Краткое руководство по эксплуатации Liquiline Control CDC90

Автоматическая система очистки и калибровки Memosens

Настоящее краткое руководство по эксплуатации не заменяет собой руководство по эксплуатации, входящее в комплект поставки.

Подробная информация о приборе содержится в руководстве по эксплуатации и прочих документах, которые можно найти:

- На веб-странице: www.endress.com/device-viewer;
- На смартфоне/планшете: Endress+Hauser Operations App.

A0023555

1	Информация о документе	4
1.1	Символы	. 4
1.2	Документация	. 5
2	Основные указания по технике безопасности	. 6
2.1	Требования, предъявляемые к персоналу	. 6
2.2	Использование по назначению	. 6
2.3	Техника безопасности на рабочем месте	. 6
2.4	Эксплуатационная безопасность	. 7
2.5	Безопасность изделия	. 7
2.6	П-резопасность	. 7
3	Описание изделия	8
3.1	Конструкция изделия	8
4	Приемка и идентификация изделия	12
4.1	Приемка	12
4.2	идентификация изделия	12
4.3	Комплект поставки	13
5	Монтаж	14
51	Требования прелъявляемые к монтажу	14
5.2	треосования, предальные и полному. Монтаж системы	20
5.3	Проверка после монтажа	39
6	Электрическое полключение	40
6.1	Требования, прелъявляемые к полключению	40
6.2	Подключение блока управления системой CDC90	40
6.3	Подключение датчиков	45
6.4	Подключение дополнительных входов и выходов	47
6.5	Подключение цифровой связи	51
6.6	Подключение блока управления пневматической подсистемой	55
6.7	Назначение дистанционного ввода/вывода	62
6.8	Подключение электропитания	63
6.9 6.10	Обеспечение треоуемои степени защиты	64 65
7	0	
1	Опции управления	00
7.1	Обзор опций управления	66
7.2	Доступ к меню управления посредством локального дисплея	6/
1.3	доступ к меню управления посредством вео-ораузера	69
8	Системная интеграция	69
8.1	Встраивание измерительного прибора в систему	69
9	Ввод в эксплуатацию	73
9.1	Пусконаладочные работы	73

1 Информация о документе

Структура сообщений	Значение	
 ▲ ОПАСНО Причины (/последствия) Последствия несоблюдения (если применимо) ▶ Корректирующие действия 	Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к серьезным или смертельным травмам.	
▲ ОСТОРОЖНО Причины (/последствия) Последствия несоблюдения (если применимо) ► Корректирующие действия	Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к серьезным или смертельным травмам.	
 ▲ ВНИМАНИЕ Причины (/последствия) Последствия несоблюдения (если применимо) ▶ Корректирующие действия 	Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травмам легкой или средней степени тяжести.	
УВЕДОМЛЕНИЕ Причина/ситуация Последствия несоблюдения (если применимо) ▶ Действие/примечание	Данный символ предупреждает о ситуации, способной привести к повреждению материального имущества.	

1.1 Символы

- Дополнительная информация, подсказки
- Разрешено или рекомендовано
- Не разрешено или не рекомендовано
- 🗓 Ссылка на документацию по прибору
- 🗎 Ссылка на страницу
- 🖸 Ссылка на рисунок
- Результат действия

1.1.1 Символы на приборе

- 🛆 📜 Ссылка на документацию по прибору
- Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого возвращайте их изготовителю для утилизации в надлежащих условиях.

1.2 Документация

Следующие руководства, доступные на страницах с информацией о продуктах в Интернете, дополняют это руководство по эксплуатации:

- Руководство по эксплуатации Liquiline Control CDC90
 - Описание прибора
 - Ввод в эксплуатацию
 - Управление
 - Описание программного обеспечения (исключая меню датчика; описание меню приведено в отдельном руководстве, см. ниже)
 - Диагностика и поиск неисправностей прибора
 - Техническое обслуживание
 - Ремонт и запасные части
 - Аксессуары
 - Технические данные
- Руководство по использованию технологии Memosens, BA01245C
 - Описание программного обеспечения для входов Memosens
 - Калибровка датчиков Memosens
 - Диагностика, поиск и устранение неисправностей датчика

2 Основные указания по технике безопасности

2.1 Требования, предъявляемые к персоналу

- Установка, ввод в эксплуатацию, управление и техобслуживание измерительной системы должны выполняться только специально обученным техническим персоналом.
- Перед выполнением данных работ технический персонал должен получить соответствующее разрешение от управляющего предприятием.
- Электрические подключения должны выполняться только специалистамиэлектротехниками.
- Выполняющий работы технический персонал должен предварительно ознакомиться с данным руководством по эксплуатации и следовать всем приведенным в нем указаниям.
- Неисправности точки измерения могут исправляться только уполномоченным и специально обученным персоналом.

Ремонтные работы, не описанные в данном руководстве по эксплуатации, подлежат выполнению только силами изготовителя или специалистами регионального торгового представительства.

2.2 Использование по назначению

Liquiline Control CDC90 – это полностью автоматическая система для измерения, очистки и калибровки датчиков с технологией Memosens. Система полностью укомплектована кабелями питания и шланговой системой.

2.2.1 Использование не по назначению

Использование прибора не по назначению представляет угрозу для безопасности людей и всей системы измерения и поэтому запрещается.

Изготовитель не несет ответственности за повреждения в результате неправильной эксплуатации прибора.

2.3 Техника безопасности на рабочем месте

Пользователь несет ответственность за выполнение следующих требований техники безопасности:

- инструкции по монтажу
- местные стандарты и нормы
- правила взрывозащиты

Электромагнитная совместимость

- Изделие проверено на электромагнитную совместимость согласно действующим международным нормам для промышленного применения.
- Указанная электромагнитная совместимость обеспечивается только в том случае, если изделие подключено в соответствии с данным руководством по эксплуатации.

2.4 Эксплуатационная безопасность

Перед вводом в эксплуатацию точки измерения:

- 1. Проверьте правильность всех подключений;
- 2. Убедитесь в отсутствии повреждений электрических кабелей и соединительных шлангов;
- 3. Не используйте поврежденные изделия, а также примите меры предосторожности, чтобы они не сработали непреднамеренно;
- 4. Промаркируйте поврежденные изделия как бракованные.

Во время эксплуатации:

• При невозможности устранить неисправность:

следует прекратить использование изделия и принять меры против его непреднамеренного срабатывания.

ВНИМАНИЕ

На время работ по техническому обслуживанию программы не выключаются.

Возможно травмирование из-за воздействия среды или чистящего средства!

- Закройте все активные программы.
- Прежде чем извлекать датчики из арматуры, выполните переключение в сервисный режим.
- Если нужно проверить функцию очистки во время очистки, наденьте защитную одежду, очки и перчатки или примите другие меры для защиты.

2.5 Безопасность изделия

2.5.1 Современные технологии

Изделие разработано в соответствии с современными требованиями по безопасности, прошло испытания и поставляется с завода в безопасном для эксплуатации состоянии. Соблюдены требования действующих международных норм и стандартов.

2.6 ІТ-безопасность

Гарантия на устройство действует только в том случае, если его установка и использование производятся согласно инструкциям, изложенным в Руководстве по эксплуатации. Устройство оснащено механизмом обеспечения защиты, позволяющим не допустить внесение каких-либо непреднамеренных изменений в установки устройства.

Безопасность информационных технологий соответствует общепринятым стандартам безопасности оператора и разработана с целью предоставления дополнительной защиты устройства, в то время как передача данных прибора должна осуществляться операторами самостоятельно.

3 Описание изделия

3.1 Конструкция изделия

Полная система Liquiline Control CDC90 состоит из следующих компонентов:

- блок управления системой CDC90;
- блок управления пневматической подсистемой;
- блок насосов с емкостями;
- коммутатор Ethernet.

Система поставляется в различных исполнениях. Ниже приводится полный обзор всех модулей системы.

