Description of Device Parameters

Proline Promag 400
PROFIBUS DP

Electromagnetic flowmeter
Table of contents

1 About this document 4
1.1 Document function 4
1.2 Target group 4
1.3 Using this document 4
 1.3.1 Information on the document structure 4
 1.3.2 Structure of a parameter description 6
1.4 Symbols used 6
 1.4.1 Symbols for certain types of information 6
 1.4.2 Symbols in graphics 7
1.5 Documentation 7
 1.5.1 Standard documentation 7
 1.5.2 Supplementary device-dependent documentation 7

2 Overview of the Expert operating menu 8

3 Description of device parameters 11
3.1 "System" submenu 14
 3.1.1 "Display" submenu 14
 3.1.2 "Diagnostic handling" submenu 27
 3.1.3 "Administration" submenu 34
3.2 "Sensor" submenu 39
 3.2.1 "Measured values" submenu 40
 3.2.2 "System units" submenu 44
 3.2.3 "Process parameters" submenu 51
 3.2.4 "External compensation" submenu 67
 3.2.5 "Sensor adjustment" submenu 69
 3.2.6 "Calibration" submenu 76
3.3 "Communication" submenu 78
 3.3.1 "PROFIBUS DP configuration" submenu 78
 3.3.2 "PROFIBUS DP info" submenu 80
 3.3.3 "Physical block" submenu 82
 3.3.4 "Address shifting configuration" submenu 91
 3.3.5 "Web server" submenu 91
 3.3.6 "WLAN settings" wizard 95
3.4 "Analog inputs" submenu 101
 3.4.1 "Analog input 1 to n" submenu 101
3.5 "Discrete inputs" submenu 115
 3.5.1 "Discrete input 1 to n" submenu 115
3.6 "Analog outputs" submenu 122
 3.6.1 "Analog output 1 to n" submenu 122
3.7 "Discrete outputs" submenu 134
 3.7.1 "Discrete output 1 to n" submenu 134
3.8 "Application" submenu 144
 3.8.1 "Totalizer 1 to n" submenu 145
3.9 "Diagnostics" submenu 158
 3.9.1 "Diagnostic list" submenu 161
 3.9.2 "Event logbook" submenu 166
 3.9.3 "Device information" submenu 168
3.9.4 "Main electronic module + I/O module 1" submenu 171
3.9.5 "Sensor electronic module (ISEM)" submenu 172
3.9.6 "Display module" submenu 173
3.9.7 "Min/max values" submenu 174
3.9.8 "Data logging" submenu 176
3.9.9 "Heartbeat" submenu 184
3.9.10 "Simulation" submenu 184

4 Country-specific factory settings 187
4.1 SI units ... 187
 4.1.1 System units 187
 4.1.2 Full scale values 187
 4.1.3 Switch-on point low flow cut off 188
4.2 US units ... 189
 4.2.1 System units 189
 4.2.2 Full scale values 189
 4.2.3 Switch-on point low flow cut off 190

5 Explanation of abbreviated units 192
5.1 SI units ... 192
5.2 US units ... 192
5.3 Imperial units 193

Index .. 194
1 About this document

1.1 Document function
The document is part of the Operating Instructions and serves as a reference for parameters, providing a detailed explanation of each individual parameter of the Expert operating menu.

It is used to perform tasks that require detailed knowledge of the function of the device:
- Commissioning measurements under difficult conditions
- Optimal adaptation of the measurement to difficult conditions
- Detailed configuration of the communication interface
- Error diagnostics in difficult cases

1.2 Target group
The document is aimed at specialists who work with the device over the entire life cycle and perform specific configurations.

1.3 Using this document

1.3.1 Information on the document structure
The document lists the submenus and their parameters according to the structure from the Expert menu (→ 8), which is displayed when the "Maintenance" user role is enabled.
Operating menu for operators and maintenances

- **Language**
 - Parameter 1
 - Parameter n

- **Setup**
 - Device tag
 - Wizard 1 / Parameter 1
 - Wizard n / Parameter n
 - Advanced setup

- **Diagnostics**
 - Parameter 1
 - Parameter n
 - Submenu 1
 - Submenu n

Operating menu for experts

- **Expert**
 - Access status display
 - Parameter n
 - System
 - Sensor
 - Input
 - Output
 - Communication
 - Application
 - Diagnostics

Additional information regarding:
- The arrangement of the parameters according to the menu structure of the **Operation** menu, **Setup** menu, **Diagnostics** menu with a brief description: Operating Instructions →
- Operating concept of the operating menus: Operating Instructions →

Sample graphic for the schematic layout of the operating menu
1.3.2 Structure of a parameter description
The individual parts of a parameter description are described in the following section:

<table>
<thead>
<tr>
<th>Complete parameter name</th>
<th>Write-protected parameter</th>
</tr>
</thead>
</table>

Navigation
- Navigation path to the parameter via the local display (direct access code) or web browser
- Navigation path to the parameter via the operating tool
 The names of the menus, submenus and parameters are abbreviated to the form in which they appear on the display and in the operating tool.

Prerequisite
The parameter is only available under these specific conditions

Description
Description of the parameter function

Selection
List of the individual options for the parameter
- Option 1
- Option 2

User entry
Input range for the parameter

User interface
Display value/data for the parameter

Factory setting
Default setting ex works

Additional information
Additional explanations (e.g. in examples):
- On individual options
- On display values/data
- On the input range
- On the factory setting
- On the parameter function

1.4 Symbols used

1.4.1 Symbols for certain types of information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates additional information.</td>
</tr>
<tr>
<td></td>
<td>Reference to documentation</td>
</tr>
<tr>
<td></td>
<td>Reference to page</td>
</tr>
<tr>
<td></td>
<td>Reference to graphic</td>
</tr>
<tr>
<td></td>
<td>Operation via local display</td>
</tr>
<tr>
<td></td>
<td>Operation via operating tool</td>
</tr>
<tr>
<td></td>
<td>Write-protected parameter</td>
</tr>
</tbody>
</table>
1.4.2 Symbols in graphics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3 ...</td>
<td>Item numbers</td>
<td>A, B, C, ...</td>
<td>Views</td>
</tr>
<tr>
<td>A-A, B-B, C-C</td>
<td>Sections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Documentation

1.5.1 Standard documentation

Operating Instructions

<table>
<thead>
<tr>
<th>Measuring device</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promag D 400</td>
<td>BA01232D</td>
</tr>
<tr>
<td>Promag L 400</td>
<td>BA01233D</td>
</tr>
<tr>
<td>Promag W 400</td>
<td>BA01234D</td>
</tr>
</tbody>
</table>

1.5.2 Supplementary device-dependent documentation

Special Documentation

<table>
<thead>
<tr>
<th>Content</th>
<th>Documentation code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat Verification + Monitoring application package</td>
<td>SD02569D</td>
</tr>
<tr>
<td>Display modules A309/A310</td>
<td>SD01793D</td>
</tr>
</tbody>
</table>
2 Overview of the Expert operating menu

The following table provides an overview of the menu structure of the expert operating menu and its parameters. The page reference indicates where the associated description of the submenu or parameter can be found.

<table>
<thead>
<tr>
<th>Expert</th>
</tr>
</thead>
</table>
| Direct access (0106) | → 11
| Locking status (0004) | → 12
| Access status (0005) | → 13
| Enter access code (0003) | → 14

<table>
<thead>
<tr>
<th>System</th>
</tr>
</thead>
</table>
| Display | → 14
| Diagnostic handling | → 27
| Administration | → 34

<table>
<thead>
<tr>
<th>Sensor</th>
</tr>
</thead>
</table>
| Measured values | → 40
| System units | → 44
| Process parameters | → 51
| External compensation | → 67
| Sensor adjustment | → 69
| Calibration | → 76

<table>
<thead>
<tr>
<th>Communication</th>
</tr>
</thead>
</table>
| PROFIBUS DP configuration | → 78
| PROFIBUS DP info | → 80
| Physical block | → 82
| Address shifting configuration | → 91

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web server</td>
<td>91</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>95</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>101</td>
</tr>
<tr>
<td>Analog input 1 to n</td>
<td>101</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td>115</td>
</tr>
<tr>
<td>Discrete input 1 to n</td>
<td>115</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>122</td>
</tr>
<tr>
<td>Analog output 1 to n</td>
<td>122</td>
</tr>
<tr>
<td>Discrete outputs</td>
<td>134</td>
</tr>
<tr>
<td>Discrete output 1 to n</td>
<td>134</td>
</tr>
<tr>
<td>Application</td>
<td>144</td>
</tr>
<tr>
<td>Reset all totalizers (2806)</td>
<td>144</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>145</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>158</td>
</tr>
<tr>
<td>Actual diagnostics (0691)</td>
<td>159</td>
</tr>
<tr>
<td>Previous diagnostics (0690)</td>
<td>160</td>
</tr>
<tr>
<td>Operating time from restart (0653)</td>
<td>161</td>
</tr>
<tr>
<td>Operating time (0652)</td>
<td>161</td>
</tr>
<tr>
<td>Diagnostic list</td>
<td>161</td>
</tr>
<tr>
<td>Event logbook</td>
<td>166</td>
</tr>
<tr>
<td>Device information</td>
<td>168</td>
</tr>
<tr>
<td>Main electronic module</td>
<td>171</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>172</td>
</tr>
<tr>
<td>Display module</td>
<td>173</td>
</tr>
<tr>
<td>Min/max values</td>
<td>174</td>
</tr>
</tbody>
</table>
Overview of the Expert operating menu

Proline Promag 400 PROFIBUS DP

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data logging</td>
<td>176</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>184</td>
</tr>
<tr>
<td>Simulation</td>
<td>184</td>
</tr>
</tbody>
</table>
3 Description of device parameters

In the following section, the parameters are listed according to the menu structure of the local display. Specific parameters for the operating tools are included at the appropriate points in the menu structure.

Navigation

Expert → Direct access (0106)

Description

Use this function to enter the access code to enable direct access to the desired parameter via the local display. A parameter number is assigned to each parameter for this purpose.

User entry

0 to 65535
Additional information

User entry

The direct access code consists of a 5-digit number (at maximum) and the channel number, which identifies the channel of a process variable: e.g. 00914-2. In the navigation view, this appears on the right-hand side in the header of the selected parameter.

![Direct access code](image)

1 **Direct access code**

Note the following when entering the direct access code:
- The leading zeros in the direct access code do not have to be entered. Example: Enter "914" instead of "00914"
- If no channel number is entered, channel 1 is opened automatically. Example: Enter **00914** → **Assign process variable** parameter
- If a different channel is opened: Enter the direct access code with the corresponding channel number. Example: Enter **00914-2** → **Assign process variable** parameter

Locking status

Navigation

Expert → Locking status (0004)

Description

Displays the active write protection.

User interface

- Hardware locked
- Temporarily locked

Additional information

User interface

If two or more types of write protection are active, the write protection with the highest priority is shown on the local display. In the operating tool all active types of write protection are displayed.

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The access status displayed in the Access status display parameter (→ 13) applies. Only appears on local display.</td>
</tr>
<tr>
<td>Hardware locked (priority 1)</td>
<td>The DIP switch for hardware locking is activated on the main electronics module. This locks write access to the parameters (e.g. via local display or operating tool).</td>
</tr>
<tr>
<td>Temporarily locked (priority 2)</td>
<td>Write access to the parameters is temporarily locked on account of internal processes running in the device (e.g. data upload/download, reset etc.). Once the internal processing has been completed, the parameters can be changed once again.</td>
</tr>
</tbody>
</table>
Access status display

Navigation
Expert → Access stat.disp (0091)

Prerequisite
A local display is provided.

Description
Displays the access authorization to the parameters via the local display.

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information
Description
If the symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

Access authorization can be modified via the Enter access code parameter (→ 14).

For information about the Enter access code parameter: see the "Disabling write protection via the access code" section of the Operating Instructions for the device → 7

If additional write protection is active, this restricts the current access authorization even further.

User interface
Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Access status

Navigation
Expert → Access status (0005)

Description
Displays the access authorization to the parameters via the operating tool or Web browser.

User interface
- Operator
- Maintenance

Factory setting
Maintenance
Additional information

Description

Access authorization can be modified via the **Enter access code** parameter (→ 14).

If additional write protection is active, this restricts the current access authorization even further.

User interface

Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7

Enter access code

Navigation

[] Expert → Ent. access code (0003)

Description

Use this function to enter the user-specific release code to remove parameter write protection.

User entry

Max. 16-digit character string comprising numbers, letters and special characters

3.1 "System" submenu

Navigation

[] [] Expert → System

3.1.1 "Display" submenu

Navigation

[] [] Expert → System → Display

- Display language (0104) → 15
- Format display (0098) → 16
- Value 1 display (0107) → 18
Display language

Navigation

Expert → System → Display → Display language (0104)

Prerequisite

A local display is provided.

Description

Use this function to select the configured language on the local display.

Selection

- English
- Deutsch
- Français
Format display

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Display → Format display (0098)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>A local display is provided.</td>
</tr>
<tr>
<td>Description</td>
<td>Use this function to select how the measured value is shown on the local display.</td>
</tr>
</tbody>
</table>
| Selection | • 1 value, max. size
• 1 bargraph + 1 value
• 2 values
• 1 value large + 2 values
• 4 values |
| Factory setting | 1 value, max. size |

Additional information

The display format (size, bar graph etc.) and number of measured values displayed simultaneously (1 to 4) can be configured. This setting only applies to normal operation.

- The **Value 1 display** parameter (→ 18) to **Value 4 display** parameter (→ 22) are used to specify which measured values are shown on the local display and in what order.
- If more measured values are specified than the display mode selected permits, then the values alternate on the device display. The display time until the next change is configured via the **Display interval** parameter (→ 23).

* Visibility depends on order options or device settings
Possible measured values shown on the local display:

"1 value, max. size" option

```
 XXXXXXXXX
 ________ 900.00
  l/h
```

"1 bargraph + 1 value" option

```
 XXXXXXXXX
 m(1) 900.00
 kg/h
  l/h
```

"2 values" option

```
 XXXXXXXXX
 m(1) 900.00
 kg/h
  l/h
```

"1 value large + 2 values" option

```
 XXXXXXXXX
 m(1) 900.00
 kg/h
  l/h
 p(1) 1.00 kg/l
```

"4 values" option

```
 XXXXXXXXX
 m(1) 900.00 kg/h
  l/h
 p(1) 1.0 kg/l
 s(1) 213.94 kg
```
Value 1 display

Navigation

Expert → System → Display → Value 1 display (0107)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values shown on the local display.

Selection

- Volume flow
- Mass flow
- Corrected volume flow
- Flow velocity
- Conductivity
- Corrected conductivity
- Totalizer 1
- Totalizer 2
- Totalizer 3
- Electronics temperature
- Noise
- Coil current shot time
- Reference electrode potential against PE
- Build-up measured value
- Test point 1
- Test point 2
- Test point 3

Factory setting

Volume flow

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the first value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 44).

0% bargraph value 1

Navigation

Expert → System → Display → 0% bargraph 1 (0123)

Prerequisite

A local display is provided.

Description

Use this function to enter the 0% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Visibility depends on order options or device settings
Factory setting

Country-specific:
- 0 l/h
- 0 gal/min (us)

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 44).

100% bargraph value 1

Navigation

Expert → System → Display → 100% bargraph 1 (0125)

Prerequisite

A local display is provided.

Description

Use this function to enter the 100% bar graph value to be shown on the display for the measured value 1.

User entry

Signed floating-point number

Factory setting

Depends on country and nominal diameter → 187

Additional information

Description

The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry

The unit of the displayed measured value is taken from the **System units** submenu (→ 44).

Decimal places 1

Navigation

Expert → System → Display → Decimal places 1 (0095)

Prerequisite

A measured value is defined in the **Value 1 display** parameter (→ 18).

Description

Use this function to select the number of decimal places for measured value 1.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx
Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 2 display

Navigation

Expert → System → Display → Value 2 display (0108)

Prerequisite

A local display is provided.

Description

Use this function to select one of the measured values shown on the local display.

Selection

For the picklist, see the Value 1 display parameter (→ 18)

Factory setting

None

Additional information

Description

If several measured values are displayed at once, the measured value selected here will be the second value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Dependency

The unit of the displayed measured value is taken from the System units submenu (→ 44).

Decimal places 2

Navigation

Expert → System → Display → Decimal places 2 (0117)

Prerequisite

A measured value is specified in the Value 2 display parameter (→ 20).

Description

Use this function to select the number of decimal places for measured value 2.

Selection

- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting

x.xx

Additional information

Description

This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.
Value 3 display

Navigation
- Expert → System → Display → Value 3 display (0110)

Prerequisite
A local display is provided.

Description
Use this function to select one of the measured values shown on the local display.

Selection
For the picklist, see the **Value 1 display** parameter (→ 18)

Factory setting
None

Additional information

Description
If several measured values are displayed at once, the measured value selected here will be the third value to be displayed. The value is only displayed during normal operation.

The **Format display** parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection

The unit of the displayed measured value is taken from the System units submenu (→ 44).

0% bargraph value 3

Navigation
- Expert → System → Display → 0% bargraph 3 (0124)

Prerequisite
A selection was made in the **Value 3 display** parameter (→ 21).

Description
Use this function to enter the 0% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
Country-specific:
- 0 l/h
- 0 gal/min (us)

Additional information

Description
The **Format display** parameter (→ 16) is used to specify that the measured value is to be displayed as a bar graph.

User entry
The unit of the displayed measured value is taken from the System units submenu (→ 44).
100% bargraph value 3

Navigation
Expert → System → Display → 100% bargraph 3 (0126)

Prerequisite
A selection was made in the **Value 3 display** parameter (→ #21).

Description
Use this function to enter the 100% bar graph value to be shown on the display for the measured value 3.

User entry
Signed floating-point number

Factory setting
0

Additional information
- **Description**
 - The **Format display** parameter (→ #16) is used to specify that the measured value is to be displayed as a bar graph.
 - **User entry**
 - The unit of the displayed measured value is taken from the **System units** submenu (→ #44).

Decimal places 3

Navigation
Expert → System → Display → Decimal places 3 (0118)

Prerequisite
A measured value is specified in the **Value 3 display** parameter (→ #21).

Description
Use this function to select the number of decimal places for measured value 3.

Selection
- x
- x.x
- x.xx
- x.xxx
- x.xxxx

Factory setting
x.xx

Additional information
- **Description**
 - This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Value 4 display

Navigation
Expert → System → Display → Value 4 display (0109)

Prerequisite
A local display is provided.
Description
Use this function to select one of the measured values shown on the local display.

Selection
For the picklist, see the Value 1 display parameter (→ 18)

Factory setting
None

Additional information
Description
If several measured values are displayed at once, the measured value selected here will be the fourth value to be displayed. The value is only displayed during normal operation.

The Format display parameter (→ 16) is used to specify how many measured values are displayed simultaneously and how.

Selection
The unit of the displayed measured value is taken from the System units submenu (→ 44).

Decimal places 4

Navigation
Expert → System → Display → Decimal places 4 (0119)

Prerequisite
A measured value is specified in the Value 4 display parameter (→ 22).

Description
Use this function to select the number of decimal places for measured value 4.

Selection
• x
• x.x
• x.xx
• x.xxx
• x.xxxx

Factory setting
x.xx

Additional information
Description
This setting does not affect the measuring or computational accuracy of the device. The arrow displayed between the measured value and the unit indicates that the device computes with more digits than are shown on the local display.

Display interval

Navigation
Expert → System → Display → Display interval (0096)

Prerequisite
A local display is provided.

Description
Use this function to enter the length of time the measured values are displayed if the values alternate on the display.

User entry
1 to 10 s
Description of device parameters

Factory setting

5 s

Additional information

Description

This type of alternating display only occurs automatically if the number of measured values defined exceeds the number of values the selected display format can display simultaneously.

- The **Value 1 display** parameter (→ 18) to **Value 4 display** parameter (→ 22) are used to specify which measured values are shown on the local display.
- The display format of the displayed measured values is specified using the **Format display** parameter (→ 16).

Display damping

Navigation

Expert → System → Display → Display damping (0094)

Prerequisite

A local display is provided.

Description

Use this function to enter a time constant for the reaction time of the local display to fluctuations in the measured value caused by process conditions.

User entry

0.0 to 999.9 s

Factory setting

0.0 s

Additional information

User entry

Use this function to enter a time constant (PT1 element 1) for display damping:
- If a low time constant is entered, the display reacts particularly quickly to fluctuating measured variables.
- On the other hand, the display reacts more slowly if a high time constant is entered.

Damping is switched off if 0 is entered (factory setting).

Header

Navigation

Expert → System → Display → Header (0097)

Prerequisite

A local display is provided.

Description

Use this function to select the contents of the header of the local display.

Selection

- Device tag
- Free text

Factory setting

Device tag

1) proportional transmission behavior with first order delay
Additional information

Description

The header text only appears during normal operation.

![Header text example]

1 Position of the header text on the display

Selection

- Device tag
 Is defined in the Device tag parameter (→ 168).
- Free text
 Is defined in the Header text parameter (→ 25).

Header text

Navigation
Expert → System → Display → Header text (0112)

Prerequisite

In the Header parameter (→ 24), the Free text option is selected.

Description

Use this function to enter a customer-specific text for the header of the local display.

User entry

Max. 12 characters such as letters, numbers or special characters (e.g. @, %, /)

Factory setting

Additional information

Description

The header text only appears during normal operation.

![Header text example]

1 Position of the header text on the display

User entry

The number of characters displayed depends on the characters used.
Separator

Navigation
Expert → System → Display → Separator (0101)

Prerequisite
A local display is provided.

Description
Use this function to select the decimal separator.

Selection
- . (point)
- , (comma)

Factory setting
. (point)

Contrast display

Navigation
Expert → System → Display → Contrast display (0105)

Prerequisite
A local display is provided.

Description
Use this function to enter a value to adapt the display contrast to the ambient conditions (e.g. the lighting or viewing angle).

User entry
20 to 80 %

Factory setting
50 %

Backlight

Navigation
Expert → System → Display → Backlight (0111)

Prerequisite
A local display is provided.

Description
Use this function to switch the backlight of the local display on and off.

Selection
- Disable
- Enable

Factory setting
Enable

Access status display

Navigation
Expert → System → Display → Access stat.disp (0091)

Prerequisite
A local display is provided.
Description
Displays the access authorization to the parameters via the local display.

User interface
- Operator
- Maintenance

Factory setting
Operator

Additional information
Description
If the \(\boldsymbol{\text{\textregistered}}\)-symbol appears in front of a parameter, it cannot be modified via the local display with the current access authorization.

1. Access authorization can be modified via the **Enter access code** parameter (→ 14).
2. For information about the **Enter access code** parameter: see the "Disabling write protection via the access code" section of the Operating Instructions for the device → 7.
3. If additional write protection is active, this restricts the current access authorization even further.

User interface
1. Detailed information on access authorization is provided in the "User roles and associated access authorization" and "Operating concept" sections of the Operations Instructions for the device → 7.

3.1.2 "Diagnostic handling" submenu

Navigation

- Expert → System → Diagn. handling

Alarm delay (0651)

Navigation
- Expert → System → Diagn. handling → Alarm delay (0651)

Description
Use this function to enter the time interval until the device generates a diagnostic message.

1. The diagnostic message is reset without a time delay.

User entry
0 to 60 s

Factory setting
0 s
Additional information

Result

This setting affects the following diagnostic messages:

- 190 Special event 1
- 832 Electronics temperature too high
- 833 Electronics temperature too low
- 862 Pipe empty
- 990 Special event 4

“Diagnostic behavior” submenu

Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for specific diagnostic information in the Diagnostic behavior submenu (→ 28).

The following options are available in the Assign behavior of diagnostic no. xxx parameters:

<table>
<thead>
<tr>
<th>Diagnostic behavior</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm</td>
<td>The device stops measurement. The totalizers assume the defined alarm condition. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Warning</td>
<td>The device continues to measure. The output of measured values via PROFIBUS and totalizers is not affected. A diagnostic message is generated.</td>
</tr>
<tr>
<td>Logbook entry only</td>
<td>The device continues to measure. The diagnostic message is only displayed in the Event logbook submenu (→ 166) (Event list submenu (→ 166)) and is not displayed in alternating sequence with the operational display.</td>
</tr>
<tr>
<td>Off</td>
<td>The diagnostic event is ignored, and no diagnostic message is generated or entered.</td>
</tr>
</tbody>
</table>

For a list of all the diagnostic events, see the Operating Instructions for the device → 7

Navigation

Expert → System → Diagn. handling → Diagn. behavior

<table>
<thead>
<tr>
<th>Diagnostic behavior</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign behavior of diagnostic no. 043 (0650)</td>
<td>→ 29</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 302 (0739)</td>
<td>→ 30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 376 (0645)</td>
<td>→ 30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 377 (0777)</td>
<td>→ 30</td>
</tr>
<tr>
<td>Assign behavior of diagnostic no. 531 (0741)</td>
<td>→ 31</td>
</tr>
</tbody>
</table>
Assign behavior of diagnostic no. 043 (Sensor short circuit)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 043 (0650)

Description

Use this function to change the diagnostic behavior of the **043 Sensor short circuit** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:
Assign behavior of diagnostic no. 302 (Device verification active)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 302 (0739)

Description
Use this function to change the diagnostic behavior of the **302 Device verification active** diagnostic message.

Selection
- Alarm
- Warning

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 376 (Sensor electronics (ISEM) faulty)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 376 (0645)

Description
Use this function to change the diagnostic behavior of the **376 Sensor electronics (ISEM) faulty** diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 377 (Sensor electronics (ISEM) faulty)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 377 (0777)

Description
Use this function to change the diagnostic behavior of the **377 Sensor electronics (ISEM) faulty** diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:
Assign behavior of diagnostic no. 531 (Empty pipe detection)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 531 (0741)

Description
Use this function to change the diagnostic behavior of the 531 Empty pipe detection diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 832 (Electronics temperature too high)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 832 (0681)

Description
Use this function to change the diagnostic behavior of the 832 Electronics temperature too high diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Logbook entry only

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 833 (Electronics temperature too low)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 833 (0682)

Description
Use this function to change the diagnostic behavior of the 833 Electronics temperature too low diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Logbook entry only

Additional information
Detailed description of the options available for selection:
Assign behavior of diagnostic no. 834 (Process temperature too high)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 834 (0700)

Description

Use this function to change the diagnostic behavior of the **834 Process temperature too high** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Assign behavior of diagnostic no. 835 (Process temperature too low)

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 835 (0702)

Description

Use this function to change the diagnostic behavior of the **835 Process temperature too low** diagnostic message.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Warning

Additional information

Detailed description of the options available for selection:

Assign behavior of diagnostic no. 842

Navigation

Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 842 (0638)

Description

Change behavior of diagnostic event with diagnostic number 842 'Process limit'.

Selection

- Off
- Alarm
- Warning
- Logbook entry only

Factory setting

Off
Assign behavior of diagnostic no. 962 (Pipe empty)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 962 (0745)

Description
Use this function to change the diagnostic behavior of the 862 Pipe empty diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 937 (EMC interference)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 937 (0743)

Description
Use this function to change the diagnostic behavior of the 937 EMC interference diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Warning

Additional information
Detailed description of the options available for selection:

Assign behavior of diagnostic no. 938 (EMC interference)

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 938 (0642)

Description
Use this function to change the diagnostic behavior of the 938 EMC interference diagnostic message.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Alarm

Additional information
Detailed description of the options available for selection:
Assign behavior of diagnostic no. 961

Navigation
Expert → System → Diagn. handling → Diagn. behavior → Diagnostic no. 961 (0736)

Description
Select diagnostic behavior for the selected diagnostic number.

