# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

## СЕРТИФИКАТ

об утверждении типа средств измерений № **85022-22** 

Срок действия утверждения типа до 30 марта 2027 г.

НАИМЕНОВАНИЕ И ОБОЗНАЧЕНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Термопреобразователи сопротивления iTHERM CompactLine

#### **ИЗГОТОВИТЕЛЬ**

Фирма "Endress+Hauser Sicestherm S.r.L.", Италия; Фирма Endress+Hauser Wetzer GmbH+Co.KG, Германия

ПРАВООБЛАДАТЕЛЬ

Фирма Endress+Hauser Wetzer GmbH+Co.KG, Германия

КОД ИДЕНТИФИКАЦИИ ПРОИЗВОДСТВА **ос** 

ДОКУМЕНТ НА ПОВЕРКУ МП 207-053-2021

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ **2 года - для ТС с функцией Каллендара - ван Дюзена**, **5 лет - для остальных ТС** 

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии **от 30 марта 2022 г. N 796**.

Руководитель

Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

#### СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 02A929B5000BAEF7814AB38FF70B046437

Кому выдан: Шалаев Антон Павлович Действителен: с 27.12.2021 до 27.12.2022 А.П.Шалаев

«08» апреля 2022 г.

## **УТВЕРЖДЕНО**

приказом Федерального агентства по техническому регулированию и метрологии от «30» марта 2022 г. №796

Регистрационный № 85022-22

Лист № 1 Всего листов 7

## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

## Термопреобразователи сопротивления iTHERM CompactLine

## Назначение средства измерений

Термопреобразователи сопротивления iTHERM CompactLine (далее по тексту – термопреобразователи или TC) предназначены для измерений температуры жидких и газообразных сред, химически неагрессивных к материалу защитной оболочки измерительной части TC.

### Описание средства измерений

Принцип действия термопреобразователей основан на зависимости электрического сопротивления чувствительного элемента (далее - ЧЭ) ТС от измеряемой температуры. Опционально может осуществляться преобразование сопротивления ЧЭ ТС в цифровой сигнал промышленной коммуникационной сети IO-link или в дискретные сигналы управления внешними электрическими цепями при помощи встроенного транзисторного PNP-выхода (реле), и в унифицированный аналоговый выходной сигнал постоянного тока в диапазоне от 4 до 20 мА.

TC iTHERM CompactLine изготавливаются следующей модели: ТМ311.

Модель ТС имеет исполнения, различающиеся по типу чувствительного элемента, по метрологическим и техническим характеристикам (в т.ч. по типу выходного сигнала), а также по конструкции корпуса и типу присоединения к процессу.

Термопреобразователи представляют собой компактную неразборную моноблочную конструкцию из нержавеющей стали и выполнены в виде корпуса цилиндрической формы с присоединенной измерительной частью, имеющей различные типы монтажных элементов для присоединения к процессу измерений. В корпусе ТС опционально может быть размещен электронный модуль для осуществления аналого-цифрового и цифро-аналогового преобразования результата измерений. Измерительная часть состоит из одного тонкопленочного платинового ЧЭ с номинальной статической характеристикой (НСХ) преобразования типа «Рt100» по ГОСТ 6651-2009 (МЭК 60751) и 4-х проводной схемой соединения внутренних проводов.

TC могут быть изготовлены с ЧЭ двух типов, различающихся по конструкции: TF (базовый вариант) и iTHERM TipSens (специальный вариант). ЧЭ типа iTERM TipSens обладает меньшим временем термической реакции по сравнению с базовым вариантом.

Электрическое подсоединение к измерительной цепи TC осуществляется при помощи разъема типа «М12» с четырьмя выводами и кодировкой «А» по МЭК 61076-2-101, расположенного в торцевой части корпуса TC.

TC могут комплектоваться дополнительными защитными термогильзами различной конструкции, изготовленными из нержавеющей стали или из других материалов.

Заводской (серийный) номер в виде буквенно-цифрового кода наносится на корпус ТС при помощи наклейки и (или) шильдика при помощи гравировки. Конструкция ТС не предусматривает нанесение знака поверки на средство измерений.

Фотографии общего вида термопреобразователей и ТС с указанием места нанесения заводского (серийного) номера приведены на рисунках 1-2.



Рисунок 1 – Общий вид ТС



Рисунок 2 – Место нанесения заводского (серийного) номера

Пломбирование ТС не предусмотрено.

### Программное обеспечение

Программное обеспечение (ПО) термопреобразователей со встроенным электронным модулем состоит из встроенного и автономного ПО.

Обработка результатов измерений и вычислений (метрологически значимая часть ПО) проводится по специальным расчетным соотношениям, сохраняемых во встроенной программе (Firmware). Данное ПО недоступно пользователю и не подлежит изменению на протяжении всего времени функционирования изделия, что соответствует уровню защиты «высокий» в соответствии с рекомендацией по метрологии Р 50.2.077-2014.

Идентификационные данные встроенной части ПО приведены в таблице 1.

