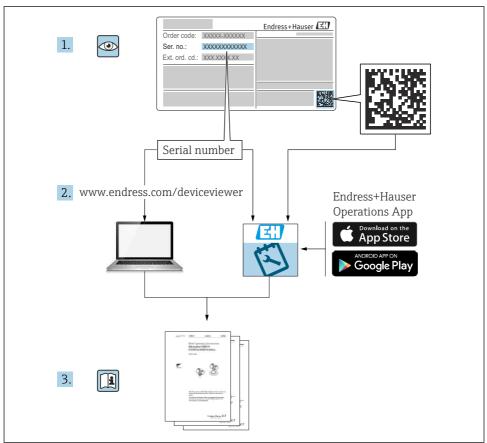
Краткое руководство по эксплуатации Micropilot FMR51, FMR52 FOUNDATION Fieldbus

Уровнемер микроволновой бесконтактный


Ниже приведено краткое руководство по эксплуатации; оно не заменяет руководство по эксплуатации, относящееся к прибору.

Детальная информация по прибору содержится в руководстве по эксплуатации и прочих документах: Версии, доступные для всех приборов:

- Интернет: www.endress.com/deviceviewer
- Смартфон/планшет: Endress+Hauser Operations App

1 Сопутствующая документация

A0023555

2 Информация о документе

2.1 Используемые символы

2.1.1 Символы техники безопасности

№ ОПАСНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ указывает на информацию о процедуре и на другие действия, которые не приводят к травмам.

2.1.2 Электротехнические символы

Защитное заземление (РЕ)

Клемма заземления должна быть подсоединена к заземлению перед выполнением других соединений.

Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

- Внутренняя клемма заземления: защитное заземление подключается к системе сетевого питания.
- Наружная клемма заземления служит для подключения прибора к системе заземления установки.

2.1.3 Символы, обозначающие инструменты

Символы, обозначающие инструменты

Отвертка с плоским наконечником

Шестигранный ключ

Рожковый гаечный ключ

2.1.4 Описание информационных символов и рисунков

✓ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Запрещено

Обозначает запрещенные процедуры, процессы или действия.

Рекомендация

Указывает на дополнительную информацию.

Ссылка на документацию

lacksquare

Ссылка на рисунок.

Указание, обязательное для соблюдения

1., 2., 3.

Серия шагов

Результат шага

Внешний осмотр

1, 2, 3, ...

Номера пунктов

A, B, C, ...

Виды

3 Основные указания по технике безопасности

3.1 Требования, предъявляемые к персоналу

Для выполнения порученных задач персонал должен соответствовать следующим требованиям.

- Обученные, квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения этой конкретной функции и задачи.
- ▶ Персонал должен получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Должен быть осведомлен о действующих нормах национального законодательства.
- ► Перед началом работы персонал должен внимательно ознакомиться с инструкциями, представленными в руководстве, с сопроводительной документацией, а также с сертификатами (в зависимости от условий применения оборудования).
- Персонал должен следовать инструкциям и соблюдать общие правила.

3.2 Использование по назначению

Условия применения и технологическая среда

Измерительный прибор, описанный в настоящем руководстве по эксплуатации, предназначен для непрерывного измерения уровня жидкостей, пастообразных материалов и ила бесконтактным способом. Рабочая частота прибора составляет примерно 26 ГГц, максимальная энергия излучаемого импульса – 5,7 мВт, а средняя выходная мощность – 0,015 мВт (для вариантов исполнения с улучшенной динамикой: максимальная мощность импульса –23,3 мВт, средняя выходная мощность – 0,076 мВт), поэтому прибор можно устанавливать вне закрытых металлических резервуаров (например, над бассейнами, открытыми каналами и грудами материалов). Работающий прибор полностью безопасен для людей и животных.

Принимая во внимание предельные значения, указанные в разделе «Технические характеристики», и условия, перечисленные в руководствах и сопроводительной

документации, измерительный прибор можно использовать только для следующих измерений.

- измеряемые переменные технологического процесса: уровень, расстояние, мощность сигнала;
- расчетные переменные технологического процесса: объем или масса в резервуарах произвольной формы; расход по данным измерения водослива или желоба (рассчитывается на основе уровня с помощью функции линеаризации).

Чтобы прибор оставался в надлежащем состоянии в течение всего срока эксплуатации, необходимо соблюдать следующие правила.

- ► Используйте измерительный прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью.
- Соблюдайте предельные значения, указанные в разделе «Технические характеристики».

Использование не по назначению

Изготовитель не несет ответственности за ущерб, причиненный неправильным использованием прибора или его использованием в целях, для которых он не предназначен.

Пояснение по поводу сложных ситуаций

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточные риски

Вследствие теплопередачи от технологического оборудования и потерь мощности в электронике температура корпуса электроники и узлов, содержащихся в нем (например, дисплея, главного модуля электроники и электронного модуля ввода/вывода) может подниматься до 80 °C (176 °F). Во время работы датчик может нагреваться до температуры, близкой к температуре технологической среды.

Опасность ожогов при соприкосновении с поверхностями!

 При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

3.3 Техника безопасности на рабочем месте

При работе на приборе и с прибором необходимо соблюдать следующие правила.

▶ Пользуйтесь необходимыми средствами индивидуальной защиты в соответствии с национальными правилами.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- ► Эксплуатируйте прибор только в том случае, если он находится в надлежащем техническом состоянии, а ошибки и неисправности отсутствуют.
- ▶ Ответственность за обеспечение бесперебойной работы прибора несет оператор.

Взрывоопасная зона

Во избежание травмирования сотрудников предприятия при использовании прибора во взрывоопасной зоне (например, со взрывозащитой), необходимо соблюдать следующие правила.

- Информация, указанная на заводской табличке, позволяет определить пригодность приобретенного прибора для использования во взрывоопасной зоне.
- Соблюдайте характеристики, указанные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего документа.

3.5 Безопасность изделия

Описываемый прибор разработан в соответствии со сложившейся инженерной практикой, отвечает современным требованиям безопасности, прошел испытания и поставляется с завода в безопасном для эксплуатации состоянии. Изделие соответствует общим стандартам безопасности и законодательным требованиям.

УВЕДОМЛЕНИЕ

Потеря степени защиты из-за открывания прибора во влажной среде

► Если открыть прибор во влажной среде, степень защиты, указанная на заводской табличке, становится недействительной. Это также может отрицательно сказаться на эксплуатационной безопасности прибора.

