Texническое описание Liquiline System CA80TN

Колориметрический анализатор общего азота

Встроенный контроллер с цифровой технологией Memosens

Применение

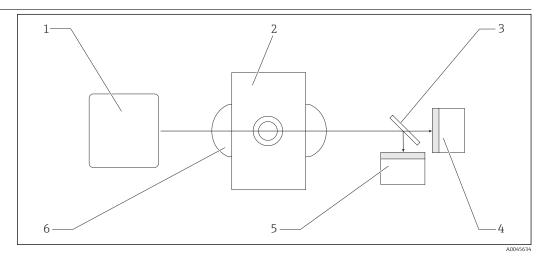
Liquiline System CA80TN – анализатор содержания растворенных химических веществ, предназначенный для непрерывного определения общей концентрации азота в жидких средах.

Анализатор разработан для эксплуатации в следующих областях применения.

- Мониторинг показателей на выходе водоочистных сооружений.
- Контроль качества воды в поверхностных водоемах.
- Мониторинг промышленных сточных вод.
- Контроль промышленной очистки сточных вод.

Преимущества

- Простая модернизация до измерительной станции путем подключения датчиков Memosens (не более четырех)
- Низкие эксплуатационные расходы
- Цифровые шины (например, PROFINET, PROFIBUS DP, Modbus TCP, Modbus RS485 и Ethernet IP) и веб-сервер


Содержание

Принцип действия и архитектура системы		Подключение к шине Fieldbus	
Принцип измерения для УФ-фотометрии		Потребляемая мощность	
Общее содержание азота	4	Кабельные вводы	
Измерение концентрации нитратов согласно стандарту		Спецификация кабелей	
НЈ636	. 4	Подключение опциональных блоков	
Измерительная система	5	Подключение датчиков (опционально)	20
Ү-образный фильтр (опционально)	5		
		Рабочие характеристики	20
Архитектура оборудования	6	Максимальная погрешность измерения	
Блок-схема		Максимальная погрешность измерения для входов	
Назначение гнезд и портов		датчиков	2.0
пала тение гнезд и портов г г г г г г г г г г г г г г г г г г г	. /	Максимальная погрешность измерения для токовых входов и выходов	
Связь и обработка данных	7	LOD (предел обнаружения)	
		Повторяемость	
Надежность	. 8	Повторяемость результатов измерений для входов с	
Надежность благодаря использованию технологии		датчиков	21
Memosens	. 8	Интервал измерения	21
Гехнологичность		Требования, предъявляемые к пробам	
Функции самодиагностики			
Защита данных	10	Требования, предъявляемые к стандартным растворам.	21
ІТ-безопасность	10	Периодичность калибровки	21
		Периодичность технического обслуживания	
Вход	11	Мероприятия технического обслуживания	21
·	11		
Измеряемые переменные	11	Монтаж	21
Гипы входов	11	Место монтажа	
Входной сигнал	11	Инструкции по монтажу	
Гоковый вход, пассивный	11	micipy Kiddle Montacky	2 1
Спецификация кабелей (для опциональных датчиков с	11		
поддержкой технологии Memosens)	11	13 1 11	22
поддержной технологии менювензу	11	Диапазон температуры окружающей среды	
n		Температура хранения	
Выход		Относительная влажность	
Выходной сигнал		Степень защиты	
Аварийный сигнал		Электромагнитная совместимость	
Нагрузка		Электробезопасность	23
Режим передачи данных	13	Степень загрязнения	23
Гоковые выходы, активные	13	Параметры технологического процесса	23
	13	Температура проб	
Характеристика сигнала		Консистенция проб	
Электрические параметры		Подача пробы	
Спецификация кабелей			
		Moyayugagaga voyamayaga	วา
Domovina na pravana a	19	Механическая конструкция	
Релейные выходы		Размеры	
Электрические параметры	15	Материалы	25
		Входы шлангов	
Характеристики протоколов		Спецификация шлангов Технологическое соединение, У-образный фильтр	40
PROFIBUS DP	14	(опционально)	2 5
Modbus RS485	14	(OHENOHOLDHO)	40
Modbus TCP	1		
Веб-сервер	15	Управление	25
Ethernet/IP	15	Принцип управления	25
PROFINET	16	Дисплей	26
		Дистанционное управление	
Источник питания	17	Языковые пакеты	28
Напряжение питания	I		
Tanbunging initalini	-,		

Сертификаты и свидетельства		
Оформление заказа	28	
Конфигуратор изделия	28	
Комплект поставки	29	
Аксессуары	29	
Аксессуары к прибору	29	
Аксессуары для связи	33	
Системные компоненты	34	

Принцип действия и архитектура системы

Принцип измерения для УФ-фотометрии

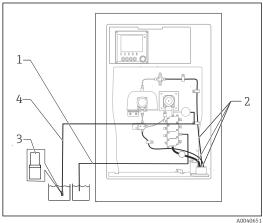
- 🗷 1 Фотометрический принцип измерения
- 1 Стробоскопическая лампа
- 2 Кювета
- 3 Расщепитель луча
- 4 Измерительный детектор с фильтром
- 5 Опорный детектор с фильтром
- 6 Линзы

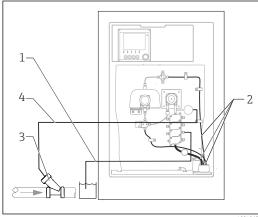
Свет от долговечной импульсной стробоскопической лампы (1) проходит через измерительную секцию. Расщепитель луча (поз. 3) направляет луч в два приемника (поз. 4 и 5). Фильтр, расположенный перед приемниками, пропускает свет в измеряемом или опорном диапазонах длин волн.