Selection
- Off
- Alarm
- Warning
- Logbook entry only

Factory setting
Alarm

3.1.3 "Administration" submenu

Navigation
Expert → System → Administration

"Define access code" wizard
The Define access code wizard (→ 34) is only available when operating via the local display or Web browser.

If operating via the operating tool, the Define access code parameter (→ 37) can be found directly in the Administration submenu. There is no Confirm access code parameter if the device is operated via the operating tool.

Navigation
Expert → System → Administration → Def. access code

"Define access code" wizard

- Define access code → 35
- Confirm access code → 35
Define access code

Navigation
- Expert → System → Administration → Def. access code → Def. access code

Description
Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the local display or Web browser.

User entry
0 to 9999

Factory setting
0

Additional information
- **Description**
 The write protection affects all parameters in the document marked with the symbol.
 On the local display, the symbol in front of a parameter indicates that the parameter is write-protected.
 The parameters that cannot be write-accessed are grayed out in the Web browser.

 - Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 14).
 - If you lose the access code, please contact your Endress+Hauser sales organization.

User entry
A message is displayed if the access code is not in the input range.

Factory setting
If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.

Confirm access code

Navigation
- Expert → System → Administration → Def. access code → Confirm code

Description
Enter the defined release code a second time to confirm the release code.

User entry
0 to 9999

Factory setting
0

"Reset access code" submenu

Navigation
- Expert → System → Administration → Reset acc. code

- Reset access code
Operating time

Navigation

[Expert → System → Administration → Reset acc. code → Operating time (0652)]

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

Reset access code

Navigation

[Expert → System → Administration → Reset acc. code → Reset acc. code (0024)]

Description

Use this function to enter a reset code to reset the user-specific access codes to the factory setting.

User entry

Character string comprising numbers, letters and special characters

Factory setting

0x00

Additional information

Description

For a reset code, contact your Endress+Hauser service organization.

User entry

The reset code can only be entered via:

- Web browser
- DeviceCare, FieldCare (via CDI RJ45 interface)
- Fieldbus
Additional parameters in the "Administration" submenu

Define access code

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Def. access code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a user-specific release code to restrict write-access to the parameters. This protects the configuration of the device against any inadvertent changes via the operating tool.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 9 999</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
<tr>
<td>Additional information</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>The write protection affects all parameters in the document marked with the symbol.</td>
</tr>
<tr>
<td></td>
<td>Once the access code has been defined, write-protected parameters can only be modified if the access code is entered in the Enter access code parameter (→ 14).</td>
</tr>
<tr>
<td></td>
<td>If you lose the access code, please contact your Endress+Hauser sales organization.</td>
</tr>
<tr>
<td>User entry</td>
<td>A message is displayed if the access code is not in the input range.</td>
</tr>
<tr>
<td>Factory setting</td>
<td>If the factory setting is not changed or 0 is defined as the access code, the parameters are not write-protected and the device configuration data can be modified. The user is logged on in the "Maintenance" role.</td>
</tr>
</tbody>
</table>

Device reset

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → System → Administration → Device reset (0000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to choose whether to reset the device configuration - either entirely or in part - to a defined state.</td>
</tr>
<tr>
<td>Selection</td>
<td>• Cancel</td>
</tr>
<tr>
<td></td>
<td>• To delivery settings</td>
</tr>
<tr>
<td></td>
<td>• Restart device</td>
</tr>
<tr>
<td></td>
<td>• Restore S-DAT backup *</td>
</tr>
<tr>
<td>Factory setting</td>
<td>Cancel</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Activate SW option

Navigation

expert → System → Administration → Activate SW opt. (0029)

Description

Use this function to enter an activation code to enable an additional, ordered software option.

User entry

Max. 10-digit string consisting of numbers.

Factory setting

Depends on the software option ordered

Additional information

Description

If a measuring device was ordered with an additional software option, the activation code is programmed in the device at the factory.

User entry

To activate a software option subsequently, please contact your Endress+Hauser sales organization.

NOTE!

The activation code is linked to the serial number of the measuring device and varies according to the device and software option.

If an incorrect or invalid code is entered, this results in the loss of software options that have already been activated.

- Before you enter a new activation code, make a note of the current activation code.
- Enter the new activation code provided by Endress+Hauser when the new software option was ordered.
- Once the activation code has been entered, check if the new software option is displayed in the Software option overview parameter (→ 39).
 - The new software option is active if it is displayed.
 - If the new software option is not displayed or all software options have been deleted, the code entered was either incorrect or invalid.
- If the code entered is incorrect or invalid, enter the old activation code.
- Have your Endress+Hauser sales organization check the new activation code remembering to specify the serial number or ask for the code again.

Example for a software option

Order code for "Application package", option EA "Extended HistoROM"

The software options currently enabled are displayed in the Software option overview parameter (→ 39).

Web browser

Once a software option has been activated, the page must be loaded again in the Web browser.
Software option overview

Navigation

Expert → System → Administration → SW option overv. (0015)

Description

Displays all the software options that are enabled in the device.

User interface

- Extended HistoROM
- Electrode cleaning circuit
- Heartbeat Verification
- Build-up index
- Heartbeat Monitoring

Additional information

Description

Displays all the options that are available if ordered by the customer.

"Extended HistoROM" option

Order code for "Application package", option EA "Extended HistoROM"

"Electrode cleaning circuit" option

Only available for Promag L and W.

Order code for "Application package", option EC "ECC electrode cleaning"

"Heartbeat Verification" option and "Heartbeat Monitoring" option

Order code for "Application package", option EB "Heartbeat Verification + Monitoring"

3.2 "Sensor" submenu

Navigation

Expert → Sensor

- Measured values → 40
- System units → 44
- Process parameters → 51
- External compensation → 67
- Sensor adjustment → 69
- Calibration → 76
3.2.1 "Measured values" submenu

Navigation
Expert → Sensor → Measured val.

- Measured values
 - Process variables
 → 40
 - Totalizer
 → 43

"Process variables" submenu

Navigation

- Process variables
 - Volume flow (1838)
 → 40
 - Mass flow (1847)
 → 41
 - Corrected volume flow (1851)
 → 41
 - Flow velocity (1854)
 → 41
 - Conductivity (1850)
 → 41
 - Corrected conductivity (1853)
 → 42
 - Temperature (1852)
 → 42
 - Density (1857)
 → 42

Volume flow

Navigation

Description
Displays the volume flow that is currently measured.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Volume flow unit parameter (→ 44)
Mass flow

Navigation

Description
Displays the mass flow that is currently calculated.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the Mass flow unit parameter (→ 47)

Corrected volume flow

Navigation

Description
Displays the corrected volume flow that is currently measured.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the Corrected volume flow unit parameter (→ 49)

Flow velocity

Navigation

Description
Displays the flow velocity that is currently calculated.

User interface
Signed floating-point number

Conductivity

Navigation

Prerequisite
The On option is selected in the Conductivity measurement parameter (→ 55).

Description
Displays the conductivity that is currently measured.

User interface
Signed floating-point number

Additional information

Dependency

The unit is taken from the Conductivity unit parameter (→ 46)
Corrected conductivity

Navigation

Prerequisite
The following conditions are met:
- The On option is selected in the Conductivity measurement parameter (→ 55).
- The Internal temperature sensor option or the External value option is selected in the Temperature source parameter (→ 68).

Description
Displays the conductivity that is currently corrected.

User interface
Positive floating-point number

Additional information
Dependency
- The unit is taken from the Conductivity unit parameter (→ 46)

Temperature

Navigation

Prerequisite
The Internal temperature sensor option or the External value option is selected in the Temperature source parameter (→ 68).

Description
Displays the temperature that is currently calculated.

User interface
Positive floating-point number

Additional information
Dependency
- The unit is taken from the Temperature unit parameter (→ 47)

Density

Navigation

Description
Displays the current fixed density or density read in from an external device.

User interface
Signed floating-point number

Additional information
Dependency
- The unit is taken from the Density unit parameter (→ 48)
"Totalizer" submenu

Navigation
Expert → Sensor → Measured val. → Totalizer

<table>
<thead>
<tr>
<th>Totalizer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Out value 1 to n (3827–1 to n)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to n (3825–1 to n)</td>
<td>→ 43</td>
</tr>
<tr>
<td>Totalizer status 1 to n (3826–1 to n)</td>
<td>→ 44</td>
</tr>
</tbody>
</table>

Out value 1 to n

Navigation
Expert → Sensor → Measured val. → Totalizer → Out value 1 to n (3827–1 to n)

Prerequisite
The **Auto** option is selected in the **Target mode** parameter (→ 151).

Description
Displays the current reading for totalizer 1-3.

User interface
Signed floating-point number

Additional information

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the event of an error, the totalizer adopts the mode defined in the Failure mode parameter (→ 149).</td>
</tr>
</tbody>
</table>

User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Totalizer operation mode** parameter (→ 148).

Dependency
The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 146).

Totalizer status (Hex) 1 to n

Navigation
Expert → Sensor → Measured val. → Totalizer → Status (Hex) 1 to n (3825–1 to n)

Prerequisite
In **Target mode** parameter (→ 151), the **Auto** option is selected.

Description
Displays the status value (hex) of the particular totalizer.

User interface
0 to 0xFF
Totalizer status 1 to n

Navigation

Expert → Sensor → Measured val. → Totalizer → Tot. status 1 to n (3826–1 to n)

Description

Displays the status of the particular totalizer.

User interface

- Good
- Uncertain
- Bad

3.2.2 "System units" submenu

Navigation

Expert → Sensor → System units

<table>
<thead>
<tr>
<th>System units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume flow unit (0553)</td>
</tr>
<tr>
<td>Volume unit (0563)</td>
</tr>
<tr>
<td>Conductivity unit (0582)</td>
</tr>
<tr>
<td>Temperature unit (0557)</td>
</tr>
<tr>
<td>Mass flow unit (0554)</td>
</tr>
<tr>
<td>Mass unit (0574)</td>
</tr>
<tr>
<td>Density unit (0555)</td>
</tr>
<tr>
<td>Corrected volume flow unit (0558)</td>
</tr>
<tr>
<td>Corrected volume unit (0575)</td>
</tr>
<tr>
<td>Date/time format (2812)</td>
</tr>
</tbody>
</table>

Volume flow unit

Navigation

Expert → Sensor → System units → Volume flow unit (0553)

Description

Use this function to select the unit for the volume flow.
Proline Promag 400 PROFIBUS DP

Description of device parameters

<table>
<thead>
<tr>
<th>Selection</th>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• cm³/s</td>
<td>• af/s</td>
<td>• gal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>• cm³/min</td>
<td>• af/min</td>
<td>• gal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>• cm³/h</td>
<td>• af/h</td>
<td>• gal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>• cm³/d</td>
<td>• af/d</td>
<td>• gal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>• dm³/s</td>
<td>• ft³/s</td>
<td>• Mgal/s (imp)</td>
</tr>
<tr>
<td></td>
<td>• dm³/min</td>
<td>• ft³/min</td>
<td>• Mgal/min (imp)</td>
</tr>
<tr>
<td></td>
<td>• dm³/h</td>
<td>• ft³/h</td>
<td>• Mgal/h (imp)</td>
</tr>
<tr>
<td></td>
<td>• dm³/d</td>
<td>• ft³/d</td>
<td>• Mgal/d (imp)</td>
</tr>
<tr>
<td></td>
<td>• m³/s</td>
<td>• kft³/s</td>
<td>• bbl/s (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>• m³/min</td>
<td>• kft³/min</td>
<td>• bbl/min (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>• m³/h</td>
<td>• kft³/h</td>
<td>• bbl/h (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>• m³/d</td>
<td>• kft³/d</td>
<td>• bbl/d (imp;beer)</td>
</tr>
<tr>
<td></td>
<td>• l/s</td>
<td>• fl oz/s (us)</td>
<td>• bbl/s (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>• l/min</td>
<td>• fl oz/min (us)</td>
<td>• bbl/min (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>• l/h</td>
<td>• fl oz/h (us)</td>
<td>• bbl/h (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>• l/d</td>
<td>• fl oz/d (us)</td>
<td>• bbl/d (imp;oil)</td>
</tr>
<tr>
<td></td>
<td>• hl/s</td>
<td>• gal/s (us)</td>
<td>• bbl/s (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>• hl/min</td>
<td>• gal/min (us)</td>
<td>• bbl/min (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>• hl/h</td>
<td>• gal/h (us)</td>
<td>• bbl/h (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>• hl/d</td>
<td>• gal/d (us)</td>
<td>• bbl/d (us;liq.)</td>
</tr>
<tr>
<td></td>
<td>• Ml/s</td>
<td>• Mgal/s (us)</td>
<td>• bbl/s (us;beer)</td>
</tr>
<tr>
<td></td>
<td>• Ml/min</td>
<td>• Mgal/min (us)</td>
<td>• bbl/min (us;beer)</td>
</tr>
<tr>
<td></td>
<td>• Ml/h</td>
<td>• Mgal/h (us)</td>
<td>• bbl/h (us;beer)</td>
</tr>
<tr>
<td></td>
<td>• Ml/d</td>
<td>• Mgal/d (us)</td>
<td>• bbl/d (us;beer)</td>
</tr>
<tr>
<td></td>
<td>• l/h</td>
<td>• gal/s (us)</td>
<td>• bbl/s (us;oil)</td>
</tr>
<tr>
<td></td>
<td>• gal/min (us)</td>
<td></td>
<td>• bbl/min (us;oil)</td>
</tr>
</tbody>
</table>

Factory setting

- **Country-specific:**
 - • l/h
 - • gal/min (us)
Volume unit

Navigation

Expert → Sensor → System units → Volume unit (0563)

Description

Use this function to select the unit for the volume.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³</td>
<td>ft³</td>
<td>gal (imp)</td>
</tr>
<tr>
<td>dm³</td>
<td>Mft³</td>
<td>Mgal (imp)</td>
</tr>
<tr>
<td>m³</td>
<td>Mft³</td>
<td>bbl (imp;beer)</td>
</tr>
<tr>
<td>ml</td>
<td>fl oz (us)</td>
<td>bbl (imp;oil)</td>
</tr>
<tr>
<td>l</td>
<td>gal (us)</td>
<td>bbl (us;oil)</td>
</tr>
<tr>
<td>hl</td>
<td>kgal (us)</td>
<td>bbl (us;liq.)</td>
</tr>
<tr>
<td>Ml Mega</td>
<td>Mgal (us)</td>
<td>bbl (us;beer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bbl (us;tank)</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- m³
- gal (us)

Additional information

Selection

For an explanation of the abbreviated units: → 192

Conductivity unit

Navigation

Expert → Sensor → System units → Conductiv. unit (0582)

Prerequisite

The On option is selected in the Conductivity measurement parameter (→ 55) parameter.

Description

Use this function to select the unit for the conductivity.
Selection

- SI units
 - nS/cm
 - µS/cm
 - µS/m
 - µS/mm
 - mS/m
 - mS/cm
 - S/cm
 - S/m
 - kS/m
 - MS/m

Factory setting

- µS/cm

Additional information

Effect

The selected unit applies for:
- Conductivity parameter (→ 41)

Selection

For an explanation of the abbreviated units: → 192

Temperature unit

Navigation

Expert → Sensor → System units → Temperature unit (0557)

Description

Use this function to select the unit for the temperature.

Selection

- SI units
 - °C
 - K

- US units
 - °F
 - °R

Factory setting

Country-specific:
- °C
- °F

Additional information

Effect

The selected unit applies for:
- Maximum value parameter (→ 175)
- Minimum value parameter (→ 175)

Selection

For an explanation of the abbreviated units: → 192

Mass flow unit

Navigation

Expert → Sensor → System units → Mass flow unit (0554)

Description

Use this function to select the unit for the mass flow.
Description of device parameters

Proline Promag 400 PROFIBUS DP

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/s</td>
<td>oz/s</td>
</tr>
<tr>
<td>g/min</td>
<td>oz/min</td>
</tr>
<tr>
<td>g/h</td>
<td>oz/h</td>
</tr>
<tr>
<td>g/d</td>
<td>oz/d</td>
</tr>
<tr>
<td>kg/s</td>
<td>lb/s</td>
</tr>
<tr>
<td>kg/min</td>
<td>lb/min</td>
</tr>
<tr>
<td>kg/h</td>
<td>lb/h</td>
</tr>
<tr>
<td>kg/d</td>
<td>lb/d</td>
</tr>
<tr>
<td>t/s</td>
<td>STon/s</td>
</tr>
<tr>
<td>t/min</td>
<td>STon/min</td>
</tr>
<tr>
<td>t/h</td>
<td>STon/h</td>
</tr>
<tr>
<td>t/d</td>
<td>STon/d</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- kg/h
- lb/min

Additional information

Effect

The selected unit applies for:
- **Mass flow** parameter (→ 41)

Selection

For an explanation of the abbreviated units: → 192

Mass unit

Navigation

Row → Sensor → System units → Mass unit (0574)

Description

Use this function to select the unit for the mass.

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>t</td>
<td>STon</td>
</tr>
</tbody>
</table>

Factory setting

Country-specific:
- kg
- lb

Additional information

Selection

For an explanation of the abbreviated units: → 192

Density unit

Navigation

Row → Sensor → System units → Density unit (0555)

Description

Use this function to select the unit for the density.
Selection

SI units
- g/cm³
- g/m³
- kg/l
- kg/dm³
- kg/m³
- SD4°C
- SD15°C
- SD20°C
- SG4°C
- SG15°C
- SG20°C

US units
- lb/ft³
- lb/gal (us)
- lb/bbl (us; liq.)
- lb/bbl (us; beer)
- lb/bbl (us; oil)
- lb/bbl (us; tank)

Imperial units
- lb/gal (imp)
- lb/bbl (imp; beer)
- lb/bbl (imp; oil)

Factory setting
Country-specific:
- kg/l
- lb/ft³

Additional information

Effect
The selected unit applies for:
- **External density** parameter (→ 67)
- **Fixed density** parameter (→ 68)

Selection
- SD = specific density
 The specific density is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).
- SG = specific gravity
 The specific gravity is the ratio of the medium density to the water density at a water temperature of +4 °C (+39 °F), +15 °C (+59 °F), +20 °C (+68 °F).

For an explanation of the abbreviated units: → 192

Corrected volume flow unit

Navigation
Expert → Sensor → System units → Cor.volflow unit (0558)

Description
Use this function to select the unit for the corrected volume flow.
Description of device parameters

Proline Promag 400 PROFIBUS DP

Selection

SI units
- Nl/s
- Nl/min
- Nl/h
- Nl/d
- Nhl/s
- Nhl/min
- Nhl/h
- Nhl/d
- Nm³/s
- Nm³/min
- Nm³/h
- Nm³/d
- Sl/s
- Sl/min
- Sl/h
- Sl/d
- Sm³/s
- Sm³/min
- Sm³/h
- Sm³/d

US units
- Sft³/s
- Sft³/min
- Sft³/h
- Sft³/d
- MSft³/s
- MSft³/min
- MSft³/h
- MSft³/D
- MMSft³/s
- MMSft³/min
- MMSft³/h
- MMSft³/d

Imperial units
- Sgal/s (imp)
- Sgal/min (imp)
- Sgal/h (imp)
- Sgal/d (imp)

Factory setting

Country-specific:
- Nl/h
- Sft³/h

Additional information

Selection

For an explanation of the abbreviated units: → 192

Corrected volume unit

Navigation

Expert → Sensor → System units → Corr. vol. unit (0575)

Description

Use this function to select the unit for the corrected volume.

Selection

SI units
- Nl
- Nhl
- Nm³
- Sl
- Sm³

US units
- Sft³
- MSft³
- MMSft³
- Sgal (us)
- Sbbl (us;liq.)
- Sbbl (us;oil)

Imperial units
- Sgal (imp)
- Sgal (us)
- Sbbl (us;liq.)

Factory setting

Country-specific:
- Nm³
- Sft³

Endress+Hauser
Date/time format

Navigation
Expert → Sensor → System units → Date/time format (2812)

Description
Use this function to select the desired time format for calibration history.

Selection
- dd.mm.yy hh:mm
- dd.mm.yy hh:mm am/pm
- mm/dd/yy hh:mm
- mm/dd/yy hh:mm am/pm

Factory setting
dd.mm.yy hh:mm

Additional information
Selection
For an explanation of the abbreviated units: → 192

3.2.3 "Process parameters" submenu

Navigation

Process parameters
- Filter options (6710)
- Flow damping (6661)
- Flow override (1839)
- Conductivity measurement (6514)
- Conductivity damping (1803)
- Conductivity temperature coefficient (1891)
- Temperature damping (1886)
- Reference density (1885)
- Low flow cut off
Filter options

Navigation
Expert → Sensor → Process param. → Filter options (6710)

Description
Use this function to select a filter option.

Selection
- Adaptive
- Adaptive CIP on
- Dynamic
- Dynamic CIP on
- Binomial
- Binomial CIP on

Factory setting
Binomial

Additional information
Description
The user can choose from a range of filter combinations which can optimize the measurement result depending on the application. Each change in the filter setting affects
the output signal of the measuring device. The response time of the output signal increases as the filter depth increases.

Selection

- **Standard**
 - Strong flow damping with a short output signal response time.
 - Some time is needed before a stable output signal can be generated.
 - Not suitable for pulsating flow as the average flow can be different here.

- **Dynamic**
 - Average flow damping with a delayed output signal response time.
 - The average flow is displayed correctly over a measuring interval determined over a long period.

- **Binomial**
 - Weak flow damping with a short output signal response time.
 - The average flow is displayed correctly over a measuring interval determined over a long period.

- **CIP**
 - This filter makes the **Standard** and **Dynamic** filter options additionally available.
 - If the CIP filter has detected a change in the medium (abrupt increase in the noise level, e.g. quickly changing medium conductivity values during CIP cleaning), flow damping is greatly increased and the raw value (before flow damping) is limited by the mean value (delimiter). This eliminates extremely high measured errors (up to several 100 m/s).
 - If the CIP filter is enabled, the response time of the entire measuring system increases and the output signal is delayed accordingly.

Examples

Possible applications for the filters

<table>
<thead>
<tr>
<th>Application</th>
<th>Standard</th>
<th>Standard CIP</th>
<th>Dynamic</th>
<th>Dynamic CIP</th>
<th>Binomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsating flow (flow is negative intermittently)</td>
<td>----</td>
<td>----</td>
<td>++</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Flow changes frequently (flow is dynamic)</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Clear signal, fast control loop (< 1 s)</td>
<td>--</td>
<td>--</td>
<td>++ 1)</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Poor signal, slow control loop (response time of a few seconds)</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Permanently bad signal</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Short and severe signal distortion after a while</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Replacement of a Promag 50/53: system damping Promag 400 = 0.5 * system damping Promag 50/53</td>
<td>++</td>
<td>++</td>
<td></td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Replacement of a Promag 10: system damping Promag 400 = system damping Promag 10 + 2</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a stable flow signal (no other requirements)</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Value of flow damping < 6
Flow damping

Description
Use this function to enter a value for flow damping. Reduction of the variability of the flow measured value (in relation to interference). For this purpose, the depth of the flow filter is adjusted: when the filter setting increases, the reaction time of the device also increases.

User entry
0 to 15

Factory setting
4

Additional information
Input range 0 to 15
- Value = 0: no damping
- Value = 1: minor damping
- Value = 15: strong damping

- The damping depends on the measuring period and the filter type selected.
- An increase or decrease in the damping depends on the application.

Effect
The damping affects the following variables of the device:
- Outputs
- Low flow cut off → 57
- Totalizers → 145

Flow override

Description
Use this function to select whether to interrupt the evaluation of measured values. This is useful for the cleaning processes of a pipeline, for example.

Selection
- Off
- On

Factory setting
Off

Additional information
Result
This setting affects all the functions and outputs of the measuring device.

Description
Flow override is active
- The 453 Flow override diagnostic message is output.
- Output values
 - Output: value at zero flow
 - Temperature: continues to be output
 - Totalizers 1-3: stop being totalized

The Flow override option can also be activated in the Status input submenu: Assign status input parameter.
Conductivity measurement

Navigation

Prerequisite

The **On** option is selected in the **Conductivity measurement** parameter (→ 55) parameter.

Description

Use this function to enable and disable conductivity measurement.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

For conductivity measurement to work, the medium must have a minimum conductivity of 5 µS/cm.

Conductivity damping

Navigation

Prerequisite

The **On** option is selected in the **Conductivity measurement** parameter (→ 55).

Description

Use this function to enter a time constant for conductivity damping (PT1 element).

User entry

0 to 999.9 s

Factory setting

0 s

Additional information

Description

The damping is performed by a PT1 element.

User entry

- Value = 0: no damping
- Value > 0: damping is increased

Damping is switched off if 0 is entered (factory setting).

2) Proportional behavior with first-order lag
Conductivity temperature coefficient

Navigation

[online manual link]

Prerequisite

The **Internal temperature sensor** option or the **External value** option is selected in the **Temperature source** parameter (→ 68).

Description

Use this function to enter the temperature coefficient for the conductivity.

User entry

Signed floating-point number

Factory setting

2.1 %/K

Temperature damping

Navigation

[online manual link]

Prerequisite

The **Internal temperature sensor** option or the **External value** option is selected in the **Temperature source** parameter (→ 68).

Description

Use this function to enter the time constant for temperature damping.

User entry

0 to 999.9 s

Factory setting

0 s

Reference density

Navigation

[online manual link]

Description

Use this function to enter a fixed value for the reference density.

User entry

Positive floating-point number

Factory setting

Country-specific:
- 1 kg/l
- 1 lb/ft³

Additional information

Dependency

[icon]

The unit is taken from the **Density unit** parameter (→ 48)
"Low flow cut off" submenu

Assign process variable (1837) → ⚖️ 57
On value low flow cutoff (1805) → ⚖️ 57
Off value low flow cutoff (1804) → ⚖️ 58
Pressure shock suppression (1806) → ⚖️ 58

Assign process variable

Description
Use this function to select the process variable for low flow cutoff detection.

Selection
- Off
- Volume flow
- Mass flow
- Corrected volume flow

Factory setting
Volume flow

On value low flow cutoff

Prerequisite
A process variable is selected in the Assign process variable parameter (→ ⚖️ 57).

Description
Use this function to enter a switch-on value for low flow cutoff. Low flow cutoff is activated if the value entered is not equal to 0 → ⚖️ 58.

User entry
Positive floating-point number

Factory setting
Depends on country and nominal diameter→ ⚖️ 188

Additional information
Dependency
The unit depends on the process variable selected in the Assign process variable parameter (→ ⚖️ 57).
Off value low flow cutoff

Navigation
Expert → Sensor → Process param. → Low flow cut off → Off value (1804)

Prerequisite
A process variable is selected in the Assign process variable parameter (→ 57).

Description
Use this function to enter a switch-off value for low flow cut off. The off value is entered as a positive hysteresis from the on value 57.

User entry
0 to 100.0 %

Factory setting
50 %

Additional information
Example

Pressure shock suppression

Navigation

Prerequisite
A process variable is selected in the Assign process variable parameter (→ 57).

Description
Use this function to enter the time interval for signal suppression (= active pressure shock suppression).

