<tr>
<td>Active diagnostics</td>
<td>29</td>
</tr>
<tr>
<td>Bluetooth configuration</td>
<td>78</td>
</tr>
<tr>
<td>Burst configuration 1</td>
<td>62</td>
</tr>
<tr>
<td>Configuration</td>
<td>58</td>
</tr>
<tr>
<td>Current output</td>
<td>56</td>
</tr>
<tr>
<td>Device management</td>
<td>70</td>
</tr>
<tr>
<td>Diagnostic settings</td>
<td>45</td>
</tr>
<tr>
<td>Display</td>
<td>17, 79</td>
</tr>
<tr>
<td>Frequency history</td>
<td>35</td>
</tr>
<tr>
<td>Geolocation</td>
<td>82</td>
</tr>
<tr>
<td>HART output</td>
<td>58, 60</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>34</td>
</tr>
<tr>
<td>Heartbeat Verification</td>
<td>34</td>
</tr>
<tr>
<td>Information</td>
<td>67, 84</td>
</tr>
<tr>
<td>Loop diagnostics</td>
<td>41</td>
</tr>
<tr>
<td>Measured values</td>
<td>50</td>
</tr>
<tr>
<td>Measuring Units</td>
<td>51</td>
</tr>
<tr>
<td>Minimum/maximum values</td>
<td>30</td>
</tr>
<tr>
<td>Process</td>
<td>47</td>
</tr>
<tr>
<td>Process window</td>
<td>43</td>
</tr>
<tr>
<td>Proof test</td>
<td>44</td>
</tr>
<tr>
<td>Properties</td>
<td>45</td>
</tr>
<tr>
<td>Sensor</td>
<td>46, 52</td>
</tr>
<tr>
<td>Sensor calibration</td>
<td>55</td>
</tr>
<tr>
<td>Sensor configuration</td>
<td>52</td>
</tr>
<tr>
<td>Simulation (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>Software configuration</td>
<td>86</td>
</tr>
<tr>
<td>Stored frequency</td>
<td>54</td>
</tr>
<tr>
<td>User management (Submenu)</td>
<td>17, 71</td>
</tr>
<tr>
<td>User management</td>
<td>17, 71, 78</td>
</tr>
<tr>
<td>Switching delay covered to uncovered (Parameter)</td>
<td>25, 54</td>
</tr>
<tr>
<td>Switching delay uncovered to covered (Parameter)</td>
<td>24, 53</td>
</tr>
<tr>
<td>System (Menu)</td>
<td>70</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Target group</td>
<td>3</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>19, 51</td>
</tr>
<tr>
<td>Terminal current (Parameter)</td>
<td>50, 58</td>
</tr>
<tr>
<td>Terminal voltage 1 (Parameter)</td>
<td>42, 50</td>
</tr>
<tr>
<td>Tertiary variable (TV) (Parameter)</td>
<td>61</td>
</tr>
<tr>
<td>Time stamp of last proof test (Parameter)</td>
<td>45</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>29</td>
</tr>
<tr>
<td>Timestamp stored CRC device config. (Parameter)</td>
<td>24, 86</td>
</tr>
<tr>
<td>Tolerated deviation +/- (Parameter)</td>
<td>41</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Upper alarm frequency (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>Upper range value output (Parameter)</td>
<td>20, 56</td>
</tr>
<tr>
<td>Upper switching point at density (Parameter)</td>
<td>55</td>
</tr>
<tr>
<td>Upper warning frequency (Parameter)</td>
<td>45, 55</td>
</tr>
<tr>
<td>User management (Submenu)</td>
<td>17, 71</td>
</tr>
<tr>
<td>User role (Parameter)</td>
<td>17, 71, 78</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>79</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>80</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>81</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>81</td>
</tr>
<tr>
<td>Value current output (Parameter)</td>
<td>32</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Wizard</td>
<td></td>
</tr>
<tr>
<td>Change password</td>
<td>74</td>
</tr>
<tr>
<td>Change user role</td>
<td>72</td>
</tr>
<tr>
<td>Commissioning</td>
<td>19</td>
</tr>
<tr>
<td>Define password</td>
<td>73</td>
</tr>
<tr>
<td>Delete password</td>
<td>76</td>
</tr>
<tr>
<td>Logout</td>
<td>78</td>
</tr>
<tr>
<td>Reset password</td>
<td>77</td>
</tr>
<tr>
<td>Safety lock</td>
<td>21</td>
</tr>
<tr>
<td>Safety unlock</td>
<td>27</td>
</tr>
</tbody>
</table>