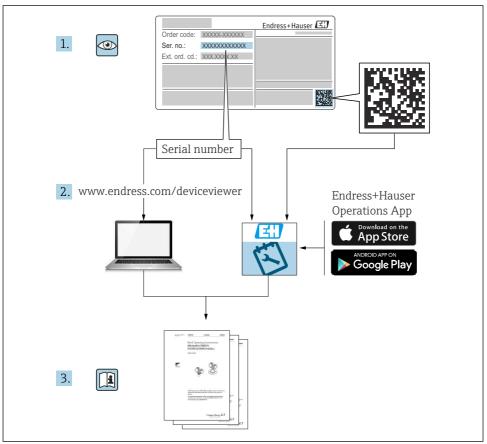

Resumo das instruções de operação **Micropilot FMR53, FMR54 HART**

Radar de onda livre

Esse é o resumo das instruções de operação; mas ele não substitui as Instruções de operação relativas ao equipamento.


As informações detalhadas sobre o equipamento podem ser encontradas nas Instruções de operação em outras documentações:

Disponível para todos as versões de equipamento através de:

- Internet: www.endress.com/deviceviewer
- Smart phone/tablet: *Endress+Hauser Operations App*

Documentação associada 1

A0023555

2 Sobre esse documento

Símbolos usados 2.1

2.1.1 Símbolos de segurança

A PERIGO

Este símbolo alerta sobre uma situação perigosa. Se esta situação não for evitada, poderão ocorrer ferimentos sérios ou fatais.

▲ ATENÇÃO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em sérios danos ou até morte.

▲ CUIDADO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em danos pequenos ou médios.

AVISO

Este símbolo contém informações sobre procedimentos e outros dados que não resultam em danos pessoais.

2.1.2 Símbolos elétricos

Aterramento de proteção (PE)

Terminais de terra devem ser conectados ao terra antes de estabelecer quaisquer outras conexões.

Os terminais de terra são localizados dentro e fora do equipamento.

- Terminal interno de terra: conecta o aterramento de proteção à rede elétrica.
- Terminal de terra externo; conecta o equipamento ao sistema de aterramento da planta.

2.1.3 Símbolos da ferramenta

Símbolos da ferramenta

Chave de fenda plana

Chave Allen

Chave de boca

2.1.4 Símbolos para certos tipos de informações e gráficos

✓ Permitido

Procedimentos, processos ou ações que são permitidos

Proibido

Procedimentos, processos ou ações que são proibidos

Dica

Indica informação adicional

Consulte a documentação

Referência ao gráfico

Aviso ou etapa individual a ser observada

1., 2., 3.

Série de etapas

Resultado de uma etapa

Inspeção visual

1, 2, 3, ...

Números de itens

A, B, C, ...

Visualizações

3 Instruções de segurança básicas

3.1 Especificações para o pessoal

O pessoal deve atender às sequintes especificações para realizar as tarefas:

- Especialistas treinados e qualificados devem ter qualificação relevante para esta função e tarefa específica.
- ► Funcionários devem estar autorizados pelo dono/operador da planta.
- ▶ Devem estar familiarizados com as regulamentações nacionais.
- ► Antes de iniciar o trabalho, funcionários devem ler e entender as instruções no manual e documentação complementar, bem como os certificados (dependendo da aplicação).
- ▶ Devem seguir as instruções e estar em conformidade com as políticas gerais.

3.2 Uso indicado

Aplicação e meio

O medidor descrito nessas instruções de operação destina-se à medição contínua e sem contato do nível em medição em líquidos, pastas e lodo. Em razão de sua frequência em operação de aprox. 6 GHz, uma alimentação pulsada radiada máxima de 12.03 mW e uma saída de potência média de 0.024 mW, a operação é completamente inofensiva para seres humanos ou animais.

Se os valores limites especificados em Dados técnicos e as condições listadas nas instruções e na documentação adicional forem observados, o medidor pode ser usado para as seguintes medicões:

- ▶ Variáveis de processo medidas: nível, distância, intensidade do sinal
- ► Variáveis de processo calculadas: volume ou massa em recipientes de formato irregular; taxa de vazão através da medição de barragens ou calhas (calculada a partir do nível pela funcionalidade de linearização)

Para garantir que o medidor permaneça em condições adequadas durante o tempo de operação:

► Use o medidor apenas para meios em que as partes molhadas do processo sejam adequadamente resistentes.

Observe os valores limites em "Dados técnicos".

Uso incorreto

O fabricante não é responsável por danos causados pelo uso incorreto ou diferente do pretendido.

Esclarecimento para casos fronteiriços:

Para fluidos especiais e fluidos de limpeza, a Endress+Hauser terá prazer em ajudar a verificar a resistência à corrosão dos materiais molhados pelo fluido, mas não se responsabiliza nem oferece garantias para eles.

Risco residual

Devido à transferência de calor do processo assim como perda de energia nos componentes eletrônicos, a temperatura do invólucro e das peças contidas nele (ex. módulo do display, módulo principal e módulo eletrônico de E/S) pode subir até 80 $^{\circ}$ C (176 $^{\circ}$ F). Quando em operação, o sensor pode alcançar uma temperatura próxima à temperatura média.

Perigo de queimaduras do contato com as superfícies!

► Em casos de temperaturas de fluido elevadas, certifique-se de que haja proteção contra contato para evitar queimaduras.

3.3 Segurança no local de trabalho

Ao trabalhar no e com o equipamento:

▶ Use o equipamento de proteção individual de acordo com as regulamentações nacionais.

3.4 Segurança operacional

Risco de ferimentos!

- ▶ Opere o equipamento apenas se estiver em condição técnica adequada, sem erros e falhas.
- ▶ O operador é responsável por garantir a operação do equipamento livre de problema .

Área classificada

Para eliminar o perigo a pessoas ou às instalações quando o equipamento é usado na área classificada (por ex. proteção contra explosões):

- Verifique na etiqueta de identificação se o equipamento solicitado pode ser usado como indicado na área classificada.
- Observe as especificações na documentação adicional separada que é parte integral destas Instruções.

3.5 Segurança do produto

Esse medidor foi projetado de acordo com boas práticas de engenharia para atender as especificações de segurança de última geração, foi testado e deixou a fábrica em uma condição segura para operação. Ele atende os padrões de segurança gerais e as especificações legais.

AVISO

Perda de grau de proteção ao abrir o equipamento em ambientes úmidos

Se o equipamento estiver aberto em um ambiente úmido, o grau de proteção indicado na etiqueta de identificação não é mais válido. Isso também pode prejudicar a operação segura do equipamento.