## Таблица 1

| Идентификационные данные (признаки)                                                                            | Значение    |  |
|----------------------------------------------------------------------------------------------------------------|-------------|--|
| Идентификационное наименование ПО                                                                              | Firmware    |  |
| Номер версии (идентификационный номер) ПО, не ниже(1)                                                          | 01.00.zz    |  |
| Цифровой идентификатор программного обеспечения                                                                | отсутствует |  |
| Примечание:                                                                                                    |             |  |
| (1) z – служебный идентификационный номер, не влияющий на функционный номер, не влияющий на функционный номер, |             |  |
| метрологические характеристики ТС                                                                              |             |  |

Автономное программное обеспечение FieldCare реализовано в виде файлов операционной системы и предназначено для отображения результатов измерений.

Коммуникационный интерфейс IO-Link, обеспечивает двусторонний обмен данными между ТС и устройствами, поддерживающими IO-Link и подключенными к мастеру. Мастер IO-Link может передавать эти данные через различные сети, интерфейсные шины и шины системной платы, обеспечивая доступность данных, как для мгновенной обработки, так и для прогнозного анализа автоматической технологической системой (PLC, HMI, пр.).

## Метрологические и технические характеристики

Метрологические и основные технические характеристики ТС приведены в таблицах 2-3.

Таблица 2 - Метрологические характеристики

| Габлица 2 - Метрологические характеристики                                     |                                                                                  |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| Наименование характеристики                                                    | Значение                                                                         |  |  |  |
| Диапазон измерений температуры ТС в зависимости от                             |                                                                                  |  |  |  |
| типа ЧЭ (1), °C:                                                               |                                                                                  |  |  |  |
| - с ЧЭ типа «ТF»                                                               | от -50 до +150                                                                   |  |  |  |
| - с ЧЭ типа «iTHERM TipSens»                                                   | от -50 до +200                                                                   |  |  |  |
| Условное обозначение номинальной статической                                   |                                                                                  |  |  |  |
| характеристики преобразования (НСХ) по ГОСТ 6651-2009 (МЭК 60751)              | Pt100                                                                            |  |  |  |
| Класс допуска ЧЭ ТС по ГОСТ 6651-2009 (МЭК 60751)                              | A                                                                                |  |  |  |
| Пределы допускаемого отклонения сопротивления ТС от                            | $\pm (0,15+0,002\cdot  t ),$                                                     |  |  |  |
| НСХ (допуск) в температурном эквиваленте (для ТС без                           | где t – значение измеряемой                                                      |  |  |  |
| электронного модуля), °С:                                                      | температуры, °С                                                                  |  |  |  |
| Пределы допускаемой основной абсолютной                                        | $\pm (0.127 \pm 0.00074 \cdot ( \mathbf{t}  - \mathbf{t}_{\text{MИН}}))^{(2)}$   |  |  |  |
| погрешности аналого-цифрового преобразования                                   | или                                                                              |  |  |  |
| $(\Delta_{AU\Pi})$ , °С                                                        | $\pm (0.215 + 0.00134 \cdot ( t  - t_{\text{мин}}))^{(3)},$                      |  |  |  |
|                                                                                | где: t – значение измеряемой                                                     |  |  |  |
|                                                                                | температуры, °С,                                                                 |  |  |  |
|                                                                                | t <sub>мин</sub> – значение нижнего предела                                      |  |  |  |
|                                                                                | диапазона измерений (-50 °C), °С                                                 |  |  |  |
| Пределы допускаемой основной приведенной                                       |                                                                                  |  |  |  |
| погрешности цифро-аналогового преобразования                                   | $\pm 0.05$                                                                       |  |  |  |
| $(\Delta_{\text{ЦАП}})$ , % (от настроенного диапазона измерений)              |                                                                                  |  |  |  |
| Пределы допускаемой дополнительной абсолютной                                  | $\pm 0,008$ или $\pm 0,00004 \cdot ( t  - t_{\scriptscriptstyle \mathrm{MИН}}),$ |  |  |  |
| погрешности аналого-цифрового преобразования ( $\Delta_{\text{Д.А.Ц.П}}$ ) при | где: t – значение измеряемой                                                     |  |  |  |
| изменении температуры окружающей среды от нормальных                           | температуры, °С,                                                                 |  |  |  |
| условий (от +22 до +28 °С включ.) в диапазоне температуры                      | $t_{\text{мин}}$ — значение нижнего предела                                      |  |  |  |
| окружающей среды от -40 до +85 °С включ., °С/ 1 °С                             | диапазона измерений (-50 °C), °С;                                                |  |  |  |
| onpymmonion opedation to do too continuity of the                              | берут большее значение                                                           |  |  |  |

