Safety Instructions
 Soliphant M FTM50, FTM51, FTM52

Ex ta/tb IIIC T160 ${ }^{\circ} \mathrm{C} . . \mathrm{T310}{ }^{\circ} \mathrm{C} \mathrm{Da} / \mathrm{Db}$ Ex ta/tb [ia Da] IIIC T83² Ca Dab Ex tb [ia Da] IIIC $783^{\circ} \mathrm{C}$ Db

Soliphant M FTM50, FTM51, FTM52

Table of contents

About this document 4
Associated documentation 4
Supplementary documentation 4
Manufacturer's certificates 4
Manufacturer address 4
Extended order code 4
Safety instructions: General 7
Safety instructions: Special conditions 8
Safety instructions: Installation 8
Temperature tables 11
Connection data 19

About this document

Associated documentation

Supplementary documentation

Manufacturer's certificates

Manufacturer address

iThis document has been translated into several languages. Legally determined is solely the English source text.

This document is an integral part of the following Operating Instructions:

- KA00229F/00 (FTM50, FTM51)
- KA00230F/00 (FTM52)

Explosion-protection brochure: CP00021Z/11
The Explosion-protection brochure is available:

- In the download area of the Endress+Hauser website:
www.endress.com -> Downloads -> Brochures and Catalogs -> Text Search: CP00021Z
- On the CD for devices with CD-based documentation

NEPSI Declaration of Conformity

Certificate number:
GYJ21.3324

Affixing the certificate number certifies conformity with the following standards (depending on the device version):

- GB/T 3836.1-2021
- GB/T 3836.4-2021
- GB/T 3836.31-2021

Endress+Hauser SE+Co. KG

Hauptstraße 1
79689 Maulburg, Germany
Address of the manufacturing plant: See nameplate.

The extended order code is indicated on the nameplate, which is affixed to the device in such a way that it is clearly visible. Additional information about the nameplate is provided in the associated Operating Instructions.

Structure of the extended order code

FTM5x	-	************	+	$A^{*} B^{*} C^{*} D^{*} E^{*} F^{*} G^{*} .$.
(Device type)		(Basic specifications)		(Optional specifications)
* $=$ Placeholder				
At this position, an option (number or letter) selected from the				

Basic specifications

The features that are absolutely essential for the device (mandatory features) are specified in the basic specifications. The number of positions depends on the number of features available. The selected option of a feature can consist of several positions.

Optional specifications

The optional specifications describe additional features for the device (optional features). The number of positions depends on the number of features available. The features have a 2-digit structure to aid identification (e.g. JA). The first digit (ID) stands for the feature group and consists of a number or a letter (e.g. J = Test, Certificate). The second digit constitutes the value that stands for the feature within the group (e.g. A = 3.1 material (wetted parts), inspection certificate).

More detailed information about the device is provided in the following tables. These tables describe the individual positions and IDs in the extended order code which are relevant to hazardous locations.

Extended order code: Soliphant M

Device type
FTM50, FTM51, FTM52
Basic specifications

Position 1 (Approval)		
Selected		Description
FTM50 FTM51	8	NEPSI Ex ta/tb IIIC $\mathrm{T} 160^{\circ} \mathrm{C} . . \mathrm{T}^{\mathrm{T}} 10^{\circ} \mathrm{C} \mathrm{Da} / \mathrm{Db}^{1)}$ NEPSI Ex tb [ia Daן IIIC T83 ${ }^{\circ} \mathrm{CDb}{ }^{2)}$
FTM52	8	NEPSI Ex ta/tb [ia Da] IIIC $\mathrm{T} 83^{\circ} \mathrm{C} \mathrm{Da} / \mathrm{Db}$ NEPSI Ex tb [ia Da] IIIC $783^{\circ} \mathrm{C} \mathrm{Db}^{2)}$

1) Depending on Position 11
2) Only in connection with Position $7=\mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{H}$

Position 6 (Electronics, Output)	
Selected option	Description
FTM5x	1
2	FEM51; 2-wire 19-253VAC
4	FEM52; 3-wire PNP 10-55VDC
5	FEM54; relay DPDT, 19-253VAC/55VDC

Position 7 (Type of Probe)

Selected option	Description	
FTM5x	A	Compact
	D, E	Cable $>$ separate enclosure
	G, H	Cable, armoured $>$ separate enclosure

Position 8 (Housing)	
Selected option	Description
FTM5x	H
	T13 Alu IP66/68 NEMA Type 4X/6P Encl., separate conn. compartment
	F17 Alu IP66/67 NEMA Type 4X Encl.
6	F13 Alu IP66/68 NEMA Type 4X/6P Encl.
7	F15 316L hygiene IP66/67 NEMA Type 4X Encl.