3.5.1 Identificação CE

O sistema de medição atende aos requisitos legais das diretrizes EU aplicáveis. Elas estão listadas na Declaração de Conformidade EU correspondente junto com as normas aplicadas.

O fabricante confirma que o equipamento foi testado com sucesso com base na identificação CE fixada no produto.

3.5.2 Conformidade EAC

O sistema de medição atende aos requisitos legais das diretrizes EAC aplicáveis. Elas estão listadas na Declaração de Conformidade EAC correspondente junto com as normas aplicadas.

O fabricante confirma que o equipamento foi testado com sucesso com base na identificação EAC fixada no produto.

4 Recebimento e identificação do produto

4.1 Recebimento

Verifique o seguinte durante o recebimento:

- Os códigos de pedidos na nota de entrega e na etiqueta do produto são idênticos?
- As mercadorias estão em perfeito estado?
- Os dados na etiqueta de identificação correspondem às especificações do pedido na nota de entrega?
- O DVD está com a ferramenta de operação presente?
 Se exigido (consulte etiqueta de identificação): as instruções de segurança (XA) foram fornecidas?
- Se uma dessas condições não for atendida, entre em contato com seu escritório de vendas Endress+Hauser.

4.2 Armazenamento e transporte

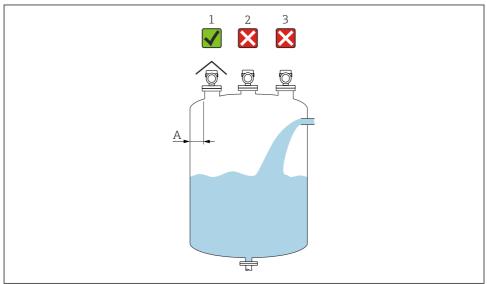
4.2.1 Condições de armazenamento

- Temperatura de armazenamento permitida: -40 para +80 °C (-40 para +176 °F)
- Use a embalagem original.

4.2.2 Transportando o produto para o ponto de medição

AVISO

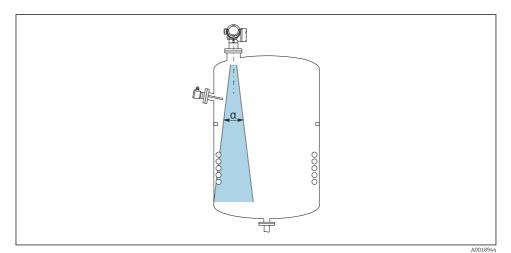
O invólucro ou a antena piramidal podem ser danificados ou serem quebrados. Risco de ferimentos!


- ► Transporte o medidor até o ponto de medição em sua embalagem original ou na conexão de processo.
- ► Fixe sempre o equipamento de elevação (eslingas, olhais etc.) à conexão de processo e nunca ao invólucro dos componentes eletrônicos ou na antena piramidal. Prestar atenção ao centro de gravidade do equipamento para que ele não se incline ou escorregue involuntariamente.
- ► Siga as instruções de segurança e as condições de transporte para equipamentos acima de 18kg (39,6 lbs) (IEC61010).

A0016875

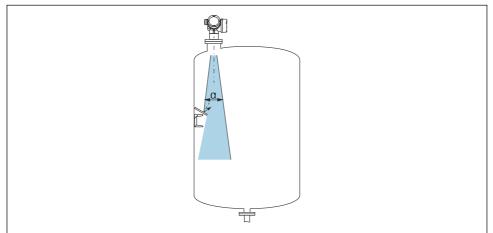
5 Instalação

5.1 Local de instalação



A0016882

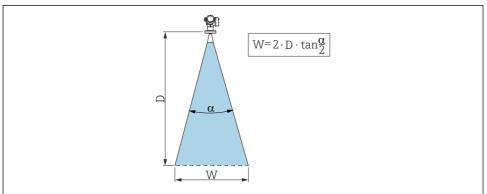
- A Distância recomendada da parede à borda externa do injetor: ~ 1/6 do diâmetro do recipiente. Entretanto, o equipamento não deve, sob qualquer circunstância, ser instalado a menos de 15 cm (5.91 in) da parede do tanque.
- 1 Uso de uma tampa de proteção contra intempérie; proteção contra luz solar direta ou chuva
- 2 Instalação no centro, interferência pode causar perda de sinal
- 3 Não instale acima da cortina de abastecimento


5.2 Orientação

5.3 Conexões internas do recipiente

Evite qualquer instalação de acessórios internos (chave de fim de curso, sensores de temperatura, amarras, anéis de vácuo, bobinas de aquecimento, chicanas etc.) dentro do feixe de sinal. Leve em consideração o ângulo do feixe.

5.4 Evite ecos de interferência



A0016890

As placas do orifício de metal, instaladas em um ângulo para espalhar os sinais de radar, ajudam a evitar ecos de interferência.

5.5 Ângulo do feixe

O ângulo de feixe é definido como o ângulo α no qual a densidade de energia das ondas de radar alcança metade do valor da densidade máxima de energia (largura 3dB). As microondas também são emitidas fora do feixe do sinal e podem ser refletidas para fora das instalações de interferência.

A0016891

 \blacksquare 1 Relação entre o ângulo do feixe α , a distância D e o diâmetro da largura do feixe W

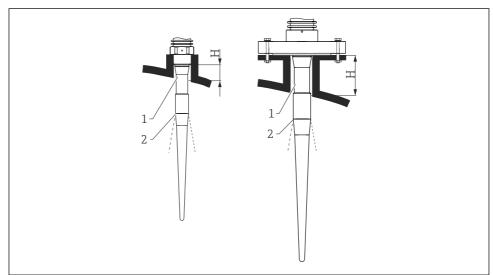
lacksquare O diâmetro da largura do feixe f W depende do ângulo de feixe f lpha e da distância f D.