3.5.1 Маркировка СЕ

Измерительная система соответствует юридическим требованиям применимых директив EC. Эти требования, а также действующие стандарты перечислены в соответствующей декларации соответствия требованиям EC.

Нанесением маркировки СЕ изготовитель подтверждает успешное прохождение прибором всех испытаний.

3.5.2 Соответствие требованиям ЕАС

Измерительная система соответствует юридическим требованиям применимых нормативных документов EAC. Эти требования, а также действующие стандарты перечислены в соответствующей декларации соответствия требованиям EAC.

Нанесением маркировки ЕАС изготовитель подтверждает успешное прохождение прибором всех испытаний.

4 Приемка и идентификация изделия

4.1 Приемка

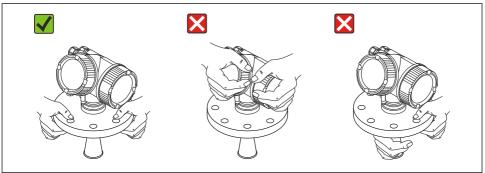
Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной, с кодом заказа, который имеется на наклейке изделия?
- Не поврежден ли товар?
- Совпадают ли данные, указанные на заводской табличке, с информацией о заказе, которая указана в транспортной накладной?
- Имеется ли DVD-диск с управляющей программой?
 Если требуется (см. заводскую табличку), имеются ли указания по технике безопасности (XA)?
- Если одно из этих условий не выполнено, обратитесь в торговую организацию компании Endress+Hauser.

4.2 Хранение и транспортировка

4.2.1 Условия хранения

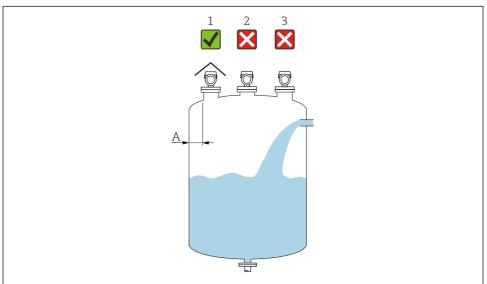
- Допустимая температура хранения: −40 до +80 °C (−40 до +176 °F)
- Используйте оригинальную упаковку.


4.2.2 Транспортировка изделия до точки измерения

УВЕДОМЛЕНИЕ

Возможно повреждение или разрушение корпуса или рупора антенны.

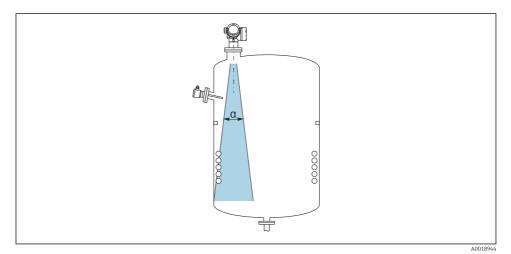
Опасность несчастного случая!


- ▶ Транспортировать измерительный прибор к точке измерения следует в оригинальной упаковке или захватив его за присоединение к процессу.
- ▶ Закрепляйте подъемное оборудование (стропы, проушины и т. п.) только за присоединение к процессу и ни в коем случае не поднимайте прибор за корпус или рупор антенны. Обращайте внимание на расположение центра тяжести прибора, чтобы прибор не наклонялся и не мог неожиданно соскользнуть.
- Выполняйте указания по технике безопасности и транспортировке приборов массой свыше 18 кг (39.6 фунта) (МЭК 61010).

A0016875

5 Монтаж

5.1 Место монтажа



A0016882

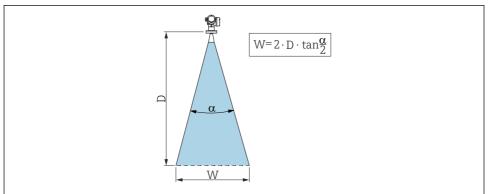
- А Рекомендуемое расстояние от стены до наружного края штуцера составляет примерно 1/6 от диаметра резервуара. Однако ни при каких обстоятельствах прибор не должен устанавливаться на расстоянии меньше 15 см (5,91 дюйм) от стенки резервуара
- 1 Используйте защитный козырек от погодных явлений для защиты прибора от воздействия прямых солнечных лучей и дождя
- 2 Монтаж в центре: помехи могут привести к потере сигнала
- 3 Не монтируйте над заполняющей струей

5.2 Ориентация

5.3 Внутренние элементы резервуара

Избегайте установки внутренних элементов (датчиков предельного уровня, датчиков температуры, стержней, вакуумных колец, теплообменников, перегородок и т. п.) в зоне распространения сигнального луча. Учитывайте угол расхождения луча.

5.4 Предотвращение эхо-помех



A0016890

Установленные под углом металлические диафрагмы для рассеивания сигнального луча способствуют предотвращению эхо-помех.

5.5 Угол расхождения луча

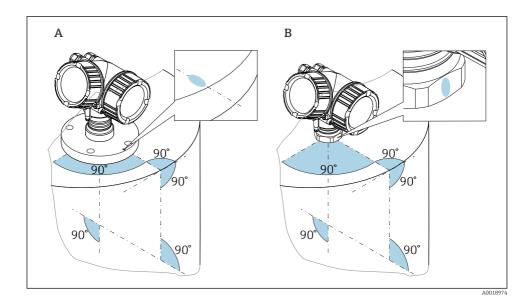
Угол расхождения луча определяется зоной α , в которой плотность энергии радиоволн составляет половину максимальной плотности энергии (ширина 3 дБ). Микроволны распространяются и за пределы этого сигнального луча и могут отражаться от расположенных там предметов.

A0016891

 $\blacksquare \ 1$ Взаимосвязь между углом расхождения луча lpha, расстоянием D и диаметром луча W

 $lue{\Gamma}$ Диаметр луча $lue{W}$ зависит от угла расхождения луча $lue{lpha}$ и расстояния $lue{D}$.