User entry
0 to 100 s

Factory setting
0 s

Additional information
Description
Pressure shock suppression is enabled
• Prerequisite:
 Flow rate < on-value of low flow cut off
• Output values
 • Flow displayed: 0
 • Totalizer: the totalizers are pegged at the last correct value
Pressure shock suppression is disabled

- Prerequisite: the time interval set in this function has elapsed.
- If the flow also exceeds the switch-off value for low flow cut off, the device starts processing the current flow value again and displays it.

Example

When closing a valve, momentarily strong fluid movements may occur in the pipeline, which are registered by the measuring system. These totalized flow values lead to a false totalizer status, particularly during batching processes.

![Diagram of flow and time]

Q Flow
3 Time
A Drip
B Pressure shock
C Pressure shock suppression active as per the time entered
D Pressure shock suppression inactive
1 Valve closes
2 Flow falls below the on-value of the low flow cut off; pressure shock suppression is activated
3 The time entered has elapsed; pressure shock suppression is deactivated
4 The actual flow value is processed again and output
5 On-value for low flow cut off
6 Off-value for low flow cut off

"Empty pipe detection" submenu

Navigation

- Empty pipe detection
 Assign process variable (1860) → 60
 Switch point empty pipe detection (6562) → 60
Description of device parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time empty pipe detection (1859)</td>
<td>60</td>
</tr>
<tr>
<td>New adjustment (6560)</td>
<td>61</td>
</tr>
<tr>
<td>Progress (6571)</td>
<td>61</td>
</tr>
<tr>
<td>Empty pipe adjust value (6527)</td>
<td>61</td>
</tr>
<tr>
<td>Full pipe adjust value (6548)</td>
<td>62</td>
</tr>
<tr>
<td>Measured value EPD (6559)</td>
<td>62</td>
</tr>
</tbody>
</table>

Assign process variable

Navigation

Description

Use this function to switch empty pipe detection on and off.

Selection

- Off
- On

Factory setting

Off

Switch point empty pipe detection

Navigation

- Expert → Sensor → Process param. → Empty pipe det. → Switch point EPD (6562)

Prerequisite

The **On** option is selected in the **Empty pipe detection** parameter (→ 60).

Description

Use this function to enter the percentage threshold value of the resistance in relation to the adjustment values.

User entry

0 to 100 %

Factory setting

50 %

Response time empty pipe detection

Navigation

Prerequisite

A process variable is selected in the **Assign process variable** parameter (→ 60).
Description
Use this function to enter the minimum length of time (debouncing time) the signal must be present for the ΔS862 Pipe empty diagnostic message to be triggered if the measuring pipe is empty or partially full.

User entry
0 to 100 s

Factory setting
1 s

New adjustment

Navigation

Prerequisite
The On option is selected in the Empty pipe detection parameter (→ 60).

Description
For selecting whether to perform an empty pipe or full pipe adjustment.

Selection
- Cancel
- Empty pipe adjust
- Full pipe adjust

Factory setting
Cancel

Progress

Navigation

Prerequisite
The On option is selected in the Empty pipe detection parameter (→ 60).

Description
Use this function to view the progress.

User interface
- Ok
- Busy
- Not ok

Empty pipe adjust value

Navigation
Expert → Sensor → Process param. → Empty pipe det. → Empty pipe value (6527)

Prerequisite
- In the Empty pipe detection parameter (→ 60), the On option is selected.
- Adjustment value > full pipe value.

Description
Displays the adjustment value when the measuring pipe is empty.

User interface
Positive floating-point number
Full pipe adjust value

Navigation

Prerequisite
- In the Empty pipe detection parameter (→ 60), the On option is selected.
- Adjustment value < empty pipe value.

Description
Displays the adjustment value when the measuring pipe is full.

User interface
Positive floating-point number

Measured value EPD

Navigation

Prerequisite
In the Empty pipe detection parameter (→ 60), the On option is selected.

Description
Displays the current measured value.

User interface
Positive floating-point number

“Electrode cleaning circuit” submenu

Navigation
Expert → Sensor → Process param. → ECC

<table>
<thead>
<tr>
<th>Electrode cleaning circuit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode cleaning circuit (6528)</td>
<td>→ 63</td>
</tr>
<tr>
<td>ECC duration (6555)</td>
<td>→ 63</td>
</tr>
<tr>
<td>ECC recovery time (6556)</td>
<td>→ 63</td>
</tr>
<tr>
<td>ECC cleaning cycle (6557)</td>
<td>→ 64</td>
</tr>
<tr>
<td>ECC polarity (6631)</td>
<td>→ 64</td>
</tr>
</tbody>
</table>
Electrode cleaning circuit

Navigation

Expert → Sensor → Process param. → ECC → ECC (6528)

Prerequisite

For the following order code:
"Application package", option EC "ECC electrode cleaning"

Description

Use this function to enable and disable cyclic electrode cleaning.

Selection

- Off
- On

Factory setting

Off

Additional information

Conductive deposits on the electrodes and on the walls of the measuring tube (e.g. magnetite) can falsify measurement values. The Electrode Cleaning Circuitry (ECC) was developed to prevent such conductive deposits developing in the vicinity of the electrodes. ECC functions as described above for all available electrode materials except tantalum. If tantalum is used as the electrode material, the ECC protects the electrode surface only against oxidation.

ECC duration

Navigation

Expert → Sensor → Process param. → ECC → ECC duration (6555)

Prerequisite

For the following order code:
"Application package", option EC "ECC electrode cleaning"

Description

Use this function to enter the duration of electrode cleaning in seconds.

User entry

0.01 to 30 s

Factory setting

2 s

ECC recovery time

Navigation

Expert → Sensor → Process param. → ECC → ECC recov. time (6556)

Prerequisite

For the following order code:
"Application package", option EC "ECC electrode cleaning"

Description

Use this function to enter the recovery time after electrode cleaning to prevent signal output interference. The current output values are frozen in the meanwhile.

User entry

1 to 600 s

Factory setting

5 s
ECC cleaning cycle

Navigation

Expert → Sensor → Process param. → ECC → ECC clean. cycle (6557)

Prerequisite

For the following order code:

Application package, option EC *ECC electrode cleaning*

Description

Use this function to enter the pause duration until the next electrode cleaning.

User entry

0.5 to 168 h

Factory setting

0.7 h

ECC polarity

Navigation

Expert → Sensor → Process param. → ECC → ECC polarity (6631)

Prerequisite

For the following order code:

Application package, option EC *ECC electrode cleaning*

Description

Displays the polarity of the electrode cleaning circuit.

User interface

- Positive
- Negative

Factory setting

Depends on the electrode material:

- Tantalum: **Negative** option
- Platinum, Alloy C22, stainless steel: **Positive** option

"Coating detection" submenu

Build-up detection is only available:

- In conjunction with the Promag W sensor
- In the compact device version (transmitter and sensor form a mechanical unit)
- For detailed information on build-up detection: see the Special Documentation for the **Heartbeat Verification + Monitoring** application package → 7

Navigation

<table>
<thead>
<tr>
<th>Build-up index</th>
<th>→ 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build-up detection</td>
<td>→ 65</td>
</tr>
<tr>
<td>Build-up detection damping</td>
<td>→ 65</td>
</tr>
<tr>
<td>Build-up index</td>
<td>→ 65</td>
</tr>
</tbody>
</table>
Build-up detection

Navigation

Expert → Sensor → Process param. → Build-up index → Build-up detect. (6734)

Description

Select mode for build-up index.

Selection

- Off
- Slow
- Standard
- Fast

Factory setting

Off

Build-up detection damping

Navigation

Expert → Sensor → Process param. → Build-up index → Build-up damping (6840)

Description

Enter damping value for build-up index.

Damping value:

- 0 = minimum damping
- 15 = maximum damping

The damping value should only be increased if the measured value is unstable.

User entry

0 to 15

Factory setting

0

Build-up index

Navigation

Expert → Sensor → Process param. → Build-up index → Build-up index (12111)

Description

Shows current build-up measured value.

User interface

0.0 to 100.0 %

Factory setting

0.0 %

Additional information

The formation of build-up is output as a percentage in the Build-up index value (→ 65) parameter. The higher the percentage, the thicker the build-up.
Build-up index value (→ 65) = 0%
- No build-up present
- Measuring tube as-delivered state (initial value)
- Measuring tube was cleaned thoroughly after formation of build-up

Build-up index value (→ 65) = 100%
- Value for the maximum measurable build-up thickness
- The thickness of the build-up at 100% varies depending on the process
- A value of 100% should not be equated with a blocked measuring tube

The percentage indicated in the Build-up index value (→ 65) parameter does not provide direct information about the absolute thickness or the composition of the build-up. Therefore, to make optimum use of the build-up detection function, it is necessary to first compare the formation of build-up in the process, as known from experience, with the associated Build-up index value (→ 65). The aim is to determine the Build-up index value (→ 65) at the time the cleaning is usually performed.

On the basis of the Build-up index value (→ 65) during cleaning, it is possible to make a valid assessment of the condition inside the measuring tube and to plan the cleaning using the build-up limit and build-up detection hysteresis parameters.

In addition, conclusions about possible effects on neighboring processes can be drawn from the Build-up index value (→ 65).

Build-up limit

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter limit value for the build-up index.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Factory setting</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Build-up limit hysteresis

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Enter hysteresis for build-up limit value. If the value for build-up detection hysteresis is higher than the Build-up limit (→ 66), the "Build-up detected" diagnostic information is not reset until the measuring tube has been cleaned and a restart has been performed.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 100 %</td>
</tr>
<tr>
<td>Factory setting</td>
<td>20 %</td>
</tr>
</tbody>
</table>
3.2.4 "External compensation" submenu

Navigation

Density source

Navigation
Expert → Sensor → External comp. → Density source (6615)

Description
Use this function to select the density source.

Selection
- Fixed density
- External density

Factory setting
Fixed density

External density

Navigation
Expert → Sensor → External comp. → External density (6630)

Prerequisite
The **External density** option is selected in the **Density source** parameter (→ 67).

Description
Displays the density read in from the external device.

User entry
Positive floating-point number

Additional information
Dependency
- The unit is taken from the **Density unit** parameter (→ 48)
Fixed density

Navigation
Expert → Sensor → External comp. → Fixed density (6623)

Prerequisite
The Fixed density option is selected in the Density source parameter (→ 67).

Description
Use this function to enter a fixed value for the density.

User entry
Positive floating-point number

Factory setting
Depends on country:
- 1000 kg/m³
- 62 lb/ft³

Additional information
Dependency

The unit is taken from the Density unit parameter (→ 48)

Temperature source

Navigation
Expert → Sensor → External comp. → Temp. source (6712)

Description
Use this function to select the temperature source.

Selection
- Internal temperature sensor *
- Off
- External value

Factory setting
Off

External temperature

Navigation

Prerequisite
The External value option is selected in the Temperature source parameter (→ 68).

Description
Displays the temperature read in from the external device.

User entry
Floating point number with sign

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 47)

* Visibility depends on order options or device settings
Reference temperature

Navigation
Expert → Sensor → External comp. → Ref. temperature (1816)

Prerequisite
The Fixed density option or External density option are selected in the Density source parameter (→ 67).

Description
Use this function to enter a reference temperature for calculating the reference density.

User interface
-273.15 to 99 999 °C

Factory setting
Country-specific:
- +20 °C
- +68 °F

Additional information
Dependency
The unit is taken from the Temperature unit parameter (→ 47)

Reference density calculation

\[\rho_n = \rho \cdot (1 + \alpha \cdot \Delta t + \beta \cdot \Delta t^2) \]

- \(\rho_n \): reference density
- \(\rho \): fluid density currently measured
- \(t \): fluid temperature currently measured
- \(t_N \): reference temperature at which the reference density is calculated (e.g. 20 °C)
- \(\Delta t \): \(t - t_N \)
- \(\alpha \): linear expansion coefficient of the fluid, unit = [1/K]; K = Kelvin
- \(\beta \): square expansion coefficient of the fluid, unit = [1/K²]

3.2.5 "Sensor adjustment" submenu

Navigation

Sensor adjustment

- Installation direction (1809)
 → 70

- Integration time (6533)
 → 70

- Measuring period (6536)
 → 70

- Process variable adjustment
 → 70
Installation direction

Navigation

Expert → Sensor → Sensor adjustm. → Install. direct. (1809)

Description

Use this function to change the sign of the medium flow direction.

Selection

- Forward flow
- Reverse flow

Factory setting

Forward flow

Additional information

Description

Before changing the sign: ascertain the actual direction of fluid flow with reference to the direction indicated by the arrow on the sensor nameplate.

Integration time

Navigation

Expert → Sensor → Sensor adjustm. → Integration time (6533)

Description

Displays the duration of the integration time.

Additional information

The duration of the measuring period should always be longer than the duration of the integration time.

User interface

1 to 65 ms

Measuring period

Navigation

Expert → Sensor → Sensor adjustm. → Measuring period (6536)

Description

Display the time of a full measuring period.

Additional information

The duration of the measuring period should always be longer than the duration of the integration time.

User interface

2 to 1000 ms

"Process variable adjustment" submenu

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust

Process variable adjustment

Volume flow offset (1831)
Volume flow factor

Navigation

Navigation:

Description

Use this function to enter a quantity factor (without time) for the volume flow. This multiplication factor is applied over the volume flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset
Volume flow offset

Navigation

Description

Use this function to enter the zero point shift for the volume flow trim. The volume flow unit on which the shift is based is m³/s.

User entry

Signed floating-point number

Factory setting

0 m³/s

Additional information

Description

Corrected value = (factor × value) + offset

Mass flow factor

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Mass flow factor (1846)

Description

Use this function to enter a quantity factor (without time) for the mass flow. This multiplication factor is applied over the mass flow range.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = (factor × value) + offset

Mass flow offset

Navigation

Description

Use this function to enter the zero point shift for the mass flow trim. The mass flow unit on which the shift is based is kg/s.

User entry

Signed floating-point number

Factory setting

0 kg/s

Additional information

Description

Corrected value = (factor × value) + offset
Conductivity offset

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Conduct. offset (1848)

Prerequisite
The **On** option is selected in the **Conductivity measurement** parameter (→ 55).

Description
Use this function to enter the zero point shift for the conductivity trim. The conductivity unit on which the shift is based is S/m.

User entry
Signed floating-point number

Factory setting
0 S/m

Additional information
- **Description**

 Corrected value = (factor × value) + offset

Conductivity factor

Navigation
- Expert → Sensor → Sensor adjustm. → Variable adjust → Conduct. factor (1849)

Prerequisite
The **On** option is selected in the **Conductivity measurement** parameter (→ 55).

Description
Use this function to enter a quantity factor for the conductivity. This multiplication factor is applied over the conductivity range.

User entry
Positive floating-point number

Factory setting
1

Additional information
- **Description**

 Corrected value = (factor × value) + offset

Corrected volume flow offset

Navigation

Description
Use this function to enter the zero point shift for the corrected volume flow trim. The corrected volume flow unit on which the shift is based is 1 Nm³/s.

User entry
Signed floating-point number

Factory setting
0 Nm³/s

Additional information
- **Description**

 Corrected value = (factor × value) + offset
Corrected volume flow factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the corrected volume flow. This multiplication factor is applied over the corrected volume flow range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset

Temperature offset

Navigation

Prerequisite
The temperature is read into the flowmeter from an external device.

Description
Use this function to enter the zero point shift for the temperature trim. The temperature unit on which the shift is based is 1 K.

User entry
Signed floating-point number

Factory setting
0 K

Additional information
Description
Corrected value = (factor × value) + offset

Temperature factor

Navigation

Prerequisite
The temperature is read into the flowmeter from an external device.

Description
Use this function to enter a quantity factor (without time) for the temperature. This multiplication factor is applied over the temperature range.

User entry
Positive floating-point number

Factory setting
1

Additional information
Description
Corrected value = (factor × value) + offset
Corrected conductivity offset

Navigation

Prerequisite

The On option is selected in the Conductivity measurement parameter (→ 55) parameter.

Description

Use this function to enter the zero point shift to trim the corrected conductivity. The conductivity unit on which the shift is based is μS/cm.

User entry

Signed floating-point number

Factory setting

0 S/m

Additional information

Description

Corrected value = \((factor \times value) + offset\)

Corrected conductivity factor

Navigation

Prerequisite

The On option is selected in the Conductivity measurement parameter (→ 55) parameter.

Description

Use this function to enter a quantity factor for the corrected conductivity. In each case, this factor refers to the conductivity in μS/cm.

User entry

Positive floating-point number

Factory setting

1

Additional information

Description

Corrected value = \((factor \times value) + offset\)

Flow velocity offset

Navigation

Expert → Sensor → Sensor adjustm. → Variable adjust → Flow vel. offset (1879)

Description

Use this function to enter the zero point shift for the flow velocity trim. The flow velocity unit on which the shift is based is m/s.

User entry

Signed floating-point number

Factory setting

0 m/s
Description of device parameters

Additional information

Description

Corrected value = (factor × value) + offset

Flow velocity factor

Navigation

Description
Use this function to enter a quantity factor (without time) for the flow velocity. This multiplication factor is applied over the flow velocity range.

User entry
Positive floating-point number

Factory setting
1

Additional information

Description

Corrected value = (factor × value) + offset

3.2.6 "Calibration" submenu

Navigation
Expert → Sensor → Calibration

![Calibration menu]

- Nominal diameter (2807) → 76
- Calibration factor (6522) → 77
- Zero point (6546) → 77
- Conductivity calibration factor (6718) → 77

Nominal diameter

Navigation
Expert → Sensor → Calibration → Nominal diameter (2807)

Description
Displays the nominal diameter of the sensor.

User interface
DNxx / x'

Factory setting
Depends on the size of the sensor
Additional information

The value is also specified on the sensor nameplate.

Calibration factor

Navigation

Expert → Sensor → Calibration → Cal. factor (6522)

Description

Displays the current calibration factor for the sensor.

User interface

Positive floating-point number

Factory setting

Depends on nominal diameter and calibration.

Zero point

Navigation

Expert → Sensor → Calibration → Zero point (6546)

Description

This function shows the zero point correction value for the sensor.

User interface

Signed floating-point number

Factory setting

Depends on nominal diameter and calibration

Conductivity calibration factor

Navigation

Expert → Sensor → Calibration → Cond. cal. fact. (6718)

Prerequisite

The On option is selected in the Conductivity measurement parameter (→ 55) parameter.

Description

Displays the calibration factor for the conductivity measurement.

User interface

0.01 to 10000
3.3 "Communication" submenu

Navigation
Expert → Communication

- PROFIBUS DP configuration → 78
- PROFIBUS DP info → 80
- Physical block → 82
- Address shifting configuration → 91
- Web server → 91
- WLAN settings → 95

3.3.1 "PROFIBUS DP configuration" submenu

Navigation
Expert → Communication → PROFIBUS DP conf

- PROFIBUS DP configuration
 - Address mode (1468) → 78
 - Device address (1462) → 79
 - Ident number selector (1461) → 79

Address mode

Navigation
Expert → Communication → PROFIBUS DP conf → Address mode (1468)

Description
Displays the configured address mode.

User interface
- Hardware
- Software

Factory setting
Software

Additional information
Description
For detailed information, see the "Setting the device address" section of the Operating Instructions.
Device address

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 通信 → PROFIBUS DP 设置 → 设备地址 (1462)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>使用此功能输入设备地址。</td>
</tr>
<tr>
<td>User entry</td>
<td>0 到 126</td>
</tr>
<tr>
<td>Factory setting</td>
<td>126</td>
</tr>
</tbody>
</table>
| Additional information | **Description**
 设备地址必须总是为 PROFIBUS 设备配置。有效的地址范围是 1 到 126。在 PROFIBUS 网络中，每个地址只能分配一次。如果地址配置不正确，设备将不被主设备识别。所有测量设备出厂时都设置为地址 126，并带有软件地址方法。
 显示配置的地址模式：**地址模式** 参数 (→ 78) |

Ident number selector

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 通信 → PROFIBUS DP 设置 → 设备标识符选择 (1461)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>使用此功能选择设备主文件 (GSD)。</td>
</tr>
</tbody>
</table>
| Selection | - 自动模式
 - 制造商
 - Promag 50 (0x1546)
 - Promag 53 (0x1526)
 - Proﬁle
 - 1 AI，1 Totalizer (0x9740)
 - 2 AI，1 Totalizer (0x9741) |
| Factory setting | 自动模式 |
| Additional information | **Description**
 为了将现场设备集成到总线系统中，PROFIBUS 系统需要设备参数的描述，如输出数据、输入数据、数据格式、数据量和支持的传输速率。这些数据在设备主文件 (GSD) 中提供，当通信系统被委派时，会提供给 PROFIBUS 主设备。

Bus termination

<table>
<thead>
<tr>
<th>Navigation</th>
<th>专家 → 通信 → PROFIBUS DP 设置 → 总线终止 (1431)</th>
</tr>
</thead>
</table>
| User interface | - 关
 - 开 |

Endress+Hauser

79
3.3.2 "PROFIBUS DP info" submenu

Navigation

Expert → Communication → PROFIBUS DP info

Status PROFIBUS Master Config (1465)	▶	80
PROFIBUS ident number (1464)	▶	80
Profile version (1463)	▶	81
Baudrate (1504)	▶	81
Master availability (1517)	▶	81

Status PROFIBUS Master Config

Navigation

Expert → Communication → PROFIBUS DP info → Stat Master Conf (1465)

Description

For displaying the status of the PROFIBUS Master configuration.

User interface

- Active
- Not active

Factory setting

Not active

PROFIBUS ident number

Navigation

Expert → Communication → PROFIBUS DP info → Ident number (1464)

Description

For displaying the PROFIBUS identification number.

User interface

0 to FFFF

Factory setting

0x1562
Profile version

Navigation

Expert → Communication → PROFIBUS DP info → Profile version (1463)

Description

Displays the profile version.

User interface

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting

3.02

Baudrate

Navigation

Expert → Communication → PROFIBUS DP info → Baudrate (1504)

Description

Displays the transmission rate.

User interface

- Not available
- 9.6 kBaud
- 19.2 kBaud
- 45.45 kBaud
- 93.75 kBaud
- 187.5 kBaud
- 500 kBaud
- 1.5 MBaud
- 3 MBaud
- 6 MBaud
- 12 MBaud

Factory setting

9.6 kBaud

Master availability

Navigation

Expert → Communication → PROFIBUS DP info → Master avail. (1517)

Description

Displays whether or not a PROFIBUS master is present in the network.

User interface

- No
- Yes

Factory setting

No
3.3.3 "Physical block" submenu

Navigation

>| Expert | Communication | Physical block |

<table>
<thead>
<tr>
<th>Physical block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (1496)</td>
</tr>
<tr>
<td>Static revision (1495)</td>
</tr>
<tr>
<td>Strategy (1494)</td>
</tr>
<tr>
<td>Alert key (1473)</td>
</tr>
<tr>
<td>Target mode (1497)</td>
</tr>
<tr>
<td>Mode block actual (1472)</td>
</tr>
<tr>
<td>Mode block permitted (1493)</td>
</tr>
<tr>
<td>Mode block normal (1492)</td>
</tr>
<tr>
<td>Alarm summary (1474)</td>
</tr>
<tr>
<td>Software revision (1478)</td>
</tr>
<tr>
<td>Hardware revision (1479)</td>
</tr>
<tr>
<td>Manufacturer ID (1502)</td>
</tr>
<tr>
<td>Device ID (1480)</td>
</tr>
<tr>
<td>Serial number (1481)</td>
</tr>
<tr>
<td>Diagnostics (1482)</td>
</tr>
<tr>
<td>Diagnostics mask (1484)</td>
</tr>
<tr>
<td>Device certification (1486)</td>
</tr>
<tr>
<td>Factory reset (1488)</td>
</tr>
<tr>
<td>Descriptor (1489)</td>
</tr>
<tr>
<td>Device message (1490)</td>
</tr>
<tr>
<td>Device install date (1491)</td>
</tr>
<tr>
<td>Ident number selector (1461)</td>
</tr>
</tbody>
</table>
Device tag

Navigation
- Expert → Communication → Physical block → Device tag (1496)

Description
Use this function to enter the name for the measuring point.

User entry
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Promag 400 DP

Static revision

Navigation
- Expert → Communication → Physical block → Static revision (1495)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description

Static parameters are parameters that are not changed by the process.

Strategy

Navigation
- Expert → Communication → Physical block → Strategy (1494)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0
Alert key

Navigation

Expert → Communication → Physical block → Alert key (1473)

Description

Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry

0 to 0xFF

Factory setting

0

Target mode

Navigation

Expert → Communication → Physical block → Target mode (1497)

Description

Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface

- Auto
- Out of service

Mode block actual

Navigation

Expert → Communication → Physical block → Mode block act (1472)

Description

Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 84).

User interface

- Auto
- Out of service

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 84)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Communication → Physical block → Mode block perm (1493)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 84) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.
Mode block normal

Navigation

Expert → Communication → Physical block → Mode blk norm (1492)

Description
Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface
- Auto
- Out of service

Alarm summary

Navigation

Expert → Communication → Physical block → Alarm summary (1474)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface
- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Physical Block function block.

User interface
- Discrete alarm
 - Alarm or warning message with a discrete value.
- Alarm state HiHi limit
 - Upper alarm limit
- Alarm state Hi limit
 - Upper warning limit
- Alarm state LoLo limit
 - Lower alarm limit
- Alarm state Lo limit
 - Lower warning limit
- Update Event

This option constitutes a special alarm that is triggered if a static parameter is changed. If such a parameter is modified, the associated bit is set in the Alarm summary parameter (→ 85), the output of the block switches to ‘GOOD (NC) Active Update Event’ (if the current status has a lower priority than this), and the block remains in this state for a duration of 10 s. The block then reverts to the normal state (the output has the last status and the Update Event option bit in the Alarm summary parameter (→ 85) is deleted again).
Software revision

Navigation
Expert → Communication → Physical block → Software rev. (1478)

Description
Displays the firmware version of the measuring device.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Hardware revision

Navigation
Expert → Communication → Physical block → Hardware rev. (1479)

Description
Displays the hardware revision of the measuring device.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Manufacturer ID

Navigation
Expert → Communication → Physical block → Manufacturer ID (1502)

Description
Displays the manufacturer ID with which the measuring device has been registered with the PNO (PROFIBUS User Organization).

User interface
0 to FFFF

Factory setting
0x11

Device ID

Navigation
Expert → Communication → Physical block → Device ID (1480)

Description
Displays the device ID for identifying the measuring device in a PROFIBUS network.

User interface
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
Promag 400 DP
Serial number

Navigation

Expert → Communication → Physical block → Serial number (1481)

Description

Displays the serial number of the measuring device. It can also be found on the nameplate of the sensor and transmitter.

User interface

Max. 11-digit character string comprising letters and numbers.

Additional information

Description

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Diagnostics

Navigation

Expert → Communication → Physical block → Diagnostics (1482)

Description

Displays the diagnostic messages.

User interface

- Hardware failure electronics
- Hardware failure mechanics
- Temperature motor
- Electronic temperature
- Memory checksum error
- Measurement error
- Device not initialized
- Initialization error
- Zero point error
- Power supply
- Configuration invalid
- On warmstart
- On coldstart
- Maintenance required
- Characterization invalid
- Ident number violation
- More information available
- Maintenance alarm
- Maintenance demanded
- Function check or simulation
- Invalid process condition

Diagnostics mask

Navigation

Expert → Communication → Physical block → Diagnostics mask (1484)

Description

Displays the diagnostic messages supported by the measuring device.
User interface

- Hardware failure electronics
- Hardware failure mechanics
- Temperature motor
- Electronic temperature
- Memory checksum error
- Measurement error
- Device not initialized
- Initialization error
- Zero point error
- Power supply
- Configuration invalid
- On warmstart
- On coldstart
- Maintenance required
- Characterization invalid
- Ident number violation
- More information available
- Maintenance alarm
- Maintenance demanded
- Function check or simulation
- Invalid process condition

Device certification

Navigation

Expert → Communication → Physical block → Device certific. (1486)

Description
Displays certificates of the measuring device, e.g. Ex certificate.