FMR53			
Ângulo do feixeα	23*		
Distância (D)	Diâmetro do feixe W		
3 m (9.8 ft)	1.22 m (4 ft)		
6 m (20 ft)	2.44 m (8 ft)		
9 m (30 ft)	3.66 m (12 ft)		
12 m (39 ft)	4.88 m (16 ft)		
15 m (49 ft)	6.1 m (20 ft)		
20 m (66 ft)	8.14 m (27 ft)		

FMR54 - antena piramidal						
tamanho da antena	150 mm (6 in)	150 mm (6 in) 200 mm (8 in) 250 mm (10 in)				
Ângulo do feixeα	23°	19°	15°			
Distância (D)	Diâmetro do feixe W					
3 m (9.8 ft)	1.22 m (4 ft)	1 m (3.3 ft)	0.79 m (2.6 ft)			
6 m (20 ft)	2.44 m (8 ft)	2.01 m (6.6 ft)	1.58 m (5.2 ft)			
9 m (30 ft)	3.66 m (12 ft)	3.01 m (9.9 ft)	2.37 m (7.8 ft)			
12 m (39 ft)	4.88 m (16 ft)	4.02 m (13 ft)	3.16 m (10 ft)			
15 m (49 ft)	6.1 m (20 ft)	5.02 m (16 ft)	3.95 m (13 ft)			
20 m (66 ft)	8.14 m (27 ft)	6.69 m (22 ft)	5.27 m (17 ft)			

5.6 Instalação de espaço livre no recipiente

5.6.1 Antena de haste (FMR53)


Alinhamento

- Alinhe a antena perpendicular em relação à superfície do produto.
- Uma marcação é fornecida na flange (em um ponto entre os buracos da flange), ou no prensa-cabos para auxiliar o alinhamento. Esta marcação deve ser alinhada o melhor possível em direção à parede do tanque.

Dependendo da versão do equipamento, a marcação pode ser um círculo ou duas linhas paralelas.

Informações relativas aos bocais

A0016821

- 2 Altura do bocal para antena de haste (FMR53)
- 1 Comprimento inativo da antena
- 2 O feixe sai deste ponto

Comprimento da antena	390 mm (15.4 in)	540 mm (21.3 in)
Altura do bocal	< 100 mm (3.94 in)	< 250 mm (9.84 in)

- 📭 A parte inativa (1) da antena de haste deve se projetar para fora do bocal.
- Para flanges com revestimento de PTFE: Observe as instruções de montagem das flanges revestidas
 - Geralmente, o revestimento de PTFE da flange também funciona como vedação entre o bocal e a flange do equipamento

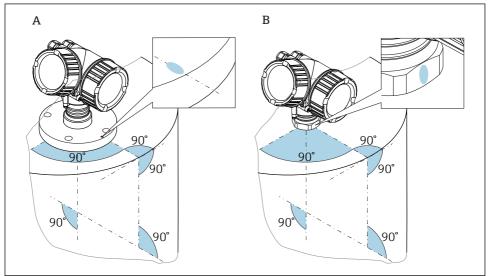
Informações relativas às conexões de rosca

- Aperto com a porca hexagonal somente.
- Ferramenta: chave de boca55 mm
- Torque máximo permitido:
 - Rosca, PVDF: 35 Nm (26 lbf ft)
 - Rosca 316L: 60 Nm (44 lbf ft)

Montagem das flanges revestidas

Observe o sequinte para flanges revestidas:

- Use o mesmo número de parafusos de flange que o número de furação de flange fornecidos.
- Aperte os parafusos com o torque exigido (consulte a Tabela).
- Reaperte os parafusos depois de 24 horas ou depois do primeiro ciclo de temperatura.
- Dependendo da pressão do processo e da temperatura do processo, verifique e reaperte os parafusos em intervalos regulares.

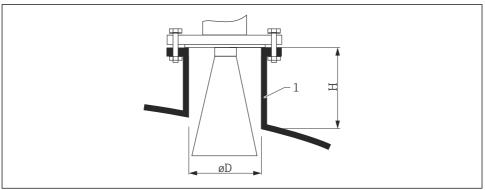

Geralmente, o revestimento de PTFE do flange também funciona como vedação entre o bocal e o flange do equipamento.

Tamanho da flange	Número de parafusos	Torque de aperto
PT		
DN50 PN10/16	4	45 para 65 Nm
DN50 PN25/40	4	45 para 65 Nm
DN80 PN10/16	8	40 para 55 Nm
DN80 PN25/40	8	40 para 55 Nm
DN100 PN10/16	8	40 para 60 Nm
DN100 PN25/40	8	55 para 80 Nm
DN150 PN10/16	8	75 para 115 Nm
ASME		
NPS 2" Cl.150	4	40 para 55 Nm
NPS 2" Cl.300	8	20 para 30 Nm
NPS 3" Cl.150	4	65 para 95 Nm
NPS 3" Cl.300	8	40 para 55 Nm
NPS 4" Cl.150	8	45 para 70 Nm
NPS 4" Cl.300	8	55 para 80 Nm
NPS 6" Cl.150	8	85 para 125 Nm
NPS 6" Cl.300	12	60 para 90 Nm
NPS 8" Cl.150	8	115 para 170 Nm
NPS 8" Cl.300	12	90 para 135 Nm
JIS		,
10K 50A	4	40 para 60 Nm
10K 80A	8	25 para 35 Nm
10K 100A	8	35 para 55 Nm
10K 150A	8	75 para 115 Nm

5.6.2 Antena piramidal (FMR54)

Alinhamento

- Alinhe a antena perpendicular em relação à superfície do produto.
- Uma marcação é fornecida no flange (em um ponto entre os furos do flange) para auxiliar o alinhamento. Esta marcação deve ser alinhada o melhor possível em direção à parede do tanque.



A0018974

Dependendo da versão do equipamento, a marcação pode ser um círculo ou duas linhas paralelas.

Informações relativas aos bocais

A antena piramidal deve projetar-se para fora do bocal; se necessário, selecione a versão com a extensão de antena 100 para 400 mm (4 para 16 in) (acessório).

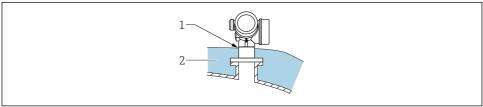
A0016822

■ 3 Altura e diâmetro do bocal para a antena piramidal

Montagem do bocal

Antena	Ø D	Altura máxima do bocal $H_{m\!d\!x}$ (Antena sem extensão da antena)
150 mm/6"	146 mm (5.75 in)	185 mm (7.28 in)
200 mm/8"	191 mm (7.52 in)	268 mm (10.6 in)
250 mm/10"	241 mm (9.49 in)	360 mm (14.2 in)

Versões da antena < 150 mm/6" não são adequadas para instalação livre no tanque. Eles somente devem ser usados em bypasses ou tubos de calma.

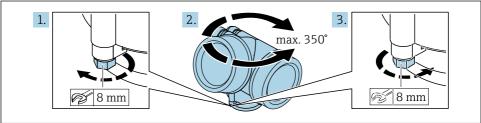

Medição pela parte externa através de paredes de plástico

- Constante dielétrica do meio: $\varepsilon_r > 10$
- Se possível, use uma antena 250 mm (10 in).
- A distância do topo da antena até o tanque deve ser de aprox. 100 mm (4 in).
- Se possível, evite posições de instalação nas quais possa se formar condensação ou acúmulo entre a antena e o recipiente.
- No caso de instalações ao ar livre, certifique-se que a área entre a antena e o tanque está protegida contra intempéries.
- Não instale acessórios ou conexões entre a antena e o tanque que possam refletir o sinal.