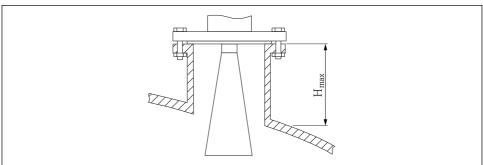
		FMR51		
Размеры антенны	40 мм (1½ дюйма)	50 мм (2 дюйма)	80 мм (3 дюйма)	100 мм (4 дюйма)
Угол расхождения луча α	23°	18°	10°	8°
Расстояние (D)		Диаметр л	туча W	
3 м (9,8 фут)	1,22 м (4 фут)	0,95 м (3,1 фут)	0,53 м (1,7 фут)	0,42 м (1,4 фут)
6 м (20 фут)	2,44 м (8 фут)	1,9 м (6,2 фут)	1,05 м (3,4 фут)	0,84 м (2,8 фут)
9 м (30 фут)	3,66 м (12 фут)	2,85 м (9,4 фут)	1,58 м (5,2 фут)	1,26 м (4,1 фут)
12 м (39 фут)	4,88 м (16 фут)	3,80 м (12 фут)	2,1 м (6,9 фут)	1,68 м (5,5 фут)
15 м (49 фут)	6,1 м (20 фут)	4,75 м (16 фут)	2,63 м (8,6 фут)	2,10 м (6,9 фут)
20 м (66 фут)	8,14 м (27 фут)	6,34 м (21 фут)	3,50 м (11 фут)	2,80 м (9,2 фут)
25 м (82 фут)	10,17 м (33 фут)	7,92 м (26 фут)	4,37 м (14 фут)	3,50 м (11 фут)
30 м (98 фут)	-	9,50 м (31 фут)	5,25 м (17 фут)	4,20 м (14 фут)
35 м (115 фут)	-	11,09 м (36 фут)	6,12 м (20 фут)	4,89 м (16 фут)
40 м (131 фут)	-	12,67 м (42 фут)	7,00 м (23 фут)	5,59 м (18 фут)
45 м (148 фут)	-	-	7,87 м (26 фут)	6,29 м (21 фут)
60 м (197 фут)	-	-	10,50 м (34 фут)	8,39 м (28 фут)
70 м (230 фут)	-	-	-	9,79 м (32 фут)


	FMR52	
Размеры антенны	50 мм (2 дюйма)	80 мм (3 дюйма)
Угол расхождения луча α	18°	10°
Расстояние (D) Диаметр луча W		
3 м (9,8 фут)	0,95 м (3,1 фут)	0,53 м (1,7 фут)
6 м (20 фут)	1,9 м (6,2 фут)	1,05 м (3,4 фут)
9 м (30 фут)	2,85 м (9,4 фут)	1,58 м (5,2 фут)
12 м (39 фут)	3,80 м (12 фут)	2,1 м (6,9 фут)
15 м (49 фут)	4,75 м (16 фут)	2,63 м (8,6 фут)
20 м (66 фут)	6,34 м (21 фут)	3,50 м (11 фут)
25 м (82 фут)	7,92 м (26 фут)	4,37 м (14 фут)
30 м (98 фут)	9,50 м (31 фут)	5,25 м (17 фут)
35 м (115 фут)	11,09 м (36 фут)	6,12 м (20 фут)
40 м (131 фут)	12,67 м (42 фут)	7,00 м (23 фут)
45 м (148 фут)	-	7,87 м (26 фут)
60 м (197 фут)	-	10,50 м (34 фут)

5.6 Монтаж в свободном пространстве резервуара

5.6.1 Рупорная антенна (FMR51)

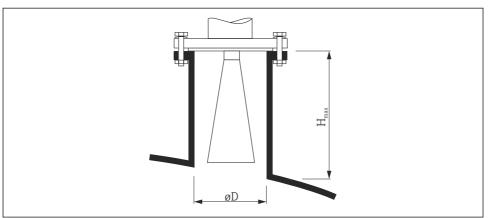
Выравнивание


- Сориентируйте антенну так, чтобы она была перпендикулярна поверхности технологической среды.
 - Если направление передачи антенны не перпендикулярно измеряемой среде, максимальная зона действия луча антенны может быть уменьшена.
- Для упрощения выравнивания на фланец (в точке между отверстиями фланца),
 резьбовое соединение или уплотнение нанесена маркировка. Эту маркировку следует сориентировать по направлению к стенке резервуара максимально точно.

В зависимости от исполнения прибора маркировка может выглядеть как круг или две параллельные линии.

Информация о штуцерах

Для обеспечения оптимального измерения антенна должна выступать из штуцера. Это условие соблюдается путем выбора штуцеров со следующей максимальной высотой, в зависимости от размера антенны.


A0016820

■ 2 Высота штуцера для рупорной антенны (FMR51)

Антенна	Максимальная высота штуцера $H_{\text{\tiny MAKC.}}$
Рупорная 40 мм/1-1/2 дюйма	86 мм (3,39 дюйм)
Рупорная 50 мм/2 дюйма	115 мм (4,53 дюйм)
Рупорная 80 мм/3 дюйма	211 мм (8,31 дюйм)
Рупорная 100 мм/4 дюйма	282 мм (11,1 дюйм)

Условия для применения длинных штуцеров

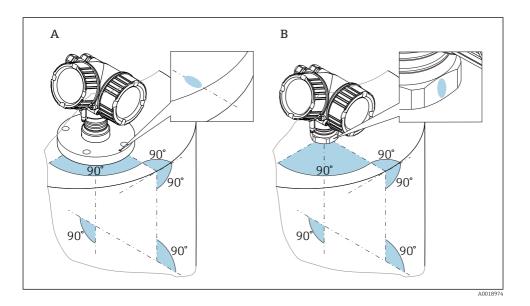
При высокой отражательной способности среды можно применять более высокие штуцеры. Максимально допустимая длина штуцера $H_{\text{макс.}}$ зависит от диаметра штуцера D.

A0023611

Диаметр штуцера <i>D</i>	Максимальная высота штуцера $H_{\text{макс.}}$	Рекомендуемая антенна
40 мм (1,5 дюйм)	100 мм (3,9 дюйм)	Рупорная 40 мм/1-1/2 дюйма
50 мм (2 дюйм)	150 мм (5,9 дюйм)	Рупорная 50 мм/2 дюйма
80 мм (3 дюйм)	250 мм (9,8 дюйм)	Рупорная 80 мм/3 дюйма

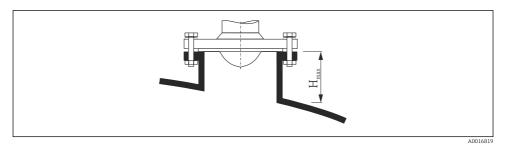
Диаметр штуцера <i>D</i>	Максимальная высота штуцера $H_{\text{макс.}}$	Рекомендуемая антенна
100 мм (4 дюйм)	500 мм (19,7 дюйм)	Рупорная 100 мм/4 дюйма
150 мм (6 дюйм)	800 мм (31,5 дюйм)	Рупорная 100 мм/4 дюйма

- 😭 Если антенна не выступает из штуцера, учитывайте следующие обстоятельства.
 - Конец штуцера должен быть гладким, без заусенцев. Край штуцера должен быть закругленным, если это возможно.
 - Необходимо выполнить маскирование помех.
 - Если высота штуцера превышает указанное в таблице значение, обратитесь в компанию Endress+Hauser.
- Для монтажа в длинных штуцерах прибор можно использовать с удлинителем антенны длиной до 1000 мм (39,4 дюйм) (можно заказать как аксессуар). Это обеспечивает выступание антенны из штуцера.
- Вблизи удлинителя антенны могут формироваться паразитные эхо-сигналы. Это означает, что максимальный измеряемый уровень может быть уменьшен.