User interface

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory reset

Navigation

Expert → Communication → Physical block → Factory reset (1488)

Description
Use this function to reset a certain set of parameters in a block.

Selection

- to defaults *
- warmstart device
- reset bus address
- Cancel

Factory setting

Cancel

* Visibility depends on order options or device settings
Descriptor

Navigation

Expert → Communication → Physical block → Descriptor (1489)

Description
Use this function to enter a user-specific string to describe the device within the application.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Device message

Navigation

Expert → Communication → Physical block → Device message (1490)

Description
Use this function to enter a user-definable message (a string) to describe the device within the application or in the plant.

User entry
Max. 32 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (z.B. @, %, /).

Device install date

Navigation

Expert → Communication → Physical block → Device inst.date (1491)

Description
Use this function to enter the date of installation of the device.

User entry
Max. 16 Zeichen wie Buchstaben, Zahlen oder Sonderzeichen (z.B. @, %, /).

Ident number selector

Navigation

Expert → Communication → Physical block → Ident num select (1461)

Description
Use this function to select the device master file (GSD).

Selection
- Automatic mode
- Manufacturer
- Promag 50 (0x1546)
- Promag 53 (0x1526)
- Profile
- 1 AI, 1 Totalizer (0x9740)
- 2 AI, 1 Totalizer (0x9741)

Factory setting
Automatic mode

Additional information

In order to integrate the field devices into the bus system, the PROFIBUS system needs a description of the device parameters, such as output data, input data, data format, data...
volume and supported transmission rate. These data are available in the device master file (GSD) which is provided to the PROFIBUS Master when the communication system is commissioned.

Hardware lock

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Hardware lock (1499)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the hardware write protection.</td>
</tr>
</tbody>
</table>
| User interface | • Unprotected
 • Protected |

Additional information

Description

Indicates whether it is possible to write-access the measuring device via PROFIBUS (acyclic data transmission, e.g. via the “FieldCare” operating program).

ℹ️ For detailed information on hardware write protection, see the 'Write protection via write protection switch' section of the Operating Instructions.

User interface

- **Unprotected**
 - Write access via PROFIBUS is possible (acyclic data transmission).
- **Protected**
 - Write access via PROFIBUS is locked (acyclic data transmission).

Feature supported

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Feature support (1477)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the PROFIBUS features that are supported by the measuring device.</td>
</tr>
</tbody>
</table>
| User interface | • Condensed status
 • Classic status diagnosis
 • Data exchange broadcast
 • MS1 application relationship
 • PROFIsafe communication |

Feature enabled

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Communication → Physical block → Feature enabled (1476)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the PROFIBUS features that are enabled in the measuring device.</td>
</tr>
</tbody>
</table>
User interface
- Condensed status
- Classic status diagnosis
- Data exchange broadcast
- MS1 application relationship
- PROFIsafe communication

Condensed status diagnostic

Navigation
Expert → Communication → Physical block → Condensed status (1500)

Description
Use this function to switch the condensed status diagnostic on and off.

Selection
- Off
- On

Factory setting
On

3.3.4 "Address shifting configuration" submenu

For detailed information on acyclic communication, see the "System integration" – "Address shifting configuration" section of the Operating Instructions for the device → 7

Navigation
Expert → Communication → Addr.shift conf.

- **Address shifting configuration**
 - Slot shifting 1...16
 - Index shifting 1...16

3.3.5 "Web server" submenu

Navigation
Expert → Communication → Web server

- **Web server**
 - Web server language (7221) → 92
 - MAC address (7214) → 92
 - DHCP client (7212) → 93
 - IP address (7209) → 93
Web server language

Navigation

Expert → Communication → Web server → Webserv.language (7221)

Description

Use this function to select the Web server language setting.

Selection

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- العربية (Arabic)*
- Bahasa Indonesia
- ภาษาไทย (Thai)*
- tiếng Việt (Vietnamese)
- čeština (Czech)

Factory setting

English

MAC address

Navigation

Expert → Communication → Web server → MAC Address (7214)

Description

Displays the MAC 3) address of the measuring device.

User interface

Unique 12-digit character string comprising letters and numbers

Factory setting

Each measuring device is given an individual address.

* Visibility depends on order options or device settings
3) Media Access Control
Additional information

Example
For the display format
00:07:05:10:01:5F

DHCP client

Navigation
Expert → Communication → Web server → DHCP client (7212)

Description
Use this function to activate and deactivate the DHCP client functionality.

Selection
- Off
- On

Factory setting
On

Additional information

Effect
If the DHCP client functionality of the web server is selected, the IP address (→ 93), Subnet mask (→ 93) and Default gateway (→ 94) are set automatically.

- Identification is via the MAC address of the measuring device.
- The IP address (→ 93) in the IP address parameter (→ 93) is ignored as long as the DHCP client parameter (→ 93) is active. This is also the case, in particular, if the DHCP server cannot be reached. The IP address (→ 93) in the parameter of the same name is only used if the DHCP client parameter (→ 93) is inactive.

IP address

Navigation
Expert → Communication → Web server → IP address (7209)

Description
Display or enter the IP address of the Web server integrated in the measuring device.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
192.168.1.212

Subnet mask

Navigation
Expert → Communication → Web server → Subnet mask (7211)

Description
Display or enter the subnet mask.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0
Default gateway

Navigation	Expert → Communication → Web server → Default gateway (7210)
Description	Display or enter the Default gateway (→ 94).
User entry	4 octet: 0 to 255 (in the particular octet)
Factory setting	0.0.0.0

Web server functionality

Navigation	Expert → Communication → Web server → Webserver funct. (7222)
Description	Use this function to switch the Web server on and off.
Selection	Off, On
Factory setting	On

Additional information

Once disabled, the Web server functionality can only be re-enabled via or the operating tool FieldCare.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The web server is completely disabled. Port 80 is locked.</td>
</tr>
<tr>
<td>On</td>
<td>The complete functionality of the web server is available. JavaScript is used. The password is transferred in an encrypted state. Any change to the password is also transferred in an encrypted state.</td>
</tr>
</tbody>
</table>

Login page

Navigation	Expert → Communication → Web server → Login page (7273)
Description	Use this function to select the format of the login page.
Selection	Without header, With header
Factory setting	With header
3.3.6 "WLAN settings" wizard

Navigation
[Expert → Communication → WLAN settings]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN (2702)</td>
<td>96</td>
</tr>
<tr>
<td>WLAN mode (2717)</td>
<td>96</td>
</tr>
<tr>
<td>SSID name (2714)</td>
<td>96</td>
</tr>
<tr>
<td>Network security (2705)</td>
<td>96</td>
</tr>
<tr>
<td>Security identification (2718)</td>
<td>97</td>
</tr>
<tr>
<td>User name (2715)</td>
<td>97</td>
</tr>
<tr>
<td>WLAN password (2716)</td>
<td>97</td>
</tr>
<tr>
<td>WLAN IP address (2711)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN subnet mask (2709)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN passphrase (2706)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN MAC address (2703)</td>
<td>98</td>
</tr>
<tr>
<td>Assign SSID name (2708)</td>
<td>99</td>
</tr>
<tr>
<td>SSID name (2707)</td>
<td>99</td>
</tr>
<tr>
<td>2.4 GHz WLAN channel (2704)</td>
<td>99</td>
</tr>
<tr>
<td>Select antenna (2713)</td>
<td>100</td>
</tr>
<tr>
<td>Connection state (2722)</td>
<td>100</td>
</tr>
<tr>
<td>Received signal strength (2721)</td>
<td>100</td>
</tr>
<tr>
<td>WLAN IP address (2711)</td>
<td>98</td>
</tr>
<tr>
<td>Gateway IP address (2719)</td>
<td>101</td>
</tr>
<tr>
<td>IP address domain name server (2720)</td>
<td>101</td>
</tr>
</tbody>
</table>
Description of device parameters

WLAN

Navigation
Expert → Communication → WLAN settings → WLAN (2702)

Description
Use this function to enable and disable the WLAN connection.

Selection
- Disable
- Enable

Factory setting
Enable

WLAN mode

Navigation
Expert → Communication → WLAN settings → WLAN mode (2717)

Description
Use this function to select the WLAN mode.

Selection
WLAN access point

Factory setting
WLAN access point

SSID name

Navigation
Expert → Communication → WLAN settings → SSID name (2714)

Prerequisite
The client is activated.

Description
Use this function to enter the user-defined SSID name (max. 32 characters) of the WLAN network.

User entry
-

Factory setting
-

Network security

Navigation
Expert → Communication → WLAN settings → Network security (2705)

Description
Use this function to select the type of security for the WLAN interface.
Selection

- Unsecured
- WPA2-PSK
- EAP-PEAP with MSCHAPv2 *
- EAP-PEAP MSCHAPv2 no server authentic. *
- EAP-TLS *

Factory setting

WPA2-PSK

Additional information

Selection

- Unsecured
 Access the WLAN connection without identification.
- WPA2-PSK
 Access the WLAN connection with a network key.

Security identification

Navigation

Expert → Communication → WLAN settings → Sec. identific. (2718)

Description

Use this function to select the security settings (download via the menu: Data Management > Security > Download WLAN).

User interface

- Trusted issuer certificate
- Device certificate
- Device private key

User name

Navigation

Expert → Communication → WLAN settings → User name (2715)

Description

Use this function to enter the username of the WLAN network.

User entry

–

Factory setting

–

WLAN password

Navigation

Expert → Communication → WLAN settings → WLAN password (2716)

Description

Use this function to enter the WLAN password for the WLAN network.

User entry

–

Factory setting

–

* Visibility depends on order options or device settings
WLAN IP address

Navigation
Expert → Communication → WLAN settings → WLAN IP address (2711)

Description
Use this function to enter the IP address of the measuring device’s WLAN connection.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
192.168.1.212

WLAN MAC address

Navigation
Expert → Communication → WLAN settings → WLAN MAC address (2703)

Description
Displays the MAC address of the measuring device.

User interface
Unique 12-digit character string comprising letters and numbers

Factory setting
Each measuring device is given an individual address.

Additional information
Example
For the display format
00:07:05:10:01:5F

WLAN subnet mask

Navigation
Expert → Communication → WLAN settings → WLAN subnet mask (2709)

Description
Use this function to enter the subnet mask.

User entry
4 octet: 0 to 255 (in the particular octet)

Factory setting
255.255.255.0

WLAN passphrase

Navigation
Expert → Communication → WLAN settings → WLAN passphrase (2706)

Prerequisite
The WPA2-PSK option is selected in the Security type parameter (→ 96).

Description
Use this function to enter the network key.

4) Media Access Control
Proline Promag 400 PROFIBUS DP

User entry
8 to 32-digit character string comprising numbers, letters and special characters (without spaces)

Factory setting
Serial number of the measuring device (e.g. L100A802000)

Assign SSID name

Navigation
Expert → Communication → WLAN settings → Assign SSID name (2708)

Description
Use this function to select which name is used for the SSID.

Selection
- Device tag
- User-defined

Factory setting
User-defined

Additional information

- **Selection**
 - Device tag
 - The device tag name is used as the SSID.
 - User-defined
 - A user-defined name is used as the SSID.

SSID name

Navigation
Expert → Communication → WLAN settings → SSID name (2707)

Prerequisite
- The **User-defined** option is selected in the Assign SSID name parameter (→ 99).
- The **WLAN access point** option is selected in the **WLAN mode** parameter (→ 96).

Description
Use this function to enter a user-defined SSID name.

User entry
Max. 32-digit character string comprising numbers, letters and special characters

Factory setting

2.4 GHz WLAN channel

Navigation
Expert → Communication → WLAN settings → WLAN channel (2704)

Description
Use this function to enter the 2.4 GHz WLAN channel.

User entry
1 to 11

Factory setting
6

5) Service Set Identifier
Additional information

Description

- It is only necessary to enter a 2.4 GHz WLAN channel if multiple WLAN devices are in use.
- If just one measuring device is in use, it is recommended to keep the factory setting.

Select antenna

Navigation

Expert → Communication → WLAN settings → Select antenna (2713)

Description

Use this function to select whether the external or internal antenna is used for reception.

Selection

- External antenna
- Internal antenna

Factory setting

Internal antenna

Connection state

Navigation

Expert → Communication → WLAN settings → Connection state (2722)

Description

The connection status is displayed.

User interface

- Connected
- Not connected

Factory setting

Not connected

Received signal strength

Navigation

Expert → Communication → WLAN settings → Rec.sig.strength (2721)

Description

Displays the signal strength received.

User interface

- Low
- Medium
- High

Factory setting

High
Gateway IP address

Navigation

Expert → Communication → WLAN settings → Gateway IP addr. (2719)

Description

Use this function to enter the IP address of the gateway.

User interface

Character string comprising numbers, letters and special characters

Factory setting

192.168.1.212

IP address domain name server

Navigation

Expert → Communication → WLAN settings → IP address DNS (2720)

Description

Use this function to enter the IP address of the domain name server.

User interface

Character string comprising numbers, letters and special characters

Factory setting

192.168.1.212

3.4 "Analog inputs" submenu

Navigation

Expert → Analog inputs

![Analog inputs](#)

3.4.1 "Analog input 1 to n" submenu

Navigation

Expert → Analog inputs → Analog input 1 to n

![Analog input 1 to n](#)

- Channel (1561–1 to n)
- PV filter time (1524–1 to n)
- Fail-safe type (1525–1 to n)
- Fail-safe value (1526–1 to n)
- Out value (1552–1 to n)
Out status (1564–1 to n) → 104
Out status (1549–1 to n) → 104

Channel

Navigation
Expert → Analog inputs → Analog input 1 to n → Channel (1561–1 to n)

Description
For selecting the process variable.

Selection
- Volume flow
- Mass flow
- Corrected volume flow
- Flow velocity
- Conductivity
- Corrected conductivity
- Temperature
- Electronics temperature
- Noise
- Coil current shot time
- Reference electrode potential against PE
- Build-up index
- Test point 1
- Test point 2
- Test point 3

Factory setting
Volume flow

PV filter time

Navigation
Expert → Analog inputs → Analog input 1 to n → PV filter time (1524–1 to n)

Description
Use this function to enter a time to suppress signal peaks. During the specified time the Analog input does not respond to an erratic increase in the process variable.

User entry
Positive floating-point number

Factory setting
0

* Visibility depends on order options or device settings
Fail-safe type

Navigation
- Expert → Analog inputs → Analog input 1 to n → Fail-safe type (1525–1 to n)

Description
Use this function to select the failure mode.

Selection
- Fail-safe value
- Fallback value
- Off

Factory setting
Off

Additional information
Selection
If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- Fail-safe value
 A substitute value is used. This is specified in the **Fail-safe value** parameter (→ 103).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail-safe value

Navigation
- Expert → Analog inputs → Analog input 1 to n → Fail-safe value (1526–1 to n)

Prerequisite
In **Fail-safe type** parameter (→ 103), the **Fail-safe value** option is selected.

Description
Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 103)) in the event of an error.

User entry
Signed floating-point number

Factory setting
0

Out value

Navigation
- Expert → Analog inputs → Analog input 1 to n → Out value (1552–1 to n)

Prerequisite
In **Target mode** parameter (→ 105), the **Auto** option is selected.

Description
Displays the analog value which is calculated when the function is executed.

User interface
Signed floating-point number
Description of device parameters

Out status

Navigation
- Expert → Analog inputs → Analog input 1 to n → Out status (1564–1 to n)

Description
Displays the current output status (Good, Bad, Uncertain).

User interface
- Good
- Uncertain
- Bad

Prerequisite

In **Target mode** parameter (→ 105), the **Auto** option is selected.

Description
Displays the current output status (hex value).

User interface
0 to 0xFF

Tag description

Navigation
- Expert → Analog inputs → Analog input 1 to n → Tag description (1562–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation
- Expert → Analog inputs → Analog input 1 to n → Static revision (1560–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description
- Static parameters are parameters that are not changed by the process.
Strategy

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Strategy (1559–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to FFFF</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Alert key

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Alert key (1522–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 0xFF</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Target mode

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Target mode (1563–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.</td>
</tr>
</tbody>
</table>
| User interface | - Auto
- Man
- Out of service |

Mode block actual

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Mode block act (1521–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 105).</td>
</tr>
</tbody>
</table>
| User interface | - Auto
- Man
- Out of service |
Description of device parameters

Proline Promag 400 PROFIBUS DP

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 105)) indicates whether it was possible to reach the target mode.

<table>
<thead>
<tr>
<th>Mode block permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode block normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **User interface** | • Auto
• Man
• Out of service |

<table>
<thead>
<tr>
<th>Alarm summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>
| **User interface** | • Discrete alarm
• Alarm state HiHi limit
• Alarm state Hi limit
• Alarm state LoLo limit
• Alarm state Lo limit
• Update Event |

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Inputs function block.
Batch ID

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch ID (1533–1 to n)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch operation (1534–1 to n)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch phase

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch phase (1535–1 to n)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch Recipe Unit Procedure

Navigation
- Expert → Analog inputs → Analog input 1 to n → Batch Recipe (1536–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0
Additional information

Description

The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

PV scale lower range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → PVscale lo range (1554–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

PV scale upper range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → PVscale up range (1555–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Out scale lower range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Out scale low (1548–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the lower value range for the output value in system units.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Out scale upper range

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog inputs → Analog input 1 to n → Out scale up (1551–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the upper value range for the output value in system units.</td>
</tr>
</tbody>
</table>
Lin type

| **User entry** | Signed floating-point number |
| **Factory setting** | 100.0 |

Navigation
Expert → Analog inputs → Analog input 1 to n → Lin type (1523–1 to n)

Description
Use this function to switch off the linearization type for the input value.

Selection
Off

Factory setting
Off

Out unit

| **User entry** | 0 to 65535 |
| **Factory setting** | 1997 |

Navigation
Expert → Analog inputs → Analog input 1 to n → Out unit (1550–1 to n)

Description
Use this function to enter a numerical code (hex) for the system unit.

Out decimal point

| **User entry** | 0 to 7 |
| **Factory setting** | 0 |

Navigation
Expert → Analog inputs → Analog input 1 to n → Out dec_point (1547–1 to n)

Description
Use this function to enter the maximum number of decimal places that are displayed for the output value.

Alarm hysteresis

| **User entry** | Signed floating-point number |

Navigation
Expert → Analog inputs → Analog input 1 to n → Alarm hysteresis (1527–1 to n)

Description
Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.
Hi Hi Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi Hi Lim (1528–1 to n)

Description
Use this function to enter the value for the upper alarm limit (Hi Hi alarm value parameter (→ 111)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information

Description
If the output value Out value (→ 103) exceeds this limit value, the Hi Hi alarm state parameter (→ 112) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the Out scale lower range parameter (→ 108) and Out scale upper range parameter (→ 108).

Hi Lim

Navigation
Expert → Analog inputs → Analog input 1 to n → Hi Lim (1529–1 to n)

Description
Use this function to enter the value for the upper warning limit (Hi alarm value parameter (→ 112)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number

Additional information

Description
If the output value Out value (→ 103) exceeds this limit value, the Hi alarm state parameter (→ 112) is output.

User entry
The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the Out scale lower range parameter (→ 108) and Out scale upper range parameter (→ 108).
Lo Lim

Navigation

Expert → Analog inputs → Analog input 1 to n → Lo Lim (1530–1 to n)

Description

Use this function to enter the value for the lower warning limit (Lo alarm value parameter (→ 112)).

User entry

Signed floating-point number

Factory setting

Negative floating-point number

Additional information

If the output value Out value (→ 103) exceeds this limit value, the Lo alarm state parameter (→ 113) is output.

User entry

The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the Out scale lower range parameter (→ 108) and Out scale upper range parameter (→ 108).

Lo Lo Lim

Navigation

Expert → Analog inputs → Analog input 1 to n → Lo Lo Lim (1531–1 to n)

Description

Use this function to enter the value for the lower alarm limit (Lo Lo alarm value parameter (→ 113)).

User entry

Signed floating-point number

Factory setting

Negative floating-point number

Additional information

If the output value Out value (→ 103) exceeds this limit value, the Lo Lo alarm state parameter (→ 113) is output.

User entry

The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the Out scale lower range parameter (→ 108) and Out scale upper range parameter (→ 108).

Hi Hi alarm value

Navigation

Expert → Analog inputs → Analog input 1 to n → HiHi alarm value (1541–1 to n)

Description

Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 110)).
Hi Hi alarm state

Navigation

Expert → Analog inputs → Analog input 1 to n → HiHi alarm state (1540–1 to n)

Description

Displays the status for the upper alarm limit value (Hi Hi Lim parameter (→ 110)).

User interface

- No alarm
- Alarm state HiHi limit

Additional information

User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Hi alarm value

Navigation

Expert → Analog inputs → Analog input 1 to n → Hi alarm value (1539–1 to n)

Description

Displays the alarm value for the upper warning limit value (Hi Lim parameter (→ 110)).

User interface

Signed floating-point number

Hi alarm state

Navigation

Expert → Analog inputs → Analog input 1 to n → Hi alarm state (1538–1 to n)

Description

Displays the status for the upper warning limit value (Hi Lim parameter (→ 110)).

User interface

- No warning
- Alarm state Hi limit

Additional information

User interface

The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation

Expert → Analog inputs → Analog input 1 to n → Lo alarm value (1543–1 to n)

Description

Displays the alarm value for the lower warning limit value (Lo Lim parameter (→ 111)).
User interface
Signed floating-point number

Lo alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → Lo alarm state (1542–1 to n)

Description
Displays the status for the lower warning limit value ([Lo Lim](#) parameter (→ 111)).

User interface
- No warning
- Alarm state Lo limit

Additional information
User interface
The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo Lo alarm value

Navigation
Expert → Analog inputs → Analog input 1 to n → LoLo alarm value (1545–1 to n)

Description
Displays the alarm value for the lower alarm limit value ([Lo Lo Lim](#) parameter (→ 111)).

User interface
Signed floating-point number

Lo Lo alarm state

Navigation
Expert → Analog inputs → Analog input 1 to n → LoLo alarm state (1544–1 to n)

Description
Displays the status for the lower alarm limit value ([Lo Lo Lim](#) parameter (→ 111)).

User interface
- No alarm
- Alarm state LoLo limit

Additional information
User interface
The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Simulate enabled

Navigation
Expert → Analog inputs → Analog input 1 to n → Simulate enabled (1556–1 to n)

Description
Use this function to enable or disable block simulation.
Selection

- Disable
- Enable

Factory setting

Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation

Expert → Analog inputs → Analog input 1 to n → Simulate value (1558–1 to n)

Description

Use this function to enter a simulation value for the block.

User entry

Signed floating-point number

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.

Simulate status

Navigation

Expert → Analog inputs → Analog input 1 to n → Simulate status (1557–1 to n)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Out unit text

Navigation

Expert → Analog inputs → Analog input 1 to n → Out unit text (1532–1 to n)

Description

Use this function to enter the out unit text: if a specific out unit does not appear in the code list, the user can enter the specific text. The unit code is then equivalent to the definition provided here.
User entry
Max. 16 characters such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
NoUnit

3.5 "Discrete inputs" submenu

Navigation
Expert → Discrete inputs

3.5.1 "Discrete input 1 to n" submenu

Navigation
Expert → Discrete inputs → Discrete input 1 to n

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 2187–1 to n</td>
<td>115</td>
</tr>
<tr>
<td>Invert 2188–1 to n</td>
<td>116</td>
</tr>
<tr>
<td>Fail-safe type 2189–1 to n</td>
<td>116</td>
</tr>
<tr>
<td>Fail-safe value 2190–1 to n</td>
<td>116</td>
</tr>
<tr>
<td>Out value 2194–1 to n</td>
<td>117</td>
</tr>
<tr>
<td>Out status 2203–1 to n</td>
<td>117</td>
</tr>
<tr>
<td>Out status 2193–1 to n</td>
<td>117</td>
</tr>
</tbody>
</table>

Channel

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Channel (2187–1 to n)

Description
Use this function to assign a measured variable to the particular function block.

Selection
- Empty pipe detection
- Low flow cut off
- Verification status *
- Build-up detection *

* Visibility depends on order options or device settings
Factory setting

Empty pipe detection

Invert

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Invert (2188–1 to n)

Description

Use this function to invert the input signal.

Selection

- Off
- On

Factory setting

Off

Fail-safe type

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Fail-safe type (2189–1 to n)

Description

Use this function to select the failure mode.

Selection

- Fail-safe value
- Fallback value
- Off

Factory setting

Off

Additional information

Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

- Fail-safe value

 A substitute value is used. This is specified in the **Fail-safe value** parameter (→ 116).

- Fallback value

 If the value was good at one point, then this last valid value is used.

- Off

 The system continues to use the bad value.

Fail-safe value

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Fail-safe value (2190–1 to n)

Prerequisite

In **Fail-safe type** parameter (→ 116), the **Fail-safe value** option is selected.

Description

Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 117)) in the event of an error.

User entry

0 to 255
Factory setting

Out value

Navigation

Prerequisite

Description

User interface

Out status

Navigation

Target mode parameter (→ 118), the Auto option is selected.

Description

User interface

Out status

Navigation

Target mode parameter (→ 118), the Auto option is selected.

Description

User interface

Tag description

Navigation

Description

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Static revision (2200–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
Description
Static parameters are parameters that are not changed by the process.

Strategy

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Strategy (2199–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Alert key (2182–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFFF

Factory setting
0

Target mode

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Target mode (2202–1 to n)

Description
Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.

User interface
- Auto
- Man
- Out of service
Proline Promag 400 PROFIBUS DP

Description of device parameters

Mode block actual

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Mode block act (2181–1 to n)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 118).

User interface
• Auto
• Man
• Out of service

Additional information
Description
A comparison of the current mode with the target mode (Target mode parameter (→ 118)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Mode block perm (2195–1 to n)

Description
Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 118) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface
0 to 255

Mode block normal

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Mode blk norm (2192–1 to n)

Description
Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface
• Auto
• Man
• Out of service

Alarm summary

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Alarm summary (2191–1 to n)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.
Description of device parameters

Proline Promag 400 PROFIBUS DP

User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Inputs function block.

Batch ID

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Batch ID (2183–1 to n)

Description

Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry

Positive integer

Batch operation

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Batch operation (2184–1 to n)

Description

Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch phase

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Batch phase (2185–1 to n)

Description

Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0
Batch Recipe Unit Procedure

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Batch Recipe (2186–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information
Description
The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Simulate enabled

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Simulate enabled (2196–1 to n)

Description
Use this function to enable or disable block simulation.

Selection
- Disable
- Enable

Factory setting
Disable

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation
Expert → Discrete inputs → Discrete input 1 to n → Simulate value (2198–1 to n)

Description
Use this function to enter a simulation value for the block.