Espessura adequada do teto do tanque:

Material penetrado	PE	PTFE	PP	Acrílico
$\epsilon_{\rm r}$	2.3	2.1	2.3	3.1
Espessura ideal	16 mm (0.65 in)	17 mm (0.68 in)	16 mm (0.65 in)	14 mm (0.56 in)

5.7 Contêiner com isolamento térmico

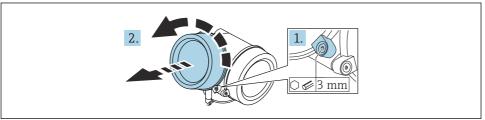


A0032207

Caso as temperaturas do processo sejam muito altas, o equipamento deve ser colocado no sistema de isolamento normal do contêiner (2) para evitar o aquecimento dos componentes eletrônicos como resultado de uma radiação ou propagação de calor. O isolamento não deve ser superior ao do pescoço do equipamento (1).

5.8 Giro do invólucro do transmissor

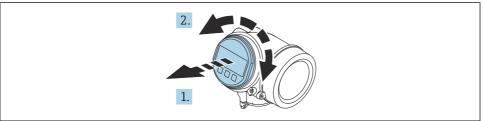
Para proporcionar acesso mais fácil ao compartimento de conexão ou ao módulo do display, o invólucro do transmissor pode ser virado:



A0032242

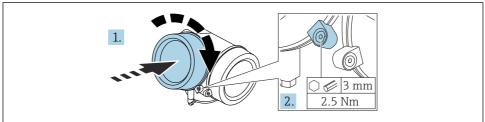
- 1. Solte o parafuso de segurança com uma chave de boca fixa.
- 2. Gire o invólucro na direção desejada.
- 3. Aperte os parafusos de fixação (1,5 Nm para invólucros plásticos; 2,5 Nm para invólucros de alumínio ou aço inoxidável).

5.9 Giro do display


5.9.1 Abertura da tampa

A0021430

- 1. Afrouxe o parafuso da braçadeira de fixação da tampa do compartimento de componentes eletrônicos usando uma chave Allen (3 mm) e gire a braçadeira 90 ° no sentido anti-horário.
- 2. Solte a tampa do compartimento de componentes eletrônicos e verifique a vedação da tampa; substitua-a se necessário.

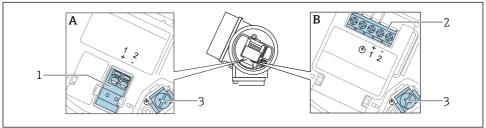

5.9.2 Giro do módulo do display

A0036401

- 1. Puxe o módulo do display para fora com um suave movimento de rotação.
- 2. Gire o módulo do display para a posição desejada: Máx. 8 × 45 ° em cada direção.
- 3. Coloque o cabo no vão entre o invólucro e o módulo dos componentes eletrônicos principal e conecte o módulo do display no compartimento dos componentes eletrônicos até encaixar.

5.9.3 Fechamento da tampa do compartimento dos componentes eletrônicos

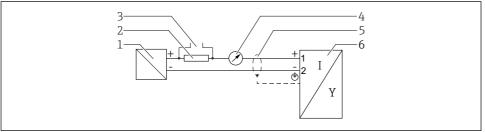
A0021451


- 1. Aparafuse a tampa do compartimento dos componentes eletrônicos.
- 2. Gire a braçadeira de fixação 90 °no sentido horário e, usando uma chave Allen (3 mm), aperte o parafuso da braçadeira de fixação na tampa do compartimento de componentes eletrônicos com 2.5 Nm.

6 Conexão elétrica

6.1 Requisitos de conexão

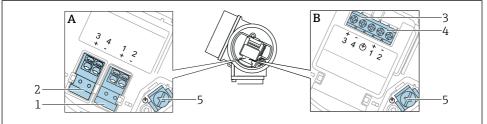
6.1.1 Esquema de ligação elétrica


Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART

A0036498

- 🛮 4 Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART
- A Sem proteção contra sobretensão integrada
- B Com proteção contra sobretensão integrada
- 1 Conexão 4 para 20 mA, HART Passiva: terminais 1 e 2, sem proteção contra sobretensão integrada
- 2 Conexão 4 para 20 mA, HART Passiva: terminais 1 e 2, com proteção contra sobretensão integrada
- 3 Terminal para blindagem do cabo

Diagrama de bloco, 2 fios: 4 para 20 mA HART

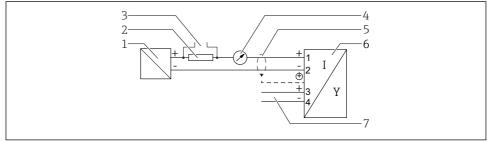


A0036499

■ 5 Diagrama de bloco, 2 fios: 4 para 20 mA HART

- 1 Barreira ativa para fonte de alimentação (ex. RN221N); observe a tensão do terminal
- 2 Resistor para comunicação HART (≥ 250 Ω); observe a carga máxima
- 3 Conexão para Commubox FXA195 ou FieldXpert SFX350/SFX370 (através de modem Bluetooth VIATOR)
- 4 Unidade de display analógico; observe a carga máxima
- 5 Blindagem do cabo; observe a especificação do cabo
- 6 Medidor

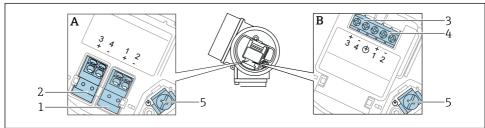
Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART, saída comutada



A0036500

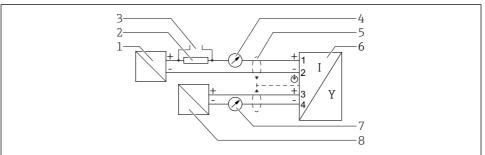
■ 6 Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART, saída comutada

- A Sem proteção contra sobretensão integrada
- B Com proteção contra sobretensão integrada
- 1 Conexão 4 para 20 mA, HART Passiva: terminais 1 e 2, sem proteção contra sobretensão integrada
- 2 Conexão, saída comutada (coletor aberto): terminais 3 e 4, sem proteção contra sobretensão integrada
- 3 Conexão , saída comutada (coletor aberto): terminais 3 e 4, com proteção contra sobretensão integrada
- 4 Conexão 4 para 20 mA, HART Passiva: terminais 1 e 2, com proteção contra sobretensão integrada
- 5 Terminal para blindagem do cabo