^{🖻 1} Общий вид системы CDC90

1	Блок управления системой CDC90	5	Емкости для буферных растворов и чистящего средства
2	Монтажная пластина	6	Держатель емкостей
3	Коммутатор Ethernet	7	Поплавковый датчик
4	Блок управления пневматической подсистемой	8	Насосы

3.1.1 Обзор блока управления пневматической подсистемой

1-я точка измерения

Пневматический блок управления регулирует подачу воздуха, жидкостей и электроэнергии. Например, на этот блок поступает сетевое напряжение.

Я 2 Пневматический блок управления для одной точки измерения

1	Клеммы питания 100/230 В перем. тока	8	Регулирующие клапаны
2	Клемма +24 В	9	Крепления
3	Клеммы 0 В	10	Кабельный сальник
4	Клеммы для поплавковых датчиков и датчиков давления	11	Блок питания 24 В пост. тока
5	Выходные клеммы интерфейса для арматур и концевого выключателя	12	Системный предохранитель F1
6	Датчик давления	13	Блок регулирующих клапанов, шинный узел
7	Внешний интерфейс дистанционного ввода/вывода, DIO	14	Вентиляционные отверстия

2-я точка измерения

- Я Лневматический блок управления для 2-й точки измерения
- 1 Расширение для выходных клемм интерфейса 2-й точки измерения
- 2 Расширение для регулирующих клапанов 2-й точки измерения

4 Приемка и идентификация изделия

4.1 Приемка

- 1. Убедитесь в том, что упаковка не повреждена.
 - └ Об обнаруженных повреждениях упаковки сообщите поставщику. До выяснения причин не выбрасывайте поврежденную упаковку.
- 2. Убедитесь в том, что содержимое не повреждено.
 - └ Об обнаруженных повреждениях содержимого сообщите поставщику. До выяснения причин не выбрасывайте поврежденные изделия.
- 3. Проверьте наличие всех составных частей оборудования.
 - 🛏 Сравните комплектность с данными заказа.
- 4. Прибор следует упаковывать, чтобы защитить от механических воздействий и влаги во время хранения и транспортировки.
 - Наибольшую степень защиты обеспечивает оригинальная упаковка.
 Убедитесь, что соблюдаются допустимые условия окружающей среды.

В случае возникновения вопросов обращайтесь к поставщику или в дилерский центр.

4.2 Идентификация изделия

4.2.1 Заводская табличка

Заводская табличка содержит следующую информацию о приборе:

- Данные изготовителя;
- Код заказа;
- Серийный номер;
- Условия окружающей среды и процесса;
- Входные и выходные параметры;
- Правила техники безопасности и предупреждения.

• Сравните данные на заводской табличке с данными заказа.

4.2.2 Идентификация изделия

Страница изделия

www.endress.com/cdc90

Интерпретация кода заказа

Код заказа и серийный номер прибора можно найти:

- На заводской табличке
- В товарно-транспортной документации

Получение сведений об изделии

- 1. Перейти к www.endress.com.
- 2. Страница с полем поиска (символ лупы): введите действительный серийный номер.

3. Поиск (символ лупы).

- ▶ Во всплывающем окне отображается спецификация.
- 4. Нажмите вкладку «Обзор изделия».
 - Откроется новое окно. Здесь необходимо ввести информацию о приборе, включая документы, относящиеся к прибору.

4.3 Комплект поставки

Комплект поставки состоит из следующих элементов:

- блок управления системой CDC90 в заказанном исполнении (1 шт.);
- блок управления пневматической подсистемой (1 шт.);
- насосы (не более трех) для подачи чистящего средства и буферных растворов с емкостями;
- поплавковые датчики с кабелями к емкостям (не более 3 шт.);
- промывочный блок с кронштейном для монтажа на технологической арматуре (1 шт.);
- комплекты шлангов для подачи сжатого воздуха и жидкостей (2 шт.); 3 комплекта шлангов, если точек измерения несколько;
- краткое руководство по эксплуатации (бумажный экземпляр, 1 шт.);
- переходник кабелепровода G 1/4" для шланга 6/8 мм (ввод/вывод) для промывочных соединений арматуры: 2 шт. для одной точки измерения и 4 шт. для двух точек измерения;
- USB-накопитель;
- при использовании двух точек измерения: один переключающий клапан для регулирования подачи среды к двум арматурам.

i

Арматуры предварительно смонтированы на монтажную пластину и оснащены электропроводкой.

При возникновении вопросов

обращайтесь к поставщику или в центр продаж.

5 Монтаж

5.1 Требования, предъявляемые к монтажу

Прибор предназначен для монтажа на стене.

Настенный монтаж: панельный.

5.1.1 Место монтажа

При установке прибора учитывайте следующее.

- 1. Убедитесь в достаточной несущей способности стены и в том, что она абсолютно вертикальна.
- 2. Обеспечьте защиту прибора от дополнительного нагрева (например, при использовании обогревателей).
- 3. Защитите прибор от механических вибраций.

5.1.2 Размеры

0000 1000 ഹ <u>o</u> <u>14</u> 38) Ø4 (0.16) Ś 62. Li. Ø9 (0.35) 199 (7.38) 128 (5.04) 95 (3.74) ۲ ۲ 76 (2.99) 94 (7.64) Ĩ L $(\cap$ ۲ ۲ 237 (9.33)

Размеры блока управления системой CDC90

🗟 4 Размеры полевого корпуса в мм (дюймах)

A0012396

Размеры блока управления пневматической подсистемой

🗷 5 Размеры пневматического блока управления в мм (дюймах)

Размеры держателя для емкостей

🖻 6 Размеры держателя емкостей в мм (дюймах)

🖻 7 Размеры емкости с насосом в мм (дюймах)

Размеры промывочного блока и переключающего клапана

🖻 8 Размеры промывочного блока PVDF в мм (дюймах)

9 Размеры переключающего клапана, 2-я точка измерения, в миллиметрах (дюймах)

Размеры монтажной пластины

🖻 10 Размеры монтажной пластины в мм (дюймах)

5.2 Монтаж системы

5.2.1 Настенный монтаж

ВНИМАНИЕ

Опасность травмирования

Большой вес конструкции при несчастном случае может привести к травме с размозжением или к другим травмам.

- Монтируйте прибор вдвоем.
- Используйте пригодные для этой цели монтажные инструменты.

Арматуры предварительно смонтированы на монтажную пластину и оснащены электропроводкой.

Дистанционные втулки (расстояние 30 мм (1,2 дюйм)) для фиксации монтажной пластины на стене включены в комплект поставки.

🖻 11 Настенный монтаж

Монтажная пластина имеет отверстия для крепления на настенный кронштейн. Дюбели и винты предоставляются заказчиком.

 Смонтируйте монтажную пластину, закрепив ее винтами через крепежные отверстия; обязательно используйте дистанционные втулки из комплекта поставки.

5.2.2 Максимально допустимая длина шланга и кабеля для одной точки измерения

Максимально допустимая длина многошланговой сборки составляет 10 м (32,8 фута) → 🗎 37.

• При необходимости укоротите шланги.

УВЕДОМЛЕНИЕ

Промывочный блок работает всухую.

Если установить промывочный блок ниже емкостей, то клапаны промывочного блока будут открываться под давлением жидкости и емкости будут опорожняться.

• Обязательно монтируйте промывочный блок и арматуру выше емкостей.

5.2.3 Кронштейн многошланговой сборки

Кронштейны для монтажа многошланговой системы входят в комплект поставки. Дюбели, винты и шайбы приобретаются заказчиком самостоятельно.

- 🖻 12 Кронштейн многошланговой сборки
- Закрепите кронштейн многошланговой сборки на стене с помощью винтов и шайб.

5.2.4 Закрепите промывочный блок на арматуре

А ВНИМАНИЕ

Опасность травмирования

Возможны травмы с размозжением или другие травмы.

 Используйте соответствующий монтажный инструмент, например шестигранный ключ.

Кронштейн промывочного блока на арматуре

A0032669

- 🖻 13 Установка кронштейна промывочного блока
- 1. Приложите одну половину кронштейна (1) промывочного блока к цилиндру арматуры.
- 2. Приложите ответную часть (3) к цилиндру арматуры с другой стороны.
- 3. Присоедините кронштейн промывочного блока винтами (2) из комплекта поставки.