User entry
0 to 255

Factory setting
0

Additional information
Description
The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.
Simulate status

Navigation

Expert → Discrete inputs → Discrete input 1 to n → Simulate status (2197–1 to n)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

3.6 "Analog outputs" submenu

Navigation

Expert → Analog outputs

3.6.1 "Analog output 1 to n" submenu

Navigation

Expert → Analog outputs → Analog output 1 to n

- Set point value (1661–1 to n) → 123
- Set point status (1660–1 to n) → 123
- Fail-safe time (1635–1 to n) → 123
- Fail-safe type (1636–1 to n) → 124
- Fail-safe value (1637–1 to n) → 124
- Out value (1647–1 to n) → 124
- Out status (1669–1 to n) → 125
- Out status (1645–1 to n) → 125
Set point value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Set point val (1661–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter an analog set point.</td>
</tr>
<tr>
<td>User entry</td>
<td>Signed floating-point number</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Set point status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Set point status (1660–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a status for the analog set point.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Fail-safe time

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Fail-safe time (1635–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 999.0</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Additional information

User entry

NOTE!

If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

- Check in advance to ensure that the safety-specific requirements of the process would permit this.
- If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.
Fail-safe type

Navigation
Expert → Analog outputs → Analog output 1 to n → Fail-safe type (1636–1 to n)

Description
Use this function to select the failure mode.

Selection
- Fail-safe value
- Fallback value
- Off

Factory setting
Fallback value

Additional information
Selection
If an input or simulation value has the status BAD, the function block uses this predefined failure value:
- Fail-safe value
 A substitute value is used. This is specified in the **Fail-safe value** parameter (→ 124).
- Fallback value
 If the value was good at one point, then this last valid value is used.
- Off
 The system continues to use the bad value.

Fail-safe value

Navigation
Expert → Analog outputs → Analog output 1 to n → Fail-safe value (1637–1 to n)

Prerequisite
In **Fail-safe type** parameter (→ 124), the **Fallback value** option is selected.

Description
Use this function to enter a failure value. The value entered is displayed as the output value (**Out value** parameter (→ 124)) in the event of an error.

User entry
Signed floating-point number

Factory setting
0

Out value

Navigation
Expert → Analog outputs → Analog output 1 to n → Out value (1647–1 to n)

Prerequisite
In **Target mode** parameter (→ 126), the **Auto** option is selected.

Description
Displays the analog value which is calculated when the function is executed.

User interface
Signed floating-point number
Out status

Navigation

Expert → Analog outputs → Analog output 1 to n → Out status (1669–1 to n)

Description

Displays the current output status (Good, Bad, Uncertain).

User interface

- Good
- Uncertain
- Bad

Out status

Navigation

Expert → Analog outputs → Analog output 1 to n → Out status (1645–1 to n)

Prerequisite

In **Target mode** parameter (→ 126), the **Auto** option is selected.

Description

Displays the current output status (hex value).

User interface

0 to 0xFF

Tag description

Navigation

Expert → Analog outputs → Analog output 1 to n → Tag description (1667–1 to n)

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).

Static revision

Navigation

Expert → Analog outputs → Analog output 1 to n → Static revision (1666–1 to n)

Description

Displays the event counter: every write access to a static block parameter is counted.

User interface

0 to FFFF

Additional information

Description

Static parameters are parameters that are not changed by the process.
Description of device parameters

Proline Promag 400 PROFIBUS DP

Strategy

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Strategy (1665–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to FFFF</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Alert key

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Alert key (1632–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 0xFF</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Target mode

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Target mode (1668–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.</td>
</tr>
</tbody>
</table>
| User interface | - Auto
- Local override
- Man
- Out of service
- Remote Cascaded |

Mode block actual

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Analog outputs → Analog output 1 to n → Mode block act (1631–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 126).</td>
</tr>
</tbody>
</table>
User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 126)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Analog outputs → Analog output 1 to n → Mode block perm (1648–1 to n)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 126) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

Expert → Analog outputs → Analog output 1 to n → Mode blk norm (1643–1 to n)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface

- Auto
- Local override
- Man
- Out of service
- Remote Cascaded

Alarm summary

Navigation

Expert → Analog outputs → Analog output 1 to n → Alarm summary (1642–1 to n)

Description

Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event
Description of device parameters

Proline Promag 400 PROFIBUS DP

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Analog Outputs function block.

Batch ID

Navigation

Expert → Analog outputs → Analog output 1 to n → Batch ID (1633–1 to n)

Description

Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry

Positive integer

Batch operation

Navigation

Expert → Analog outputs → Analog output 1 to n → Batch operation (1639–1 to n)

Description

Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch phase

Navigation

Expert → Analog outputs → Analog output 1 to n → Batch phase (1640–1 to n)

Description

Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry

0 to 65535

Factory setting

0

Batch Recipe Unit Procedure

Navigation

Expert → Analog outputs → Analog output 1 to n → Batch Recipe (1641–1 to n)

Description

Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).
PV scale lower range

Navigation
Expert → Analog outputs → Analog output 1 to n → PVscale lo range (1651–1 to n)

Description
Use this function to enter the lower value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry
Signed floating-point number

Factory setting
0

PV scale upper range

Navigation
Expert → Analog outputs → Analog output 1 to n → PVscale up range (1652–1 to n)

Description
Use this function to enter the upper value range for the input value (Process Value Scale) in system units. The process value scale normalizes the input value to a user-specific range.

User entry
Signed floating-point number

Factory setting
100.0

Readback value

Navigation
Expert → Analog outputs → Analog output 1 to n → Readback value (1659–1 to n)

Description
Displays the readback value. The readback value indicates the current position of the control element within the travel range (between the open and close position) in PV scale units.

User interface
Signed floating-point number
<table>
<thead>
<tr>
<th>Readback status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCAS in value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCAS in status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>User entry</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Selection</td>
</tr>
<tr>
<td>Factory setting</td>
</tr>
</tbody>
</table>
Output channel

Navigation

- Expert → Analog outputs → Analog output 1 to n → Output channel (1671–1 to n)

Description

Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.

Selection

- External temperature
- External density

Factory setting

- External density

RCAS out value

Navigation

- Expert → Analog outputs → Analog output 1 to n → RCAS out value (1657–1 to n)

Description

Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.

User interface

- Signed floating-point number

RCAS out status

Navigation

- Expert → Analog outputs → Analog output 1 to n → RCAS out status (1656–1 to n)

Description

Displays the RCAS out status. Displays the status of the set point.

User interface

- 0 to 0xFF

Position value

Navigation

- Expert → Analog outputs → Analog output 1 to n → Pos value (1650–1 to n)

Description

Displays the current value of the positioner.

User interface

- 0 to 255
Description of device parameters

Proline Promag 400 PROFIBUS DP

Position status

Navigation

Expert → Analog outputs → Analog output 1 to n → Position status (1649–1 to n)

Description

Displays the current status of the positioner.

User interface

0 to 255

Setpoint deviation

Navigation

Expert → Analog outputs → Analog output 1 to n → Setp. deviation (1653–1 to n)

Description

Displays the deviation between the set point (Set point value parameter (→ 123)) and the actual value (Readback value parameter (→ 129)).

User interface

Signed floating-point number

Simulate enabled

Navigation

Expert → Analog outputs → Analog output 1 to n → Simulate enabled (1662–1 to n)

Description

Use this function to enable or disable block simulation.

Selection

- Disable
- Enable

Factory setting

Disable

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation.

Simulate value

Navigation

Expert → Analog outputs → Analog output 1 to n → Simulate value (1664–1 to n)

Description

Use this function to enter a simulation value.

User entry

Signed floating-point number

Factory setting

0
Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.

Simulate status

Navigation

- Expert → Analog outputs → Analog output 1 to n → Simulate status (1663–1 to n)

Description

Use this function to enter a simulation status for the block.

User entry

0 to 255

Factory setting

0

Additional information

Description

The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.

Increase close

Navigation

- Expert → Analog outputs → Analog output 1 to n → Increase close (1638–1 to n)

Description

Use this function to enter the effective direction of the positioner in automatic mode.

User entry

0 to 255

Factory setting

0

Out scale upper range

Navigation

- Expert → Analog outputs → Analog output 1 to n → Out scale up (1646–1 to n)

Description

Use this function to enter the upper value range for the output value in system units.

User entry

Signed floating-point number

Factory setting

100.0
Out scale lower range

Navigation
- Expert → Analog outputs → Analog output 1 to n → Out scale low (1644–1 to n)

Description
Use this function to enter the lower value range for the output value in system units.

User entry
Signed floating-point number

Factory setting
0

3.7 "Discrete outputs" submenu

Navigation
- Expert → Discrete outputs

3.7.1 "Discrete output 1 to n" submenu

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n

- Set point value (1715–1 to n)
- Set point status (1714–1 to n)
- Invert (1692–1 to n)
- Fail-safe time (1697–1 to n)
- Fail-safe type (1696–1 to n)
- Fail-safe value (1693–1 to n)
- Out value (1704–1 to n)
- Out status (1723–1 to n)
- Out status (1703–1 to n)
Set point value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Set point val (1715–1 to n)

Description
Use this function to enter an analog set point.

User entry
0 to 255

Factory setting
0

Set point status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Set point status (1714–1 to n)

Description
Use this function to enter a status for the analog set point.

User entry
0 to 255

Factory setting
0

Invert

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Invert (1692–1 to n)

Description
Use this function to switch inversion on and off. Specifies whether the set point should be inverted before the value is set as the output value or the RCAS value (in the automatic mode).

Selection
- Off
- On

Factory setting
Off

Fail-safe time

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Fail-safe time (1697–1 to n)

Description
Use this function to enter a time span within which the criteria for an error must be met continuously before an error message or notice message is generated.

User entry
Signed floating-point number

Factory setting
0
Additional information
User entry

NOTE!

If this parameter is used, error messages and notice messages are delayed by the set time before being relayed to the higher-level controller (DCS, etc.).

- Check in advance to ensure that the safety-specific requirements of the process would permit this.
- If the error and notice messages may not be suppressed, a value of 0 seconds must be configured here.

Fail-safe type

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Fail-safe type (1696–1 to n)

Description
Use this function to select the failure mode.

Selection

- Fail-safe value
- Fallback value
- Off

Factory setting
Fallback value

Additional information
Selection

If an input or simulation value has the status BAD, the function block uses this predefined failure value:

- Fail-safe value

 A substitute value is used. This is specified in the Fail-safe value parameter (→ 136).
- Fallback value

 If the value was good at one point, then this last valid value is used.
- Off

 The system continues to use the bad value.

Fail-safe value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Fail-safe value (1693–1 to n)

Prerequisite
In Fail-safe type parameter (→ 136), the Fail-safe value option is selected.

Description
Use this function to enter a failure value. The value entered is displayed as the output value (Out value parameter (→ 137)) in the event of an error.

User entry
0 to 255

Factory setting
0
Out value

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Out value (1704–1 to n)

Prerequisite

In Target mode parameter (→ 138), the Auto option is selected.

Description

Displays the analog value which is calculated when the function is executed.

User interface

0 to 255

Out status

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Out status (1723–1 to n)

Description

Displays the current output status (Good, Bad, Uncertain).

User interface

- Good
- Uncertain
- Bad

Out status

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Out status (1703–1 to n)

Prerequisite

In Target mode parameter (→ 138), the Auto option is selected.

Description

Displays the current output status (hex value).

User interface

0 to 0xFF

Tag description

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Tag description (1721–1 to n)

Description

Use this function to enter a string to identify the block.

User entry

Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Static revision (1720–1 to n)

Description
Displays the event counter: every write access to a static block parameter is counted.

User interface
0 to FFFF

Additional information
- *Description*
 - Static parameters are parameters that are not changed by the process.

Strategy

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Strategy (1719–1 to n)

Description
Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.

User entry
0 to FFFF

Factory setting
0

Alert key

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Alert key (1694–1 to n)

Description
Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.

User entry
0 to 0xFF

Factory setting
0

Target mode

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Target mode (1722–1 to n)

Description
Displays the Target mode: The target mode specifies which mode of operation is used for this function block. This mode is generally set by a control application.
User interface

- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Mode block actual

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Mode block act (1691–1 to n)

Description

Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 138).

User interface

- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Additional information

Description

A comparison of the current mode with the target mode (Target mode parameter (→ 138)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Mode block perm (1705–1 to n)

Description

Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 138) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface

0 to 255

Mode block normal

Navigation

Expert → Discrete outputs → Discr. out. 1 to n → Mode blk norm (1702–1 to n)

Description

Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.
Description of device parameters

User interface
- Local override
- Remote Cascaded
- Man
- Out of service
- Auto

Alarm summary

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Alarm summary (1701–1 to n)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.

User interface
- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information
Description
Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Discrete Outputs function block.

Batch ID

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch ID (1695–1 to n)

Description
Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.

User entry
Positive integer

Batch operation

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch operation (1698–1 to n)

Description
Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0
Batch phase

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch phase (1699–1 to n)

Description
Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.

User entry
0 to 65535

Factory setting
0

Batch Recipe Unit Procedure

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Batch Recipe (1700–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information
Description
The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Readback value

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Readback value (1713–1 to n)

Description
Displays the readback value. The readback value indicates the current position of the control element and the element's sensors.

User interface
0 to 255

Readback status

Navigation
Expert → Discrete outputs → Discr. out. 1 to n → Readback status (1712–1 to n)

Description
Displays the readback status. Displays the status of the readback value.

User interface
0 to 255
RCAS in value

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → RCAS in value (1707–1 to n)

Description
Use this function to enter the RCAS (Remote Cascade) in value. The block set point is set by a control application via the remote cascade **RCAS in value** parameter (→ 142). The normal algorithm calculates the output value of the block on the basis of this set point.

User entry
0 to 255

Factory setting
0

RCAS in status

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → RCAS in status (1706–1 to n)

Description
Use this function to enter the RCAS (Remote Cascade) in status. Defines the status for the **RCAS in value** (→ 142).

User entry
0 to 255

Factory setting
0

Input channel

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Input channel (1724–1 to n)

Description
Use this function to select the input channel. The number of logical hardware channels from the converter that is connected to this I/O block.

Selection
None

Factory setting
None

Output channel

Navigation
- Expert → Discrete outputs → Discr. out. 1 to n → Output channel (1725–1 to n)

Description
Use this function to select the output channel. The number of logical hardware channels to the converter that is connected to this I/O block.

Selection
- Flow override
- Start verification *

* Visibility depends on order options or device settings
<table>
<thead>
<tr>
<th>Factory setting</th>
<th>Flow override</th>
</tr>
</thead>
</table>

RCAS out value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → RCAS out value (1711–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the RCAS out value. Displays the set point of the block which is made available to the higher-level host for monitoring/back calculation and which makes it possible to take action under certain conditions or in a different mode.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>

RCAS out status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → RCAS out status (1708–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the RCAS out status. Displays the status of the set point.</td>
</tr>
<tr>
<td>User interface</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>

Simulate enabled

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → Simulate enabled (1716–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enable or disable block simulation.</td>
</tr>
</tbody>
</table>
| **Selection** | • Disable
 • Enable |
| **Factory setting** | Disable |
| **Additional information** | *Description*
 The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated discrete I/O channel during operation. |

Simulate value

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → Simulate value (1718–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation value.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
</tbody>
</table>
Description of device parameters

<table>
<thead>
<tr>
<th>Factory setting</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated value during operation.</td>
</tr>
</tbody>
</table>

Simulate status

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Discrete outputs → Discr. out. 1 to n → Simulate status (1717–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter a simulation status for the block.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 255</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The simulation is used to bypass the physical I/O channel. In this way, the block remains in the normal mode and uses the simulated status during operation.</td>
</tr>
</tbody>
</table>

3.8 "Application" submenu

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>▶ Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Reset all totalizers (2806)</td>
</tr>
<tr>
<td>▶ Totalizer 1 to n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reset all totalizers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Reset all tot. (2806)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to reset all totalizers to the value 0 and restart the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>
| Selection | • Cancel
• Reset + totalize |
| Factory setting | Cancel |
Additional information

Selection

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel</td>
<td>No action is executed and the user exits the parameter.</td>
</tr>
<tr>
<td>Reset + totalize</td>
<td>Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.</td>
</tr>
</tbody>
</table>

3.8.1 "Totalizer 1 to n" submenu

Navigation

Expert → Application → Totalizer 1 to n

<table>
<thead>
<tr>
<th>▶ Totalizer 1 to n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign process variable (3808–1 to n)</td>
</tr>
<tr>
<td>Unit totalizer (3835–1 to n)</td>
</tr>
<tr>
<td>Control Totalizer 1 to n (3830–1 to n)</td>
</tr>
<tr>
<td>Preset value 1 to n (3829–1 to n)</td>
</tr>
<tr>
<td>Totalizer operation mode (3823–1 to n)</td>
</tr>
<tr>
<td>Failure mode (3810–1 to n)</td>
</tr>
<tr>
<td>Out value 1 to n (3827–1 to n)</td>
</tr>
<tr>
<td>Totalizer status 1 to n (3826–1 to n)</td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to n (3825–1 to n)</td>
</tr>
</tbody>
</table>

Assign process variable

Navigation

Expert → Application → Totalizer 1 to n → Assign variable (3808–1 to n)

Description

Use this function to select a process variable for Totalizer 1 to n.

Selection

- Volume flow
- Mass flow
- Corrected volume flow

Factory setting

Volume flow
Additional information

Description

If the option selected is changed, the device resets the totalizer to 0.

Unit totalizer

Navigation

Expert → Application → Totalizer 1 to n → Unit totalizer (3835–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 145):

- Volume flow
- Mass flow

Description

Use this function to select the process variable of a totalizer.

The unit is selected separately for each totalizer. It is independent of the selection made in the System units submenu (→ 44).

Selection

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g*</td>
<td>oz*</td>
</tr>
<tr>
<td>kg*</td>
<td>lb*</td>
</tr>
<tr>
<td>t*</td>
<td>STon*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm³*</td>
<td>af*</td>
</tr>
<tr>
<td>dm³*</td>
<td>ft³*</td>
</tr>
<tr>
<td>m³*</td>
<td>Mft³*</td>
</tr>
<tr>
<td>ml*</td>
<td>ml*</td>
</tr>
<tr>
<td>l*</td>
<td>fl oz (us)*</td>
</tr>
<tr>
<td>hl*</td>
<td>gal (us)*</td>
</tr>
<tr>
<td>Ml Mega*</td>
<td>kgal (us)*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>SI units</th>
<th>US units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nl*</td>
<td>Sft³*</td>
</tr>
<tr>
<td>Nhl*</td>
<td>MSft³*</td>
</tr>
<tr>
<td>Nm³*</td>
<td>MMSft³*</td>
</tr>
<tr>
<td>Sl*</td>
<td>Sgal (us)*</td>
</tr>
<tr>
<td>Sm³*</td>
<td>Sbbl (us;liq.)*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings

or

<table>
<thead>
<tr>
<th>Imperial units</th>
</tr>
</thead>
<tbody>
<tr>
<td>gal (imp)*</td>
</tr>
<tr>
<td>Mgal (imp)*</td>
</tr>
<tr>
<td>bbl (imp;beer)*</td>
</tr>
<tr>
<td>bbl (imp;oil)*</td>
</tr>
</tbody>
</table>

* Visibility depends on order options or device settings
Factory setting

Country-specific:
- m³
- ft³

Additional information

Selection

The selection is independent of the process variable selected in the Assign process variable parameter (→ 145).

Dependency

The following parameters depend on the option selected:
- Alarm hysteresis parameter (→ 154)
- Hi Hi Lim parameter (→ 154)
- Hi Lim parameter (→ 155)
- Lo Lim parameter (→ 155)
- Lo Lo Lim parameter (→ 156)
- Totalizer value parameter (→ 43)
- Preset value parameter (→ 148)

Control Totalizer 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Control Tot. 1 to n (3830–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 145):
- Volume flow
- Mass flow
- Corrected volume flow

Description

Use this function to select the control of totalizer value 1-3.

Selection

- Totalize
- Reset + hold
- Preset + hold

Factory setting

Totalize

Additional information

Options

- Totalize
 The totalizer is started or continues totalizing with the current counter reading.
- Reset + hold
 The totaling process is stopped and the totalizer is reset to 0.
- Preset + hold
 The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.
Preset value 1 to n

Navigation

> Expert → Application → Totalizer 1 to n → Preset value 1 to n (3829–1 to n)

Prerequisite

One of the following options is selected in the Assign process variable parameter (→ 145):
- Volume flow
- Mass flow

Description

Use this function to enter an initial value for the specific totalizer.

User entry

Signed floating-point number

Factory setting

Country-specific:
- m³
- ft³

Additional information

User entry

The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 146).

Example

This configuration is suitable for applications such as iterative filling processes with a fixed batch quantity.

Totalizer operation mode

Navigation

> Expert → Application → Totalizer 1 to n → Operation mode (3823–1 to n)

Prerequisite

In the Assign process variable parameter (→ 145), one of the following options is selected:
- Volume flow
- Mass flow

Description

Use this function to select how the totalizer summates the flow.

Selection

- Net flow total
- Forward flow total
- Reverse flow total
- Last valid value

Factory setting

Net flow total
Failure mode

Navigation

Expert → Application → Totalizer 1 to n → Failure mode (3810–1 to n)

Prerequisite

In the Assign process variable parameter (→ 145), one of the following options is selected:

- Volume flow
- Mass flow

Description

Use this function to select how a totalizer behaves in the event of a device alarm.

Selection

- Stop
- Actual value
- Last valid value

Factory setting

Actual value

Additional information

Description

This setting does not affect the failsafe mode of other totalizers and the outputs. This is specified in separate parameters.

Selection

- Stop
 Totalizing is stopped when a device alarm occurs.
- Actual value
 The totalizer continues to count based on the current measured value; the device alarm is ignored.
- Last valid value
 The totalizer continues to count based on the last valid measured value before the device alarm occurred.

Out value 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Out value 1 to n (3827–1 to n)

Prerequisite

The Auto option is selected in the Target mode parameter (→ 151).

Description

Displays the current reading for totalizer 1-3.
User interface
Signed floating-point number

Additional information
Description

In the event of an error, the totalizer adopts the mode defined in the **Failure mode** parameter (→ § 149).

User interface
The value of the process variable totalized since measuring began can be positive or negative. This depends on the settings in the **Totalizer operation mode** parameter (→ § 148).

Dependency

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ § 146).

Totalizer status 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Tot. status 1 to n (3826–1 to n)

Description
Displays the status of the particular totalizer.

User interface
- Good
- Uncertain
- Bad

Totalizer status (Hex) 1 to n

Navigation

Expert → Application → Totalizer 1 to n → Status (Hex) 1 to n (3825–1 to n)

Prerequisite
In **Target mode** parameter (→ § 151), the **Auto** option is selected.

Description
Displays the status value (hex) of the particular totalizer.

User interface
0 to 0xFF

Tag description

Navigation

Expert → Application → Totalizer 1 to n → Tag description (3833–1 to n)

Description
Use this function to enter a string to identify the block.

User entry
Max. 32 characters such as letters, numbers or special characters (e.g. @, %, /).
Static revision

Navigation: Expert → Application → Totalizer 1 to n → Static revision (3832–1 to n)
Description: Displays the event counter: every write access to a static block parameter is counted.
User interface: 0 to FFFF
Additional information:

Static parameters are parameters that are not changed by the process.

Strategy

Navigation: Expert → Application → Totalizer 1 to n → Strategy (3831–1 to n)
Description: Use this function to enter the strategy: makes it possible to group blocks by entering identical numbers.
User entry: 0 to FFFF
Factory setting: 0

Alert key

Navigation: Expert → Application → Totalizer 1 to n → Alert key (3803–1 to n)
Description: Use this function to enter the alert key: identifies the section of the plant where the transmitter is located. This helps in pinpointing events.
User entry: 0 to 0xFF
Factory setting: 0

Target mode

Navigation: Expert → Application → Totalizer 1 to n → Target mode (3834–1 to n)
Description: Displays the Target mode: The target mode indicates which mode of operation is used for this function block. This mode is generally set by a control application.
User interface:
- Auto
- Man
- Out of service
Mode block actual

Navigation

Expert → Application → Totalizer 1 to n → Mode block act (3801–1 to n)

Description
Displays the Mode block actual: Under certain conditions, it is possible that a function block will not operate in the required mode. In this case, the Mode block actual shows the actual mode in which the function block is currently operating. A comparison of the Mode block actual with the Target mode indicates whether it was possible to reach the Target mode (→ 151).

User interface
- Auto
- Man
- Out of service

Additional information

Description
A comparison of the current mode with the target mode (Target mode parameter (→ 151)) indicates whether it was possible to reach the target mode.

Mode block permitted

Navigation

Expert → Application → Totalizer 1 to n → Mode block perm (3828–1 to n)

Description
Displays the Mode block permitted: This defines which modes of operation in the Target mode (→ 151) are available for the function block. The operating modes that are supported vary depending on the type and function of the block.

User interface
0 to 255

Mode block normal

Navigation

Expert → Application → Totalizer 1 to n → Mode blk norm (3824–1 to n)

Description
Displays the Mode block normal: This is available to allow the operator to select the Mode block normal from the available modes of operation. This can be set using an operating tool in order to help the user configure the operating mode of a function block.

User interface
- Auto
- Man
- Out of service

Alarm summary

Navigation

Expert → Application → Totalizer 1 to n → Alarm summary (3809–1 to n)

Description
Displays the alarm summary: the current status of the block alarms is displayed. A summary of up to 16 statuses can be displayed.
User interface

- Discrete alarm
- Alarm state HiHi limit
- Alarm state Hi limit
- Alarm state LoLo limit
- Alarm state Lo limit
- Update Event

Additional information

Description

Currently, the system only displays a change in a static parameter for 10 seconds, and violations of the early warning and alarm limits in the Totalizer function block.

Batch ID

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to n → Batch ID (3804–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch ID: identification of a specific batch to make it possible to assign device-specific information (e.g. errors, alarm conditions etc.) to the batching process.</td>
</tr>
<tr>
<td>User entry</td>
<td>Positive integer</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch operation

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to n → Batch operation (3805–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch operation: control recipe operation number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>

Batch phase

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Application → Totalizer 1 to n → Batch phase (3806–1 to n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Use this function to enter the batch phase: control recipe phase number to identify the active control recipe operation.</td>
</tr>
<tr>
<td>User entry</td>
<td>0 to 65535</td>
</tr>
<tr>
<td>Factory setting</td>
<td>0</td>
</tr>
</tbody>
</table>
Batch Recipe Unit Procedure

Navigation
- Expert → Application → Totalizer 1 to n → Batch Recipe (3807–1 to n)

Description
Use this function to enter the batch recipe unit procedure (RUP): identification of the active control recipe unit procedure or the associated unit (e.g. inductor, centrifuge, drying agent).

User entry
0 to 65535

Factory setting
0

Additional information
- **Description**
 - The unit is defined in IEC61512 Part1/ISA S88 but its meaning is different to that of the parameter unit, such as system units.

Alarm hysteresis

Navigation
- Expert → Application → Totalizer 1 to n → Alarm hysteresis (3802–1 to n)

Description
Use this function to enter the hysteresis value for the upper and lower warning or alarm limit values.

User entry
Signed floating-point number

Factory setting
0 m³

Additional information
- **User entry**
 - The unit of the selected process variable is specified for the totalizer in the Unit totalizer parameter (→ 146).

Hi Hi Lim

Navigation
- Expert → Application → Totalizer 1 to n → Hi Hi Lim (3815–1 to n)

Description
Use this function to enter the value for the upper alarm limit of the totalizer (Hi Hi alarm value parameter (→ 156)).

User entry
Signed floating-point number

Factory setting
Positive floating-point number
Additional information

Description

If the output value Out value (→ 103) exceeds this limit value, the **Hi alarm state** parameter (→ 157) is output.