Diagrama de bloco, 2 fios: 4 para 20 mA HART, saída comutada

A0036501

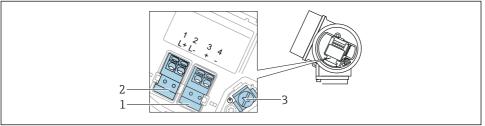
- 7 Diagrama de bloco, 2 fios: 4 para 20 mA HART, saída comutada
- 1 Barreira ativa para fonte de alimentação (ex. RN221N); observe a tensão do terminal
- 2 Resistor para comunicação HART (≥ 250 Ω); observe a carga máxima
- 3 Conexão para Commubox FXA195 ou FieldXpert SFX350/SFX370 (através de modem Bluetooth VIATOR)
- 4 Unidade de display analógico; observe a carga máxima
- 5 Blindagem do cabo; observe a especificação do cabo
- 6 Medidor
- 7 Saída comutada (coletor aberto)


Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART 4 para 20 mA

A0036500

- 8 Esquema de ligação elétrica, 2 fios: 4 para 20 mA HART 4 para 20 mA
- A Sem proteção contra sobretensão integrada
- B Com proteção contra sobretensão integrada
- 1 Conexão, saída em corrente 1, 4 para 20 mAHART Passiva: terminais 1 e 2, sem proteção contra sobretensão integrada
- 2 Conexão, saída em corrente 2, 4 para 20 mA: terminais 3 e 4, sem proteção contra sobretensão integrada
- 3 Conexão, saída em corrente 2, 4 para 20 mA: terminais 3 e 4, com proteção contra sobretensão intearada
- 4 Conexão, saída em corrente 1, 4 para 20 mAHART Passiva: terminais 1 e 2, com proteção contra sobretensão integrada
- 5 Terminal para blindagem do cabo

Diagrama de bloco, 2 fios: 4 para 20 mAHART 4 para 20 mA

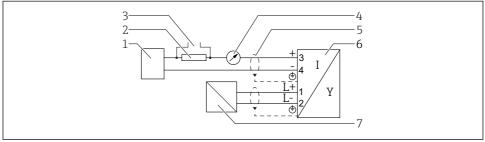


A0036502

■ 9 Diagrama de bloco, 2 fios: 4 para 20 mAHART 4 para 20 mA

- 1 Barreira ativa para fonte de alimentação (ex. RN221N1), saída em corrente 1; observe a tensão do terminal
- 2 Resistor para comunicação HART (≥ 250 Ω); observe a carga máxima
- 3 Conexão para Commubox FXA195 ou FieldXpert SFX350/SFX370 (através de modem Bluetooth VIATOR)
- 4 Unidade de display analógico; observe a carga máxima
- 5 Blindagem do cabo; observe a especificação do cabo
- 6 Medidor
- 7 Unidade de display analógico; observe a carga máxima
- 8 Barreira ativa para fonte de alimentação (ex. RN221N), saída em corrente 2; observe a tensão do terminal

Esquema de ligação elétrica, 4 fios: 4 para 20 mA HART (10.4 para 48 V_{DC})

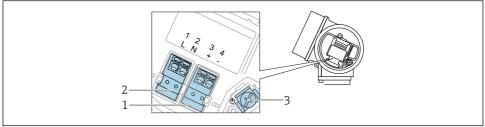


A0036516

 \blacksquare 10 Esquema de ligação elétrica, 4 fios: 4 para 20 mA HART (10.4 para 48 V_{DC})

- 1 Conexão 4 para 20 mA HART (ativo): terminais 3 e 4
- 2 Conexão, tensão de alimentação: terminais 1 e 2
- 3 Terminal para blindagem do cabo

Diagrama de bloco, 4 fios: 4 para 20 mA HART (10.4 para 48 V_{DC})



Δ0036526

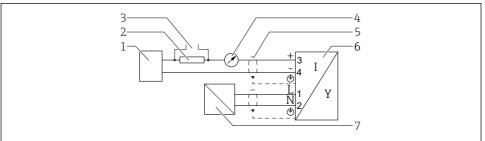
■ 11 Diagrama de bloco, 4 fios: 4 para 20 mA HART (10.4 para 48 V_{DC})

- 1 Unidade de avaliação, ex. CLP
- 2 Resistor para comunicação HART (≥ 250 Ω); observe a carga máxima
- 3 Conexão para Commubox FXA195 ou FieldXpert SFX350/SFX370 (através de modem Bluetooth VIATOR)
- 4 Unidade de display analógico; observe a carga máxima
- 5 Blindagem do cabo; observe a especificação do cabo
- 6 Medidor
- 7 Fonte de alimentação; observe a tensão do terminal, observe a especificação do cabo

Esquema de ligação elétrica, 4 fios: 4 para 20 mA HART (90 para 253 V_{AC})

Δ0036519

■ 12 Esquema de ligação elétrica, 4 fios: 4 para 20 mAHART (90 para 253 V_{AC})

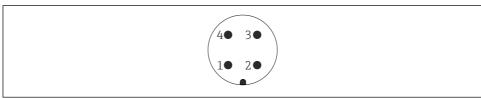

- 1 Conexão 4 para 20 mA HART (ativo): terminais 3 e 4
- 2 Conexão, tensão de alimentação: terminais 1 e 2
- 3 Terminal para blindagem do cabo

A CUIDADO

Para garantir a segurança elétrica:

- ▶ Não desconecte a conexão de aterramento de proteção.
- ► Desconecte o equipamento da tensão de alimentação antes de desconectar o aterramento de proteção.
- Conecte o aterramento de proteção no terminal de aterramento interno (3) antes de conectar a tensão de alimentação. Se necessário, conecte a linha de correspondência de potencial ao terminal de aterramento externo.
- A fim de garantir a compatibilidade eletromagnética (EMC): **não** aterre o equipamento exclusivamente através do condutor do aterramento de proteção do cabo de alimentação. Em vez disso, o aterramento funcional deve também ser conectado à conexão de processo (flange ou conexão com rosca) ou ao Terminal de aterramento externo.
- Deve ser instalada um interruptor de alimentação de fácil acesso próximo ao equipamento. O interruptor de alimentação deve ser marcado como um desconector para o equipamento (IEC/EN61010).

Diagrama de bloco, 4 fios: 4 para 20 mA HART (90 para 253 V_{AC})


A0036527

\blacksquare 13 Diagrama de bloco, 4 fios: 4 para 20 mA HART (90 para 253 V_{AC})

- 1 Unidade de avaliação, ex. CLP
- 2 Resistor para comunicação HART (≥ 250 Ω); observe a carga máxima
- 3 Conexão para Commubox FXA195 ou FieldXpert SFX350/SFX370 (através de modem Bluetooth VIATOR)
- 4 Unidade de display analógico; observe a carga máxima
- 5 Blindagem do cabo; observe a especificação do cabo
- 6 Medidor
- 7 Fonte de alimentação; observe a tensão do terminal, observe a especificação do cabo

6.1.2 Conector do equipamento

No caso de versões de equipamento com um conector, o invólucro não precisa ser aberto para conexão do cabo de sinal.