Информация о резьбовых соединениях

- Для приборов с резьбовым соединением при определенных размерах антенны может потребоваться снять рупор перед закреплением прибора, а затем установить его обратно.
- Затягивается только шестигранной гайкой.
- Инструмент: рожковый гаечный ключ 55 мм
- Максимально допустимый момент затяжки: 60 Нм (44 фунт сила фут)

5.6.2 Рупорная антенна, монтаж заподлицо (FMR52)


Выравнивание

- Сориентируйте антенну так, чтобы она была перпендикулярна поверхности технологической среды.
 - Если направление передачи антенны не перпендикулярно измеряемой среде, максимальная зона действия луча антенны может быть уменьшена.
- Для упрощения выравнивания на фланец (в точке между отверстиями фланца) или уплотнение нанесена маркировка. Эту маркировку следует сориентировать по направлению к стенке резервуара максимально точно.

В зависимости от исполнения прибора маркировка может выглядеть как круг или две параллельные линии.

Информация о штуцерах

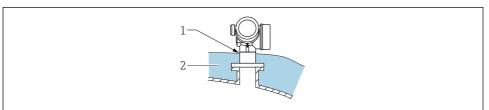
🗉 3 — Высота штуцера для рупорной антенны, смонтированной заподлицо (FMR52)

Антенна	Максимальная высота штуцера $H_{{\scriptscriptstyle MAKC.}}$
Рупорная 50 мм/2 дюйма	500 мм (19,7 дюйм)
Рупорная 80 мм/3 дюйма	500 мм (19,7 дюйм)

- 🕨 Для фланцев, плакированных материалом РТFE: см. примечания в отношении монтажа плакированных фланцев.
 - Обычно плакировка фланца из РТFE одновременно служит уплотнением между штуцером и фланцем прибора.
 - Если высота штуцера превышает указанное в таблице значение, обратитесь в службу поддержки компании-изготовителя.

Монтажные фланцы с покрытием

🙌 Для плакированных фланцев учтите следующее.

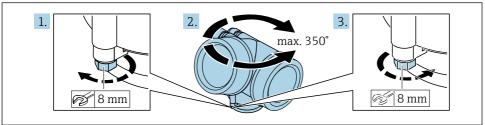

- Используйте винты с фланцами в количестве, соответствующем количеству имеющихся отверстий.
- Затяните винты необходимым моментом (см. таблицу).
- Через 24 часа или после первого цикла изменения температуры подтяните винты.
- В зависимости от рабочего давления и рабочей температуры регулярно проверяйте и подтягивайте винты, где это необходимо.

Обычно РТFЕ-оболочка фланца одновременно служит уплотнением между патрубком и фланцем прибора.

Размер фланца	Количество винтов	Момент затяжки
EN		
DN50 PN10/16	4	45 до 65 Нм
DN50 PN25/40	4	45 до 65 Нм
DN80 PN10/16	8	40 до 55 Нм
DN80 PN25/40	8	40 до 55 Нм
DN100 PN10/16	8	40 до 60 Нм
DN100 PN25/40	8	55 до 80 Нм
DN150 PN10/16	8	75 до 115 Нм
ASME		
NPS 2 дюйма, кл. 150	4	40 до 55 Нм
NPS 2 дюйма, кл. 300	8	20 до 30 Нм
NPS 3 дюйма, кл. 150	4	65 до 95 Нм
NPS 3 дюйма, кл. 300	8	40 до 55 Нм
NPS 4 дюйма, кл. 150	8	45 до 70 Нм
NPS 4 дюйма, кл. 300	8	55 до 80 Нм
NPS 6 дюймов, кл. 150	8	85 до 125 Нм

Размер фланца	Количество винтов	Момент затяжки
NPS 6 дюймов, кл. 300	12	60 до 90 Нм
NPS 8 дюймов, кл. 150	8	115 до 170 Нм
NPS 8 дюймов, кл. 300	12	90 до 135 Нм
JIS		
10K 50A	4	40 до 60 Нм
10K 80A	8	25 до 35 Нм
10K 100A	8	35 до 55 Нм
10K 150A	8	75 до 115 Нм

5.7 Резервуар с теплоизоляцией



A0032207

Во избежание перегрева электроники в результате повышенного тепловыделения или конвекции при повышенной температуре процесса прибор необходимо встроить в теплоизоляцию резервуара (2). Изоляция не должна быть выше шейки прибора (1).

5.8 Поворот корпуса преобразователя

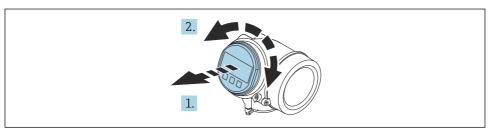
Для упрощения доступа к клеммному отсеку или дисплею корпус преобразователя можно повернуть следующим образом:

A0032242

- 1. С помощью рожкового ключа отверните зажимной винт.
- 2. Поверните корпус в нужном направлении.

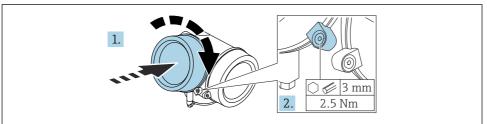
3. Затяните фиксирующий винт (1,5 H·м для пластмассового корпуса; 2,5 H·м для корпуса из алюминия или нержавеющей стали).

5.9 Поворот дисплея


5.9.1 Открывание крышки

A0021430

- 1. Шестигранным ключом (3 мм) ослабьте винт крепежного зажима крышки отсека электроники и поверните зажим 90 град против часовой стрелки.
- 2. Отверните крышку отсека электроники и проверьте состояние уплотнения под крышкой; при необходимости замените уплотнение.