Промывочный блок на кронштейне промывочного блока

 Закрепите панель (1) промывочного блока на кронштейне (2) промывочного блока винтами (3) с шайбами (4) из комплекта.

Фиксация многошланговой сборки на промывочном блоке

- 1. Проложите шланги через отверстие в панели промывочного блока.
- 2. С помощью ответной части закрепите кабельное уплотнение.

Подключение отдельных шлангов многошланговой сборки к клапану промывочного блока

- 1. Отверните накидную гайку клапана.
- 2. Снимите накидную гайку и зажимное кольцо, расположенное под ней.
- 3. Пропустите шланг через накидную гайку и зажимное кольцо в клапан.
- 4. С помощью зажимного кольца присоедините шланг к клапану с легким нажимом.
- 5. Заверните накидную гайку на клапан.
 - 🛏 Шланг надежно присоединен к клапану.

5.2.5 Монтаж переключающего клапана для 2-й точки измерения

A0033444

Расположите монтажную пластину с переключающим клапаном встык с держателем промывочного блока.

A0033445

Соедините два компонента винтами из комплекта.

5.2.6 Механическое присоединение

ВНИМАНИЕ

Сильный шум от насосов

Шум насосов может вызвать повреждение слуха.

• При нахождении рядом с насосами используйте защиту ушей.

Подключение линий подачи жидкостей и сжатого воздуха

Схема подсоединения шлангов

Система содержит комплект шлангов, состав которого приведен ниже: шланги для подачи сжатого воздуха и промывочные шланги.

ВНИМАНИЕ

Чрезмерно высокая температура воды приводит к повреждению промывочных шлангов.

Риск травмирования из-за выброса водяного пара

▶ Следите за тем, чтобы температура воды не превышала 60 °С (140 °F).

I4 Схема подсоединения шлангов для подачи технологической среды и сжатого воздуха к одиночной точке измерения

1	Насосы 1-3	7	Блок управляющих клапанов в блоке управления пневматической подсистемой (вид снизу)
2	Емкости 1-3	8	Клапан технологической среды
3	Многошланговая сборка М2	9	Присоединение воды
4	Арматура (соединение I = измерение, соединение O = обслуживание)	10	Жидкость
5	Промывочный блок	11	Сжатый воздух
6	Многошланговая сборка М1	12	Название шланга

Endress+Hauser

Отдельные шланги группируются в многошланговые сборки.

Многошланговая сборка	Функция	Номера шлангов
М1 (шланг подачи сжатого воздуха)	Подача сжатого воздуха для рабочего клапана, воды	3
	Подача сжатого воздуха для арматуры, положение измерения, 1-я точка измерения	1
	Подача сжатого воздуха для рабочего клапана, продувочного воздуха	4
	Подача сжатого воздуха для арматуры, сервисное положение, 1-я точка измерения	2
М2 (шланг для подачи жидкости)	Насос 1/емкость 1 (слева)	А
	Насос 2/емкость 2 (по центру)	В
	Насос З/емкость З (справа)	С
M3 при наличии двух точек измерения	Подача сжатого воздуха для управления переключающим клапаном, 2-я точка измерения	8, 11
	Подача сжатого воздуха для арматуры, положение измерения, 2-я точка измерения	9
	Подача сжатого воздуха для арматуры, сервисное положение, 2-я точка измерения	10

Подключение подачи сжатого воздуха

Подача сжатого воздуха

При подключении необходимо учитывать следующие условия.

- Линия подачи сжатого воздуха предоставляется заказчиком.
- Давление сжатого воздуха должно составлять 4-6 бар (58-87 psi).
- Оптимальное давление рабочего сжатого воздуха составляет 6 бар (87 psi).
- Воздух должен быть профильтрован (50 мкм) и очищен от масла и конденсата.
- Внутренний диаметр линии должен составлять не менее 6 мм (0,24 дюйма).
- Наружный диаметр линии должен составлять не менее 8 мм (0,31 дюйма).

Спецификация шлангов

Шланг	Размер
Присоединение воды через штуцер елочку	Для водяного шланга внутренним диаметром 12 мм (0,47 дюйма)
Сжатый воздух	D 6/8 мм (0,24/0,31 дюйма)

Соединение в блоке управления пневматической подсистемой

Шланговая система для внутренней подачи сжатого воздуха в блоке управления пневматической подсистемой уже подсоединена на заводе.

Пропустите шланг для внешней подачи сжатого воздуха в кабельное уплотнение, предусмотренное на блоке управления пневматической подсистемой.

Подключите шланг подачи сжатого воздуха к присоединению для подачи в блоке управляющих клапанов.

Подсоединение многошланговых сборок

M1 – пневматические шланги от блока управления пневматической подсистемой к промывочному блоку и арматуре

Соединение М1 в блоке управления пневматической подсистемой

Пневматические шланги для регулирующих клапанов блока управления пневматической подсистемой уже подсоединены на заводе.

Пневматические шланги для регулирующих клапанов расположены в сборке многошланговой системы М1.

Пропустите шланги 1, 2, 3 и 4 многошланговой сборки М1 в кабельное уплотнение, предусмотренное на блоке управления пневматической подсистемой.

2. Присоедините шланги к коллектору управляющего клапана следующим образом.

Управляющий клапан	Функция	Номер шланга
1	Подача сжатого воздуха для арматуры, положение измерения	1
2	Подача сжатого воздуха для арматуры, сервисное положение	2
3	Подача сжатого воздуха для рабочего клапана, воды	3
4	Подача сжатого воздуха для рабочего клапана, продувочного воздуха	4

Подключение М1 к промывочному блоку и арматуре

- I5 Подключения М1 на промывочном блоке и арматуре
- 3. Подсоедините шланг 1 к соединению для перевода арматуры в положение измерения.
- **4.** Подсоедините шланг 2 к соединению для перевода арматуры в сервисное положение.
- 5. Подсоедините шланг 3 к пневматическому блоку управления для рабочего клапана, управляющего подачей воды в промывочный блок.
- 6. Подсоедините шланг 4 (пневматический блок управления для рабочего клапана, управляющего подачей продувочного воздуха) к клапану, управляющему подачей продувочного воздуха в промывочный блок.

Соединение на арматурах СРА87х и СРА471/472/472D/475

Номер шланга	Соединение на арматуре	
CPA87x		
Шланг 1	I, положение измерения	
Шланг 2	О, сервисное положение	
CPA471/472/472D/475		
Шланг 1	Верхнее соединение	
Шланг 2	Нижнее соединение	

Подсоединение арматуры СРА473/474

• Подсоедините шланги следующим образом.

Номер шланга	Соединение на арматуре
Шланг 1	2 на блоке, положение измерения
Шланг 2	3 на блоке, сервисное положение

М2 – жидкостные шланги от насосов к блоку промывки

Подключение М2 к насосам

Шланги для подачи жидкости к промывочному блоку расположены в многошланговой сборке M2.

1. Подсоедините шланги к насосам слева направо следующим образом.

Номер шланга	Насос	Функция
А	Насос 1 (слева)	Жидкость, емкость 1
В	Насос 2 (по центру)	Жидкость, емкость 2
С	Насос 3 (справа)	Жидкость, емкость 3

2. Подсоедините шланги для перекачивания чистящего средства и буферных растворов к насосам следующим образом.

🖻 16 Подсоединение технологической среды

17 Соединение на поплавковом датчике

Подсоединение сборки М2 к промывочному блоку

 Подсоедините шланги от насосов к клапанам промывочного блока следующим образом.

A0033438

Номер шланга	Функция
A	Жидкость, емкость 1
В	Жидкость, емкость 2
C	Жидкость, емкость 3

M3 (2-я точка измерения) – воздушные шланги от блока управления пневматической подсистемой к переключающему клапану и арматуре 2-й точки измерения

Соединение МЗ в блоке управления пневматической подсистемой

Шланги для регулирующих клапанов блока управления пневматической подсистемой уже подсоединены на заводе.

Сборка многошланговой системы M3 включает в себя шланги со следующими функциями:

- активация переключающего клапана;
- втягивание арматуры.