A0011175

■ 14 Atribuição de pinos do conector M12

- 1 Sinal +
- 2 Não especificado
- 3 Sinal -
- 4 Aterramento

A0011176

■ 15 Atribuição de pinos do conector 7/8"

- 1 Sinal -
- 2 Sinal +
- 3 Não especificado
- 4 Blindagem

6.1.3 Tensão de alimentação

2 fios; 4-20mA HART, passivo

"Alimentação de energia; saída" ¹⁾	"Aprovação" 2)	Tensão do terminal U no equipamento	Carga máxima R, dependendo da tensão de alimentação \mathbf{U}_0 da unidade de alimentação
A: 2 fios; 4-20mA HART	Não-ExEx nAEx icCSA GP	10.4 para 35 V ^{3) 4) 5)}	R [Ω], 500
	Ex ia / IS	10.4 para 30 V ^{3) 4) 5)}	0 20 30 35 U ₀ [V] 10.4 21.4

"Alimentação de energia; saída" ¹⁾	"Aprovação" 2)	Tensão do terminal U no equipamento	Carga máxima R, dependendo da tensão de alimentação \mathbf{U}_0 da unidade de alimentação
	 Ex d(ia) / XP Ex ic(ia) Ex nA(ia) Ex ta / DIP 	13 para 35 V ^{5) 6)}	R [Ω] 500
	Ex ia + Ex d(ia) / IS + XP	13 para 30 V ^{5) 6)}	0 10 20 30 35 U ₀ [V]

- 1) Recurso 020 da estrutura do produto
- 2) Recurso 010 na estrutura do produto
- 3) Em temperaturas ambientes T_as -20 °C, uma tensão terminal ≥ U 15 V é necessária para iniciar o equipamento com uma corrente de fuga mínima (3,6 mA). A corrente de inicialização pode ser configurada. Se o equipamento for operado com uma corrente fixa I ≥ 5,5 mA (modo HART Multidrop), uma tensão U ≥ 10,4 V é suficiente em toda a faixa de temperatura ambiente.
- 4) Uma tensão U ≥ 12.5 V é necessária no modo de simulação de corrente.
- 5) Se o módulo Bluetooth for usado, a tensão de alimentação mínima aumenta em 3 V.
- 6) Em temperaturas ambientes T_a≤ -20 °C, uma tensão terminal ≥ U 16 V é necessária para iniciar o equipamento com uma corrente de fuga mínima (3,6 mA).

"Alimentação de energia; saída" ¹⁾	"Aprovação" 2)	Tensão do terminal U no equipamento	Carga máxima R, dependendo da tensão de alimentação \mathbf{U}_0 da unidade de alimentação
B: 2 fios; 4-20 mA HART, saída da seletora	 Não-Ex Ex nA Ex nA(ia) Ex ic Ex ic(ia) Ex d(ia) / XP Ex ta / DIP CSA GP 	13 para 35 V ^{3) 4)}	R [Ω] 500 10 20 30 35 U ₀ [V]
	Ex ia / ISEx ia + Exd(ia) / IS + XP	13 para 30 V ^{3) 4)}	10 20 30 35 U ₀ [V] 13 24

- 1) Recurso 020 da estrutura do produto
- 2) Recurso 010 na estrutura do produto
- 3) Em temperaturas ambientes $\hat{T}_a \le -30$ °C, uma tensão terminal $\ge U$ 16 V é necessária para iniciar o equipamento com uma corrente de fuga mínima (3,6 mA).
- 4) Ao usar o módulo Bluetooth, a fonte de alimentação mínima aumenta em 3 V.

"Alimentação de energia; saída" ¹⁾	"Aprovação" ²⁾	Tensão do terminal U no equipamento	Carga máxima R, dependendo da tensão de alimentação ${\rm U}_0$ da unidade de alimentação
C: 2 fios; 4-20mA HART, 4-20mA	todos	13 para 28 V ^{3) 4)}	R [Ω] 500 10 20 28 U ₀ [V] 13 24

- 1) Recurso 020 da estrutura do produto
- 2) Recurso 010 na estrutura de produto
- 3) Em temperaturas ambientes T_a s -30 °C, uma tensão terminal \geq U 16 V é necessária para iniciar o equipamento com uma corrente de fuga mínima (3,6 mA).
- 4) Ao usar o módulo Bluetooth, a fonte de alimentação mínima aumenta em 3 V.

Proteção integrada contra reversão de polaridade	Sim
Ondulação residual permitida com f = 0 a 100 Hz	$U_{SS} < 1 \text{ V}$
Ondulação residual permitida com f = 100 a 10000 Hz	U_{SS} < 10 mV

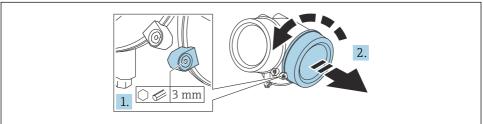
4 fios; 4-20mA HART, ativo

"Alimentação de energia; saída" 1)	Tensão do terminal U	Carga máxima R _{máx.}
K : 4 fios 90-253 VCA; 4-20mA HART	90 para 253 V _{AC} (50 para 60 Hz), categoria de sobretensão II	500 Ω
K: 4 fios 10,4-48 VCC; 4-20mA HART	10.4 para 48 V _{DC}	

1) Recurso 020 da estrutura do produto

6.2 Conexão do equipamento

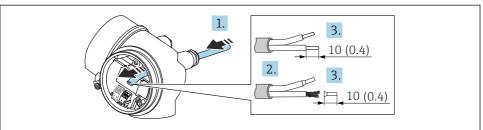
▲ ATENÇÃO


Perigo de explosão!

- ▶ Observar as normas nacionais aplicáveis.
- ▶ Estar em conformidade com as especificações nas instruções de segurança (XA).
- ▶ Use somente os prensa-cabos especificados.
- Certifique-se de que a fonte de alimentação corresponda à tensão indicada na etiqueta de identificação.
- ▶ Deslique a fonte de alimentação antes de conectar o dispositivo.
- Conecte a linha de correspondência de potencial ao terminal de aterramento externo antes de aplicar a fonte de alimentação.