Position 11 (Additional Option 2)		
Selected option		Description
FTM50FTM51	A	Not selected
	C	EN10204-3.1 material (wetted parts), inspection certificate
	D, E	Temp. separator $\leq 150^{\circ} \mathrm{C}$
	F, H	High temperature $\leq 280^{\circ} \mathrm{C}$
	J, K	High temperature $\leq 230^{\circ} \mathrm{C}$
	Y	Special version: High temperature $\leq 300^{\circ} \mathrm{C}$
FTM52	A	Not selected

Optional specifications
No options specific to hazardous locations are available.

Safety instructions: General

- The device is intended to be used in explosive atmospheres as defined in the scope of IEC 60079-0 or equivalent national standards. If no potentially explosive atmospheres are present or if additional protective measures have been taken: The device may be operated according to the manufacturer's specifications.
- Staff must meet the following conditions for mounting, electrical installation, commissioning and maintenance of the device:
- Be suitably qualified for their role and the tasks they perform
- Be trained in explosion protection
- Be familiar with national regulations
- For installation, use and maintenance of the device, users must also observe the requirements stated in the Operating Instructions and the standards:
- GB 50257-2014: "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering".
- GB/T 3836.13-2021: "Explosive atmospheres, Part 13: Equipment repair, overhaul, reclamation and modification".
- GB/T 3836.15-2017: "Explosive atmospheres, Part 15: Electrical installations design, selection and erection".
- GB/T 3836.16-2017: "Explosive atmospheres, Part 16: Electrical installations inspection and maintenance".
- GB 15577-2018: "Safety regulations for dust explosive prevention and protection". (Only if installed in dust hazardous area.)
- Install the device according to the manufacturer's instructions and national regulations.
- Do not operate the device outside the specified electrical, thermal and mechanical parameters.
- Only use the device in media to which the wetted materials have sufficient durability.
- Avoid electrostatic charging:
- Of plastic surfaces (e.g. enclosure, sensor element, special varnishing, attached additional plates, ..)
- Of isolated capacities (e.g. isolated metallic plates)
- Refer to the temperature tables for the relationship between the permitted ambient temperature for the sensor and/or transmitter, depending on the range of application and the temperature class.
- Modifications to the device can affect the explosion protection and must be carried out by staff authorized to perform such work by Endress+Hauser.

Safety instructions:
Special conditions

- To avoid electrostatic charging: Do not rub surfaces with a dry cloth.
- In the event of additional or alternative special varnishing on the enclosure or other metal parts or for adhesive plates:
- Observe the danger of electrostatic charging and discharge.
- Do not install in the vicinity of processes ($\leq 0.5 \mathrm{~m}$) generating strong electrostatic charges.
Basic specification, Position $6=4$
In an explosive atmosphere: Waiting time before opening the electronics compartment after switching off the power supply:
17 minutes.

Safety

 instructions: Installation

图 1
A Zone 21
1 Tank; Hazardous area Zone 20
2 Version
3 Temperature separator (optional at $150^{\circ} \mathrm{C}$)
4 Electronic insert; Electronic compartment Ex tb
5 Enclosure
6 Power supply
7 Potential equalization line
8 Potential equalization

2
A Zone 20, Zone 21
B Zone 21
1 Tank; Hazardous area Zone 20
2 Version
3 Sensor enclosure
4 Temperature separator (optional at $150^{\circ} \mathrm{C}$)
5 Electronic insert; Electronic compartment Ex tb
6 Electronics enclosure
7 Power supply
8 Potential equalization line
9 Potential equalization