User entry

The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the **Out scale lower range** parameter (→ 108) and **Out scale upper range** parameter (→ 108).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 146).

Hi Lim

Navigation

Expert → Application → Totalizer 1 to n → Hi Lim (3816–1 to n)

Description

Use this function to enter the value for the upper warning limit of the totalizer (**Hi alarm value** parameter (→ 157)).

User entry

Signed floating-point number

Factory setting

Positive floating-point number

Additional information

Description

If the output value Out value (→ 103) exceeds this limit value, the **Hi alarm state** parameter (→ 157) is output.

User entry

The value is entered in the defined units (Out unit parameter (→ 109)) and must be in the range defined in the **Out scale lower range** parameter (→ 108) and **Out scale upper range** parameter (→ 108).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 146).

Lo Lim

Navigation

Expert → Application → Totalizer 1 to n → Lo Lim (3819–1 to n)

Description

Use this function to enter the value for the lower warning limit of the totalizer (**Lo alarm value** parameter (→ 157)).

User entry

Signed floating-point number

Factory setting

Negative floating-point number
Additional information

Description

If the output value Out value (→ 103) exceeds this limit value, the **Lo alarm state** parameter (→ 158) is output.

User entry

The value is entered in the defined units (**Out unit** parameter (→ 109)) and must be in the range defined in the **Out scale lower range** parameter (→ 108) and **Out scale upper range** parameter (→ 108).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 146).

Lo Lo Lim

<table>
<thead>
<tr>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert → Application → Totalizer 1 to n → Lo Lo Lim (3822–1 to n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this function to enter the value for the lower alarm limit of the totalizer (Lo Lo alarm value parameter (→ 158)).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative floating-point number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the output value Out value (→ 103) exceeds this limit value, the Lo alarm state parameter (→ 158) is output.</td>
</tr>
</tbody>
</table>

User entry

The value is entered in the defined units (**Out unit** parameter (→ 109)) and must be in the range defined in the **Out scale lower range** parameter (→ 108) and **Out scale upper range** parameter (→ 108).

The unit of the selected process variable is specified for the totalizer in the **Unit totalizer** parameter (→ 146).

Hi Hi alarm value

<table>
<thead>
<tr>
<th>Navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert → Application → Totalizer 1 to n → HiHi alarm value (3814–1 to n)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the alarm value for the upper alarm limit value (Hi Hi Lim parameter (→ 154)).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed floating-point number</td>
</tr>
</tbody>
</table>
Hi Hi alarm state

Navigation

Expert → Application → Totalizer 1 to n → HiHi alarm state (3813–1 to n)

Description

Displays the status for the upper alarm limit value (Hi Hi Lim parameter (→ 154)).

User interface

- No alarm
- Alarm state HiHi limit

Additional information

User interface

The display contains information such as the time of the alarm (date and time) and the value that triggered the alarm.

Hi alarm value

Navigation

Expert → Application → Totalizer 1 to n → Hi alarm value (3812–1 to n)

Description

Displays the warning value for the upper warning limit value (Hi Lim parameter (→ 155)).

User interface

Signed floating-point number

Hi alarm state

Navigation

Expert → Application → Totalizer 1 to n → Hi alarm state (3811–1 to n)

Description

Displays the status for the upper warning limit value (Hi Lim parameter (→ 155)).

User interface

- No warning
- Alarm state Hi limit

Additional information

User interface

The display contains information such as the time of the warning (date and time) and the value that triggered the alarm.

Lo alarm value

Navigation

Expert → Application → Totalizer 1 to n → Lo alarm value (3818–1 to n)

Description

Displays the warning value for the lower warning limit value (Lo Lim parameter (→ 155)).

User interface

Signed floating-point number
Lo alarm state

Navigation
Expert → Application → Totalizer 1 to n → Lo alarm state (3817–1 to n)

Description
Displays the status for the lower warning limit value (Lo Lim parameter (→ 155)).

User interface
• No warning
• Alarm state Lo limit

Additional information
User interface

Lo Lo alarm value

Navigation
Expert → Application → Totalizer 1 to n → LoLo alarm value (3821–1 to n)

Description
Displays the alarm value for the lower alarm limit value (Lo Lo Lim parameter (→ 156)).

User interface
Signed floating-point number

Lo Lo alarm state

Navigation
Expert → Application → Totalizer 1 to n → LoLo alarm state (3820–1 to n)

Description
Displays the status for the lower alarm limit value (Lo Lo Lim parameter (→ 156)).

User interface
• No alarm
• Alarm state LoLo limit

Additional information
User interface

3.9 "Diagnostics" submenu

Navigation
Expert → Diagnostics

Actual diagnostics (0691)
Actual diagnostics

Navigation

Expert → Diagnostics → Actual diagnos. (0691)

Prerequisite

A diagnostic event has occurred.

Description

Displays the current diagnostic message. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Additional pending diagnostic messages can be viewed in the Diagnostic list submenu (→ 161).

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example

For the display format:

F271 Main electronics failure
Description of device parameters

Proline Promag 400 PROFIBUS DP

Timestamp

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the operating time when the current diagnostic message occurred.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
</tbody>
</table>

- The diagnostic message can be viewed via the **Actual diagnostics** parameter (→ 159).

Example
- For the display format:
 - 24d12h13m00s

Previous diagnostics

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Prev.diagnostics (0690)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>Two diagnostic events have already occurred.</td>
</tr>
<tr>
<td>Description</td>
<td>Displays the diagnostic message that occurred before the current message.</td>
</tr>
<tr>
<td>User interface</td>
<td>Symbol for diagnostic behavior, diagnostic code and short message.</td>
</tr>
<tr>
<td>Additional information</td>
<td>Display</td>
</tr>
</tbody>
</table>

- Via the local display: the timestamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Example
- For the display format:
 - F271 Main electronics failure

Timestamp

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Expert → Diagnostics → Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the operating time when the last diagnostic message before the current message occurred.</td>
</tr>
<tr>
<td>User interface</td>
<td>Days (d), hours (h), minutes (m) and seconds (s)</td>
</tr>
</tbody>
</table>
Additional information

Display

The diagnostic message can be viewed via the Previous diagnostics parameter (→ 160).

Example

For the display format:
24d12h13m00s

Operating time from restart

Navigation

Expert → Diagnostics → Time fr. restart (0653)

Description

Use this function to display the time the device has been in operation since the last device restart.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Operating time

Navigation

Expert → Diagnostics → Operating time (0652)

Description

Use this function to display the length of time the device has been in operation.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

User interface

The maximum number of days is 9999, which is equivalent to 27 years.

3.9.1 "Diagnostic list" submenu

Navigation

Expert → Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics 1 (0692) → 162</td>
</tr>
<tr>
<td>Diagnostics 2 (0693) → 162</td>
</tr>
<tr>
<td>Diagnostics 3 (0694) → 163</td>
</tr>
<tr>
<td>Diagnostics 4 (0695) → 164</td>
</tr>
<tr>
<td>Diagnostics 5 (0696) → 165</td>
</tr>
</tbody>
</table>
Diagnostics 1

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 1 (0692)

Description

Displays the current diagnostics message with the highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:

- ΔS442 Frequency output
- ▼F276 I/O module failure

Timestamp

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the Diagnostics 1 parameter (→ 162).

Example

For the display format:

24d12h13m00s

Diagnostics 2

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 2 (0693)

Description

Displays the current diagnostics message with the second-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.
Additional information
Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the ↵ key.

Examples

For the display format:
- △S442 Frequency output
- ✖F276 I/O module failure

Timestamp 2

Navigation

Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the second-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information
Display

The diagnostic message can be viewed via the Diagnostics 2 parameter (→ ▶ 162).

Example

For the display format:
24d12h13m00s

Diagnostics 3

Navigation

Expert → Diagnostics → Diagnostic list → Diagnostics 3 (0694)

Description

Displays the current diagnostics message with the third-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information
Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the ↵ key.

Examples

For the display format:
- △S442 Frequency output
- ✖F276 I/O module failure
Timestamp 3

Navigation

₁ Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the third-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

The diagnostic message can be viewed via the **Diagnostics 3** parameter (→ 163).

Example

For the display format:

24d12h13m00s

Diagnostics 4

Navigation

₁₁ Expert → Diagnostics → Diagnostic list → Diagnostics 4 (0695)

Description

Displays the current diagnostics message with the fourth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:

- \(△S442\) Frequency output
- \(△F276\) I/O module failure

Timestamp 4

Navigation

₁₁ Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fourth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)
Additional information

Display

1. The diagnostic message can be viewed via the **Diagnostics 4** parameter (→ § 164).

Example

For the display format:

24d12h13m00s

Diagnostics 5

Navigation

[] Expert → Diagnostics → Diagnostic list → Diagnostics 5 (0696)

Description

Displays the current diagnostics message with the fifth-highest priority.

User interface

Symbol for diagnostic behavior, diagnostic code and short message.

Additional information

Display

1. Via the local display: the time stamp and corrective measures referring to the cause of the diagnostic message can be accessed via the key.

Examples

For the display format:

- ![S442 Frequency output](image)
- ![F276 I/O module failure](image)

Timestamp 5

Navigation

[] Expert → Diagnostics → Diagnostic list → Timestamp

Description

Displays the operating time when the diagnostic message with the fifth-highest priority occurred.

User interface

Days (d), hours (h), minutes (m) and seconds (s)

Additional information

Display

1. The diagnostic message can be viewed via the **Diagnostics 5** parameter (→ § 165).

Example

For the display format:

24d12h13m00s
3.9.2 "Event logbook" submenu

Viewing event messages
Event messages are displayed in chronological order. The event history includes both
diagnostic events and information events. The symbol in front of the timestamp indicates
whether the event has started or ended.

Navigation ▶ Expert → Diagnostics → Event logbook

Filter options

<table>
<thead>
<tr>
<th>Filter options (0705)</th>
<th>→ 166</th>
</tr>
</thead>
</table>

| Event list | → 166 |

Filter options

Navigation ▶ Expert → Diagnostics → Event logbook → Filter options (0705)

Description
Use this function to select the category whose event messages are displayed in the event
list of the local display.

Selection
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

Factory setting
All

Additional information

Description
The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR
Recommendation NE 107:
- F = Failure
- C = Function Check
- S = Out of Specification
- M = Maintenance Required

"Event list" submenu

The Event list submenu is only displayed if operating via the local display.
If operating via the FieldCare operating tool, the event list can be read out with a
separate FieldCare module.
If operating via the Web browser, the event messages can be found directly in the
Event logbook submenu.
Navigation

Expert → Diagnostics → Event logbook → Event list

Description
Displays the history of event messages of the category selected in the Filter options parameter (→ 166).

User interface
- For a "Category I" event message
 Information event, short message, symbol for event recording and operating time when error occurred
- For a "Category F, C, S, M" event message (status signal)
 Diagnostics code, short message, symbol for event recording and operating time when error occurred

Additional information
Description
A maximum of 20 event messages are displayed in chronological order.
The following symbols indicate whether an event has occurred or has ended:
- ☐: Occurrence of the event
- ☐: End of the event

Examples
For the display format:
- 11091 Configuration modified
 ☐ 24d12h13m00s
- $S442 Frequency output
 ☐ 01d04h12min30s

Additional information, such as remedial measures, can be retrieved via the key.

HistoROM
A HistoROM is a "non-volatile" device memory in the form of an EEPROM.

To order the Extended HistoROM application package, see the "Application packages" section of the "Technical Information" document.
3.9.3 "Device information" submenu

Navigation
Expert → Diagnostics → Device info

<table>
<thead>
<tr>
<th>Device information</th>
<th></th>
<th>→</th>
<th>168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device tag (0011)</td>
<td></td>
<td>→</td>
<td>168</td>
</tr>
<tr>
<td>Serial number (0009)</td>
<td>→</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Firmware version (0010)</td>
<td>→</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Device name (0013)</td>
<td>→</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Order code (0008)</td>
<td>→</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
<td>→</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
<td>→</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
<td>→</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>ENP version (0012)</td>
<td>→</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>

Device tag

Navigation
Expert → Diagnostics → Device info → Device tag (0011)

Description
Displays a unique name for the measuring point so it can be identified quickly within the plant. The name is displayed in the header.

User interface
Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /).

Factory setting
- none -

Additional information
User interface

1
Position of the header text on the display

The number of characters displayed depends on the characters used.
Serial number

Navigation

Expert → Diagnostics → Device info → Serial number (0009)

Description

Displays the serial number of the measuring device.

The number can be found on the nameplate of the sensor and transmitter.

User interface

Max. 11-digit character string comprising letters and numbers.

Additional information

Description

Uses of the serial number

- To identify the measuring device quickly, e.g. when contacting Endress+Hauser.
- To obtain specific information on the measuring device using the Device Viewer: www.endress.com/deviceviewer

Firmware version

Navigation

Expert → Diagnostics → Device info → Firmware version (0010)

Description

Displays the device firmware version installed.

User interface

Character string in the format xx.yy.zz

Additional information

Display

The Firmware version is also located:

- On the title page of the Operating instructions
- On the transmitter nameplate

Device name

Navigation

Expert → Diagnostics → Device info → Device name (0013)

Description

Displays the name of the transmitter. It can also be found on the nameplate of the transmitter.

User interface

Max. 32 characters such as letters or numbers.

Factory setting

Promag 400 DP

Order code

Navigation

Expert → Diagnostics → Device info → Order code (0008)

Description

Displays the device order code.
User interface

Character string composed of letters, numbers and certain punctuation marks (e.g. /).

Additional information

Description

The order code can be found on the nameplate of the sensor and transmitter in the "Order code" field.

The order code is generated from the extended order code through a process of reversible transformation. The extended order code indicates the attributes for all the device features in the product structure. The device features are not directly readable from the order code.

Uses of the order code

- To order an identical spare device.
- To identify the device quickly and easily, e.g. when contacting Endress+Hauser.

Extended order code 1

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 1 (0023)

Description

Displays the first part of the extended order code.

On account of length restrictions, the extended order code is split into a maximum of 3 parameters.

User interface

Character string

Additional information

Description

The extended order code indicates the version of all the features of the product structure for the measuring device and thus uniquely identifies the measuring device.

The extended order code can also be found on the nameplate of the sensor and transmitter in the "Ext. ord. cd." field.

Extended order code 2

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 2 (0021)

Description

Displays the second part of the extended order code.

User interface

Character string

Additional information

For additional information, see Extended order code 1 parameter (→ 170)

Extended order code 3

Navigation

Expert → Diagnostics → Device info → Ext. order cd. 3 (0022)

Description

Displays the third part of the extended order code.
User interface

Character string

Additional information

For additional information, see Extended order code 1 parameter (→ 170)

ENP version

Navigation

Expert → Diagnostics → Device info → ENP version (0012)

Description

Displays the version of the electronic nameplate.

User interface

Character string

Factory setting

2.02.00

Additional information

Description

This electronic nameplate stores a data record for device identification that includes more data than the nameplates attached to the outside of the device.

3.9.4 "Main electronic module + I/O module 1" submenu

Navigation

Expert → Diagnostics → Mainboard module

Main electronic module

Software revision → 171
Build no. software → 172
Bootloader revision → 172

Software revision

Navigation

Expert → Diagnostics → Main elec. mod. → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer
Build no. software

Navigation

 Expert → Diagnostics → Main elec. mod. → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Navigation

 Expert → Diagnostics → Main elec. mod. → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer

"Sensor electronic module (ISEM)" submenu

Navigation

 Expert → Diagnostics → Sens. electronic

![Sensor electronic module (ISEM)](image)

- **Software revision**
 - (0072) → 172
- **Build no. software**
 - (0079) → 173
- **Bootloader revision**
 - (0073) → 173

Software revision

Navigation

 Expert → Diagnostics → Sens. electronic → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer
Build no. software

Navigation

Expert → Diagnostics → Sens. electronic → Build no. softw. (0079)

Description

Use this function to display the software build number of the module.

User interface

Positive integer

Bootloader revision

Navigation

Expert → Diagnostics → Sens. electronic → Bootloader rev. (0073)

Description

Use this function to display the bootloader revision of the software.

User interface

Positive integer

3.9.6 "Display module" submenu

Navigation

Expert → Diagnostics → Display module

<table>
<thead>
<tr>
<th>▶ Display module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software revision (0072) → 173</td>
</tr>
<tr>
<td>Build no. software (0079) → 174</td>
</tr>
<tr>
<td>Bootloader revision (0073) → 174</td>
</tr>
</tbody>
</table>

Software revision

Navigation

Expert → Diagnostics → Display module → Software rev. (0072)

Description

Use this function to display the software revision of the module.

User interface

Positive integer
Description of device parameters

Build no. software

Navigation
нос Expert → Diagnostics → Display module → Build no. softw. (0079)

Description
Use this function to display the software build number of the module.

User interface
Positive integer

Bootloader revision

Navigation
нос Expert → Diagnostics → Display module → Bootloader rev. (0073)

Description
Use this function to display the bootloader revision of the software.

User interface
Positive integer

3.9.7 "Min/max values" submenu

Navigation
нос Expert → Diagnostics → Min/max val.

"Main electronics temperature" submenu

Navigation
нос Expert → Diagnostics → Min/max val. → Main elect.temp.

Minimum value
→ 175

Maximum value
→ 175
Proline Promag 400 PROFIBUS DP

Description of device parameters

Minimum value

Navigation

Expert → Diagnostics → Min/max val. → Main elect.temp. → Minimum value (6547)

Description
Displays the lowest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 47)

Maximum value

Navigation

Expert → Diagnostics → Min/max val. → Main elect.temp. → Maximum value (6545)

Description
Displays the highest previously measured temperature value of the main electronics module.

User interface
Signed floating-point number

Additional information
Dependency

The unit is taken from the Temperature unit parameter (→ 47)

"Medium temperature" submenu

Navigation

Expert → Diagnostics → Min/max val. → Medium temp.

Minimum value

Expert → Diagnostics → Min/max val. → Medium temp. → Minimum value (6681)

Description
Displays the lowest previously measured medium temperature value.

Endress+Hauser

175
Description of device parameters

Proline Promag 400 PROFIBUS DP

User interface
Signed floating-point number

Additional information
Dependency

> The unit is taken from the *Temperature unit* parameter (→ 47)

Maximum value

Navigation

> Expert → Diagnostics → Min/max val. → Medium temp. → Maximum value (6680)

Description
Displays the highest previously measured medium temperature value.

User interface
Signed floating-point number

Additional information
Dependency

> The unit is taken from the *Temperature unit* parameter (→ 47)

3.9.8 "Data logging" submenu

Navigation

> Expert → Diagnostics → Data logging

Data logging

- Assign channel 1 (0851) → 177
- Assign channel 2 (0852) → 178
- Assign channel 3 (0853) → 178
- Assign channel 4 (0854) → 178
- Logging interval (0856) → 179
- Clear logging data (0855) → 179
- Data logging (0860) → 180
- Logging delay (0859) → 180
- Data logging control (0857) → 180
- Data logging status (0858) → 181
- Entire logging duration (0861) → 181
Assign channel 1

Navigation

Expert → Diagnostics → Data logging → Assign chan. 1 (0851)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 39).

Description

Use this function to select a process variable for the data logging channel.

Selection

- Off
- Volume flow
- Mass flow
- Corrected volume flow
- Flow velocity
- Conductivity
- Corrected conductivity
- Temperature
- Electronics temperature
- Noise
- Coil current shot time
- Reference electrode potential against PE
- Build-up measured value
- Test point 1
- Test point 2
- Test point 3

Factory setting

Off

Additional information

Description

A total of 1000 measured values can be logged. This means:
- 1000 data points if 1 logging channel is used
- 500 data points if 2 logging channels are used
- 333 data points if 3 logging channels are used
- 250 data points if 4 logging channels are used

Once the maximum number of data points is reached, the oldest data points in the data log are cyclically overwritten in such a way that the last 1000, 500, 333 or 250 measured values are always in the log (ring memory principle).

The log contents are cleared if the option selected is changed.

* Visibility depends on order options or device settings
Assign channel 2

Navigation

Expert → Diagnostics → Data logging → Assign chan. 2 (0852)

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 39).

Description

Use this function to select a process variable for the data logging channel.

Selection

For the picklist, see the **Assign channel 1** parameter (→ 177)

Factory setting

Off

Assign channel 3

Navigation

Expert → Diagnostics → Data logging → Assign chan. 3 (0853)

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 39).

Description

Use this function to select a process variable for the data logging channel.

Selection

For the picklist, see the **Assign channel 1** parameter (→ 177)

Factory setting

Off

Assign channel 4

Navigation

Expert → Diagnostics → Data logging → Assign chan. 4 (0854)

Prerequisite

The **Extended HistoROM** application package is available.

The software options currently enabled are displayed in the **Software option overview** parameter (→ 39).

Description

Use this function to select a process variable for the data logging channel.

Selection

For the picklist, see the **Assign channel 1** parameter (→ 177)

Factory setting

Off
Logging interval

Navigation

Expert → Diagnostics → Data logging → Logging interval (0856)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 39).

Description

Use this function to enter the logging interval \(T_{log} \) for data logging.

User entry

0.1 to 3600.0 s

Factory setting

1.0 s

Additional information

Description

This defines the interval between the individual data points in the data log, and thus the maximum loggable process time \(T_{log} \):

- If 1 logging channel is used: \(T_{log} = 1000 \times t_{log} \)
- If 2 logging channels are used: \(T_{log} = 500 \times t_{log} \)
- If 3 logging channels are used: \(T_{log} = 333 \times t_{log} \)
- If 4 logging channels are used: \(T_{log} = 250 \times t_{log} \)

Once this time elapses, the oldest data points in the data log are cyclically overwritten such that a time of \(T_{log} \) always remains in the memory (ring memory principle).

The log contents are cleared if the length of the logging interval is changed.

Example

If 1 logging channel is used:

- \(T_{log} = 1000 \times 1 \text{ s} = 1000 \text{ s} \approx 15 \text{ min} \)
- \(T_{log} = 1000 \times 10 \text{ s} = 10000 \text{ s} \approx 3 \text{ h} \)
- \(T_{log} = 1000 \times 80 \text{ s} = 80000 \text{ s} \approx 1 \text{ d} \)
- \(T_{log} = 1000 \times 3600 \text{ s} = 3600000 \text{ s} \approx 41 \text{ d} \)

Clear logging data

Navigation

Expert → Diagnostics → Data logging → Clear logging (0855)

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 39).

Description

Use this function to clear the entire logging data.

Selection

- Cancel
- Clear data

Factory setting

Cancel
Data logging

- **Navigation**: Expert → Diagnostics → Data logging → Data logging (0860)
- **Description**: Use this function to select the data logging method.
- **Selection**
 - Overwriting
 - Not overwriting
- **Factory setting**: Overwriting
- **Additional information**
 - **Selection**
 - Overwriting
 - The device memory applies the FIFO principle.
 - Not overwriting
 - Data logging is canceled if the measured value memory is full (single shot).

Logging delay

- **Navigation**: Expert → Diagnostics → Data logging → Logging delay (0859)
- **Prerequisite**: In the Data logging parameter (→ 180), the Not overwriting option is selected.
- **Description**: Use this function to enter the time delay for measured value logging.
- **User entry**: 0 to 999 h
- **Factory setting**: 0 h
- **Additional information**
 - Description
 - Once measured value logging has been started with the Data logging control parameter (→ 180), the device does not save any data for the duration of the time delay entered.

Data logging control

- **Navigation**: Expert → Diagnostics → Data logging → Data log.control (0857)
- **Prerequisite**: In the Data logging parameter (→ 180), the Not overwriting option is selected.
Description

Use this function to start and stop measured value logging.

Selection
- None
- Delete + start
- Stop

Factory setting
None

Additional information
- None
- Initial measured value logging status.
- Delete + start
 All the measured values recorded for all the channels are deleted and measured value logging starts again.
- Stop
 Measured value logging is stopped.

Data logging status

Navigation

Expert → Diagnostics → Data logging → Data log. status (0858)

Prerequisite
In the Data logging parameter (→ 180), the Not overwriting option is selected.

Description
Displays the measured value logging status.

User interface
- Done
- Delay active
- Active
- Stopped

Factory setting
Done

Additional information
- Selection
 - Done
 Measured value logging has been performed and completed successfully.
 - Delay active
 Measured value logging has been started but the logging interval has not yet elapsed.
 - Active
 The logging interval has elapsed and measured value logging is active.
 - Stopped
 Measured value logging is stopped.

Entire logging duration

Navigation

Expert → Diagnostics → Data logging → Logging duration (0861)

Prerequisite
In the Data logging parameter (→ 180), the Not overwriting option is selected.

Description
Displays the total logging duration.
User interface | Positive floating-point number

Factory setting | 0 s

"Display channel 1" submenu

Navigation | Expert → Diagnostics → Data logging → Displ.channel 1

Display channel 1

Navigation | Expert → Diagnostics → Data logging → Displ.channel 1

Prerequisite

The Extended HistoROM application package is available.

The software options currently enabled are displayed in the Software option overview parameter (→ 39).

One of the following options is selected in the Assign channel 1 parameter (→ 177):

- Volume flow
- Corrected volume flow
- Mass flow
- Flow velocity
- Conductivity
- Corrected conductivity
- Temperature
- Electronics temperature

Description

Displays the measured value trend for the logging channel in the form of a chart.

Additional information

Description

Chart of a measured value trend

Visibility depends on order options or device settings
x-axis: depending on the number of channels selected displays 250 to 1000 measured values of a process variable.

y-axis: displays the approximate measured value span and constantly adapts this to the ongoing measurement.

"Display channel 2" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 2

Display channel 2

Prerequisite

A process variable is defined in the Assign channel 2 parameter.

Description

See the Display channel 1 parameter → 182

"Display channel 3" submenu

Navigation

Expert → Diagnostics → Data logging → Displ.channel 3

Display channel 3

Prerequisite

A process variable is defined in the Assign channel 3 parameter.

Description

See the Display channel 1 parameter → 182
"Display channel 4" submenu

Navigation
Expert → Diagnostics → Data logging → Displ.channel 4

Display channel 4

Prerequisite
A process variable is defined in the Assign channel 4 parameter.

Description
See the Display channel 1 parameter → 182

3.9.9 "Heartbeat" submenu

For detailed information on the parameter descriptions for the Heartbeat Verification+Monitoring application package, refer to the Special Documentation for the device → 7

Navigation
Expert → Diagnostics → HBT

Heartbeat Technology

3.9.10 "Simulation" submenu

Navigation
Expert → Diagnostics → Simulation

Simulation

Assign simulation process variable (1810) → 185

Process variable value (1811) → 185

Device alarm simulation (0654) → 186

Diagnostic event category (0738) → 186

Diagnostic event simulation (0737) → 186
Assign simulation process variable

Navigation
[Expert → Diagnostics → Simulation → Assign proc.var. (1810)]

Description
Use this function to select a process variable for the simulation process that is activated. The display alternates between the measured value and a diagnostic message of the “Function check” category (C) while simulation is in progress.

Selection
- Off
- Volume flow
- Mass flow
- Corrected volume flow
- Flow velocity
- Conductivity
- Corrected conductivity
- Temperature

Factory setting
Off

Additional information
- Description
 The simulation value of the process variable selected is defined in the Process variable value parameter (→ 185).

Process variable value

Navigation
[Expert → Diagnostics → Simulation → Proc. var. value (1811)]

Prerequisite
A process variable is selected in the Assign simulation process variable parameter (→ 185).

Description
Use this function to enter a simulation value for the selected process variable. Subsequent measured value processing and the signal output use this simulation value. In this way, users can verify whether the measuring device has been configured correctly.