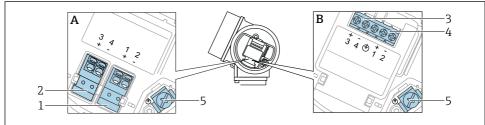

5.9.2 Поворот дисплея

A0036401

- 1. Плавным вращательным движением извлеките дисплей.
- 2. Поверните дисплей в необходимое положение (не более 8 × 45 град в каждом направлении).
- 3. Поместите смотанный кабель в зазор между корпусом и главным модулем электроники и установите дисплей в отсек электроники до его фиксации.

5.9.3 Закрывание крышки отсека электроники

A0021/51

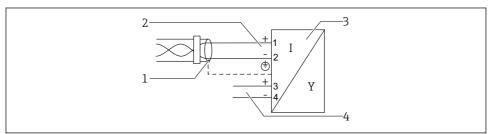

- 1. Заверните крышку отсека электроники.
- 2. Поверните крепежный зажим 90 град по часовой стрелке и с помощью шестигранного ключа (3 мм), затяните винт крепежного зажима на крышке отсека электроники моментом 2,5 Нм.

6 Электрическое подключение

6.1 Требования, предъявляемые к подключению

6.1.1 Назначение клемм

Назначение клемм; PROFIBUS PA/FOUNDATION Fieldbus

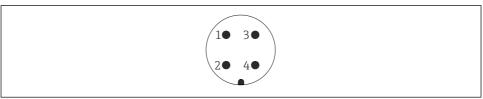


A0036E00

🛮 4 Назначение клемм; PROFIBUS PA/FOUNDATION Fieldbus

- А Без встроенной защиты от перенапряжения
- В Со встроенной защитой от перенапряжения
- 1 Подключение, PROFIBUS PA / FOUNDATION Fieldbus: клеммы 1 и 2, без встроенной защиты от перенапряжения
- 2 Подключение, релейный выход (разомкнутый коллектор): клеммы 3 и 4, без встроенной зашиты от перенапряжения
- 3 Подключение, релейный выход (разомкнутый коллектор): клеммы 3 и 4, с встроенной защитой от перенапряжения
- 4 Подключение, PROFIBUS PA / FOUNDATION Fieldbus: клеммы 1 и 2, с встроенной защитой от перенапряжения
- 5 Клеммы для кабельного экрана

Блок-схема: PROFIBUS PA/FOUNDATION Fieldbus


A003653

🛮 5 Блок-схема: PROFIBUS PA/FOUNDATION Fieldbus

- 1 Экран кабеля; см. спецификацию кабеля
- 2 Подключение PROFIBUS PA/FOUNDATION Fieldbus
- 3 Измерительный прибор
- 4 Релейный выход (разомкнутый коллектор)

6.1.2 Разъем прибора

Чтобы подключить сигнальный кабель к прибору в исполнении с разъемом, не требуется открывать корпус прибора.

A0011176

🛮 6 Назначение контактов разъема 7/8

- 1 Сигнал -
- 2 Сигнал +
- 3 Нет назначения
- 4 Экранирование

6.1.3 Сетевое напряжение

PROFIBUS PA, FOUNDATION Fieldbus

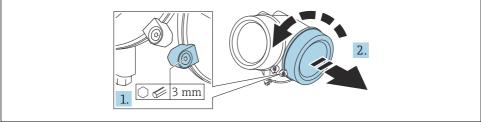
«Схема подключения, выходной сигнал» ¹⁾	«Сертификат» ²⁾	Напряжение на клеммах
E: 2-проводное подключение; FOUNDATION Fieldbus, релейный выход G: 2-проводное подключение; PROFIBUS PA, релейный выход	 Исполнение для невзрывоопасных зон Ex nA Ex nA(ia) Ex ic Ex ic(ia) Ex d(ia) / XP Ex ta/DIP CSA GP 	9 до 32 В ³⁾
	 Ex ia/IS Ex ia + Ex d(ia) / IS + XP 	9 до 30 В ³⁾

- 1) Позиция 020 в спецификации
- 2) Позиция 010 в спецификации
- 3) Напряжение до 35 В на входе безопасно для прибора.

Зависит от полярности	Нет
Совместимость с требованиями FISCO/FNICO согласно стандарту МЭК 60079-27	Да

6.2 Подключение прибора

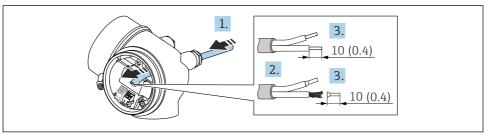
▲ ОСТОРОЖНО


Опасность взрыва!

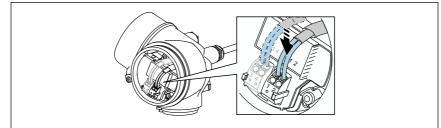
- ▶ Соблюдайте применимые национальные нормы.
- ▶ Соблюдайте спецификации, приведенные в указаниях по технике безопасности (XA).
- ▶ Используйте только рекомендованные кабельные уплотнения.
- Удостоверьтесь в том, что сетевое напряжение соответствует напряжению, указанному на заводской табличке.
- Подключение прибора выполняется при отключенном источнике питания.
- Перед подключением источника питания подсоедините провод выравнивания потенциалов к наружной клемме заземления.

Требуемые инструменты/аксессуары:

- Для приборов с блокировкой крышки: шестигранный ключ типоразмера 3
- Инструмент для снятия изоляции
- При использовании многожильных кабелей: к каждому проводу необходимо подсоединить по одному наконечнику.


6.2.1 Открывание крышки

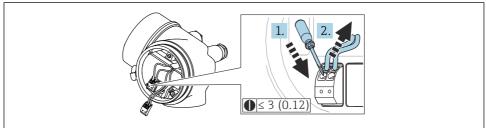
A0021490


- 1. Шестигранным ключом (3 мм) ослабьте винт крепежного зажима крышки отсека электроники и поверните зажим 90 град против часовой стрелки.
- 2. Отверните крышку клеммного отсека и проверьте состояние уплотнения под крышкой; при необходимости замените уплотнение.

6.2.2 Подключение

A0036418

- 1. Пропустите кабель через кабельный ввод . Чтобы обеспечить непроницаемое уплотнение, не удаляйте уплотнительное кольцо из кабельного ввода.
- 2. Удалите оболочку кабеля.
- 3. Зачистите концы проводов кабеля 10 мм (0,4 дюйм). Для кабелей с многопроволочными проводами используйте наконечники.
- 4. Плотно затяните кабельные уплотнения.
- Подключите кабель согласно назначению клемм.