Ferramentas e acessórios necessários:

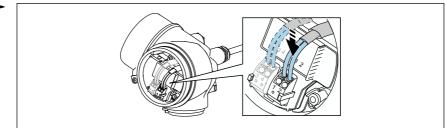
- Para equipamentos com uma trava para tampa: chave Allen AF3
- Desencapador de fio
- Ao usar cabos encalhados: uma arruela para cada fio a ser conectado.


6.2.1 Tampa de abertura

A0021490

- 1. Afrouxe o parafuso da braçadeira de fixação da tampa do compartimento de conexão usando uma chave Allen (3 mm) e gire a braçadeira 90 ° no sentido anti-horário.
- 2. Solte a tampa do compartimento de conexão e verifique a vedação da tampa; substitua-a se necessário.

6.2.2 Conexão

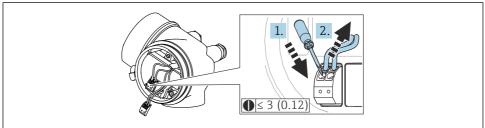


A0036418

■ 16 Unidade de engenharia: mm (pol.)

- 1. Empurre o cabo através da entrada para cabo. Para garantir a vedação estanque, não remova o anel de vedação da entrada de cabo.
- 2. Remova a bainha do cabo.
- 3. Descasque as extremidades do cabo 10 mm (0.4 in). No caso de cabos trançados, instale também as arruelas.
- 4. Aperte firmemente os prensa-cabos.

5. Conecte o cabo de acordo com o esquema de ligação elétrica.

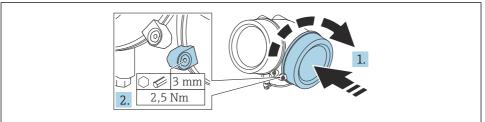


A003/682

6. Se utilizar cabos blindados: Conectar a blindagem do cabo ao terminal de terra.

6.2.3 Conectar terminais por força de mola

A conexão elétrica das versões de equipamento sem uma proteção contra sobretensão integrada é feita ao conectar os terminais de mola. Os condutores rígidos ou condutores flexíveis com arruelas podem ser inseridos diretamente no terminal sem usar a alavanca e criar um contato automaticamente.


A0013661

■ 17 Unidade de engenharia: mm (pol.)

Para retirar o cabo do terminal novamente:

- 1. Usando uma chave de fenda de lâmina plana ≤ 3 mm, pressione para baixo o slot entre os dois orifícios terminais
- 2. Simultaneamente, puxe a extremidade do cabo para fora do terminal.

6.2.4 Fechamento da tampa do compartimento de conexão

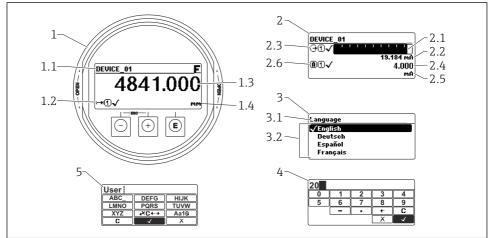
A0021/0

- 1. Aparafuse a tampa do compartimento de conexão.
- Gire a braçadeira de fixação 90 °no sentido horário e, usando uma chave Allen (3 mm), aperte o parafuso da braçadeira de fixação na tampa do compartimento de conexão com 2.5 Nm.

7 Opções de operação

O equipamento pode ser operado da seguinte forma:

- Operação através do menu de operação (display)
- DeviceCare / FieldCare, consulte as Instruções de operação
- SmartBlue (app), Bluetooth (opcional), consulte as Instruções de Operação


Δ0033202

■ 18 Link para download

8 Comissionamento

8.1 Estrutura e função do menu de operação

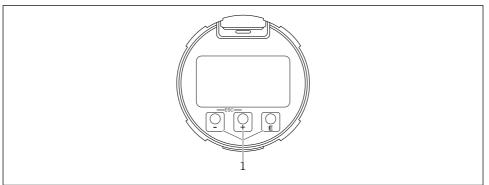
8.1.1 Display

A0012635

■ 19 Formato do display no display e módulo de operação

- 1 Display do valor medido (Tamanho máx. de 1 valor)
- 1.1 Cabeçalho contendo etiqueta e símbolo de erro (se houver um erro ativo)
- 1.2. Símbolos de valor medido
- 1.3 Valor medido
- 14 Unidade
- 2 Display do valor medido (gráfico de barra + 1 valor)
- 2.1 Gráfico de barra para valor medido 1
- 2.2 Valor medido 1 (incluindo unidade)
- 2.3 Símbolos de valor medido para o valor medido 1
- 2.4 Valor medido 2
- 2.5 Unidade do valor medido 2
- 2.6 Símbolos de valor medido para o valor medido 2
- 3 Visualização de um parâmetro (neste caso: parâmetro com lista de opções)
- 3.1 Cabeçalho contendo denominação do parâmetro e símbolo de erro (se houver um erro ativo)
- 3.2 Lista de opcões; ✓ identificação do valor de parâmetro atual.
- 4 Matriz de entrada para números
- 5 Matriz de entrada para caracteres alfanuméricos e especiais

8.1.2 Elementos de operação


Funções

- Display dos valores medidos, erros e mensagens informativas
- iluminação de fundo, que muda de verde para vermelha no caso de erro
- O equipamento pode ser removido para facilitar a operação

Os displays do equipamento estão disponíveis com a opção adicional da tecnologia sem fio Bluetooth®.

A iluminação de fundo é ligada ou desligada dependendo da fonte de alimentação e do consumo de corrente.

A0039284

■ 20 Módulo do display

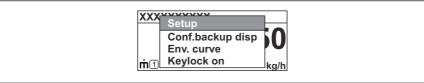
1 Teclas de operação

Atribuição de teclas

- Tecla ±
 - Navega para baixo em uma lista de opções
 - Edita os valores numéricos ou caracteres dentro de uma função
- Tecla 🖃
 - Navega para cima em uma lista de opções
 - Edita os valores numéricos ou caracteres dentro de uma função
- Tecla E
 - No display do valor medido: Pressione a tecla rapidamente para abrir o menu de operação.
 - Pressionar a tecla por 2 s abre o menu de contexto.
 - *No menu, submenu:* Pressionar a tecla rapidamente:
 - Abre o menu, submenu ou o parâmetro selecionado.
 - Pressionar a tecla por 2 s em um parâmetro:
 - Se houver, abre o texto de ajuda para a função do parâmetro.
 - *Em um texto ou editor numérico*: Pressionar a tecla rapidamente:
 - Abre o grupo selecionado.
 - Executa a ação selecionada.
 - Executa a ação selecionada.