| Наименование характеристики                                                                                                                                                                                                                                                             | Значение                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Пределы допускаемой дополнительной приведенной погрешности цифро-аналогового преобразования ( $\Delta_{ДЦЛП}$ ) при изменении температуры окружающей среды от нормальных условий (от +22 до +28 °C включ.) в диапазоне от -40 до +85 °C, % (от настроенного диапазона измерений) / 1 °C | ±0,003                                                                                                                                                                                                            |
| Пределы допускаемой дополнительной абсолютной погрешности аналого-цифрового преобразования ( $\Delta_{\text{Д.АЦП}}$ ) при изменении напряжения питания постоянного тока от нормальных условий (24 B±10 %), °C/ 1 B                                                                     | $\pm 0,008$ или $\pm 0,00004 \cdot ( t  - t_{\text{мин}})$ , где: $t$ — значение измеряемой температуры, °C, $t_{\text{мин}}$ — значение нижнего предела диапазона измерений (-50 °C), °C; берут большее значение |
| Пределы допускаемой дополнительной приведенной погрешности цифро-аналогового преобразования ( $\Delta_{\text{ДЦАП}}$ ) при изменении напряжения питания от нормальных условий (24 B±10 %), % (от настроенного диапазона измерений) / 1 В                                                | ±0,003                                                                                                                                                                                                            |

Примечания:

- (1) приведены значения максимального диапазона измерений. По заказу, для TC со встроенным электронным модулем возможно настроить диапазон измерений, отличный от приведенного в таблице, но находящийся в его пределах, но при этом, минимальное значение интервала для данного диапазона должно быть не менее 50 °C;
- для ТС с электронным модулем и с индивидуальным согласованием первичного преобразователя температуры с индивидуальной градуировкой функции Каллендара ван Дюзена (КВД) и измерительного преобразователя (выбирается при заказе);
- (3) для ТС с электронным модулем (выбирается при заказе).

Пределы допускаемой основной и дополнительной абсолютной погрешности ТС с цифровым выходом IO-link равны погрешности аналого-цифрового преобразования ( $\Delta_{AU\Pi}$  и  $\Delta_{ДAU\Pi}$  соотв.).

Пределы допускаемой основной и дополнительной абсолютной погрешности ТС с аналоговым выходом в диапазоне от 4 до 20 мА вычисляются по формуле:

$$\Delta_{4 \div 20} = \sqrt{{\Delta_{(\mathcal{J})AU\Pi}}^2 + {\Delta_{(\mathcal{J})UA\Pi}}^2}$$

При расчете суммарной погрешности измерений, учитывающей в т.ч. и влияние изменения температуры окружающей среды и изменения напряжения питания, используют формулу (1), но при этом, под квадратным корнем к основной погрешности прибавляют значение дополнительной погрешности в квадрате.

Таблица 3 – Основные технические характеристики

| Наименование характеристики                       | Значение                               |
|---------------------------------------------------|----------------------------------------|
| Время термической реакции ТС (т90) в водной среде |                                        |
| (0,4 м/с), с, не более:                           |                                        |
| - для ТС с ЧЭ типа «ТF»                           | 20                                     |
| - для ТС с ЧЭ типа «iTHERM TipSens»               | 1,5                                    |
| This by the hyere everyone                        | аналоговый (в диапазоне от 4 до 20 мА) |
| Тип выходного сигнала                             | и цифровой (IO Link) или релейный      |
| (для ТС с электронным модулем)                    | (PNP-выход)                            |

| Наименование характеристики                                                                                                | Значение                                |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Параметры электропитания: - напряжение постоянного тока, В                                                                 | от 10 (от 15 – для связи IO-link) до 30 |
| Электрическое сопротивление изоляции (при напряжении 100 В и температуре окружающей среды от +15 до +25 °C), МОм, не менее | 100                                     |
| Диаметр монтажной (погружаемой) части ТС, мм                                                                               | 3; 6                                    |
| Длина монтажной части ТС, мм                                                                                               | от 10 до 9000                           |
|                                                                                                                            | (до 100000 по специальному заказу)      |
| Масса, г                                                                                                                   | от 200 до 2500                          |
| Средняя наработка до отказа, ч, не менее:                                                                                  |                                         |
| - для ТС без электронного модуля                                                                                           | 120000                                  |
| - для ТС с электронным модулем                                                                                             | 100000                                  |
| - для ТС с КВД и с электронным модулем                                                                                     | 60000                                   |
| Средний срок службы, лет, не менее:                                                                                        |                                         |
| - для ТС без электронного модуля                                                                                           | 15                                      |
| - для ТС с электронным модулем                                                                                             | 12                                      |
| - для ТС с КВД и с электронным модулем                                                                                     | 7,5                                     |
| Рабочие условия эксплуатации:                                                                                              |                                         |
| - температура окружающей среды, °С                                                                                         | от -40 до +85                           |
| - относительная влажность воздуха, %, не более                                                                             | 95                                      |

## Знак утверждения типа

наносится на титульный лист эксплуатационной документации типографским способом.

## Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

| Наименование                       | Количество | Примечание                  |
|------------------------------------|------------|-----------------------------|
| Термопреобразователь сопротивления | 1          | исполнение в соответствии с |
| iTHERM CompactLine                 | 1 шт.      | заказом                     |
| Руководство по эксплуатации        | 1          | на партию однотипных ТС при |
| (на русском языке)                 | 1 экз.     | поставке в один адрес       |
| Паспорт                            | 1 экз.     | -                           |

### Сведения о методиках (методах) измерений

приведены в разделах 5-7 и 9 Руководства по эксплуатации на ТС.