User entry
Depends on the process variable selected

Factory setting
0

Additional information
- User entry
 The unit of the displayed measured value is taken from the System units submenu (→ 44).

* Visibility depends on order options or device settings
Device alarm simulation

Navigation

Expert → Diagnostics → Simulation → Dev. alarm sim. (0654)

Description

Use this function to switch the device alarm on and off.

Selection

- Off
- On

Factory setting

Off

Additional information

Description

The display alternates between the measured value and a diagnostic message of the 'Function check' category (C) while simulation is in progress.

Diagnostic event category

Navigation

Expert → Diagnostics → Simulation → Event category (0738)

Description

Use this function to select the category of the diagnostic events that are displayed for the simulation in the Diagnostic event simulation parameter (→ 186).

Selection

- Sensor
- Electronics
- Configuration
- Process

Factory setting

Process

Diagnostic event simulation

Navigation

Expert → Diagnostics → Simulation → Diag. event sim. (0737)

Description

Use this function to select a diagnostic event for the simulation process that is activated.

Selection

- Off
- Diagnostic event picklist (depends on the category selected)

Factory setting

Off

Additional information

Description

For the simulation, you can choose from the diagnostic events of the category selected in the Diagnostic event category parameter (→ 186).
4 Country-specific factory settings

4.1 SI units

Not valid for USA and Canada.

4.1.1 System units

<table>
<thead>
<tr>
<th>Volume flow</th>
<th>l/h option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>m³ option</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/cm</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C option</td>
</tr>
<tr>
<td>Mass flow</td>
<td>kg/h option</td>
</tr>
<tr>
<td>Mass</td>
<td>kg option</td>
</tr>
<tr>
<td>Density</td>
<td>kg/l option</td>
</tr>
</tbody>
</table>

4.1.2 Full scale values

The factory settings apply to the following parameters:

100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v ~ 2.5 m/s) [dm³/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>32</td>
<td>125</td>
</tr>
<tr>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>65</td>
<td>500</td>
</tr>
<tr>
<td>80</td>
<td>750</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
</tr>
<tr>
<td>125</td>
<td>1850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v ~ 2.5 m/s) [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>300</td>
<td>750</td>
</tr>
<tr>
<td>350</td>
<td>1000</td>
</tr>
<tr>
<td>375</td>
<td>1200</td>
</tr>
<tr>
<td>400</td>
<td>1200</td>
</tr>
<tr>
<td>500</td>
<td>2000</td>
</tr>
<tr>
<td>600</td>
<td>2500</td>
</tr>
<tr>
<td>700</td>
<td>3500</td>
</tr>
<tr>
<td>750</td>
<td>4000</td>
</tr>
<tr>
<td>800</td>
<td>4500</td>
</tr>
</tbody>
</table>
Country-specific factory settings

Nominal diameter

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v \approx 2.5) m/s [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>6000</td>
</tr>
<tr>
<td>1000</td>
<td>7000</td>
</tr>
<tr>
<td>1200</td>
<td>10000</td>
</tr>
<tr>
<td>1400</td>
<td>14000</td>
</tr>
<tr>
<td>1600</td>
<td>18000</td>
</tr>
<tr>
<td>1800</td>
<td>23000</td>
</tr>
<tr>
<td>2000</td>
<td>28500</td>
</tr>
<tr>
<td>2200</td>
<td>34000</td>
</tr>
<tr>
<td>2400</td>
<td>40000</td>
</tr>
<tr>
<td>2600</td>
<td>48000</td>
</tr>
<tr>
<td>2800</td>
<td>55500</td>
</tr>
<tr>
<td>3000</td>
<td>63500</td>
</tr>
</tbody>
</table>

4.1.3 Switch-on point low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v \approx 0.04) m/s [dm³/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td>8</td>
</tr>
<tr>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>125</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v \approx 0.04) m/s [m³/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2.5</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>250</td>
<td>7.5</td>
</tr>
<tr>
<td>300</td>
<td>10</td>
</tr>
<tr>
<td>350</td>
<td>15</td>
</tr>
<tr>
<td>375</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>600</td>
<td>40</td>
</tr>
<tr>
<td>700</td>
<td>50</td>
</tr>
<tr>
<td>750</td>
<td>60</td>
</tr>
<tr>
<td>800</td>
<td>75</td>
</tr>
</tbody>
</table>
4.2 US units

Only valid for USA and Canada.

4.2.1 System units

<table>
<thead>
<tr>
<th>Volume flow</th>
<th>gal/min (us) option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>gal (us) option</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F option</td>
</tr>
<tr>
<td>Mass flow</td>
<td>lb/min option</td>
</tr>
<tr>
<td>Mass</td>
<td>lb option</td>
</tr>
<tr>
<td>Density</td>
<td>lb/ft³ option</td>
</tr>
</tbody>
</table>

4.2.2 Full scale values

The factory settings apply to the following parameters: 100% bar graph value 1

<table>
<thead>
<tr>
<th>Nominal diameter [mm]</th>
<th>(v ~ 0.04 m/s) [m³/h]</th>
<th>(v ~ 2.5 m/s) [gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>1000</td>
<td>125</td>
<td>50</td>
</tr>
<tr>
<td>1200</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td>1400</td>
<td>225</td>
<td>200</td>
</tr>
<tr>
<td>1600</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>1800</td>
<td>350</td>
<td>500</td>
</tr>
<tr>
<td>2000</td>
<td>450</td>
<td>600</td>
</tr>
<tr>
<td>2200</td>
<td>540</td>
<td>800</td>
</tr>
<tr>
<td>2400</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>2600</td>
<td>775</td>
<td>1200</td>
</tr>
<tr>
<td>2800</td>
<td>875</td>
<td>1500</td>
</tr>
<tr>
<td>3000</td>
<td>1025</td>
<td>1800</td>
</tr>
</tbody>
</table>
Country-specific factory settings

Proline Promag 400 PROFIBUS DP

Nominal diameter [in]
\((v \approx 2.5 \text{ m/s}) \)
\(\text{[gal/min]} \)

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>(v ~ 2.5 m/s) [gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4800</td>
</tr>
<tr>
<td>18</td>
<td>6000</td>
</tr>
<tr>
<td>20</td>
<td>7500</td>
</tr>
<tr>
<td>24</td>
<td>10500</td>
</tr>
<tr>
<td>28</td>
<td>13500</td>
</tr>
<tr>
<td>30</td>
<td>16500</td>
</tr>
<tr>
<td>32</td>
<td>19500</td>
</tr>
<tr>
<td>36</td>
<td>24000</td>
</tr>
<tr>
<td>40</td>
<td>30000</td>
</tr>
<tr>
<td>42</td>
<td>33000</td>
</tr>
<tr>
<td>48</td>
<td>42000</td>
</tr>
</tbody>
</table>

Nominal diameter [in]
\((v \approx 2.5 \text{ m/s}) \)
\(\text{[Mgal/d]} \)

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>(v ~ 2.5 m/s) [Mgal/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>75</td>
</tr>
<tr>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>66</td>
<td>120</td>
</tr>
<tr>
<td>72</td>
<td>140</td>
</tr>
<tr>
<td>78</td>
<td>175</td>
</tr>
<tr>
<td>84</td>
<td>190</td>
</tr>
<tr>
<td>90</td>
<td>220</td>
</tr>
<tr>
<td>96</td>
<td>265</td>
</tr>
<tr>
<td>102</td>
<td>300</td>
</tr>
<tr>
<td>108</td>
<td>340</td>
</tr>
<tr>
<td>114</td>
<td>375</td>
</tr>
<tr>
<td>120</td>
<td>415</td>
</tr>
</tbody>
</table>

4.2.3 Switch-on point low flow cut off

The switch-on point depends on the type of medium and the nominal diameter.

Nominal diameter [in]
\((v \approx 0.04 \text{ m/s}) \)
\(\text{[gal/min]} \)

<table>
<thead>
<tr>
<th>Nominal diameter [in]</th>
<th>(v ~ 0.04 m/s) [gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1½</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
</tr>
</tbody>
</table>
Nominal Diameter [in] vs. Flow Rate [gal/min] (v ~ 0.04 m/s)

<table>
<thead>
<tr>
<th>Nominal Diameter [in]</th>
<th>Flow Rate [gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>24</td>
<td>180</td>
</tr>
<tr>
<td>28</td>
<td>210</td>
</tr>
<tr>
<td>30</td>
<td>270</td>
</tr>
<tr>
<td>32</td>
<td>300</td>
</tr>
<tr>
<td>36</td>
<td>360</td>
</tr>
<tr>
<td>40</td>
<td>480</td>
</tr>
<tr>
<td>42</td>
<td>600</td>
</tr>
<tr>
<td>48</td>
<td>600</td>
</tr>
</tbody>
</table>

Nominal Diameter [in] vs. Flow Rate [Mgal/d] (v ~ 0.04 m/s)

<table>
<thead>
<tr>
<th>Nominal Diameter [in]</th>
<th>Flow Rate [Mgal/d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>1.3</td>
</tr>
<tr>
<td>60</td>
<td>1.3</td>
</tr>
<tr>
<td>66</td>
<td>2.2</td>
</tr>
<tr>
<td>72</td>
<td>2.6</td>
</tr>
<tr>
<td>78</td>
<td>3.0</td>
</tr>
<tr>
<td>84</td>
<td>3.2</td>
</tr>
<tr>
<td>90</td>
<td>3.6</td>
</tr>
<tr>
<td>96</td>
<td>4.0</td>
</tr>
<tr>
<td>102</td>
<td>5.0</td>
</tr>
<tr>
<td>108</td>
<td>5.0</td>
</tr>
<tr>
<td>114</td>
<td>6.0</td>
</tr>
<tr>
<td>120</td>
<td>7.0</td>
</tr>
</tbody>
</table>
5 Explanation of abbreviated units

5.1 SI units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³, g/m³</td>
<td>Gram/volume unit</td>
</tr>
<tr>
<td></td>
<td>kg/dm³, kg/l, kg/m³</td>
<td>Kilogram/volume unit</td>
</tr>
<tr>
<td>SD4°C, SD15°C, SD20°C</td>
<td>Specific density: The specific density is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
<td></td>
</tr>
<tr>
<td>SGA4°C, SG15°C, SG20°C</td>
<td>Specific gravity: The specific gravity is the ratio of the density of the fluid to the density of water at a water temperature of 4 °C (39 °F), 15 °C (59 °F), 20 °C (68 °F).</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>µS/mm</td>
<td>Microsiemens/length unit</td>
</tr>
<tr>
<td></td>
<td>nS/cm, µS/cm, mS/cm, S/cm</td>
<td>Nano-, Micro-, Milli-, Siemens/length unit</td>
</tr>
<tr>
<td></td>
<td>µS/m, mS/m, S/m, kS/m, MS/m</td>
<td>Micro-, Milli-, Siemens, Kilo-, Megasiemens/length unit</td>
</tr>
<tr>
<td>Mass</td>
<td>g, kg, t</td>
<td>Gram, kilogram, metric ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>g/s, g/min, g/h, g/d</td>
<td>Gram/time unit</td>
</tr>
<tr>
<td></td>
<td>kg/s, kg/min, kg/h, kg/d</td>
<td>Kilogram/time unit</td>
</tr>
<tr>
<td></td>
<td>t/s, t/min, t/h, t/d</td>
<td>Metric ton/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C, K</td>
<td>Celsius, Kelvin</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³, dm³, m³</td>
<td>Cubic centimeter, cubic decimeter, cubic meter</td>
</tr>
<tr>
<td></td>
<td>ml, l, hl, MI Mega</td>
<td>Millilitre, liter, hectolitre, megalitre</td>
</tr>
<tr>
<td>Volume flow</td>
<td>cm³/s, cm³/min, cm³/h, cm³/d</td>
<td>Cubic centimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>dm³/s, dm³/min, dm³/h, dm³/d</td>
<td>Cubic decimeter/time unit</td>
</tr>
<tr>
<td></td>
<td>m³/s, m³/min, m³/h, m³/d</td>
<td>Cubic meter/time unit</td>
</tr>
<tr>
<td></td>
<td>ml/s, ml/min, ml/h, ml/d</td>
<td>Millilitre/time unit</td>
</tr>
<tr>
<td></td>
<td>l/s, l/min, l/h, l/d</td>
<td>Litre/time unit</td>
</tr>
<tr>
<td></td>
<td>hl/s, hl/min, hl/h, hl/d</td>
<td>Hectolitre/time unit</td>
</tr>
<tr>
<td></td>
<td>MI/s, MI/min, MI/h, MI/d</td>
<td>Megalitre/time unit</td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
</tbody>
</table>

5.2 US units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/ft³, lb/gal (us)</td>
<td>Pound/cubic foot, pound/gallon</td>
</tr>
<tr>
<td></td>
<td>lb/bbl (us;liq.), lb/bbl (us;beer), lb/bbl (us;oil), lb/bbl (us;tank)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Mass</td>
<td>oz, lb, STon</td>
<td>Ounce, pound, standard ton</td>
</tr>
<tr>
<td>Mass flow</td>
<td>oz/s, oz/min, oz/h, oz/d</td>
<td>Ounce/time unit</td>
</tr>
<tr>
<td></td>
<td>lb/s, lb/min, lb/h, lb/d</td>
<td>Pound/time unit</td>
</tr>
<tr>
<td></td>
<td>STon/s, STon/min, STon/h, STon/d</td>
<td>Standard ton/time unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F, °R</td>
<td>Fahrenheit, Rankine</td>
</tr>
<tr>
<td>Volume</td>
<td>af</td>
<td>Acre foot</td>
</tr>
</tbody>
</table>
Explanation of abbreviated units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft³</td>
<td></td>
<td>Cubic foot</td>
</tr>
<tr>
<td>fl oz (us), gal (us), kgal (us), Mgal (us)</td>
<td>Fluid ounce, gallon, kilogallon, million gallon</td>
<td></td>
</tr>
<tr>
<td>bbl (us;liq.), bbl (us;beer), bbl (us;oil), bbl (us;tank)</td>
<td>Barrel (normal liquids), barrel (beer), barrel (petrochemicals), barrel (filling tanks)</td>
<td></td>
</tr>
</tbody>
</table>

Volume flow
- ft³/s, ft³/min, ft³/h, ft³/d: Cubic foot/time unit
- fl oz/s (us), fl oz/min (us), fl oz/h (us), fl oz/d (us): Fluid ounce/time unit
- gal/s (us), gal/min (us), gal/h (us), gal/d (us): Gallon/time unit
- kgal/s (us), kgal/min (us), kgal/h (us), kgal/d (us): Kilogallon/time unit
- Mgal/s (us), Mgal/min (us), Mgal/h (us), Mgal/d (us): Million gallon/time unit
- bbl/s (us;liq.), bbl/min (us;liq.), bbl/h (us;liq.), bbl/d (us;liq.): Barrel/time unit (normal liquids)
- bbl/s (us;beer), bbl/min (us;beer), bbl/h (us;beer), bbl/d (us;beer): Barrel/time unit (beer)
- bbl/s (us;oil), bbl/min (us;oil), bbl/h (us;oil), bbl/d (us;oil): Barrel/time unit (petrochemicals)
- bbl/s (us;tank), bbl/min (us;tank), bbl/h (us;tank), bbl/d (us;tank): Barrel/time unit (filling tank)

Time
- s, m, h, d, y: Second, minute, hour, day, year
- am, pm: Ante meridiem (before midday), post meridiem (after midday)

5.3 Imperial units

<table>
<thead>
<tr>
<th>Process variable</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>lb/gal (imp), lb/bbl (imp;beer), lb/bbl (imp;oil)</td>
<td>Pound/volume unit</td>
</tr>
<tr>
<td>Volume</td>
<td>gal (imp), Mgal (imp)</td>
<td>Gallon, mega gallon</td>
</tr>
<tr>
<td></td>
<td>bbl (imp;beer), bbl (imp;oil)</td>
<td>Barrel (beer), barrel (petrochemicals)</td>
</tr>
<tr>
<td>Volume flow</td>
<td>gal/s (imp), gal/min (imp), gal/h (imp), gal/d (imp)</td>
<td>Gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>Mgal/s (imp), Mgal/min (imp), Mgal/h (imp), Mgal/d (imp)</td>
<td>Mega gallon/time unit</td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;beer), bbl/min (imp;beer), bbl/h (imp;beer), bbl/d (imp;beer)</td>
<td>Barrel/time unit (beer)</td>
</tr>
<tr>
<td></td>
<td>Beer: 36.0 gal/bbl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bbl/s (imp;oil), bbl/min (imp;oil), bbl/h (imp;oil), bbl/d (imp;oil)</td>
<td>Barrel/time unit (petrochemicals)</td>
</tr>
<tr>
<td></td>
<td>Petrochemicals: 34.97 gal/bbl</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>s, m, h, d, y</td>
<td>Second, minute, hour, day, year</td>
</tr>
<tr>
<td></td>
<td>am, pm</td>
<td>Ante meridiem (before midday), post meridiem (after midday)</td>
</tr>
</tbody>
</table>
Index

0 ... 9
- 0% bargraph value 1 (Parameter) ... 18
- 0% bargraph value 3 (Parameter) ... 21
- 2.4 GHz WLAN channel (Parameter) ... 99
- 100% bargraph value 1 (Parameter) ... 19
- 100% bargraph value 3 (Parameter) ... 22

A
- Access status (Parameter) ... 13
- Access status display (Parameter) ... 13, 26
- Activate SW option (Parameter) ... 38
- Actual diagnostics (Parameter) .. 159
- Address mode (Parameter) ... 78
- Address shifting configuration (Submenu) 91
- Administration (Submenu) ... 34
- Alarm delay (Parameter) ... 27
- Alarm hysteresis (Parameter) ... 109, 154
- Alarm summary (Parameter) .. 85, 106, 119, 127, 140, 152
- Alert key (Parameter) .. 84, 105, 118, 126, 138, 151
- Analog input 1 to n (Submenu) ... 101
- Analog outputs (Submenu) ... 122
- Application (Submenu) .. 144
- Assign behavior of diagnostic no. 043 (Parameter) 29
- Assign behavior of diagnostic no. 302 (Parameter) 30
- Assign behavior of diagnostic no. 376 (Parameter) 30
- Assign behavior of diagnostic no. 377 (Parameter) 30
- Assign behavior of diagnostic no. 531 (Parameter) 31
- Assign behavior of diagnostic no. 832 (Parameter) 31
- Assign behavior of diagnostic no. 833 (Parameter) 31
- Assign behavior of diagnostic no. 834 (Parameter) 32
- Assign behavior of diagnostic no. 835 (Parameter) 32
- Assign behavior of diagnostic no. 842 (Parameter) 32
- Assign behavior of diagnostic no. 937 (Parameter) 33
- Assign behavior of diagnostic no. 938 (Parameter) 33
- Assign behavior of diagnostic no. 961 (Parameter) 34
- Assign behavior of diagnostic no. 962 (Parameter) 34
- Assign channel 1 (Parameter) .. 177
- Assign channel 2 (Parameter) .. 178
- Assign channel 3 (Parameter) .. 178
- Assign channel 4 (Parameter) .. 178
- Assign process variable (Parameter) ... 57, 60, 145
- Assign simulation process variable (Parameter) 185
- Assign SSID name (Parameter) .. 99

B
- Backlight (Parameter) .. 26
- Batch ID (Parameter) ... 107, 120, 128, 140, 153
- Batch operation (Parameter) ... 107, 120, 128, 140, 153
- Batch phase (Parameter) ... 107, 120, 128, 141, 153
- Batch Recipe Unit Procedure (Parameter) 107, 121, 128, 141, 154
- Baudrate (Parameter) .. 81
- Bootloader revision (Parameter) ... 173, 174
- Build no. software (Parameter) ... 173, 174
- Build-up detection (Submenu) ... 64
- Bus up detection (Parameter) ... 79

C
- Calibration (Submenu) ... 76
- Calibration factor (Parameter) ... 77
- Channel (Parameter) ... 102, 115
- Clear logging data (Parameter) .. 179
- Communication (Submenu) ... 78
- Condensed status diagnostic (Parameter) 91
- Conductivity (Parameter) .. 41
- Conductivity calibration factor (Parameter) 77
- Conductivity damping (Parameter) ... 55
- Conductivity factor (Parameter) ... 73
- Conductivity measurement (Parameter) 55
- Conductivity offset (Parameter) ... 73
- Conductivity temperature coefficient (Parameter) 56
- Conductivity unit (Parameter) ... 46
- Confirm access code (Parameter) ... 35
- Connection state (Parameter) .. 100
- Contrast display (Parameter) ... 26
- Control Totalizer 1 to n (Parameter) .. 147
- Corrected conductivity (Parameter) .. 42
- Corrected conductivity factor (Parameter) 75
- Corrected conductivity offset (Parameter) 75
- Corrected volume flow (Parameter) ... 41
- Corrected volume flow factor (Parameter) 74
- Corrected volume flow offset (Parameter) 73
- Corrected volume flow unit (Parameter) 49
- Corrected volume unit (Parameter) ... 50

D
- Data logging (Parameter) ... 180
- Data logging (Submenu) .. 176
- Data logging control (Parameter) ... 180
- Data logging status (Parameter) ... 181
- Date/time format (Parameter) .. 51
- Decimal places 1 (Parameter) .. 19
- Decimal places 2 (Parameter) .. 20
- Decimal places 3 (Parameter) .. 22
- Decimal places 4 (Parameter) .. 23
- Default gateway (Parameter) ... 94
- Define access code (Parameter) .. 35, 37
- Define access code (Wizard) .. 34
- Density (Parameter) ... 42
- Density source (Parameter) ... 67
- Density unit (Parameter) ... 48
- Descriptor (Parameter) ... 89
- Device address (Parameter) ... 79
- Device alarm simulation (Parameter) ... 186
- Device certification (Parameter) ... 88
- Device ID (Parameter) .. 86
- Device information (Submenu) ... 168
- Device install date (Parameter) ... 89
- Device message (Parameter) .. 89
Assign behavior of diagnostic no. 962 (0745) 33
Assign channel 1 (0851) 177
Assign channel 2 (0852) 178
Assign channel 3 (0853) 178
Assign channel 4 (0854) 178
Assign process variable
Totalizer 1 to n (3809–1 to n) 145
Assign process variable (1837) 57
Assign process variable (1860) 60
Assign simulation process variable (1810) 185
Assign SSID name (2708) 99
Backlight (0111) 26
Batch ID
Analog input 1 to n (1533–1 to n) 107
Analog output 1 to n (1633–1 to n) 128
Discrete input 1 to n (2183–1 to n) 120
Discrete output 1 to n (1695–1 to n) 140
Totalizer 1 to n (3804–1 to n) 153
Batch operation
Analog input 1 to n (1534–1 to n) 107
Analog output 1 to n (1636–1 to n) 128
Discrete input 1 to n (2184–1 to n) 120
Discrete output 1 to n (1698–1 to n) 140
Totalizer 1 to n (3805–1 to n) 153
Batch Recipe Unit Procedure
Analog input 1 to n (1536–1 to n) 107
Analog output 1 to n (1641–1 to n) 128
Discrete input 1 to n (2185–1 to n) 120
Discrete output 1 to n (1699–1 to n) 141
Totalizer 1 to n (3806–1 to n) 153
Batch phase
Analog input 1 to n (1535–1 to n) 107
Analog output 1 to n (1640–1 to n) 128
Discrete input 1 to n (2186–1 to n) 121
Discrete output 1 to n (1700–1 to n) 141
Totalizer 1 to n (3807–1 to n) 154
Baudrate (1504) 81
Bootloader revision (0073) 173, 174
Build no. software (0079) 173, 174
Bus termination (1431) 79
Calibration factor (6522) 77
Channel
Analog input 1 to n (1561–1 to n) 102
Discrete input 1 to n (2187–1 to n) 115
Clear logging data (0855) 179
Condensed status diagnostic (1500) 91
Conductivity (1850) 41
Conductivity calibration factor (6718) 77
Conductivity damping (1803) 55
Conductivity factor (1849) 73
Conductivity measurement (6814) 55
Conductivity offset (1846) 73
Conductivity temperature coefficient (1891) 56
Conductivity unit (0582) 46
Connection state (2722) 100
Contrast display (0105) 26
Control Totalizer 1 to n (3830–1 to n) 147
Corrected conductivity (1853) 42
Corrected conductivity factor (1871) 75
Index