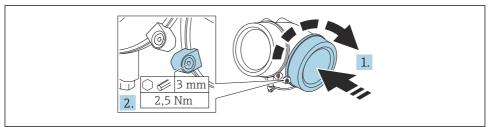


A0034682

6. При использовании экранированных кабелей: подсоедините экран кабеля к клемме заземления.

6.2.3 Штепсельные пружинные клеммы

Электрическое подключение прибора в исполнении без встроенной защиты от перенапряжения осуществляется посредством вставных подпружиненных клемм. Жесткие или гибкие проводники с наконечниками можно вставлять напрямую в клемму без помощи рычажка, контакт обеспечивается автоматически.


A0013661

■ 8 Единица измерения: мм (дюйм)

Порядок отсоединения кабеля от клемм:

- Вставьте отвертку с плоским наконечником ≤ 3 мм в углубление между двумя отверстиями для клемм и нажмите
- 2. Нажимая на отвертку, вытяните конец провода из клеммы.

6.2.4 Закрывание крышки клеммного отсека

A0021491

- 1. Заверните крышку клеммного отсека.
- 2. Поверните крепежный зажим 90 град по часовой стрелке и с помощью шестигранного ключа (3 мм) затяните винт крепежного зажима на крышке клеммного отсека моментом 2,5 Нм.

7 Интеграция в сеть FOUNDATION Fieldbus

7.1 Файл описания прибора (DD)

Для конфигурирования прибора и его интеграции в сеть FF требуются перечисленные ниже элементы.

- Программа конфигурирования FF
- Файл Cff (Common File Format: *.cff, *.fhx)
- Описание прибора (DD) в одном из следующих форматов.
 - Формат описания прибора 4: *sym, *ffo
 - Формат описания прибора 5: *sy5, *ff5

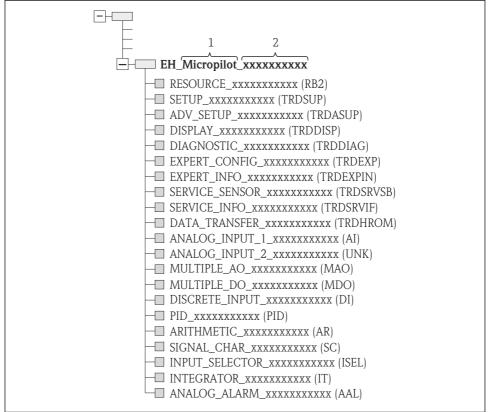
Данные файла DD, специфичного для прибора

Идентификатор изготовителя	0x452B48
Тип прибора	0x1028
Версия прибора	0x01
Версия файлов описания прибора (DD)	Информация и файлы находятся в свободном доступе по следующим адресам:
Версия CFF	www.endress.comwww.fieldcommgroup.org

7.2 Интеграция в сеть FF

- Более детальные сведения по интеграции прибора в систему FF приведены в описании используемой программы конфигурирования.
- При интеграции полевых приборов в систему FF убедитесь, что вы используете корректные файлы. Необходимую версию можно считывать при помощи параметров «Версия прибора» (DEV_REV) и «Версия DD» (DD_REV) в блоке ресурсов.

Прибор интегрируется в сеть FF следующим образом.


- 1. Запустите программу конфигурирования FF.
- 2. Загрузите файлы Cff и файлы описания прибора (*.ffo, *.sym для формата 4; *ff5, *sy5 для формата 5) в систему.
- 3. Сконфигурируйте интерфейс.
- 4. Сконфигурируйте прибор в соответствии с задачами измерения и системой FF.

7.3 Идентификация прибора и назначение адреса

Система FOUNDATION Fieldbus распознает прибор по идентификационному коду (device ID) и автоматически выделяет для него приемлемый полевой адрес.

Идентификационный номер изменению не подлежит. Прибор отображается на дисплее сети после того, как вы запустите программу конфигурирования FF и встроите прибор в сеть. Доступные блоки будут отображаться под именем прибора.

Если описание прибора еще не загружено, блоки возвращают данные состояния «Неизвестно» (UNK).

A0020711

- 🛮 9 Типичный вид дисплея в программе конфигурирования после установленного соединения
- 1 Название прибора
- 2 Серийный номер

7.4 Блочная модель

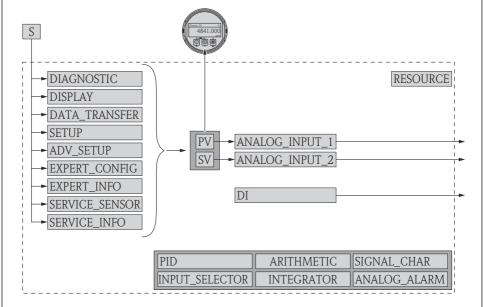
7.4.1 Блоки программного обеспечения прибора

Для прибора предусмотрены следующие блоки:

- Блок ресурсов (блок прибора)
- Блоки преобразователя
 - Блок преобразователя «Настройка» (TRDSUP)
 - Блок преобразователя «Расширенная настройка» (TRDASUP)
 - Блок преобразователя «Дисплей» (TRDDISP)
 - Блок преобразователя «Диагностика» (TRDDIAG)
 - Блок преобразователя «Расширенная диагностика» (TRDADVDIAG)
 - Блок преобразователя «Экспертная конфигурация» (TRDEXP)
 - Блок преобразователя «Экспертная информация» (TRDEXPIN)
 - Блок преобразователя «Сервисный датчик» (TRDSRVSB)
 - Блок преобразователя «Сервисная информация» (TRDSRVIF)
 - Блок преобразователя «Передача данных» (TRDHROM)
- Функциональные блоки
 - 2 блока аналогового входа (AI)
 - 1 блок дискретного входа (DI)
 - 1 блок разветвленного аналогового выхода (МАО)
 - 1 блок разветвленного дискретного выхода (MDO)
 - 1 блок ПИД (PID)
 - 1 расчетный блок (AR)
 - 1 блок различения сигнала (SC)
 - 1 блок входного переключателя (ISEL)
 - 1 блок интегратора (IT)
 - 1 блок аналоговых аварийных сообщений (AAL)

Дополнительно к вышеупомянутым предварительно реализованным блокам можно характеризовать следующие блоки:

- 3 блока аналогового входа (AI)
- 2 блока цифрового входа (DI)
- 1 блок ПИД (PID)
- 1 расчетный блок (AR)
- 1 блок различения сигнала (SC)
- 1 блок входного переключателя (ISEL)
- 1 блок интегратора (IT)
- 1 блок аналоговых аварийных сообщений (AAL)


В общей сложности в приборе может быть реализовано до 20 блоков, включая уже реализованные блоки. Реализация блоков описана в соответствующем руководстве по эксплуатации программы конфигурирования.