# Нормативные и технические документы, устанавливающие требования к термопреобразователям сопротивления iTHERM CompactLine

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

Международный стандарт МЭК 60751 (2008, 07) Промышленные чувствительные элементы термометров сопротивления из платины.

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.

Стандарт предприятия фирмы Endress+Hauser Wetzer GmbH+Co.KG на термопреобразователи сопротивления iTHERM CompactLine.

#### Изготовители

Фирма «Endress+Hauser Sicestherm S.r.L.», Италия

Адрес: Via M.Luther King 7, 20060 Pessano con Bornago, Italy

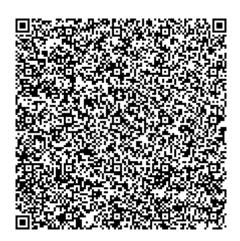
Телефон: +49 7622 28 0 Факс: +49 7622 28 14 38

E-mail: info@ehsice.endress.com

Фирма Endress+Hauser Wetzer GmbH+Co.KG, Германия

Адрес: Obere Wank 1, 87484 Nesselwang, Germany

Телефон: +49 8361 30 80 Факс: +49 8361 30 81 10 E-mail: info@pcw.endress.com


## Испытательный центр

Федеральное государственное бюджетное учреждение «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: +7 (495) 437-55-77 / 437-56-66

E-mail: office@vniims.ru, адрес в Интернет: www.vniims.ru

Уникальный номер записи об аккредитации в реестре аккредитованных лиц № 30004-13.



Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

#### СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 02A929B5000BAEF7814AB38FF70B046437

Кому выдан: Шалаев Антон Павлович Действителен: с 27.12.2021 до 27.12.2022



Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы»

119361, г. Москва, ул. Озерная, 46

Тел.: (495) 437 55 77 E-mail: Office@vniims.ru Факс: (495) 437 56 66 www.vniims.ru

## СОГЛАСОВАНО

Государственная система обеспечения единства измерений

## Термопреобразователи сопротивления iTHERM CompactLine

МЕТОДИКА ПОВЕРКИ

МП 207-053-2021

#### 1. Общие положения

Настоящая методика поверки распространяется на Термопреобразователи сопротивления iTHERM CompactLine (далее по тексту – термопреобразователи или TC) производства фирмы «Endress+Hauser Sicestherm S.r.L.», Италия и фирмой Endress+Hauser Wetzer GmbH+Co.KG, Германия.

TC для измерений температуры жидких и газообразных сред, химически неагрессивных к материалу защитной оболочки измерительной части TC.

Настоящая методика устанавливает процедуру первичной и периодической поверки ТС.

Поверяемые средства измерений должны иметь прослеживаемость к ГЭТ 35-2021 «Государственный первичный эталон единицы температуры - кельвина в диапазоне от 0,3 до 273,16 К», ГЭТ 34-2020 «Государственный первичный эталон единицы температуры в диапазоне от 0 до 3200 °С» в соответствии с ГОСТ 8.558-2009.

Метрологические характеристики ТС приведены в Приложении А настоящей методики.

## 2. Перечень операций поверки

При проведении поверки поверки выполняют операции, приведённые в таблице 1.
 Таблица 1

|                                                                                                                | Номер пункта -<br>МП | Проведение операции при |                       |
|----------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-----------------------|
| Наименование операции                                                                                          |                      | первичной<br>поверке    | периодической поверке |
| Внешний осмотр, проверка комплектности и маркировки                                                            | 7                    | Да                      | Да                    |
| Подготовка к поверке, опробование и проверка встроенной части программного обеспечения (ПО) средства измерений | 8                    | Да                      | Да                    |
| Определение метрологических характеристик                                                                      | 9                    | Да                      | Да                    |
| Подтверждение соответствия средства<br>измерений метрологическим требованиям                                   | 10                   | Да                      | Да                    |

<sup>2.2</sup> Не допускается проводить поверку в сокращенном диапазоне измерений.

## 3. Метрологические и технические требования к средствам поверки

3.1 При проведении поверки применяют эталоны, средства измерений, испытательное и вспомогательное оборудование, указанные в таблице 2.