Пропустите шланги многошланговой сборки МЗ в кабельное уплотнение, предусмотренное на блоке управления пневматической подсистемой.

2. Подсоедините шланги к регулирующим клапанам в блоке управления пневматической подсистемой следующим образом.

Управляющий клапан	Функция	Номер шланга
9, 10	Подача сжатого воздуха для управления переключающим клапаном, верхнее соединение, 1-я точка измерения	8
	Подача сжатого воздуха для управления переключающим клапаном, нижнее соединение, 2-я точка измерения	11
11	Подача сжатого воздуха для арматуры, положение измерения, 2-я точка измерения	9
12	Подача сжатого воздуха для арматуры, сервисное положение, 2-я точка измерения	10

18

Соединение МЗ для переключающего клапана и арматуры 2-й точки измерения

Соединения МЗ для переключающего клапана (1) и арматуры (2)

- **3.** Подсоедините шланг 8 к верхнему соединению переключающего клапана (для регулирования подачи среды к первой точке измерения).
- 4. Подсоедините шланг 11 к нижнему соединению переключающего клапана (для регулирования подачи среды ко второй точке измерения).
- 5. Подсоедините шланг 9 к соединению для перевода арматуры в положение измерения.
- 6. Подсоедините шланг 10 к соединению для перевода арматуры в сервисное положение.

Присоединение к арматурам СРА87х и СРА47х

Номер шланга	Соединение на арматуре
CPA87x	
Шланг 9	I, положение измерения
Шланг 10	О, сервисное положение
CPA47x	
Шланг 9	Верхнее соединение
Шланг 10	Нижнее соединение

Подсоединение арматуры СРА473/474

• Подсоедините шланги следующим образом.

Номер шланга	Соединение на арматуре	
Шланг 9	2 на блоке, положение измерения	
Шланг 10	3 на блоке, сервисное положение	

Линия промывки на промывочном блоке

🗷 19 Промывочный блок

- 1 Жидкость, насос/емкость 1
- 2 Жидкость, насос/емкость 3
- 3 Выход промывочное присоединение к арматуре
- 4 Жидкость, насос/емкость 2

- 5 Промывочный блок воздух (управляющий клапан 4)
- 6 Присоединение воды
- 7 Рабочий клапан воздух (управляющий клапан 3)

Подключение промывочной воды

При подсоединении подачи воды необходимо учитывать следующее:

- трубка подачи промывочной воды предоставляется заказчиком;
- оптимальное давление воды: от 3 до 6 бар (от 44 до 87 psi).

Необходимо обеспечить высокое качество промывочной воды. Для этого следует установить водяной фильтр, рассчитанный на частицы размером более 100 мкм.

1-я точка измерения

Два переходника G 1/4" на шланг 6/8 мм для адаптации промывочных соединений арматуры входят в комплект поставки. На арматуре должны быть промывочные соединения G 1/4".

🖻 20 Промывочный блок с одной арматурой

- 1. Тщательно промойте трубу.
- 2. Подключите линию подачи промывочной воды (6) к присоединению (5) для подачи воды на промывочном блоке (4).
- 3. Подключите присоединение (3) промывочной камеры на промывочном блоке к промывочному присоединению (2) на арматуре (1).

2-я точка измерения

Два переходника G 1/4" на шланг 6/8 мм для адаптации промывочных соединений арматур входят в комплект поставки. На арматурах должны быть промывочные соединения G 1/4".

Подача среды к обеим арматурам регулируется переключающим клапаном.

- 🖻 21 Промывочный блок с двумя арматурами (1-я и 2-я точки измерения)
- 1. Тщательно промойте трубу.
- **2.** Подсоедините линию подачи промывочной воды (7) к соединению (6) для подачи воды на промывочном блоке.
- 3. Подключите присоединение (4) промывочной камеры на промывочном блоке (5) к промывочному присоединению (3) на переключающем клапане (2).
- 4. Подсоедините промывочные соединения арматур (1) к промывочным соединениям переключающего клапана (1-я точка измерения справа, 2-я точка измерения слева).

Укорачивание многошланговых сборок

Шланги в многошланговой сборке необходимо адаптировать в зависимости от расстояния между компонентами.

- 1. Отверните многошланговую сборку МЗ от промывочного блока.
- 2. Снимите гофрированный шланг (внешнюю оболочку многошланговой сборки) с крепления и разъема.
- 3. Пропустите шланги и кабели как можно дальше внутрь гофрированного шланга так, чтобы их можно было извлечь с другого конца.
- **4.** Вытяните шланги и кабели до той точки, в которой гофрированный шланг следует укоротить.
- 5. Осторожно разрежьте гофрированный шланг. Будьте осторожны, не повредите шланги или кабели, находящиеся внутри.
- 6. Укоротите гофрированный шланг до требуемой длины.
- 7. Вытяните шланги через крепление и разъем.

8. Зафиксируйте гофрированный шланг на кронштейне.

Общая длина шлангов, прокладываемых к точкам измерения 1 и 2, не должна превышать 10 м (32,8 фута).

Вариант монтажа 1

А+В = не более 10 м

Вариант монтажа 2

А+В = не более 10 м А+С = не более 10 м

1 = блок управления пневматической подсистемой

2 = промывочный блок и переключающий клапан

MS1 = точка измерения 1

MS2 = точка измерения 2

А = длина многошланговой сборки М2 для подачи среды в промывочный блок.

 – длина многошланговой сборки М1 для подачи воздуха для управления точкой измерения 1, а также для управления клапаном подачи воды и продувочного воздуха.

 – длина отдельных шлангов 8 и 11 из многошланговой сборки МЗ для подачи воздуха, управляющего переключающим клапаном.

В = длина соединительного шланга от переключающего клапана до точки измерения 2.

А+В = длина отдельных шлангов 9 и 10 из многошланговой сборки МЗ для подачи воздуха управления в точку измерения 2. А = длина многошланговой сборки M2 для подачи среды в промывочный блок

= длина отдельных шлангов 3 и 4 из многошланговой сборки М1 для подачи воздуха, управляющего водяным клапаном и подачей продувочного воздуха

 – длина отдельных шлангов 8 и 11 из многошланговой сборки МЗ для подачи воздуха, управляющего переключающим клапаном

B, С = длина соединительного шланга от переключающего клапана до точки измерения 1 или точки измерения 2

A+B, A+C = длина отдельных шлангов 1 и 2 из многошланговой сборки М1 для подачи воздуха управления в точку измерения 1 = длина отдельных шлангов 9 и 10 из многошланговой сборки М3 для подачи воздуха

управления в точку измерения 2

Подключение насоса

Управление подачей сжатого воздуха

Система управления подачей сжатого воздуха к насосам уже подсоединена на заводе.

Для пневматического блока управления насосами подсоедините патрубок диаметром 4 мм (0,16 дюйма) и переходник 4–6 мм (0,16–0,24) дюйма следующим образом.

🖻 22 Подсоединение системы управления подачей сжатого воздуха

Управляющий клапан	Функция	Номер шланга
5	Насос 1, емкость для жидкости 1 (слева)	5
6	Насос 2, емкость для жидкости 2 (по центру)	6
7	Насос 3, емкость для жидкости 3 (справа)	7

5.3 Проверка после монтажа

- 1. После монтажа проверьте все приборы на наличие повреждений.
- 2. Проверьте соблюдение указанных монтажных расстояний.
- 3. Убедитесь в соблюдении предельных значений рабочей температуры прибора в месте монтажа.
- 4. Убедитесь в том, что все шланги надежно закреплены и герметизированы.
- 5. Убедитесь, что маршрут прокладки всех многошланговых сборок исключает их повреждение.

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

УВЕДОМЛЕНИЕ

На приборе не предусмотрен выключатель питания

- Предохранитель с макс. номинальным током 16 А должен предоставляться заказчиком. Соблюдайте местные нормы в отношении монтажа.
- В качестве автоматического выключателя используется переключатель или выключатель электропитания с маркировочной информацией о принадлежности к прибору.
- До подключения любых соединений необходимо подключить защитное заземление.
 Отсоединенное защитное заземление может быть источником опасности.
- Рядом с прибором следует предусмотреть автоматический выключатель.
- 1. Подключать защитное заземление корпуса следует проводником с площадью поперечного сечения не менее 0,75 мм² (0,029 дюйм²).
- 2. Убедитесь, что спецификации кабелей питания по допустимой механической нагрузке соответствуют условиям в месте монтажа.