- After mounting and connecting the sensor, ingress protection of the enclosure must be at least IP65.
- Perform the following to achieve the degree of protection IP66/67 or IP66/68:
- Screw the cover tight.
- Mount the cable entry correctly.
- Use a process connection seal that meets the materials compatibility and temperature requirements.
- When connecting the cables, ensure there is adequate strain relief at place of installation.
- Protect the connecting cable between the separate enclosure and the level sensor from tension and friction (e.g. due to electrostatic charge from medium flow).
- Observe the maximum process conditions according to the manufacturer's Operating Instructions.
- At high medium temperatures, note flange pressure load capacity as a factor of temperature.
- Max. heat-up of device surface in Zone 20 under fault conditions: $\leq 10 \mathrm{~K}$ (measured with deposited material with a layer >200 mm in thickness).
- Max. heat-up of device surface in Zone 21 or Zone 22 under fault conditions: $\leq 23 \mathrm{~K}$.
- Install the device to exclude any mechanical damage or friction during the application. Pay particular attention to flow conditions and tank fittings.
- Support extension tube of the device if a dynamic load is expected.
- Only use certified cable entries suitable for the application. Observe national regulations and standards.
- When operating the transmitter enclosure at an ambient temperature under $-20^{\circ} \mathrm{C}$, use appropriate cables and cable entries permitted for this application.
- Seal unused entry glands with approved sealing plugs that correspond to the type of protection. The plastic transport sealing plug does not meet this requirement and must therefore be replaced during installation.
- Continuous service temperature of the connecting cable: $-50^{\circ} \mathrm{C}$ to \geq $+93^{\circ} \mathrm{C}$; in accordance with the range of service temperature taking into account additional influences of the process conditions ($\mathrm{T}_{\mathrm{a}, \min }$), $\left(\mathrm{T}_{\mathrm{a}, \max }+23 \mathrm{~K}\right)$.
- Before operation:
- Screw in the cover all the way.
- Tighten the securing clamp on the cover.
- In potentially explosive atmospheres:
- Do not disconnect the electrical connection of the power supply circuit when energized.
- Do not open the connection compartment cover and the electronics compartment cover when energized.

Accessory high pressure sliding sleeve

The high pressure sliding sleeve can be used for a continuous setting of the switch point and is suited for zone separation if mounted properly (see Operating Instructions).

Potential equalization

Integrate the device into the local potential equalization.

Temperature tables

1. Basic specification, Position $8=3,7: \mathrm{T}_{\mathrm{a}}$ restriction to $-40^{\circ} \mathrm{C}$

Compact version
Basic specification, Position $7=A$

Device type	Basic specification, Position 11	Permissible process temperature T_{p} FTM50 FTM51	Maximum surface temperature		Permissible ambient temperature T_{a} Enclosure
			Fork Zone 20	Enclosure Zone 21	
FTM50 FTM51	D, E	-50 to $+150^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 160{ }^{\circ} \mathrm{C}$	T $160{ }^{\circ} \mathrm{C}$	-50 to $+60^{\circ} \mathrm{C}$
FTM50 FTM51	F, H	-50 to $+280^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 290{ }^{\circ} \mathrm{C}$	T290 ${ }^{\circ} \mathrm{C}$	-50 to $+60^{\circ} \mathrm{C}$
FTM50 FTM51	J, K	-50 to $+230^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 240{ }^{\circ} \mathrm{C}$	T240 ${ }^{\circ} \mathrm{C}$	-50 to $+60^{\circ} \mathrm{C}$
FTM50 FTM51	Y	-50 to $+300^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 310{ }^{\circ} \mathrm{C}$	T310 ${ }^{\circ} \mathrm{C}$	-50 to $+60^{\circ} \mathrm{C}$
FTM52		-40 to $+80^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 90^{\circ} \mathrm{C}$	T83 ${ }^{\circ} \mathrm{C}$	-40 to $+60^{\circ} \mathrm{C}$

Version with separate enclosure
Basic specification, Position $7=D, E, G, H$ (Sensor)

Device type	Basic specification, Position 11	Permissible process temperature T_{p} Fork	Maximum surface temperature	rface Sensor enclosure Zone 20/21	Permissible ambient temperature T_{a} Sensor enclosure
FTM50 FTM51	D, E	-50 to $+150^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 160{ }^{\circ} \mathrm{C}$	T $160{ }^{\circ} \mathrm{C}$	-50 to $+80^{\circ} \mathrm{C}$
FTM50 FTM51	F, H	-50 to $+280^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 290{ }^{\circ} \mathrm{C}$	T290 ${ }^{\circ} \mathrm{C}$	-50 to $+80^{\circ} \mathrm{C}$
FTM50 FTM51	J, K	-50 to $+230^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 240{ }^{\circ} \mathrm{C}$	T240 ${ }^{\circ} \mathrm{C}$	-50 to $+80^{\circ} \mathrm{C}$
FTM50 FTM51	Y	-50 to $+300^{\circ} \mathrm{C}$	$\mathrm{T}_{200} 310{ }^{\circ} \mathrm{C}$	T310 ${ }^{\circ} \mathrm{C}$	-50 to $+80^{\circ} \mathrm{C}$
FTM52		-40 to $+80^{\circ} \mathrm{C}$	T $20090{ }^{\circ} \mathrm{C}$	T90 ${ }^{\circ} \mathrm{C}$	-40 to $+80^{\circ} \mathrm{C}$