Таблица 2

| лица 2                                                |                                                                                    |                                                                                                                                             |                                                                                                                                                                                                                                 |
|-------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Операция<br>поверки                                   | Средство<br>поверки                                                                | Метрологические и<br>технические требования<br>к средствам поверки                                                                          | Рекомендуемые типы средств<br>поверки                                                                                                                                                                                           |
| Подготовка к поверке и опробование средства измерений | Измерители сопротивления изоляции                                                  | Диапазон измерений сопротивления изоляции от 2 МОм. Номинальное рабочее напряжение 100 В.                                                   | Измеритель сопротивления изоляции APPA 607 (Регистрационный номер в Федеральном информационном фонде № 56407-14) и др.                                                                                                          |
| Определение метрологических характеристик             | Термометры сопротивления (платиновые), электронные (цифровые) термометры эталонные | Эталоны 3 разряда и (или) выше по ГПС в соответствии с ГОСТ 8.558-2009                                                                      | Термометр сопротивления эталонный ЭТС-100 (Регистрационный номер в Федеральном информационном фонде № 19916-10) и др.                                                                                                           |
|                                                       | Измерители электрического сопротивления                                            | Эталоны 3 разряда и (или) выше по ГПС в соответствии с приказом Росстандарта от 30 декабря 2019 г. № 3456                                   | Измеритель температуры многоканальный прецизионный МИТ 8 мод. МИТ 8.15 (Регистрационный номер в Федеральном информационном фонде № 19736-11) и др.                                                                              |
|                                                       | Термостаты<br>(криостаты)<br>переливного<br>типа                                   | Нестабильность поддержания заданного значения температуры в полезном объеме не более 1/5 от предельно допустимой погрешности поверяемого СИ | Термостаты жидкостные<br>ТЕРМОТЕСТ (Регистрационный номер в<br>Федеральном<br>информационном фонде<br>№ 39300-08) и др.                                                                                                         |
|                                                       | Измерители силы постоянного тока                                                   | Эталоны 2 разряда и (или) выше по ГПС в соответствии с приказом Росстандарта от 01.10.2018г. № 2091                                         | Калибратор многофункциональный и коммуникатор ВЕАМЕХ МС (-R) (Регистрационный номер в Федеральном информационном фонде № 52489-13), мультиметр 3458 (Регистрационный номер в Федеральном информационном фонде № 25900-03) и др. |
|                                                       | Программно-<br>аппаратный<br>комплекс                                              | Поддержка цифрового сигнала промышленной коммуникационной сети IO-link, позволяющая визуализировать измеренные значения                     | -                                                                                                                                                                                                                               |

| Операция<br>поверки                          | Средство<br>поверки                                                                                  | Метрологические и<br>технические требования<br>к средствам поверки                                                                                                                                                                                                                                                | Рекомендуемые типы средств<br>поверки                                                                                                                                                               |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |                                                                                                      | выходного цифрового<br>сигнала ТС                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     |
| Контроль<br>условий<br>проведения<br>поверки | Приборы для измерений температуры и относительной влажности окружающего воздуха; измерители давления | Измерение температуры окружающего воздуха в диапазоне от плюс 22 до плюс 25 °C ( $\Delta = \pm 0,5$ °C (не более)), относительной влажности окружающего воздуха от 30 до 80 % ( $\Delta = \pm 3$ % (не более))  Измерение атмосферного давления в диапазоне от 86 до 106,7 кПа ( $\Delta = \pm 5$ гПа (не более)) | Приборы комбинированные Testo 608-H1, Testo 608-H2, Testo 610, Testo 622, Testo 623 (Регистрационный № 53505-13) и др.  Измерители давления Testo 510, Testo 511 (Регистрационный № 53431-13) и др. |

### Примечания:

- 1. Все средства измерений и эталоны, применяемые при поверке, должны иметь соответствующую запись в сведениях о результатах поверки средства измерений или об аттестации (при необходимости) в Федеральном информационном фонде по обеспечению единства измерений, или действующий сертификат о калибровке. Испытательное оборудование должно быть аттестовано.
- 2. Допускается применение других эталонов и средств поверки, разрешенных к применению в Российской Федерации, и обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

## 4 Требования к специалистам, осуществляющим поверку

4.1 Поверка СИ должна выполняться специалистами организации, аккредитованной в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации на проведение поверки средств измерений данного вида, имеющими необходимую квалификацию, ознакомленными с руководством по эксплуатации и освоившими работу с СИ.

#### 5 Требования (условия) по обеспечению безопасности проведения поверки

- 5.1 При проведении поверки необходимо соблюдать требования безопасности, установленные в следующих документах:
- ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности;
  - «Правила технической эксплуатации электроустановок потребителей»;
- «Правила по охране труда при эксплуатации электроустановок (ПОТЭУ)» (Приказ от 24 июля 2013 года № 328н);
- требования разделов «Указания мер безопасности» эксплуатационной документации на применяемые средства поверки.

## 6. Требования к условиям проведения поверки

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от +22 до +25 °C;
- относительная влажность окружающего воздуха не более 80 %;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст);

- 6.2 Средства поверки, оборудование готовят к работе в соответствии с руководствами по их эксплуатации.
  - 6.3 При работе термостатов включают местную вытяжную вентиляцию.
- 6.4 Поверяемый TC и используемые средства поверки должны быть защищены от вибраций, тряски, ударов, влияющих на их работу.
- 6.5 Операции, проводимые со средствами поверки, с поверяемым ТС должны соответствовать указаниям, приведенным в эксплуатационной документации.