На поставляемом приборе могут быть выполнены только те механические и электрические соединения, которые описаны в настоящем руководстве и которые необходимы для использования изделия по назначению.

• Соблюдайте осторожность при выполнении работ.

Сетевое напряжение От 100 до 230 В перем. тока Колебания напряжения в сети не должны превышать ±10 %.

6.2 Подключение блока управления системой CDC90

А ОСТОРОЖНО

Прибор под напряжением!

Неправильное подключение может привести к несчастному случаю, в том числе с летальным исходом!

- Электрическое подключение должно осуществляться только специалистамиэлектротехниками.
- Электротехник должен предварительно ознакомиться с данным руководством по эксплуатации и следовать всем приведенным в нем указаниям.
- **Перед** проведением работ по подключению кабелей убедитесь, что ни на один кабель не подано напряжение.

6.2.1 Назначение кабельных уплотнений

Провода к блоку управления системой CDC90 уже подключены на заводе.

🖻 23 Кабельное уплотнение блока управления системой СDС90

Подключение проводов	Обозначение	Назначение
Сетевое напряжение блока управления системой CDC90	W11	Н
Кабель Ethernet, соединяющий блок IPC с коммутатором Ethernet	W23	5
Датчик, 1-я точка измерения		6
Датчик, 2-я точка измерения		7
Кабель Ethernet, соединяющий модуль BASE2- Е с коммутатором Ethernet	W24	8
Датчик, поплавковый датчик, датчик давления, источник питания модуля IPC	W8	G

6.2.2 Модули блока управления системой CDC90

Модули

- Гнездо 1: базовый модуль BASE2-E (содержит 2 входа для датчиков и 2 токовых выхода)
- Гнезда 2-3: пустые
- Гнездо 4: модуль 2АІ (2 токовых входа)
- Гнезда 5-6: 2 модуля DIO
- Гнездо 7, сменное: модуль 4АО (4 токовых выхода)

Пример названия клеммы

🖻 24 Пример назначения порта

6.2.3 Открывание блока управления системой CDC90

УВЕДОМЛЕНИЕ

Инструменты с острием или режущей кромкой

Использование ненадлежащих инструментов может привести к царапинам на корпусе или повреждению уплотнения и, как следствие, негативно повлиять на герметичность корпуса!

- Ни в коем случае не используйте заостренные предметы, например нож, для открывания корпуса.
- Пользуйтесь только отверткой с крестообразным наконечником приемлемого размера.

25 Ослабъте винты корпуса в перекрестном порядке отверткой с крестообразным наконечником

26 Открывание крышки дисплея (не более чем на 180°, зависит от монтажного положения)

1. Ослабьте винты корпуса в перекрестном порядке.

2. Чтобы закрыть корпус, затяните винты в таком же порядке, в каком выполнялось их ослабление (постепенно, по перекрестной схеме).

6.2.4 Подключение экрана кабеля

H

По возможности следует использовать только оригинальные терминированные кабели. Необходимо использовать экранированный кабель датчика, кабель цифровой шины и кабель Ethernet.

Зажимной диапазон кабельных зажимов: 4 до 11 мм (0,16 до 0,43 дюйм)

Образец кабеля (может отличаться от кабеля из комплекта поставки)

- 1) Обратите внимание на инструкции, приведенные в разделе «Обеспечение требуемой степени защиты».
- 1. Ослабьте подходящий кабельный ввод в нижней части корпуса.
- 2. Снимите заглушку.
- 3. Присоедините ввод к концу кабеля, убедившись, что ввод смотрит в правильном направлении.
- 4. Протяните кабель через ввод в корпус.
- 5. Проложите кабель внутри корпуса таким образом, чтобы оголенный экран кабеля попадал в один из зажимов для кабеля и простота прокладки жил кабеля обеспечивалась до разъема модуля электроники.
- 6. Подсоедините кабель к кабельному зажиму.
- 7. Зажмите кабель.

- 8. Подключите кабельные жилы в соответствии с электрической схемой.
- 9. Затяните кабельное уплотнение снаружи.

6.2.5 Кабельные клеммы

Вставные клеммы для подключения датчиков, поддерживающих технологию Memosens

- Нажмите отверткой на клемму (она раскроется).
- Вставьте кабель до упора.
- Уберите отвертку (клемма закроется).
- После подключения убедитесь в том, что каждый конец кабеля надежно закреплен в требуемом месте. Терминированные кабели имеют тенденцию к разбалтыванию, если они не были правильно вставлены до упора.

Прочие контактные клеммы

- Нажмите отверткой на клемму (она раскроется).
- Вставьте кабель до упора.
- Уберите отвертку (клемма закроется).

6.2.6 Подключение питания для блока управления CDC90

Кабельное уплотнение Н

Провода питания к блоку управления системой CDC90 уже подключены на заводе.

A0033453

• Пропустите кабель питания через существующее кабельное уплотнение Н.

6.3 Подключение датчиков

6.3.1 Типы датчиков

Датчики с поддержкой протокола Memosens

Типы датчиков	Кабель датчика	Датчики
Цифровые датчики без дополнительного встроенного источника питания	С бесконтактным разъемом и индуктивной передачей сигнала	Датчики pHДатчики OBПКомбинированные датчики pH/OBП

• Пропустите кабель датчика для первой точки измерения через кабельное уплотнение «6» из комплекта поставки.

Для датчика второй точки измерения предназначено кабельное уплотнение «7» из комплекта поставки.

Подключение кабеля датчика

- Подключение кабеля датчика напрямую Подсоедините кабель датчика к клеммному разъему модуля BASE2-E.
- При подключении через разъем М12: подключите разъем датчика к разъему датчика М12, раннее установленному или входящему в поставку.

A0039629

🗷 30 Прямое подключение датчиков без дополнительного источника питания

6.4 Подключение дополнительных входов и выходов

А ОСТОРОЖНО

Отсутствует крышка блока

Защита от поражения электрическим током не обеспечивается. Опасность поражения электрическим током!

- В гнездо 7 можно установить только модуль 4АО. Другие аппаратные средства модифицировать нельзя.
- Требуемые дополнительно экраны необходимо подключать к клемме РЕ централизованно в шкафу управления через клеммные блоки, которые заказчик приобретает самостоятельно.

6.4.1 Цифровые входы и выходы

Для контроля подачи сжатого воздуха и для поплавковых датчиков.

Подключение DIO

Подключение цифрового ввода/вывода на клеммах привода в блоке управления пневматической подсистемой

Провод кабеля	Блок управления системой CDC: модуль DIO	Блок управления пневматической подсистемой: клемма X2, снизу	Функция
W8, 5	Гнездо 5 (24 В пост. тока, №1) – клемма 47	1	Датчик давления (черный), поплавковый датчик, насос №1 (черный)
W8, 6	Гнездо 5, модуль DI № 1, клемма 91	2	Поплавковый датчик, насос №1 (коричневый)
W8, 7	Гнездо 5, модуль DI № 2, клемма 91	3	Датчик давления (коричневый)
W8, 8	Гнездо 6 (24 В пост. тока №1)	4	Поплавковый датчик, насос №3 (черный)

Провод кабеля	Блок управления системой CDC: модуль DIO	Блок управления пневматической подсистемой: клемма X2, снизу	Функция
W8, 9	Гнездо 6, модуль DI №1, клемма 91	5	Поплавковый датчик, насос №3 (коричневый)
W8, 10	Гнездо 6 (24 В пост. тока, №2) – клемма 47	6	Поплавковый датчик, насос №2 (черный)
W8, 11	Гнездо 6, модуль DI №2, клемма 91	7	Поплавковый датчик, насос №2 (коричневый)

6.4.2 Токовые входы

Вход сигнала управления от сенсорных кнопок.

1. Вход сигнала управления от сенсорных кнопок.