Basic specification, Position $7=D, E, G, H$ (Enclosure)

Device type	Maximum surface temperature Electronics enclosure Zone 21	Permissible ambient temperature T_{a} Electronics enclosure
FTM50 FTM51 FTM52	$\mathrm{T} 83^{\circ} \mathrm{C}$	-50 to $+60^{\circ} \mathrm{C}$

Description notes

1st column: Device type
2nd column: Position 7 or 11
3rd column: Relay current
Column P1 to P5: Position (temperature value) on the axes of the derating

- T_{a} : Ambient temperature in ${ }^{\circ} \mathrm{C}$
- T_{p} : Process temperature in ${ }^{\circ} \mathrm{C}$

Basic specification, Position $8=H$

with Basic specification, Position $6=1$

with Basic specification, Position $6=2$

with Basic specification, Position $6=4$

				T_{a}			P3				P5	
FTM50 FTM51	$7=A$	2 A	-50	60	60	60	150	40	150	-50	-50	-50
		4 A	-50	50	60	50	150	30	150	-50	-50	-50
		6 A	-50	40	60	40	60	40	60	-50	-50	-50
FTM50 FTM51	$11=D, E$	2 A	-50	60	75	60	150	55	150	-50	-50	-50
		4 A	-50	50	80	50	150	45	150	-50	-50	-50
		6 A	-50	40	110	40	150	35	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	2 A	-50	60	75	60	230	50	230	-50	-50	-50
		4 A	-50	50	90	50	230	40	230	-50	-50	-50
		6 A	-50	40	125	40	230	35	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	2 A	-50	60	85	60	280	50	280	-50	-50	-50
		4 A	-50	50	105	50	280	40	280	-50	-50	-50
		6 A	-50	40	155	40	280	35	280	-50	-50	-50
FTM50 FTM51	$11=Y$	2 A	-50	60	85	60	300	50	300	-50	-50	-50
		4 A	-50	50	105	50	300	40	300	-50	-50	-50
		6 A	-50	40	155	40	300	35	300	-50	-50	-50
FTM52		2 A	-40	60	60	60	80	55	80	-40	-40	-40
		4 A	-40	50	60	50	80	45	80	-40	-40	-40
		6 A	-40	45	65	45	80	35	50	-40	-40	-40

with Basic specification, Position $6=5$

		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}			P4		P5	
FTM50 FTM51	$7=A$	-50	60	75	60	150	40	150	-50	-50	-50
FTM50 FTM51	$11=D, E$	-50	60	110	60	150	55	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	-50	60	125	60	230	55	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	-50	60	145	60	280	55	280	-50	-50	-50
FTM50 FTM51	$11=Y$	-50	60	145	60	300	55	300	-50	-50	-50
FTM52		-40	60	75	60	80	55	80	-40	-40	-40

Basic specification, Position $8=3,5,6$
with Basic specification, Position $6=1$

				T_{a}		T_{a}		T_{a}		T_{a}		
FTM50 FTM51	7 = A	180 mA	-50	60	60	60	150	25	150	-50	-50	-50
		350 mA	-50	50	55	50	85	40	85	-50	-50	-50
$\begin{aligned} & \text { FTM50 } \\ & \text { FTM51 } \end{aligned}$	$11=D, E$	180 mA	-50	60	70	60	150	50	150	-50	-50	-50
		350 mA	-50	50	75	50	150	40	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	180 mA	-50	60	75	60	230	50	230	-50	-50	-50
		350 mA	-50	50	85	50	230	40	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	180 mA	-50	60	80	60	280	50	280	-50	-50	-50
		350 mA	-50	50	95	50	280	40	280	-50	-50	-50
FTM50 FTM51	$11=Y$	180 mA	-50	60	80	60	300	50	300	-50	-50	-50
		350 mA	-50	50	95	50	300	40	300	-50	-50	-50
FTM52		180 mA	-40	60	60	60	80	50	80	-40	-40	-40
		350 mA	-40	50	55	50	80	40	80	-40	-40	-40

with Basic specification, Position $6=2$

		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}		T_{a}		T_{a}		T_{a}		
FTM50 FTM51	$7=A$	-50	60	70	60	150	30	150	-50	-50	-50
FTM50 FTM51	$11=D, E$	-50	60	115	60	150	55	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	-50	60	135	60	230	55	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	-50	60	155	60	280	50	280	-50	-50	-50
FTM50 FTM51	$11=Y$	-50	60	155	60	300	50	300	-50	-50	-50
FTM52		-40	60	70	60	80	55	80	-40	-40	-40