## 7. Внешний осмотр, проверка комплектности и маркировки

- 7.1 При внешнем осмотре устанавливают:
- соответствие внешнего вида, комплектности СИ технической и эксплуатационной документации;
  - наличие и четкость маркировки;
- отсутствие механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
  - отсутствие обрывов и нарушения изоляции проводов;
  - прочность соединения проводов, отсутствие следов коррозии.
  - 7.2 Результат проверки положительный, если выполняются все вышеперечисленные требования.

Не допускается к дальнейшей поверке СИ, у которого обнаружено хотя бы один недостаток (несоответствие).

Примечание – при оперативном устранении пользователем датчика недостатков, замеченных при внешнем осмотре, поверка продолжается по следующим операциям.

# 8. Подготовка к поверке, опробование и проверка встроенной части программного обеспечения (ПО) средства измерений

8.1 Подготовка к поверке средства измерений:

TC перед проведением поверки должен предварительно выдерживаться в нерабочем состоянии при температуре окружающего воздуха от +22 до +25 °C не менее 30 минут.

- 8.2 Опробование средства измерений
- 8.2.1 Опробование проводят, путем проверки электрического сопротивления изоляции ТС.

Для проверки используют мегаомметр с номинальным рабочим напряжением 100 В.

- 8.2.2 Подключают один из зажимов мегомметра к закороченным между собой выходным контактам измерительной вставки ТС, а другой к краю измерительной вставки или металлической защитной арматуре.
  - 8.2.3 Запускают процесс измерения электрического сопротивления изоляции ТС.
- 8.2.4. Результат проверки считается положительным, если полученное значение электрического сопротивления изоляции не менее 100 МОм.
  - 8.3 Проверка встроенной части программного обеспечения (ПО) средства измерений.
- 8.3.1 Проверить номер версии встроенной части ПО, указанный на корпусе ТС при помощи наклейки и (или) гравировки.
- 8.3.2 Сравнить номер версии встроенной части ПО с данными указанными в таблице 3.

Таблица 3

| Идентификационные данные (признаки)                                                      | Значение                |  |
|------------------------------------------------------------------------------------------|-------------------------|--|
| Идентификационное наименование ПО                                                        | Firmware                |  |
| Номер версии (идентификационный номер) ПО, не ниже(1)                                    | 01.00.zz                |  |
| Цифровой идентификатор программного обеспечения                                          | отсутствует             |  |
| Примечание:                                                                              | •                       |  |
| (1) z – служебный идентификационный номер, не влияющий метрологические характеристики TC | й на функциональность и |  |

8.3.3 Результат проверки положительный, если номер версии встроенной части ПО, не ниже указанного в таблице 3. Если номер версии ПО ниже указанного в таблице 3, дальнейшую поверку не проводят.

## 9 Определение метрологических характеристик

- 9.1 Проверка отклонения от НСХ (для ТС без электронного модуля)
- 9.1.1 Проверку отклонения сопротивления TC от HCX выполняют для одной температурной точки, расположенной в диапазоне от минус 5 °C до плюс 30 °C (предпочтительная температура 0 °C) и для одной дополнительной температурной точке, отстоящей от первой не менее чем на 90 °C, либо при температуре, соответствующей верхнему пределу диапазона измерений (если этот предел ниже плюс 100 °C), методом сравнения (непосредственного сличения) с эталонным термометром в жидкостных термостатах и криостатах.
- 9.1.2 При поверке ТС в криостате (термостате) погружают на одну глубину (по возможности) в криостат (термостат) поверяемый ТС вместе с эталонным термометром, используя при этом металлические выравнивающие блоки (при необходимости). При этом, эталонный термометр должен быть погружен на нормируемую глубину погружения.
- 9.1.3 В соответствии с эксплуатационной документацией устанавливают на криостате или термостате требуемую температурную точку.
- 9.1.4 После установления заданной температуры и установления теплового равновесия между эталонным термометром, ТС и термостатирующей средой (стабилизация показаний эталонного термометра и ТС) снимают измеренное значение температуры эталонного термометра, индицируемое на дисплее измерительного прибора, а значение сопротивления в температурном эквиваленте, измеренное поверяемым ТС индицируемое на дисплее измерительного прибора.
- 9.1.5 Проводят подтверждение соответствия средства измерений метрологическим требованиям в соответствии с п. 10.1.
  - 9.2 Определение основной погрешности (для ТС с электронным модулем)
- 9.2.1 Определение основной погрешности проводят в 5-ти контрольных температурных точках, равномерно расположенных в диапазоне измерений поверяемого ТС, включая нижний и верхний пределы диапазона измерений, методом сравнения (непосредственного сличения) с эталонным термометром в жидкостных термостатах и криостатах по методике, изложенной в п.8.1.
- 9.2.2 Проводят подтверждение соответствия средства измерений метрологическим требованиям в соответствии с п.п. 10.2-10.3.