2. Вход для управляющего сигнала от станции управления для дистанционной реализации выполнения программы.

ч

6.4.3 Токовые выходы

Р Передача сигнала состояния из точки измерения в систему управления.

1. Выход для управления светодиодом состояния на блоке управления СDC90

2. Выход для передачи сигнала состояния из точки измерения в систему управления Опционально: дополнительный модуль 4АО для измеряемых значений.

Передача измеренных значений (определяемых пользователем) из точки измерения в систему управления.

6.5 Подключение цифровой связи

6.5.1 Подключение Ethernet

ВНИМАНИЕ

-

Поражение электрическим током!

 Подключенные внешние устройства должны быть изолированы от потенциально опасного напряжения.

Подключение кабеля связи коммутатора Ethernet к блоку управления системы CDC90

Связь между блоком управления системы CDC90 и коммутатором Ethernet уже установлена на заводе.

- 1 Коммутатор Ethernet
- 2 Ethernet-подключение
- 3 Модуль BASE2-E

В блоке управления системы CDC90 подключите кабель адаптера Ethernet W19 к разъему Ethernet модуля BASE2-E (3).

0033454

Подведите кабель адаптера Ethernet W24 к существующему кабельному уплотнению «8».

- └ Кабели W19 и W24 образуют перемычку.
- 3. Подключите переходной кабель Ethernet для коммутатора Ethernet (1) к соединению (2), предоставленному для этой цели.

Подключение кабеля связи коммутатора Ethernet к блоку управления пневматической подсистемой

Кабель Ethernet для внутренней связи между коммутатором Ethernet и блоком управления пневматической подсистемой уже установлена на заводе.

Подключение проводов коммутатора Ethernet к интерфейсу цифровой шины

- 1 Подключение коммутатора Ethernet
- 2 Коммутатор Ethernet
- 3 Блок управления пневматической подсистемой
- 4 Интерфейс цифровой шины IN1 шинного узла
- 1. Подсоедините кабель связи (W22) коммутатора Ethernet (2) к соединению (1).
- 2. Подсоедините кабель W22 в блоке управления пневматической подсистемой (3) через кабельное уплотнение 4 снизу.
- 3. Подключите кабель W20 в блоке управления пневматической подсистемой (3) через кабельное уплотнение 4 изнутри.
 - ຩ Кабели W22 и W20 образуют перемычку.
- Подключите кабель W20 в блоке управления пневматической подсистемой (3) к интерфейсу цифровой шины IN1 шинного узла (4).

Подключение питания к коммутатору Ethernet

Провода питания коммутатора Ethernet в блоке управления пневматической подсистемой уже подсоединены на заводе.

🗷 38 Подключение проводов коммутатора Ethernet на клеммах XL

- 1 Коммутатор Ethernet
- 2 Подключение коммутатора Ethernet
- 3 Клеммы XL в блоке управления пневматической подсистемой
- 1. Подсоедините питание (W9) коммутатора Ethernet (1) к соединению (2).
- 2. Пропустите кабель W9 через кабельное уплотнение 9 блока управления пневматической подсистемой.
- 3. Подключите провода в порядке, описанном ниже (3)

Клемма -XL+	Провод кабеля
+2	Коричневый

Клемма -XL-	Провод кабеля
-2	Синий
Защитное заземление	Серый

6.5.2 Подключение модуля IPC

Модуль IPC уже подсоединен к коммутатору Ethernet на заводе.

- 1 Модуль IPC
- 2 Подключение коммутатора Ethernet
- 1. Откройте блок управления CDC90.
- 2. Подключите переходной кабель W18 в блоке управления CDC90 через кабельное уплотнение 8 изнутри.
- 3. В блоке управления CDC90 подключите переходной кабель W18 к соединению IPC (1).
- 4. Подключите кабель W23 снаружи блока управления CDC90 к кабельному уплотнению 8.
 - └ Кабели W18 и W23 образуют перемычку.
- 5. Подключите кабель W23 коммутатора Ethernet к существующему соединению (2).

6.6 Подключение блока управления пневматической подсистемой

6.6.1 Назначение кабельных уплотнений

Шланги блока управления пневматической подсистемой уже подсоединены на заводе.

-

🗉 39 Кабельное уплотнение блока управления пневматической подсистемой

Назначение	Подключение проводов	Обозначение
1	Соединительный кабель для блока управления системой CDC90	W8
2	Кабель питания блока управления пневматической подсистемой	W11
3	Назначение отсутствует	
4	Кабель Ethernet вентильного блока	W20->W22
5	Шланг № 8/черный в вентильном блоке М1 1 шланг 6/8 мм из многошланговой сборки М1 в вентильном блоке 1 шланг 6/8 мм подачи сжатого воздуха (в месте монтажа)	4
6	Шланги МЗ	8, 9, 10, 11
7	Кабель концевого выключателя арматуры СРА8xx	W2, W3
	Кабель концевого выключателя арматуры СРА4xx	W25, W26, W27, W28
8	Кабель поплавкового датчика/датчика уровня	W4, W5, W6
9	Кабель питания коммутатора Ethernet	W9
10	Назначение отсутствует	
11	Назначение отсутствует	
12	Насосные шланги	5, 6, 7
13	Шланги М1	1, 2, 3

Многожильный сигнальный кабель, соединяющий блок управления системой CDC90 и блок управления пневматической подсистемой, проложен в блок управления

пневматической подсистемой через клеммы привода и смонтирован заранее. См. раздел .

6.6.2 Подключение поплавковых датчиков и переключателей сжатого воздуха

- 1. Пропустите жилы кабелей W4, W5 и W6 через кабельное уплотнение «8» из комплекта поставки.
- 2. Подключите жилы кабелей к клеммам привода в пневматическом блоке управления следующим образом.

Клеммы X2, верхние	Жила кабеля	Функция
1	W4, черная W5, черная	Поплавковый датчик, чистящее средство Поплавковый датчик, буферный раствор 1
2	W4, коричневая	Поплавковый датчик, чистящее средство
3	W5, коричневая	Поплавковый датчик, буферный раствор 1
4	W6, черная	Поплавковый датчик, буферный раствор 2
5	W6, коричневая	Поплавковый датчик, буферный раствор 2
6	W7, черная	Датчик давления
7	W7, коричневая	Датчик давления

6.6.3 Арматуры

Прибор CDC90 предназначен для работы со следующими арматурами:

- Cleanfit CPA47x;
- Cleanfit CPA871/CPA875.

Концевые выключатели

Cleanfit CPA471/472/472D/475

Арматуры с пневматическими концевыми выключателями необходимо переоборудовать в арматуры с электрическими концевыми выключателями.

Мониторинг положения арматуры

🗹 40 Управление подачей сжатого воздуха в систему CPA471/472/472D/475

Подключите соединения для сигнала обратной связи по положению в блоке управления пневматической подсистемой следующим образом.

Подключение на кле	ммах выходного и	нтерфейса в	блоке управления	ч пневматической
подсистемой				

Клеммы выходного интерфейса T1, нижние	Провод кабеля	Функция
Контакт 1	W26, коричневая	Верхний концевой выключатель
Контакт 2	W26, синяя	Верхний концевой выключатель

Клеммы выходного интерфейса T2, нижние	Провод кабеля	Функция
Контакт 1	W25, коричневая	Нижний концевой выключатель
Контакт 2	W25, синяя	Нижний концевой выключатель

Cleanfit CPA473/474

Арматуры с пневматическими концевыми выключателями необходимо переоборудовать в арматуры с электрическими концевыми выключателями.

Мониторинг положения арматуры

- Я 41 Управление подачей сжатого воздуха в систему СРА473/474
- Подключите соединения для сигнала обратной связи по положению в блоке управления пневматической подсистемой следующим образом.