Руководство Endress+Hauser BA00062S.

Руководство содержит обзор стандартных функциональных блоков, описанных в спецификациях системы FOUNDATION Fieldbus FF 890–894, и служит пособием по использованию блоков, встроенных в полевые приборы Endress+Hauser.

7.4.2 Конфигурация блоков при поставке прибора

A0017217

🗷 10 Конфигурация блоков при поставке прибора

- S Датчик
- PV Первое значение: уровень, линеаризованный
- SV Второе значение: расстояние

7.5 Закрепление измеренных значений (CHANNEL) за блоком аналогового входа

Входное значение блока аналогового входа определяется через параметр "Channel".

Channel	Измеренное значение
0	Uninitialized
211	Напряжение на клеммах
773	Аналоговый выход расшир. диагностики
774	Аналоговый выход расшир. диагностики
32786	Абсолютная амплитуда отражённого сигнала
32856	Расстояние
32885	Температура электроники

Channel	Измеренное значение	
32949	Уровень линеаризованый	
33044	Относительная амплитуда эхо-сигнала	

7.6 Методы

Спецификация FOUNDATION Fieldbus включает использование методов, упрощающих эксплуатацию прибора. Метод представляет собой последовательность интерактивных шагов, которые должны выполняться в указанном порядке для конфигурирования определенных функций прибора.

Предусмотрены следующие методы для приборов.

Перезапуск

Этот метод содержится в блоке ресурсов и используется для настройки параметра Сброс прибора. При этом параметры прибора сбрасываются в определенное состояние.

Перезапуск ENP

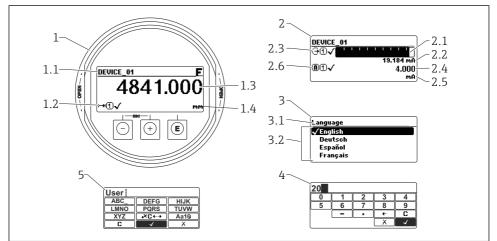
Этот метод содержится в блоке ресурсов и позволяет менять параметры электронной заводской таблички (Electronic Name Plate).

Настройки

Этот метод содержится в блоке преобразователя «Настройка» и используется для базовой настройки параметров измерения (единицы измерения, тип сосуда или резервуара, технологическая среда, калибровка для пустого и для полного резервуара).

Линеаризация

Этот метод содержится в блоке преобразователя «Расширенная настройка» и позволяет управлять таблицей линеаризации, в соответствии с которой измеренное значение конвертируется в объем, массу или расход.


• Автоматическая проверка

Этот метод содержится в блоке преобразователя EXPERT_CONFIG и используется для самопроверки прибора.

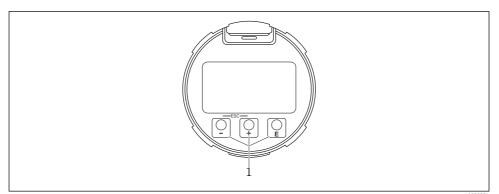
8 Ввод в эксплуатацию

8.1 Структура и функции меню управления

8.1.1 Дисплей

A0012635

■ 11 Формат индикации на блоке управления и дисплея


- 1 Индикация измеренного значения (1 значение макс. размера)
- 1.1 Заголовок, содержащий название и символ ошибки (если активна ошибка)
- 1.2 Символы измеряемых значений
- 1.3 Измеренное значение
- 1.4 Единица измерения
- 2 Индикация измеренного значения (гистограмма + одно значение)
- 2.1 Гистограмма для измеренного значения 1
- 2.2 Измеренное значение 1 (включая единицу измерения)
- 2.3 Символы измеренного значения для значения 1
- 2.4 Измеренное значение 2
- 2.5 Единица измерения для измеренного значения 2
- 2.6 Символы измеренного значения для значения 2
- 3 Визуализация параметра (здесь: параметр со списком выбора)
- 3.1 Заголовок, содержащий название параметра и символ ошибки (если активна ошибка)
- 3.2 Список выбора; символ \square обозначает текущее значение параметра.
- 4 Матрица для ввода цифр
- 5 Матрица для ввода алфавитно-цифровых и специальных символов

8.1.2 Элементы управления

Функции

- Индикация измеренных значений, сообщений о неисправностях и уведомлений
- При обнаружении ошибки цвет подсветки дисплея меняется с зеленого на красный
- Чтобы упростить управление, дисплей можно снять с прибора
- Дисплей прибора можно заказать с дополнительным модулем для связи по беспроводной технологии Bluetooth®.

Подсветка включается или выключается в зависимости от сетевого напряжения и потребляемого тока.

A0039284

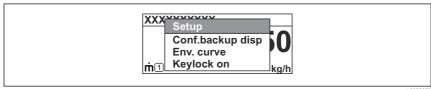
🗷 12 Дисплей

1 Кнопки управления

Назначение кнопок

- Кнопка ±
 - Переход вниз по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка 🖃
 - Переход вверх по списку выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка Е
 - При индикации измеренного значения: при кратковременном нажатии кнопки открывается меню управления.
 - При удержании кнопки нажатой в течение 2 с открывается контекстное меню.
 - *В меню, подменю*: кратковременное нажатие кнопки приводит к следующему результату:
 - Открывание выбранного меню, подменю или параметра.
 - Нажатие кнопки с удержанием в течение 2 с при настройке параметра приводит к следующему результату:
 - Открывание справочного текста для соответствующей функции или соответствующего параметра.
 - *В текстовом редакторе и редакторе чисел*: кратковременное нажатие кнопки приводит к следующему результату:
 - Открывание выбранной группы.
 - Выполнение выбранного действия.
 - Выполнение выбранного действия.
- - *В меню, подменю*: кратковременное нажатие кнопки приводит к следующему результату:
 - Выход из текущего уровня меню и переход на следующий, более высокий уровень.
 - Если справочный текст параметра открыт, то происходит его закрывание.
 - Удержание кнопки нажатой в течение 2 с приводит к возврату в режим индикации измеренного значения (в «исходное положение»).
 - *В редакторе текста и редакторе чисел*: текстовый редактор или редактор чисел закрывается без принятия изменений.
- Кнопки □ и (одновременное нажатие)
 - Уменьшение контрастности (более светлое изображение).
- Кнопки
 ± и
 ⊑ (одновременное нажатие и удержание)
 Увеличение контрастности (менее светлое изображение).