## 10 Подтверждение соответствия средства измерений метрологическим требованиям

10.1 Отклонение от НСХ вычисляют по формуле 1:

$$\Delta = t_{\rm TC} - t_{\rm 3T} \tag{1}$$

где:  $t_{\rm TC}$  –значение сопротивления в температурном эквиваленте, измеренное поверяемым TC, °C;

t<sub>ЭТ</sub> -значение температуры, измеренное эталоном, °С

10.2 Основную абсолютную погрешность ТС вычисляют по формулам 2 и 3:

- для цифрового выходного сигнала (ДЦ, °С):

$$\Delta_{\mathcal{U}} = T_{\mathcal{U}C\mathcal{U}} - T_{\mathfrak{I}} \tag{2}$$

где:  $T_{3}$  –значение температуры, измеренное эталоном, °C;

 $T_{\text{ЦСИ}}$  –значение цифрового выходного сигнала в температурном эквиваленте, °С.

для аналогового выходного сигнала (Д<sub>A</sub>, °C):

$$\Delta_{A} = T_{ACH} - T_{\Im} \tag{3}$$

где:  $T_3$  – значение температуры, измеренное эталоном, °C;

 $T_{\rm AC}{\it U}$  — значение аналогового выходного сигнала в температурном эквиваленте, рассчитанное по формуле 4, °C.

10.3 Значение аналогового выходного сигнала в температурном эквиваленте ( $T_{ACH}$ , °C), рассчитывают по формуле 4:

$$T_{ACH} = T_{\min} + \frac{I_{u_{2M}} - I_{\text{Bisymin}}}{I_{\text{Bisymax}} - I_{\text{gaymin}}} \cdot (T_{\max} - T_{\min})$$
 (4)

где:  $T_{max}$ ,  $T_{min}$  — соответственно верхний и нижний пределы настроенного диапазона измерений ИП TC, °C;

 $I_{\text{выхтах}}$ ,  $I_{\text{выхтіп}}$  — соответственно верхний и нижний пределы настроенного диапазона выходных сигналов ИП TC, мA;

I<sub>изм</sub> – среднее арифметическое значение измеренного выходного сигнала ИП ТС, мА.

Примечания:

Если ТС работает только с цифровым выходным сигналом, при поверке допускается определять основную абсолютную погрешность только для цифрового выходного сигнала. Полученная погрешность сравнивается с допускаемой основной погрешностью ТС с использованием цифрового выходного сигнала, при этом делают соответствующую запись в сведениях о результатах поверки средства измерений в Федеральном информационном фонде по обеспечению единства измерений о проведении проверки ТС с использованием цифрового выходного сигнала.

Если ТС работает только с аналоговым выходным сигналом, при поверке допускается определять основную абсолютную погрешность только для аналогового выходного сигнала. Полученная погрешность сравнивается с допускаемой основной погрешностью ТС с использованием аналогового выходного сигнала, при этом делают соответствующую запись в сведениях о результатах поверки средства измерений в Федеральном информационном фонде по обеспечению единства измерений о проведении проверки ТС с использованием аналогового выходного сигнала.

10.4 Результат поверки считается положительным, а средство измерений соответствующим метрологическим требованиям, если полученные значения метрологических характеристик не превышают нормированных значений, указанных в Приложении А настоящей методики.

#### 11 Оформление результатов поверки

11.1 Средства измерений, прошедшие поверку с положительным результатом, признаются годными и допускаются к применению.

Результаты поверки средств измерений передаются в Федеральный информационный фонд по обеспечению единства измерений. По заявлению владельца средства измерений или лица, представившего его на поверку, на средство измерений выдается свидетельство о поверке или вносится запись о проведенной поверке в паспорт средства измерений, заверяемая подписью поверителя и знаком поверки, с указанием даты поверки.

11.2 При отрицательных результатах поверки в соответствии с действующим законодательством в области обеспечения единства измерений РФ на средство измерений оформляется извещение о непригодности к применению.

Разработчик настоящей методики:

Научный сотрудник отдела 207 метрологического обеспечения термометрии ФГУП «ВНИИМС»