- 🛨 tecla e 🖃 tecla (Função ESC pressione as teclas simultaneamente)
 - *No menu, submenu:* Pressionar a tecla rapidamente:
 - Sai do nível de menu atual e vai para o próximo nível mais alto.
 - Se o texto de ajuda estiver aberto, fecha o texto de ajuda do parâmetro.
 - Pressionar a tecla por 2 s retorna ao display do valor medido ("posição inicial").
 - Em um texto ou editor numérico: Fecha o texto ou editor numérico sem aplicar as alterações.
- tecla e 🗉 tecla (Pressione as teclas simultaneamente) Reduz o contraste (ajuste mais brilhante).
- tecla e 🗉 tecla (Pressione e mantenha pressionadas as teclas simultaneamente) Aumenta o contraste (ajuste mais escuro).

8.2 Abertura do menu de contexto


Usando o menu de contexto, o usuário pode acessar os seguintes menus rápida e diretamente a partir do display operacional:

- Configurações
- Conf. backup disp.
- Curva-envelope
- Bloqueio do teclado ligado

Acessar e fechar o menu de contexto

O usuário está no display operacional.

- 1. Pressione E por 2 s.
 - → O menu de contexto abre.

Δ0037872

- 2. Pressione \Box + \pm simultaneamente.
 - ► O menu de contexto é fechado e o display operacional aparece.

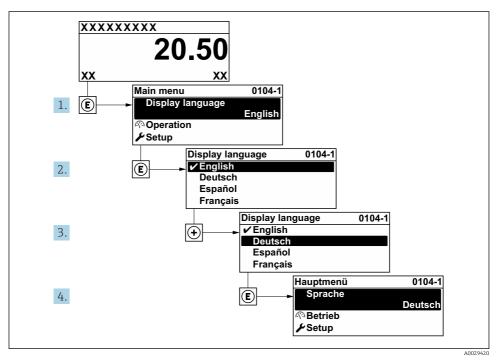
Acessando o menu por meio do menu de contexto

- 1. Abra o menu de contexto.
- 2. Pressione 🛨 para navegar até o menu desejado.
- 3. Pressione 🗉 para confirmar a seleção.
 - → O menu selecionado abre.

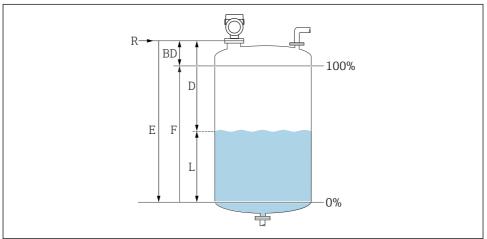
8.3 Menu de operação

Parâmetro/submenu	Significado	Descrição	
Language Configuração → Configuração avançada → Exibir → LanguageEspecialista → Sistema → Exibir → Language	Define o idioma de operação do display local		
Configuração	Uma vez que os valores tenham sido definidos para os parâmetros de configuração, a medição deve geralmente estar completamente configurada.		
Configuração→Mapeamento	Mapeamento dos ecos de interferência	BA01150F - Instruções	
Configuração→Configuração avançada	Contém parâmetros e submenus adicionais Para mais customizações de configuração da medição (adaptação para condições especiais de medição) Para conversão do valor medido (escala, linearização). Para dimensionar o sinal de saida.	de operação, FMR53/ FMR54, HART	
Diagnóstico	Contém os parâmetros mais importantes para diagnosticar as condições do equipamento		
Menu Especialista n o parâmetro Inserir código de acesso insira 0000 se nenhum código de acesso específico para o cliente foi definido.	Contém todos os parâmetros do equipamento (incluindo aqueles que já estão em um dos outros menus). Este menu é organizado de acordo com os blocos de funções do equipamento.	GP01014F - Descrição dos parâmetros do equipamento FMR5x, HART	

8.4 Desabilitação da proteção contra gravação


Se o equipamento for protegido contra gravação, ele deverá primeiro ser desbloqueado, consulte Instruções de operação.

BA01150F - Instruções de operação, FMR53/FMR54, HART

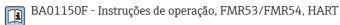

8.5 Configuração do idioma de operação

Ajuste de fábrica: Inglês ou o idioma local solicitado

 \blacksquare 21 Considerando-se o exemplo do display local

8.6 Ajustando a medição de nível

A0016933


■ 22 Parâmetros de configuração para as medições de nível em líquidos

- R Ponto de referência da medição
- D Distância
- L Nível
- E Calibração vazia (= ponto zero)
- F Calibração cheia (= alcance)
- 1. Configuração → Tag do equipamento
 - Insira um único nome para o ponto de medição para identificação rápida do dispositivo na planta.
- 2. Configuração → Unidade de distância
- 3. Configuração → Tipo bin
 - Otimiza os filtros de sinal para cada tipo de tanque. Nota: 'Teste de bancada' desativa todos os filtros. Essa opção deve ser usada exclusivamente para esse tipo de testes.
- 4. Configuração → Grupo do meio
 - Especifique o grupo do meio ("aquoso": DK>4 ou "outro": DK>1,9)

- Configuração → Calibração vazia
 - Especifique a distância vazia E (distância do ponto de referência R até a marca 0%).Configuração → Configuração avançada → Nível → Altura do tanque/siloIf the parametrized measuring range (Empty calibration) differs significantly from the tank or silo height, it is recommended to enter the tank or silo height in this parameter. Example: Continuous level monitoring in the upper third of a tank or silo. Note: For tanks with conical outlet, this parameter should not be changed as in this type of applications 'Empty calibration' is usually not << the tank or silo height.</p>
- 6. Configuração → Calibração cheia
 - → Distância entre o nível mínimo (0%) e o máximo (100%).
- 7. Configuração → Nível
 - → Nível medido atual.
- 8. Configuração → Distância
 - Distância entre o ponto de referência da medição e a superfície do meio cujo nível se deseja medir.
- 9. Configuração → Qualidade do sinal
 - Exibe a qualidade de sinal do eco de nível analisado.
- 10. Configuração → Mapeamento → Confirmar distância
 - Compara a distância exibida com o valor real para iniciar a gravação de um mapa do eco de interferência.
- 11. Configuração → Configuração avançada → Nível → Unidade do nível
 - Selecione a unidade de nível: %, m, mm, pés, pol. (ajuste de fábrica: %)
- O tempo de reação do equipamento é pré-configurado através do parâmetro **Tipo de tanque**. A configuração avançada pode ser feita no submenu **Configuração avançada**.

8.7 Aplicações específicas do usuário

Para configurar os parâmetros para aplicações específicas para o usuário, consulte:

Além disso, para o submenu ${\bf Especialista}$:

GP01014F - Descrição dos parâmetros do equipamento FMR5x, HART

www.addresses.endress.com