with Basic specification, Position $6=4$

				T_{a}			P3				P5	
FTM50 FTM51	$7=A$	2 A	-50	50	50	50	75	40	75	-50	-50	-50
		4 A	-50	45	55	45	65	40	65	-50	-50	-50
		6 A	-50	40	50	40	50	40	50	-50	-50	-50
FTM50 FTM51	$11=D, E$	2 A	-50	50	60	40	150	40	150	-50	-50	-50
		4 A	-50	45	90	45	150	40	150	-50	-50	-50
		6 A	-50	40	85	40	150	30	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	2 A	-50	50	65	50	230	40	230	-50	-50	-50
		4 A	-50	45	110	45	230	35	230	-50	-50	-50
		6 A	-50	40	105	40	230	30	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	2 A	-50	50	75	50	280	40	280	-50	-50	-50
		4 A	-50	45	140	45	280	35	280	-50	-50	-50
		6 A	-50	40	135	40	280	30	280	-50	-50	-50
FTM50 FTM51	$11=Y$	2 A	-50	50	75	50	300	40	300	-50	-50	-50
		4 A	-50	45	140	45	300	35	300	-50	-50	-50
		6 A	-50	40	135	40	300	30	300	-50	-50	-50
FTM52		2 A	-40	50	50	50	80	35	80	-40	-40	-40
		4 A	-40	45	50	45	80	35	80	-40	-40	-40
		6 A	-40	40	50	40	50	40	50	-40	-40	-40

with Basic specification, Position $6=5$

		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \text { P3 } \\ & T_{p} \end{aligned}$	T_{a}			P5	
FTM50 FTM51	$7=A$	-50	60	70	60	150	30	150	-50	-50	-50
FTM50 FTM51	$11=D, E$	-50	60	100	60	150	55	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	-50	60	115	60	230	50	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	-50	60	130	60	280	50	280	-50	-50	-50
FTM50 FTM51	$11=Y$	-50	60	130	60	300	50	300	-50	-50	-50
FTM52		-40	60	70	60	80	55	80	-40	-40	-40

$$
\text { Basic specification, Position } 8=7
$$

with Basic specification, Position $6=1$

				T_{a}	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}		T_{a}				
FTM50 FTM51	$7=A$	180 mA	-50	60	60	60	150	25	150	-50	-50	-50
		350 mA	-50	50	55	50	85	40	85	-50	-50	-50
FTM50 FTM51	$11=D, E$	180 mA	-50	60	75	60	150	50	150	-50	-50	-50
		350 mA	-50	50	75	50	150	40	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	180 mA	-50	60	75	60	230	50	230	-50	-50	-50
		350 mA	-50	50	85	50	230	40	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	180 mA	-50	60	80	60	280	50	280	-50	-50	-50
		350 mA	-50	50	95	50	280	40	280	-50	-50	-50
FTM50 FTM51	$11=Y$	180 mA	-50	60	80	60	300	50	300	-50	-50	-50
		350 mA	-50	50	95	50	300	40	300	-50	-50	-50
FTM52		180 mA	-40	60	60	60	80	50	80	-40	-40	-40
		350 mA	-40	50	55	50	80	40	80	-40	-40	-40

with Basic specification, Position $6=2$

		$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{~T}_{\mathrm{p}} \\ & \hline \end{aligned}$	T_{a}	$\begin{aligned} & \text { P3 } \\ & \mathrm{T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 4 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 5 \\ & \mathrm{~T}_{\mathrm{p}} \\ & \hline \end{aligned}$	T_{a}
FTM50 FTM51	$7=A$	-50	60	70	60	150	30	150	-50	-50	-50
FTM50 FTM51	$11=D, E$	-50	60	115	60	150	55	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	-50	60	135	60	230	55	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	-50	60	155	60	280	50	280	-50	-50	-50
FTM50 FTM51	$11=Y$	-50	60	155	60	300	50	300	-50	-50	-50
FTM52		-40	60	70	60	80	55	80	-40	-40	-40