Подключение на клеммах выходного интерфейса в блоке управления пневматической подсистемой

Клеммы выходного интерфейса T1, нижние	Концевые выключатели	Функция
Контакт 1	Поз. 2, коричневый концевой выключатель на шаровом кране	Концевой выключатель, сигнал обратной связи сервисного положения
Контакт 2	Поз. 2, синий концевой выключатель на шаровом кране	Концевой выключатель, сигнал обратной связи сервисного положения

Клеммы выходного интерфейса T2, нижние	Провод кабеля	Функция
Контакт 1	Поз. 1, коричневый концевой выключатель на арматуре	Концевой выключатель, сигнал обратной связи положения измерения
Контакт 2	Поз. 1, синий концевой выключатель на арматуре	Концевой выключатель, сигнал обратной связи положения измерения

Cleanfit CPA8x

Мониторинг арматуры

🖻 42 Сигнал обратной связи положения, арматура СРА87х

W2 Кабель обратной связи

- А Концевой выключатель, сервисное положение
- В Концевой выключатель, положение измерения
- С Разъем М12, сторона пайки (внутри арматуры)
- D Кодировка
- Е Разъем, сторона контактов (снаружи арматуры)

- 8 43 Соединительный кабель для концевого выключателя преобразователя, переключающего усилителя, клемм выходного интерфейса и т. д.
- 1 Положение измерения
- 2 Положение измерения
- 3 Сервисное положение
- 4 Сервисное положение

Присоедините кабели к соответствующим контактам согласно иллюстрации.

2. Подключите соединения сигнала обратной связи по положению следующим образом.

Подключение на клеммах выходного интерфейса в блоке управления пневматической подсистемой

Клеммы выходного интерфейса T1, нижние	Провод кабеля	Функция
Контакт 1	W2, черный	Концевой выключатель, сигнал обратной связи положения
Контакт 2	W2, синий	Концевой выключатель, сигнал обратной связи положения

Клеммы выходного интерфейса T2, нижние	Провод кабеля	Функция
Контакт 1	W2, коричневый	Концевой выключатель, сигнал обратной связи положения
Контакт 2	W2, белый	Концевой выключатель, сигнал обратной связи положения

6.7 Назначение дистанционного ввода/вывода

DI	Описание	Назначение
1, 2	Арматура 1	Внутренний сигнал обратной связи положения
3, 4	Арматура 2	Внутренний сигнал обратной связи положения
13-16	Сенсорные кнопки	Сигнал запуска программ, закрепленных за четырьмя (4) сенсорными кнопками

DO	Описание	Назначение
11	Режим работы	«Настройка», если DO11 = 0 и DO12 =
12		0 «Ручной режим», если DO11 = 0 и DO12 = 1 «Автоматический режим», если DO11 = 1 и DO12 = 0 «Дистанционный доступ», если DO11 = 1 и DO12 = 1
13	Арматура 1	Сервисное положение = 0 Положение измерения = 1
14	Арматура 2	Сервисное положение = 0 Положение измерения = 1

DO	Описание	Назначение
15	Программа	Нет программы = 0 Программа работает = 1
16	Состояние ошибки	Аварийный сигнал = 0 Отсутствие аварийного сигнала = 1

6.8 Подключение электропитания

Кабель питания предоставляется заказчиком на месте установки прибора и не входит в комплект поставки.

УВЕДОМЛЕНИЕ

На приборе не предусмотрен выключатель питания.

- Предохранитель с макс. номинальным током 16 А должен предоставляться заказчиком. Соблюдайте местные нормы в отношении монтажа.
- В качестве автоматического выключателя используется переключатель или выключатель электропитания с маркировочной информацией о принадлежности к прибору.
- До подключения любых соединений необходимо подключить защитное заземление.
 Отсоединенное защитное заземление может быть источником опасности.
- Рядом с прибором необходимо предусмотреть автоматический выключатель.

Подготовка подачи сетевого напряжения

- **1.** Необходимо обеспечить надлежащее подключение к системе защитного заземления здания.
- Используйте заземляющий кабель площадью поперечного сечения не менее 0,75 мм² (соответствует калибру 18 AWG), который не входит в комплект поставки.

Подключение электропитания

A0033429

Пропустите кабель электропитания через кабельное уплотнение 3 блока управления пневматической подсистемой.

2. Подключите жилы к клеммам привода следующим образом.

AUU3533

Клеммы Х1, нижние	Провод кабеля
L	L1, коричневый
Защитное заземление	РЕ, зелено-желтый
N	N, синяя

6.9 Обеспечение требуемой степени защиты

Для использования поставляемого прибора по назначению допускаются и являются необходимыми только механические и электрические соединения, описанные в данном документе.

• Соблюдайте осторожность при выполнении работ.

Отдельные типы защиты, сертифицированные для данного изделия (класс защиты (IP), электробезопасность, устойчивость к электромагнитным помехам, взрывозащищенность) не гарантируются в следующих случаях.

- Крышки не закрыты.
- Используются блоки питания не из комплекта поставки.
- Кабельные уплотнения недостаточно плотно затянуты (для обеспечения подтвержденного класса защиты IP необходимо затягивать моментом 2 Нм (1,5 фунт сила фут)).
- Используются кабели, диаметр которых не соответствует кабельным уплотнениям.
- Блоки недостаточно прочно закреплены.
- Недостаточно прочно закреплен дисплей (возникает риск проникновения влаги вследствие негерметичного уплотнения).
- Ослаблены или недостаточно закреплены кабели/концы кабелей.
- Внутри прибора оставлены оголенные жилы кабелей.

6.10 Проверка после подключения

А ОСТОРОЖНО

Ошибки подключения

Безопасность людей и точки измерения находится под угрозой! Изготовитель не несет ответственности за ошибки, вызванные невыполнением указаний настоящего руководства по эксплуатации.

 Прибор может быть введен в эксплуатацию только в том случае, если на все приведенные вопросы был получен утвердительный ответ.

Состояние прибора и соответствие техническим требованиям

• На приборе и кабелях отсутствуют внешние повреждения?

Электрическое подключение

- Подключенные кабели не натянуты?
- Проложенные кабели не перекрещиваются и не образуют петли?
- Сигнальные кабели правильно подключены в соответствии с электрической схемой?
- Были ли все прочие подключения проведены корректно?
- Подключены ли неиспользуемые провода к клеммам защитного заземления?
- Все ли вставные клеммы надежно закреплены?
- Все ли провода надежно закреплены в кабельных зажимах?
- Все кабельные вводы установлены, затянуты и герметизированы?
- Соответствует ли подаваемое сетевое напряжение техническим характеристикам, указанным на заводской табличке?

7 Опции управления

7.1 Обзор опций управления

7.1.1 Дисплей и элементы управления

🛃 45 Обзор процесса управления

- 1 Сенсорный дисплей
- 2 Светодиодный индикатор
- 3 Сенсорные кнопки (возможен выбор функций)

Светодиод

Зеленый	Активна главная программа
Красный	Ошибка системы. Программы (например, программа очистки или калибровочная программа) не запускаются
Мигающий красный	Система выдает сообщение о функциональной проверке (например, функции удержания), сообщение о несоответствии спецификации или сообщение о необходимости выполнения технического обслуживания. Системой можно управлять в ограниченной мере
Индикаторы не горят	Ни одна программа не активна, ожидающие рассмотрения сообщения об ошибках отсутствуют

7.2 Доступ к меню управления посредством локального дисплея

7.2.1 Принцип управления

🖻 46 Сенсорный дисплей

Для управления прибором CDC90 используется сенсорный дисплей. Кроме того, имеются сенсорные кнопки для управления работой программ.

7.2.2 Сенсорные кнопки

Программы можно запускать с помощью сенсорных кнопок. Назначение кнопок задано заранее, настройка не предусмотрена. Сенсорные кнопки работают только в «ручном» рабочем режиме.