Л.Д. Маркин

Начальник отдела 207 метрологического обеспечения термометрии ФГУП «ВНИИМС

А.А. Игнатов

| Таблица A1 - Метрологические характеристики                                                   |                                                                               |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Наименование характеристики                                                                   | Значение                                                                      |
| Диапазон измерений температуры ТС в зависимости от                                            |                                                                               |
| типа ЧЭ <sup>(1)</sup> , °C:<br>- с ЧЭ типа «ТF»                                              | on 50 no 1150                                                                 |
|                                                                                               | от -50 до +150                                                                |
| - с ЧЭ типа «iTHERM TipSens»                                                                  | от -50 до +200                                                                |
| Условное обозначение номинальной статической                                                  | D-100                                                                         |
| характеристики преобразования (НСХ) по ГОСТ 6651-                                             | Pt100                                                                         |
| 2009 (MЭK 60751)                                                                              | A                                                                             |
| Класс допуска ЧЭ ТС по ГОСТ 6651-2009 (МЭК 60751)                                             | A                                                                             |
| Пределы допускаемого отклонения сопротивления ТС от                                           | ±(0,15+0,002· t ),                                                            |
| НСХ (допуск) в температурном эквиваленте (для ТС без                                          | где t – значение измеряемой                                                   |
| электронного модуля), °С:                                                                     | температуры, °С                                                               |
| Пределы допускаемой основной абсолютной                                                       | $\pm (0,127+0,00074\cdot( t -t_{\text{мин}}))^{(2)}$                          |
| погрешности аналого-цифрового преобразования                                                  | или                                                                           |
| $(\Delta_{AUII})$ , °C                                                                        | $\pm (0.215+0.00134\cdot( t -t_{\text{мин}}))^{(3)},$                         |
|                                                                                               | где: t – значение измеряемой                                                  |
|                                                                                               | температуры, °С,                                                              |
|                                                                                               | t <sub>мин</sub> – значение нижнего предела                                   |
| П                                                                                             | диапазона измерений (-50 °C), °С                                              |
| Пределы допускаемой основной приведенной                                                      |                                                                               |
| погрешности цифро-аналогового преобразования                                                  | ±0,05                                                                         |
| $(\Delta_{U\!A\Pi})$ , % (от настроенного диапазона измерений)                                |                                                                               |
| Пределы допускаемой дополнительной абсолютной                                                 | $\pm 0,008$ или $\pm 0,00004 \cdot ( t  - t_{\text{мин}}),$                   |
| погрешности аналого-цифрового преобразования ( $\Delta_{\text{Д.АЦП}}$ ) при                  | где: t – значение измеряемой                                                  |
| изменении температуры окружающей среды от нормальных                                          | температуры, °С,                                                              |
| условий (от +22 до +28 °C включ.) в диапазоне температуры                                     | t <sub>мин</sub> – значение нижнего предела                                   |
| окружающей среды от -40 до +85 °C включ., °C/ 1 °C                                            | диапазона измерений (-50 °C), °С;                                             |
| Парадания                                                                                     | берут большее значение                                                        |
| Пределы допускаемой дополнительной приведенной                                                |                                                                               |
| погрешности цифро-аналогового преобразования ( $\Delta_{ДЦАП}$ )                              |                                                                               |
| при изменении температуры окружающей среды от                                                 | ±0,003                                                                        |
| нормальных условий (от +22 до +28 °C включ.) в диапазоне от -40 до +85 °C, % (от настроенного |                                                                               |
| диапазона измерений) / 1 °C                                                                   |                                                                               |
| Ananasona namepenninji i C                                                                    | +0.008 +0.00004 (14)                                                          |
| Пределы допускаемой дополнительной абсолютной                                                 | ±0,008 или ±0,00004·( t  – t <sub>мин</sub> ),                                |
| погрешности аналого-цифрового преобразования ( $\Delta_{I\!\!A\!L\!\!H\!\!T}$ ) при           | где: t – значение измеряемой температуры, °C,                                 |
| изменении напряжения питания постоянного тока от                                              |                                                                               |
| нормальных условий (24 В±10 %), °С/ 1 В                                                       | $t_{\text{мин}}$ – значение нижнего предела диапазона измерений (-50 °C), °C; |
| (2. 2-10 /v), O 1 D                                                                           | берут большее значение                                                        |
| Пределы допускаемой дополнительной приведенной                                                | осруг оольшее значение                                                        |
| погрешности цифро-аналогового преобразования ( $\Delta_{\Pi L \Pi \Pi}$ )                     |                                                                               |
| при изменении напряжения питания от нормальных условий                                        | ±0,003                                                                        |
| (24 B±10 %), % (от настроенного диапазона измерений) / 1 В                                    |                                                                               |
| Примечания:                                                                                   |                                                                               |

Примечания:

- (1) приведены значения максимального диапазона измерений. По заказу, для ТС со встроенным электронным модулем возможно настроить диапазон измерений, отличный от приведенного в таблице, но находящийся в его пределах, но при этом, минимальное значение интервала для данного диапазона должно быть не менее 50 °C;
- (2) для ТС с электронным модулем и с индивидуальным согласованием первичного преобразователя температуры с индивидуальной градуировкой функции Каллендара ван Дюзена (КВД) и измерительного преобразователя (выбирается при заказе);

## Наименование характеристики

Значение

(3) - для ТС с электронным модулем (выбирается при заказе).

Пределы допускаемой основной и дополнительной абсолютной погрешности TC с цифровым выходом IO-link равны погрешности аналого-цифрового преобразования ( $\Delta_{AUII}$  и  $\Delta_{ZAUII}$  соотв.).

Пределы допускаемой основной и дополнительной абсолютной погрешности TC с аналоговым выходом в диапазоне от 4 до 20 мА вычисляются по формуле:

$$\Delta_{4+20} = \sqrt{\Delta_{(\mathcal{I})AU\Pi}^2 + \Delta_{(\mathcal{I})UA\Pi}^2}$$

При расчете суммарной погрешности измерений, учитывающей в т.ч. и влияние изменения температуры окружающей среды и изменения напряжения питания, используют формулу (1), но при этом, под квадратным корнем к основной погрешности прибавляют значение дополнительной погрешности в квадрате.