with Basic specification, Position $6=4$

			$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	T_{a}	P2 T_{p}	T_{a}	$\begin{aligned} & \text { P3 } \\ & \mathrm{T}_{\mathrm{p}} \end{aligned}$	T_{a}	$\begin{aligned} & \mathrm{P} 4 \\ & \mathrm{~T}_{\mathrm{p}} \end{aligned}$	Ta	$\begin{aligned} & \text { P5 } \\ & \mathrm{T}_{\mathrm{p}} \end{aligned}$	T_{a}
FTM50 FTM51	$7=A$	2 A	-50	45	50	45	100	20	100	-50	-50	-50
		4 A	-50	35	35	35	70	20	70	-50	-50	-50
FTM50 FTM51	$11=D, E$	2 A	-50	45	50	45	150	35	150	-50	-50	-50
		4 A	-50	35	35	35	150	25	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	2 A	-50	45	50	45	230	35	230	-50	-50	-50
		4 A	-50	35	40	35	230	20	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	2 A	-50	45	50	45	280	35	280	-50	-50	-50
		4 A	-50	35	40	35	280	20	280	-50	-50	-50
FTM50 FTM51	$11=Y$	2 A	-50	45	50	45	300	35	300	-50	-50	-50
		4 A	-50	35	40	35	300	20	300	-50	-50	-50
FTM52		2 A	-40	45	50	45	80	35	80	-40	-40	-40
		4 A	-40	35	35	35	70	20	70	-40	-40	-40

with Basic specification, Position $6=5$

		P1		P2		P3		P4		P5	
		T_{p}	T_{a}								
FTM50 FTM51	$7=A$	-50	60	70	60	150	30	150	-50	-50	-50
FTM50 FTM51	$11=D, E$	-50	60	100	60	150	55	150	-50	-50	-50
FTM50 FTM51	$11=J, K$	-50	60	115	60	230	50	230	-50	-50	-50
FTM50 FTM51	$11=F, H$	-50	60	130	60	280	50	280	-50	-50	-50
FTM50 FTM51	$11=Y$	-50	60	130	60	300	50	300	-50	-50	-50
FTM52		-40	60	70	60	80	55	80	-40	-40	-40

Deposited material with a layer of 200 mm

Device type	Surface temperature T_{200}	Ambient temperature T_{a} (ambient): probe with Basic specification, Position $7=D, E, G, H$
FTM50 FTM51	T $130^{\circ} \mathrm{C}$	$\max .80^{\circ} \mathrm{C}$
FTM52		$\max .80^{\circ} \mathrm{C}$

Device type	Basic specification, Position	P1		P2		P3		P4		P5	
		T_{p}	T_{a}	T_{p}	T_{a}	T_{p}	T_{a}	T_{p}	Ta	T_{p}	T_{a}
$\begin{aligned} & \text { FTM50 } \\ & \text { FTM51 } \end{aligned}$	$7=A$	-50	40	40	40	40	40	40	-50	-50	-50
$\begin{aligned} & \text { FTM50 } \\ & \text { FTM51 } \end{aligned}$	$11=D, E, J, K, F, H, Y$	-50	40	40	40	40	40	40	-50	-50	-50
FTM52		-40	40	40	40	40	40	40	-40	-40	-40

Connection data

Basic specification, Position 6	Power supply	Output
1	19 to $253 \mathrm{~V}_{\mathrm{AC}}, 50 / 60 \mathrm{~Hz}$, max. 1.0 W $\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}_{\mathrm{AC}}$	max. 350 mA
2	10 to $55 \mathrm{~V}_{\mathrm{DC}}$, max. 0.86 W $\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}_{\mathrm{AC}}$	PNP transistor, max. 350 mA
4	19 to $55 \mathrm{~V}_{\mathrm{DC}}$, max. 1.5 W 19 to $253 \mathrm{~V}_{\mathrm{AC}}, 50 / 60 \mathrm{~Hz}$, max. 1.5 W $\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}_{\mathrm{AC}}$	2 potential free change-over contacts, $253 \mathrm{~V}, 4 \mathrm{AC}$ $1500 \mathrm{VA} / \cos \varphi=1 ; 750 \mathrm{VA}$ $\cos \varphi>0.7$ $30 \mathrm{~V}, 4 \mathrm{DC}, 125 \mathrm{~V} \mathrm{DC}, 0.2 \mathrm{~A}$
5	11 to $35 \mathrm{~V}_{\mathrm{DC}}, 8 / 16 \mathrm{~mA}$, max. 0.6 W $\mathrm{U}_{\mathrm{m}}=253 \mathrm{~V}_{\mathrm{AC}}$	$<3.6 \mathrm{~mA} / 8 \mathrm{~mA} / 16 \mathrm{~mA}$