7.2.3 Обзор меню

Пункт	Функция
1	Время
2	Отображение и ускоренный доступ к наиболее важному сообщению об ошибке
3	Отображение и переход к точке измерения 1 и отображение значения pH или ОВП в милливольтах
4	Для одной точки измерения: второе измеряемое значение точки измерения 1 и значение температуры Для двух точек измерения: отображение и навигация к точке измерения 2. Отображение значения pH или значения ОВП в единицах измерения «мВ»
5	Отображение пользовательского профиля и вход в систему
6	Режим работы
7	Обзор главного меню
8	Навигация

Управление осуществляется с помощью четырех основных меню

Меню	Функция
Руководство	 Комментируемое управление с целью планирования и выполнения программ Импорт и экспорт файлов и параметров настройки
Диагностика	Содержит сведения о работе прибора, диагностические данные, сведения об устранении неисправностей и данные моделирования

Меню	Функция
Применение	Данные прибора, необходимые для тонкой корректировки точки измерения Настройка связи с распределенной системой управления
Сис-ма	Эти меню содержат параметры для настройки и управления всей системой

7.3 Доступ к меню управления посредством веб-браузера

Через веб-сервер можно получить доступ к тем же параметрам меню, которые доступны посредством локального дисплея.

- ▶ Введите следующий путь: 192.168.0.1:8080/cdc90.htm.
- 📪 Если IP-адрес модуля IPC изменен

Действительный IP-адрес модуля IPC, сопровождаемый строкой :8080/cdc90.htm

8 Системная интеграция

8.1 Встраивание измерительного прибора в систему

8.1.1 Веб-сервер

Установление соединения для передачи данных

УВЕДОМЛЕНИЕ

В зависимости от загрузки сети система EtherCat может вызвать сбои в работе модуля IPC системы CDC90 (если в систему встроено несколько устройств CDC90).

В системе Modbus без шлюза необходимо обеспечить физическое разделение в месте установки с помощью коммутатора с поддержкой интерфейса VLAN (например, управляемого коммутатора уровня 2 с поддержкой интерфейса VLAN).

Чтобы можно было получить для прибора действительный IP-адрес, настройки интерфейса Ethernet для параметра DHCP должны быть отключены. (Меню/Настр/ Общие настройки/Расшир. настройки/Ethernet/Настройки)

Можно назначить IP-адрес в ручном режиме в том же меню (для соединений типа «точка-точка»).

- 2. В окне параметров настройки сетевого подключения операционной системы вручную установите IP-адрес.
- 3. Запустите браузер.

- Если для подключения к Интернету используется прокси-сервер Деактивируйте функцию прокси-сервера (настройки браузера, раздел «Подключение/Настройки ЛВС»).
- 5. Введите IP-адрес прибора (192.168.0.1:8080/cdc90.htm) в адресную строку.
 - ▶ В течение нескольких секунд система установит соединение, после чего запустится веб-сервер.

Пример: Microsoft Windows 10

- 6. Откройте «Центр управления сетями и общим доступом».
 - └ Помимо стандартной сети, можно будет увидеть еще одно Ethernet-соединение (например, «Неопознанная сеть»).
- 7. Выберите ссылку на это Ethernet-соединение.
- 8. Во всплывающем окне нажмите кнопку «Свойства».
- 9. Дважды щелкните пункт «Интернет-протокол версии 4 (TCP/IPv4)».
- 10. Выберите пункт «Использовать следующий IP-адрес».
- 11. Введите требуемый IP-адрес. Этот адрес должен относиться к той же подсети, что и IP-адрес прибора, например:
 - └→ IP-адрес блока CDC90: 192.168.0.1 IP-адрес для ПК: 192.168.0.99.
- 12. Запустите веб-браузер.
- Если для подключения к Интернету используется прокси-сервер Деактивируйте функцию прокси-сервера (настройки браузера, раздел «Подключение/Настройки ЛВС»).
- 14. Введите IP-адрес своего прибора в адресную строку.
 - ▶ В течение нескольких секунд система установит соединение, после чего запустится веб-сервер.

Управление

Структура меню веб-сервера соответствует структуре меню при локальном управлении.

8.1.2 Системы цифровых шин

УВЕДОМЛЕНИЕ

Для внутренней связи прибор использует соединение EtherCat. В зависимости от загрузки сети система EtherCat может вызвать сбои в работе модулей IPC систем CDC90 (если в одну и ту же сеть встроено несколько устройств CDC90).

Для уменьшения нагрузки на сеть при использовании соединения Modbus TCP необходимо обеспечить разделение сетей. Физическое разделение с помощью коммутатора с поддержкой интерфейса VLAN (например, управляемого коммутатора уровня 2 с поддержкой интерфейса VLAN), или разделение программными методами.

Подключение

В системе блока управления СDC90 можно выбрать один из следующих способов связи:

- аналоговые входы и выходы:
 - активация осуществляется через аналоговый токовый вход (AI);
 - обратная связь поступает через аналоговый токовый выход (AO);
 - настройки следует выполнить через веб-сервер или локальный дисплей;
- EtherNet/IP (адаптер);
- PROFIBUS DP (ведомое устройство);
- Modbus TCP (сервер);
- PROFINET (прибор).

Подключение к системе PROFINET или PROFIBUS DP через шлюз

Шлюз должен быть установлен снаружи системы. Поставляется кабель Ethernet длиной 3 м (3,28 фута). Кабель для соединения с распределенной системой управления предоставляется заказчиком.

🖻 47 Соединение для обмена данными с системами PROFINET и PROFIBUS DP

- 1 Коммутатор Ethernet в блоке CDC90
- 2 Шлюз
- 3 Распределенная система управления (РСУ)
- 4 Кабель Ethernet для связи блока CDC90 со шлюзом
- 5 Соединение для обмена данными, шлюз/распределенная система управления (РСУ)
- 1. Для подключения к системе CDC90 присоедините кабель Ethernet (4) к верхней части шлюза.
- 2. Подсоедините концевой разъем к коммутатору Ethernet (1).
- 3. Для подключения к распределенной системе управления присоедините кабель связи Ethernet (5) к нижней части шлюза.
- 4. Подсоедините концевой разъем к РСУ (3).

Подключение к сети EtherNet/IP через шлюз

Шлюз должен быть установлен снаружи системы. Поставляется кабель Ethernet длиной 3 м (3,28 фута). Кабель для соединения с распределенной системой управления предоставляется заказчиком.

🖻 48 🛛 Подключение для обмена данными через интерфейс EtherNet/IP

- 1 Коммутатор Ethernet в блоке CDC90
- 2 Шлюз
- 3 Распределенная система управления (РСУ)
- 4 Кабель Ethernet для связи блока CDC90 со шлюзом
- 5 Соединение для обмена данными, шлюз/распределенная система управления (РСУ)
- 1. Для подключения к системе CDC90 присоедините кабель Ethernet (4) к нижней части шлюза.
- 2. Подсоедините концевой разъем к коммутатору Ethernet (1).
- 3. Для подключения к распределенной системе управления присоедините кабель связи Ethernet (5) к верхней части шлюза.
- 4. Подсоедините концевой разъем к РСУ (3).

Подключение интерфейса Modbus TCP к коммутатору Ethernet

- 1. Для подключения к системе CDC90 присоедините кабель Ethernet к коммутатору Ethernet.
- 2. Подсоедините концевой разъем к РСУ.

Назначение проводов в кабеле Ethernet

RJ45	Стандартный кабель		Промышленный кабель	M12
1	Янтарный	TxD-	Янтарный	3
2	Янтарный/белый	TxD+	Желтый	1
3	Зеленый	RxD-	Синий	4
4	Зеленый/белый	RxD+	Белый	2

Назначение проводов в разъеме М12

M12		M12
1	Желтый	1
2	Белый	2
---	----------	---
3	Янтарный	3
4	Синий	4

Назначение проводов интерфейса RJ45 в разъеме M12

RJ45		M12
1	Желтый	1
3	Белый	2
2	Янтарный	3
6	Синий	4

Дополнительная информация о связи по цифровой шине приведена на странице изпелия в Инториста: изделия в Интернете:

- EtherNet/IP (адаптер) через шлюз Modbus TCP EtherNet/IP: BA02241C;
- Modbus TCP (сервер): BA02238C;
- PROFIBUS DP (ведомое устройство) через шлюз Modbus TCP PROFIBUS DP. BA02239C:
- PROFINET (прибор) через шлюз Modbus TCP PROFINET: BA02240C.

9 Ввод в эксплуатацию

Пусконаладочные работы 9.1

Первоначальный ввод в эксплуатацию осуществляется специалистами Endress+Hauser.

71564273

www.addresses.endress.com