8.2 Открывание контекстного меню


Используя контекстное меню, пользователь может быстро открыть следующие меню непосредственно с дисплея управления:

- Setup
- Conf. backup disp.
- Envelope curve
- Keylock on

Открывание и закрывание контекстного меню

Открыт дисплей управления.

- 1. Нажмите кнопку 🗉 и удерживайте ее нажатой в течение 2 с.
 - ┕ Открывается контекстное меню.

A003787

- 2. Нажмите кнопки □ и ± одновременно.
 - ▶ Контекстное меню закрывается и отображается дисплей управления.

Открывание меню из контекстного меню

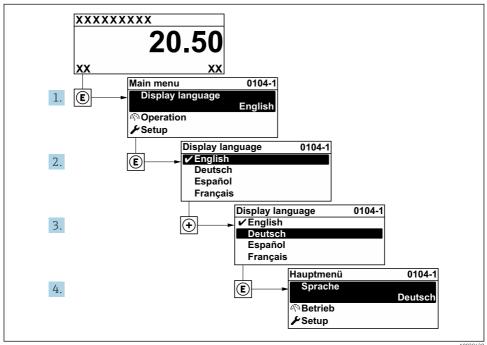
- 1. Откройте контекстное меню.
- 2. Нажмите кнопку 🛨 для перехода к требуемому меню.
- 3. Нажмите кнопку 🗉 для подтверждения выбора.
 - ┕ Открывается выбранное меню.

8.3 Меню управления

Параметр/подменю	Значение	Описание
Language Настройка → Расширенная настройка → Дисплей → LanguageЭксперт → Система → Дисплей → Language	Настройка языка управления для локального дисплея	
Настройка	После установки значений для параметров процесс настройки измерения можно считать в целом завершенным.	
Настройка→Карта маски	Маскирование эхо-помех	ВАО1121F – руководство по эксплуатации, FMR51/
Настройка→Расширенная настройка	Содержит дополнительные подменю и параметры	FMR52, FOUNDATION Fieldbus
	 Для более углубленной настройки процесса измерения (с целью адаптации к особым условиям измерения) Для преобразования измеренного значения (масштабирования, линеаризации). Для масштабирования выходного сигнала. 	

Параметр/подменю	Значение	Описание	
Диагностика	Содержит наиболее важные параметры для диагностики состояния прибора		
Меню Эксперт Если пользовательский код доступа не был задан, в параметр Ввести код доступа введите значение 0000.	Содержит все параметры прибора (включая те, которые относятся к другим частям меню). Структура этого меню соответствует структуре функциональных блоков прибора.	GP01017F – описание параметров прибора, FMR5x, FOUNDATION Fieldbus	

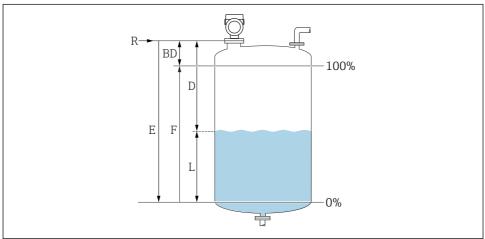
8.4 Деактивация защиты от записи


Прибор, защищенный от записи, в первую очередь следует разблокировать. См. руководство по эксплуатации.

BA01121F – руководство по эксплуатации, FMR51/FMR52, FOUNDATION Fieldbus

8.5 Настройка языка управления

Заводская настройка: английский язык или локальный язык, который был указан в заказе



🖪 13 Пример конфигурации локального дисплея

Endress+Hauser 35

A002942

8.6 Настройка измерения уровня

A0016933

- 🛮 14 Параметры конфигурации для измерения уровня жидкости
- R Контрольная точка измерения
- D Расстояние
- L Уровень
- Е Калибровка пустой емкости (нулевая точка)
- F Калибровка полной емкости (максимальное значение диапазона)
- 1. Настройка → Обозначение прибора
 - Введите название точки измерения в целях быстрой идентификации прибора на площадке.
- 2. Настройка → Единицы измерения расстояния
 - Используется для базовой калибровки (Пустой/Полный).
- 3. Настройка → Тип бункера
 - Оптимизирует сигнальные фильтры для соответствующего типа ячейки. Примечание: 'Инструментальный тест' отключает все фильтры. Данная опция должна использоваться исключительно для тестов.
- 4. Настройка → Группа продукта
 - Указание группы технологической среды («на водной основе» − DK > 4 или «другие» − DK > 1,9)

- 5. Настройка → Калибровка пустой емкости
 - Указание расстояния Е для пустого резервуара (расстояние от контрольной точки R до отметки 0 %). Настройка → Расширенная настройка → Уровень → Высота резервуара/силосаЕсли заданный диапазон измерений (Калибровка пустого резервуара) существенно отличается от высоты резервуара или силоса, рекомендуется указать высоту резурвуара или силоса в этом параметре. Пример: Непрерывный мониторинг уровня в верхней трети резервуара или силоса. Примечание: Для резервуаров с коническим дном, этот параметр не должен изменяться, т.к. в этом случае диапазон измерений, как правило, существенно не отличается от высоты резервуара или силоса.
- 6. Настройка → Калибровка полной емкости
 - Расстояние между минимальным уровнем (0%) и максимальным уровнем (100%).
- 7. Настройка → Уровень
 - Чровень, измеренный в данный момент
- 8. Настройка → Расстояние
 - Расстояние между референсной точкой измерения и поверхностью среды.
- 9. Настройка → Качество сигнала
 - Отображается качество проанализированного эхо-сигнала определенного уровня.
- 10. Настройка → Карта маски → Подтвердить расстояние
 - Сравнение отображаемого расстояния с фактическим расстоянием для начала записи карты эхо-помех.
- 11. Настройка → Расширенная настройка → Уровень → Единица измерения уровня
 - Выберите единицу измерения уровня: %, м, мм, фут, дюйм (заводская настройка − %)
- Время реакции прибор заранее настроено с помощью параметра Тип резервуара. С помощью подменю Расширенная настройка можно выполнить расширенную настройку.

8.7 Пользовательские приложения

Описание пользовательской настройки параметров для конкретных условий применения см. в следующих документах.

BA01121F – руководство по эксплуатации, FMR51/FMR52, FOUNDATION Fieldbus

Кроме того, параметры подменю Эксперт описаны в следующих документах.

GP01017F – описание параметров прибора, FMR5x, FOUNDATION Fieldbus

www.addresses.endress.com