<table>
<thead>
<tr>
<th>Decimal places 4 (0119)</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic event category (0738)</td>
<td>186</td>
</tr>
<tr>
<td>Descriptor (1489)</td>
<td>89</td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>162</td>
</tr>
<tr>
<td>Device alarm simulation (0654)</td>
<td>186</td>
</tr>
<tr>
<td>Device certification (1486)</td>
<td>88</td>
</tr>
<tr>
<td>Device ID (1480)</td>
<td>86</td>
</tr>
<tr>
<td>Device install date (1491)</td>
<td>89</td>
</tr>
<tr>
<td>Device name (0013)</td>
<td>169</td>
</tr>
<tr>
<td>Device reset (0000)</td>
<td>37</td>
</tr>
<tr>
<td>Device tag (0011)</td>
<td>168</td>
</tr>
<tr>
<td>Device tag (1496)</td>
<td>83</td>
</tr>
<tr>
<td>DHCP client (7212)</td>
<td>93</td>
</tr>
<tr>
<td>Diagnostic event category (0738)</td>
<td>186</td>
</tr>
<tr>
<td>Diagnostic event simulation (0737)</td>
<td>186</td>
</tr>
<tr>
<td>Diagnostics (1482)</td>
<td>87</td>
</tr>
<tr>
<td>Diagnostics 1 (0692)</td>
<td>162</td>
</tr>
<tr>
<td>Diagnostics 2 (0693)</td>
<td>162</td>
</tr>
<tr>
<td>Diagnostics 3 (0694)</td>
<td>163</td>
</tr>
<tr>
<td>Diagnostics 4 (0695)</td>
<td>164</td>
</tr>
<tr>
<td>Diagnostics 5 (0696)</td>
<td>165</td>
</tr>
<tr>
<td>Diagnostics mask (1484)</td>
<td>87</td>
</tr>
<tr>
<td>Direct access (0106)</td>
<td>11</td>
</tr>
<tr>
<td>Display damping (0094)</td>
<td>24</td>
</tr>
<tr>
<td>Display interval (0096)</td>
<td>23</td>
</tr>
<tr>
<td>Display language (0104)</td>
<td>15</td>
</tr>
<tr>
<td>ECC cleaning cycle (6557)</td>
<td>64</td>
</tr>
<tr>
<td>ECC duration (6555)</td>
<td>63</td>
</tr>
<tr>
<td>ECC polarity (6631)</td>
<td>64</td>
</tr>
<tr>
<td>ECC recovery time (6556)</td>
<td>63</td>
</tr>
<tr>
<td>Electrode cleaning circuit (6528)</td>
<td>63</td>
</tr>
<tr>
<td>Empty pipe adjust value (6527)</td>
<td>61</td>
</tr>
<tr>
<td>ENP version (0012)</td>
<td>171</td>
</tr>
<tr>
<td>Enter access code (0003)</td>
<td>14</td>
</tr>
<tr>
<td>Entire logging duration (0861)</td>
<td>181</td>
</tr>
<tr>
<td>Extended order code 1 (0023)</td>
<td>170</td>
</tr>
<tr>
<td>Extended order code 2 (0021)</td>
<td>170</td>
</tr>
<tr>
<td>Extended order code 3 (0022)</td>
<td>170</td>
</tr>
<tr>
<td>External density (6630)</td>
<td>67</td>
</tr>
<tr>
<td>External temperature (6673)</td>
<td>68</td>
</tr>
<tr>
<td>Factory reset (1488)</td>
<td>88</td>
</tr>
<tr>
<td>Fail-safe time</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1525–1 to n)</td>
<td>103</td>
</tr>
<tr>
<td>Analog output 1 to n (1636–1 to n)</td>
<td>124</td>
</tr>
<tr>
<td>Discrete input 1 to n (2189–1 to n)</td>
<td>116</td>
</tr>
<tr>
<td>Discrete output 1 to n (1696–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Fail-safe type</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1526–1 to n)</td>
<td>103</td>
</tr>
<tr>
<td>Analog output 1 to n (1637–1 to n)</td>
<td>124</td>
</tr>
<tr>
<td>Discrete input 1 to n (2190–1 to n)</td>
<td>116</td>
</tr>
<tr>
<td>Discrete output 1 to n (1693–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Fail-safe value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1526–1 to n)</td>
<td>103</td>
</tr>
<tr>
<td>Analog output 1 to n (1636–1 to n)</td>
<td>124</td>
</tr>
<tr>
<td>Discrete input 1 to n (2189–1 to n)</td>
<td>116</td>
</tr>
<tr>
<td>Discrete output 1 to n (1696–1 to n)</td>
<td>136</td>
</tr>
<tr>
<td>Failure mode</td>
<td></td>
</tr>
<tr>
<td>Totalizer 1 to n (3810–1 to n)</td>
<td>149</td>
</tr>
<tr>
<td>Flow velocity (1854)</td>
<td>41</td>
</tr>
<tr>
<td>Flow velocity factor (1880)</td>
<td>76</td>
</tr>
<tr>
<td>Flow velocity offset (1879)</td>
<td>75</td>
</tr>
<tr>
<td>Format display (0098)</td>
<td>16</td>
</tr>
<tr>
<td>Full pipe adjust value (6548)</td>
<td>62</td>
</tr>
<tr>
<td>Gateway IP address (2719)</td>
<td>101</td>
</tr>
<tr>
<td>Hardware lock (1499)</td>
<td>90</td>
</tr>
<tr>
<td>Hardware revision (1479)</td>
<td>86</td>
</tr>
<tr>
<td>Header (0097)</td>
<td>24</td>
</tr>
<tr>
<td>Header text (0112)</td>
<td>25</td>
</tr>
<tr>
<td>Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1538–1 to n)</td>
<td>112</td>
</tr>
<tr>
<td>Totalizer 1 to n (3811–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1539–1 to n)</td>
<td>112</td>
</tr>
<tr>
<td>Totalizer 1 to n (3812–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Hi Hi alarm state</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1540–1 to n)</td>
<td>112</td>
</tr>
<tr>
<td>Totalizer 1 to n (3813–1 to n)</td>
<td>157</td>
</tr>
<tr>
<td>Hi Hi alarm value</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1541–1 to n)</td>
<td>111</td>
</tr>
<tr>
<td>Totalizer 1 to n (3814–1 to n)</td>
<td>156</td>
</tr>
<tr>
<td>Hi Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1528–1 to n)</td>
<td>110</td>
</tr>
<tr>
<td>Totalizer 1 to n (3815–1 to n)</td>
<td>154</td>
</tr>
<tr>
<td>Hi Lim</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1528–1 to n)</td>
<td>110</td>
</tr>
<tr>
<td>Totalizer 1 to n (3816–1 to n)</td>
<td>155</td>
</tr>
<tr>
<td>Ident number selector (1461)</td>
<td>79, 89</td>
</tr>
<tr>
<td>Increase close</td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1638–1 to n)</td>
<td>133</td>
</tr>
<tr>
<td>Input channel</td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1670–1 to n)</td>
<td>130</td>
</tr>
<tr>
<td>Discrete output 1 to n (1724–1 to n)</td>
<td>142</td>
</tr>
<tr>
<td>Installation direction (1809)</td>
<td>70</td>
</tr>
<tr>
<td>Integration time (6533)</td>
<td>70</td>
</tr>
</tbody>
</table>
Index

<p>| Invert | Analog output 1 to n (1648–1 to n) | 127 |
| Discrete input 1 to n (2188–1 to n) | Discrete input 1 to n (2195–1 to n) | 119 |
| Discrete output 1 to n (1692–1 to n) | Discrete output 1 to n (1705–1 to n) | 139 |
| IP address (7209) | Totalizer 1 to n (3828–1 to n) | 152 |
| IP address domain name server (2720) | Mode block permitted (1493) | 84 |
| Lo alarm state | Network security (2705) | 96 |
| Analog input 1 to n (1542–1 to n) | New adjustment (6560) | 61 |
| Totalizer 1 to n (3817–1 to n) | Nominal diameter (2807) | 76 |
| Lo alarm value | Off value low flow cutoff (1804) | 58 |
| Analog input 1 to n (1543–1 to n) | On value low flow cutoff (1805) | 57 |
| Totalizer 1 to n (3818–1 to n) | Operating time (0652) | 36, 161 |
| Lo Lim | Operating time from restart (0653) | 161 |
| Analog input 1 to n (1530–1 to n) | Order code (0008) | 169 |
| Totalizer 1 to n (3819–1 to n) | Out decimal point | 109 |
| Lo Lo alarm state | Analog input 1 to n (1547–1 to n) | 109 |
| Analog input 1 to n (1544–1 to n) | Out scale lower range | 108 |
| Totalizer 1 to n (3820–1 to n) | Analog output 1 to n (1644–1 to n) | 134 |
| Lo Lo alarm value | Out scale upper range | 108 |
| Analog input 1 to n (1545–1 to n) | Analog output 1 to n (1646–1 to n) | 133 |
| Totalizer 1 to n (3821–1 to n) | Out status | 104 |
| Lo Lo Lim | Analog input 1 to n (1549–1 to n) | 104 |
| Analog input 1 to n (1531–1 to n) | Analog input 1 to n (1654–1 to n) | 104 |
| Totalizer 1 to n (3822–1 to n) | Analog output 1 to n (1645–1 to n) | 125 |
| Locking status (0004) | Analog output 1 to n (1669–1 to n) | 125 |
| 12 | Discrete input 1 to n (2193–1 to n) | 117 |
| Logging delay (0859) | Discrete input 1 to n (2203–1 to n) | 117 |
| 180 | Discrete output 1 to n (1703–1 to n) | 137 |
| Logging interval (0856) | Discrete output 1 to n (1723–1 to n) | 137 |
| 179 | Out unit | 109 |
| Login page (7273) | Analog input 1 to n (1550–1 to n) | 114 |
| 94 | Out unit text | 114 |
| MAC address (7214) | Analog input 1 to n (1552–1 to n) | 103 |
| 92 | Analog output 1 to n (1647–1 to n) | 124 |
| Manufacturer ID (1502) | Discrete input 1 to n (2194–1 to n) | 117 |
| 86 | Discrete output 1 to n (1704–1 to n) | 137 |
| Mass flow (1847) | Out value | 43, 149 |
| 41 | Analog input 1 to n (1553–1 to n) | 109 |
| Mass flow factor (1846) | Analog output 1 to n (1671–1 to n) | 131 |
| 72 | Analog output 1 to n (1725–1 to n) | 142 |
| Mass flow offset (1841) | Discrete output 1 to n (1723–1 to n) | 137 |
| 72 | Position status | 132 |
| Mass flow unit (0554) | Analog output 1 to n (1649–1 to n) | 132 |
| 47 | Position value | 131 |
| Mass unit (0574) | Preset value 1 to n (3829–1 to n) | 148 |
| 48 | Pressure shock suppression (1806) | 58 |
| Master availability (1517) | Previous diagnostics (0690) | 160 |
| 81 | Process variable suppression (1811) | 185 |
| Maximum value (6545) | PROFIBUS ident number (1464) | 80 |
| 175 | Profile version (1463) | 81 |
| Maximum value (6680) | Progress (6571) | 61 |
| 176 | PV filter time | 102 |
| Measured value EPD (6559) | Analog input 1 to n (1524–1 to n) | 102 |
| 62 | PV scale lower range | 108 |
| Measuring period (6536) | Analog output 1 to n (1651–1 to n) | 129 |
| 70 | Analog output 1 to n (1650–1 to n) | 131 |
| Minimum value (6547) | Analog output 1 to n (3827–1 to n) | 43, 149 |
| 175 | Analog output 1 to n (1652–1 to n) | 103 |
| Minimum value (6681) | Analog output 1 to n (1647–1 to n) | 124 |
| 175 | Analog output 1 to n (2194–1 to n) | 117 |
| Mode block actual | Discrete output 1 to n (1704–1 to n) | 137 |
| Analog input 1 to n (1521–1 to n) | Out value | 43, 149 |
| 105 | Output channel | 131 |
| Analog output 1 to n (1631–1 to n) | Discrete output 1 to n (1725–1 to n) | 142 |
| 126 | Position status | 132 |
| Discrete input 1 to n (2181–1 to n) | Position value | 131 |
| 119 | Preset value 1 to n (3829–1 to n) | 148 |
| Discrete output 1 to n (1691–1 to n) | Pressure shock suppression (1806) | 58 |
| 139 | Previous diagnostics (0690) | 160 |
| Totalizer 1 to n (3801–1 to n) | Process variable suppression (1811) | 185 |
| 152 | PROFIBUS ident number (1464) | 80 |
| Mode block actual (1472) | Profile version (1463) | 81 |
| 84 | Progress (6571) | 61 |
| Mode block normal | PV filter time | 102 |
| Analog input 1 to n (1546–1 to n) | Analog input 1 to n (1524–1 to n) | 102 |
| 106 | PV scale lower range | 108 |
| Analog output 1 to n (1643–1 to n) | Analog output 1 to n (1554–1 to n) | 108 |
| 127 | Analog output 1 to n (1651–1 to n) | 129 |</p>
<table>
<thead>
<tr>
<th>PV scale upper range</th>
<th>SSID name (2714)</th>
<th>Static revision</th>
<th>Static revision (1495)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 1 to n (1555–1 to n)</td>
<td>108</td>
<td>Analog input 1 to n (1560–1 to n)</td>
<td>104</td>
</tr>
<tr>
<td>Analog output 1 to n (1652–1 to n)</td>
<td>129</td>
<td>Analog output 1 to n (1666–1 to n)</td>
<td>125</td>
</tr>
<tr>
<td>RCAS in value</td>
<td>Static revision (1495)</td>
<td>Discrete input 1 to n (2200–1 to n)</td>
<td>118</td>
</tr>
<tr>
<td>Analog output 1 to n (1654–1 to n)</td>
<td>130</td>
<td>Discrete input 1 to n (1720–1 to n)</td>
<td>138</td>
</tr>
<tr>
<td>Discrete output 1 to n (1706–1 to n)</td>
<td>142</td>
<td>Totalizer 1 to n (3832–1 to n)</td>
<td>151</td>
</tr>
<tr>
<td>RCAS in value</td>
<td>Static revision (1495)</td>
<td>Totalizer 1 to n (3831–1 to n)</td>
<td>151</td>
</tr>
<tr>
<td>Analog output 1 to n (1655–1 to n)</td>
<td>130</td>
<td>Strategy (1495)</td>
<td>83</td>
</tr>
<tr>
<td>Discrete output 1 to n (1707–1 to n)</td>
<td>142</td>
<td>Strategy (1495)</td>
<td>83</td>
</tr>
<tr>
<td>RCAS out status</td>
<td>Strategy (1495)</td>
<td>Subnet mask (7211)</td>
<td>93</td>
</tr>
<tr>
<td>Analog output 1 to n (1656–1 to n)</td>
<td>131</td>
<td>Switch point empty pipe detection (6562)</td>
<td>60</td>
</tr>
<tr>
<td>Discrete output 1 to n (1708–1 to n)</td>
<td>143</td>
<td>Tag description</td>
<td></td>
</tr>
<tr>
<td>RCAS out value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1657–1 to n)</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1711–1 to n)</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readback status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1658–1 to n)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1712–1 to n)</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readback value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1659–1 to n)</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1713–1 to n)</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Received signal strength (2721)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference density (1885)</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference temperature (1816)</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset access code (0024)</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset all totalizers (2806)</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time empty pipe detection (1859)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security identification (2718)</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select antenna (2713)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separator (0101)</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial number (0009)</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial number (1481)</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set point status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1660–1 to n)</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1714–1 to n)</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set point value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1661–1 to n)</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1715–1 to n)</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setpoint deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1653–1 to n)</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulate enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1556–1 to n)</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1662–1 to n)</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n (2196–1 to n)</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1716–1 to n)</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulate status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1557–1 to n)</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1663–1 to n)</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n (2197–1 to n)</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1717–1 to n)</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulate value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog input 1 to n (1558–1 to n)</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output 1 to n (1664–1 to n)</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete input 1 to n (2198–1 to n)</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete output 1 to n (1718–1 to n)</td>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software option overview (0015)</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software revision (0072)</td>
<td>172, 173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software revision (1478)</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSID name (2707)</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

Join the Proline Promag 400 PROFIBUS DP Index to quickly find the parameter you are interested in.

WLAN mode (2717) .. 96
WLAN passphrase (2706) .. 98
WLAN password (2716) ... 97
WLAN subnet mask (2709) .. 98
Zero point (6546) .. 77
Direct access (Parameter) 11
Discrete input 1 to n (Submenu) 115
Discrete inputs (Submenu) .. 115
Discrete output 1 to n (Submenu) 134
Discrete outputs (Submenu) 134
Display (Submenu) .. 14
Display channel 1 (Submenu) 182
Display channel 2 (Submenu) 183
Display channel 3 (Submenu) 183
Display channel 4 (Submenu) 184
Display damping (Parameter) 24
Display interval (Parameter) 23
Display language (Parameter) 15
Display module (Submenu) 173
Document
Explanation of the structure of a parameter description ... 6
Function ... 4
Structure ... 4
Symbols used .. 6
Target group .. 4
Using the document .. 4
Document function .. 4

E
ECC cleaning cycle (Parameter) 64
ECC duration (Parameter) ... 63
ECC polarity (Parameter) ... 64
ECC recovery time (Parameter) 63
Electrode cleaning circuit (Parameter) 63
Electrode cleaning circuit (Submenu) 62
Empty pipe adjust value (Parameter) 61
Empty pipe detection (Submenu) 59
ENP version (Parameter) ... 171
Enter access code (Parameter) 14
Entire logging duration (Parameter) 181
Event list (Submenu) .. 166
Event logbook (Submenu) 166
Expert (Menu) .. 11
Extended order code 1 (Parameter) 170
Extended order code 2 (Parameter) 170
Extended order code 3 (Parameter) 170
External compensation (Submenu) 67
External density (Parameter) 67
External temperature (Parameter) 68

F
Factory reset (Parameter) .. 88
Factory settings ... 187
SI units ... 187
US units .. 189
Fail-safe time (Parameter) 123, 135
Fail-safe type (Parameter) 103, 116, 124, 136
Fail-safe value (Parameter) 103, 116, 124, 136

Failure mode (Parameter) 149
Feature enabled (Parameter) 90
Feature supported (Parameter) 90
Filter options (Parameter) 52, 166
Firmware version (Parameter) 169
Fixed density (Parameter) 68
Flow damping (Parameter) 54
Flow override (Parameter) 54
Flow velocity (Parameter) .. 41
Flow velocity factor (Parameter) 76
Flow velocity offset (Parameter) 75
Format display (Parameter) 16
Full pipe adjust value (Parameter) 62
Function see Parameter

G
Gateway IP address (Parameter) 101

H
Hardware lock (Parameter) 90
Hardware revision (Parameter) 86
Header (Parameter) ... 24
Header text (Parameter) ... 25
Heartbeat Technology (Submenu) 184
Hi alarm state (Parameter) 112, 157
Hi alarm value (Parameter) 112, 157
Hi Hi alarm state (Parameter) 112, 157
Hi Hi alarm value (Parameter) 111, 156
Hi Hi Lim (Parameter) .. 110, 154
Hi Lim (Parameter) .. 110, 155

I
Ident number selector (Parameter) 79, 89
Increase close (Parameter) 133
Input channel (Parameter) 130, 142
Installation direction (Parameter) 70
Integration time (Parameter) 70
Invert (Parameter) .. 116, 135
IP address (Parameter) .. 93
IP address domain name server (Parameter) 101

L
Lin type (Parameter) .. 109
Lo alarm state (Parameter) 113, 158
Lo alarm value (Parameter) 112, 157
Lo Lim (Parameter) ... 111, 155
Lo Lo alarm state (Parameter) 113, 158
Lo Lo alarm value (Parameter) 113, 158
Lo Lo Lim (Parameter) ... 111, 156
Locking status (Parameter) 12
Logging delay (Parameter) 180
Logging interval (Parameter) 179
Login page (Parameter) .. 94
Low flow cut off (Submenu) 57

M
MAC address (Parameter) 92
Main electronics temperature (Submenu) 174
Mainboard module (Submenu) 171

Endress+Hauser

199
Manufacturer ID (Parameter) 86
Mass flow (Parameter) .. 41
Mass flow factor (Parameter) 72
Mass flow offset (Parameter) 72
Mass flow unit (Parameter) 47
Mass unit (Parameter) ... 48
Master availability (Parameter) 81
Maximum value (Parameter) 175, 176
Measured value EPD (Parameter) 62
Measured values (Submenu) 40
Measuring period (Parameter) 70
Medium temperature (Submenu) 175
Menu
Expert .. 11
Min/max values (Submenu) 174
Minimum value (Parameter) 175
Mode block actual (Parameter)
.. 84, 105, 119, 126, 139, 152
Mode block normal (Parameter)
.. 85, 106, 119, 127, 139, 152
Mode block permitted (Parameter)
.. 84, 106, 119, 127, 139, 152

N
Network security (Parameter) 96
New adjustment (Parameter) 61
Nominal diameter (Parameter) 76

O
Off value low flow cutoff (Parameter) 58
On value low flow cutoff (Parameter) 57
Operating time (Parameter) 36, 161
Operating time from restart (Parameter) 161
Order code (Parameter) .. 169
Out decimal point (Parameter) 109
Out scale lower range (Parameter) 108, 134
Out scale upper range (Parameter) 108, 133
Out status (Parameter) .. 104, 117, 125, 137
Out unit (Parameter) ... 109
Out unit text (Parameter) .. 114
Out value (Parameter) ... 103, 117, 124, 137
Out value 1 to n (Parameter) 43, 149
Output channel (Parameter) 131, 142

P
Parameter
Structure of a parameter description 6
Physical block (Submenu) 82
Position status (Parameter) 132
Position value (Parameter) 131
Preset value 1 to n (Parameter) 148
Pressure shock suppression (Parameter) 58
Previous diagnostics (Parameter) 160
Process parameters (Submenu) 51
Process variable adjustment (Submenu) 70
Process variable value (Parameter) 185
Process variables (Submenu) 40
PROFIBUS DP configuration (Submenu) 78
PROFIBUS DP info (Submenu) 80

PROFIBUS ident number (Parameter) 80
Profile version (Parameter) 81
Progress (Parameter) ... 61
PV filter time (Parameter) 102
PV scale lower range (Parameter) 108, 129
PV scale upper range (Parameter) 108, 129

R
RCAS in status (Parameter) 130, 142
RCAS in value (Parameter) 130, 142
RCAS out status (Parameter) 131, 143
RCAS out value (Parameter) 131, 143
Readback status (Parameter) 130, 141
Readback value (Parameter) 129, 141
Received signal strength (Parameter) 100
Reference density (Parameter) 56
Reference temperature (Parameter) 69
Reset access code (Parameter) 36
Reset access code (Submenu) 35
Reset all totalizers (Parameter) 144
Response time empty pipe detection (Parameter) 60

S
Security identification (Parameter) 97
Select antenna (Parameter) 100
Sensor (Submenu) .. 39
Sensor adjustment (Submenu) 69
Sensor electronic module (ISEM) (Submenu) 172
Separator (Parameter) .. 26
Serial number (Parameter) 87, 169
Set point status (Parameter) 123, 135
Set point value (Parameter) 123, 135
Setpoint deviation (Parameter) 132
Simulate enabled (Parameter) 113, 121, 132, 143
Simulate status (Parameter) 114, 122, 133, 144
Simulate value (Parameter) 114, 121, 132, 143
Simulation (Submenu) .. 184
Software option overview (Parameter) 39
Software revision (Parameter) 86, 172, 173
SSID name (Parameter) ... 96, 99
Static revision (Parameter) 83, 104, 118, 125, 138, 151
Status PROFIBUS Master Config (Parameter) 80
Strategy (Parameter) .. 83, 105, 118, 126, 138, 151
Submenu
Address shifting configuration 91
Administration ... 34
Analog input 1 to n ... 101
Analog inputs .. 101
Analog output 1 to n .. 122
Analog outputs ... 122
Application ... 144
Build-up detection ... 64
Calibration ... 76
Communication ... 78
Data logging ... 176
Device information .. 168
Diagnostic behavior .. 28
Diagnostic handling .. 27
Diagnostic list .. 161
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostics</td>
<td>158</td>
</tr>
<tr>
<td>Discrete input 1 to n</td>
<td>115</td>
</tr>
<tr>
<td>Discrete inputs</td>
<td>115</td>
</tr>
<tr>
<td>Discrete output 1 to n</td>
<td>134</td>
</tr>
<tr>
<td>Discrete outputs</td>
<td>134</td>
</tr>
<tr>
<td>Display</td>
<td>14</td>
</tr>
<tr>
<td>Display channel 1</td>
<td>182</td>
</tr>
<tr>
<td>Display channel 2</td>
<td>183</td>
</tr>
<tr>
<td>Display channel 3</td>
<td>183</td>
</tr>
<tr>
<td>Display channel 4</td>
<td>184</td>
</tr>
<tr>
<td>Display module</td>
<td>173</td>
</tr>
<tr>
<td>Electrode cleaning circuit</td>
<td>62</td>
</tr>
<tr>
<td>Empty pipe detection</td>
<td>59</td>
</tr>
<tr>
<td>Event list</td>
<td>166</td>
</tr>
<tr>
<td>Event logbook</td>
<td>166</td>
</tr>
<tr>
<td>External compensation</td>
<td>67</td>
</tr>
<tr>
<td>Heartbeat Technology</td>
<td>184</td>
</tr>
<tr>
<td>Low flow cut off</td>
<td>57</td>
</tr>
<tr>
<td>Main electronics temperature</td>
<td>174</td>
</tr>
<tr>
<td>Mainboard module</td>
<td>171</td>
</tr>
<tr>
<td>Measured values</td>
<td>40</td>
</tr>
<tr>
<td>Medium temperature</td>
<td>175</td>
</tr>
<tr>
<td>Min/max values</td>
<td>174</td>
</tr>
<tr>
<td>Physical block</td>
<td>82</td>
</tr>
<tr>
<td>Process parameters</td>
<td>51</td>
</tr>
<tr>
<td>Process variable adjustment</td>
<td>70</td>
</tr>
<tr>
<td>Process variables</td>
<td>40</td>
</tr>
<tr>
<td>PROFIBUS DP configuration</td>
<td>78</td>
</tr>
<tr>
<td>PROFIBUS DP info</td>
<td>80</td>
</tr>
<tr>
<td>Reset access code</td>
<td>35</td>
</tr>
<tr>
<td>Sensor</td>
<td>39</td>
</tr>
<tr>
<td>Sensor adjustment</td>
<td>69</td>
</tr>
<tr>
<td>Sensor electronic module (ISEM)</td>
<td>172</td>
</tr>
<tr>
<td>Simulation</td>
<td>184</td>
</tr>
<tr>
<td>System</td>
<td>14</td>
</tr>
<tr>
<td>System units</td>
<td>44</td>
</tr>
<tr>
<td>Totalizer</td>
<td>43</td>
</tr>
<tr>
<td>Totalizer 1 to n</td>
<td>145</td>
</tr>
<tr>
<td>Web server</td>
<td>91</td>
</tr>
<tr>
<td>Subnet mask (Parameter)</td>
<td>93</td>
</tr>
<tr>
<td>Switch point empty pipe detection (Parameter)</td>
<td>60</td>
</tr>
<tr>
<td>System (Submenu)</td>
<td>14</td>
</tr>
<tr>
<td>System units (Submenu)</td>
<td>44</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tag description (Parameter)</td>
<td>104, 117, 125, 137, 150</td>
</tr>
<tr>
<td>Target group</td>
<td>4</td>
</tr>
<tr>
<td>Target mode (Parameter)</td>
<td>84, 105, 118, 126, 138, 151</td>
</tr>
<tr>
<td>Temperature (Parameter)</td>
<td>42</td>
</tr>
<tr>
<td>Temperature damping (Parameter)</td>
<td>56</td>
</tr>
<tr>
<td>Temperature factor (Parameter)</td>
<td>74</td>
</tr>
<tr>
<td>Temperature offset (Parameter)</td>
<td>74</td>
</tr>
<tr>
<td>Temperature source (Parameter)</td>
<td>68</td>
</tr>
<tr>
<td>Temperature unit (Parameter)</td>
<td>47</td>
</tr>
<tr>
<td>Timestamp (Parameter)</td>
<td>160, 162, 163, 164, 165</td>
</tr>
<tr>
<td>Totalizer (Submenu)</td>
<td>43</td>
</tr>
<tr>
<td>Totalizer 1 to n (Submenu)</td>
<td>145</td>
</tr>
<tr>
<td>Totalizer operation mode (Parameter)</td>
<td>148</td>
</tr>
<tr>
<td>Totalizer status (Hex) 1 to n (Parameter)</td>
<td>43, 150</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit totalizer (Parameter)</td>
<td>146</td>
</tr>
<tr>
<td>User name (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value 1 display (Parameter)</td>
<td>18</td>
</tr>
<tr>
<td>Value 2 display (Parameter)</td>
<td>20</td>
</tr>
<tr>
<td>Value 3 display (Parameter)</td>
<td>21</td>
</tr>
<tr>
<td>Value 4 display (Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>Volume flow (Parameter)</td>
<td>40</td>
</tr>
<tr>
<td>Volume flow factor (Parameter)</td>
<td>71</td>
</tr>
<tr>
<td>Volume flow offset (Parameter)</td>
<td>72</td>
</tr>
<tr>
<td>Volume flow unit (Parameter)</td>
<td>44</td>
</tr>
<tr>
<td>Volume unit (Parameter)</td>
<td>46</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Web server (Submenu)</td>
<td>91</td>
</tr>
<tr>
<td>Web server functionality (Parameter)</td>
<td>94</td>
</tr>
<tr>
<td>Web server language (Parameter)</td>
<td>92</td>
</tr>
<tr>
<td>Wizard</td>
<td></td>
</tr>
<tr>
<td>Define access code</td>
<td>34</td>
</tr>
<tr>
<td>WLAN settings</td>
<td>95</td>
</tr>
<tr>
<td>WLAN (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>WLAN IP address (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN MAC address (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN mode (Parameter)</td>
<td>96</td>
</tr>
<tr>
<td>WLAN passphrase (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>WLAN password (Parameter)</td>
<td>97</td>
</tr>
<tr>
<td>WLAN settings (Wizard)</td>
<td>95</td>
</tr>
<tr>
<td>WLAN subnet mask (Parameter)</td>
<td>98</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zero point (Parameter)</td>
<td>77</td>
</tr>
</tbody>
</table>