В измерительной секции среда, находящаяся в кювете (2) (вода, растворенные вещества и взвешенные частицы), поглощает свет во всем спектральном диапазоне. Кроме того, измеряемый компонент отбирает часть энергии света в измерительном диапазоне длины волн. Для вычисления измеренного значения рассчитывается соотношение между параметрами светового сигнала с измеряемым диапазоном длин волн и светового сигнала с опорным диапазоном длин волн, что позволяет свести к минимуму влияние мутности и старения лампы. Это изменение соотношения можно преобразовать в общую концентрацию азота. Данная зависимость носит нелинейный характер.

Общее содержание азота

Общее содержание азота (TN) – это суммарный параметр в анализе воды и сточных вод, который указывает степень загрязнения воды соединениями азота. Показатель TN состоит из органически связанного азота (например, белков, мочевины) и неорганически связанного азота (аммония, нитритов и нитратов). Высокая концентрация азота указывает на влияние сточных вод, стоков со станций хранения ТБО, загрязнения от промышленной или сельскохозяйственной деятельности. Повышенное поступление азотных соединений из сточных вод в окружающую среду может вызвать чрезмерное обогащение (эвтрофикацию) озер и рек и, таким образом, привести к чрезмерному росту растений. После гибели этих растений разложение дополнительной биомассы повышает уровень потребления кислорода. В самом неблагоприятном случае это может привести к гибели рыб и снижению качества воды в водоеме. Концентрация общего связанного азота является полезным показателем при оценке качества воды. Вместе с общим содержанием фосфора (TP) и химическим потреблением кислорода (COD) общее содержание азота является одним из наиболее важных параметров, характеризующих загрязнение воды.

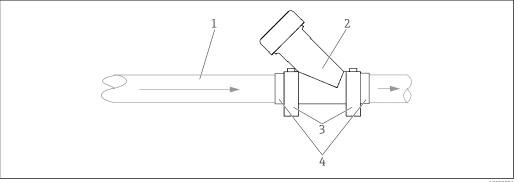

Измерение концентрации нитратов согласно стандарту HJ636


Для определения общего содержания азота часть пробы закачивается в реакционную камеру и разбавляется до предполагаемой концентрации. При использовании щелочного реагента для разложения проба разлагается при более высокой температуре. В ходе технологического процесса соединения азота окисляются до нитратов. После этого определяют общее содержание азота путем измерения поглощения в УФ-диапазоне. Коэффициент поглощения света в ультрафиолетовом диапазоне прямо пропорционален общему содержанию азота в пробе. Результаты измерения показывают общее содержание азота (N).

Измерительная система

Полная измерительная система состоит из элементов, перечисленных ниже.

- Анализатор Liquiline System CA80TN в заказанной конфигурации
- реагенты и стандартный раствор (по отдельному заказу)
- Впускной сетчатый фильтр или Y-образный фильтр с присоединением к процессу (опционально)



- **₽** 2 Измерительная система с впускным фильтром
- 1 Вода для разбавления
- 2 Выход
- 3 Погружной фильтр
- Технологическая среда

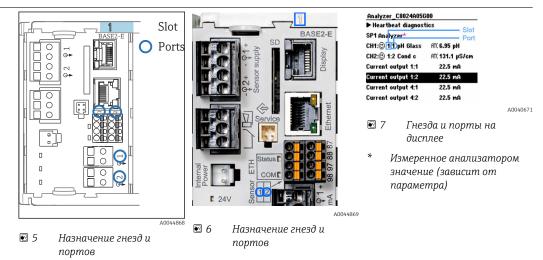
- ₹ 3 Измерительная система с Ү-образным фильтром
- Вода для разбавления 1
- 2 Выход
- 3 Ү-образный фильтр
- Технологическая среда

Ү-образный фильтр (опционально)


Ү-образный фильтр позволяет брать пробы, содержащие частицы, напрямую из труб. Поэтому он также подходит для процедуры анализа, когда в анализ необходимо включить частицы до определенного размера.

- Измеряемая среда
- 2 3 Ү-образный фильтр
- Зажимы для труб
- Клеевые соединения, внутренний диаметр 40 мм, прямые

Архитектура оборудования


Блок-схема

A0021099

- 4 Блок-схема СА80
- 1 Токовый выход 1:1
- 2 Токовые выходы
- 3 Сигнальное реле
- 4 2 входа Memosens (1 дополнительно)
- 5 2 токовых входа (дополнительно)
- 6 Modbus/Ethernet (дополнительно)
- 7 Сервисный интерфейс
- 8 Электропитание, датчики с фиксированным кабелем
- 9 2 или 4 реле (дополнительно)
- 10 2 цифровых входа и выхода (дополнительно)

Назначение гнезд и портов

- Входы назначаются измерительным каналам в порядке возрастания гнезд и портов. Ниже приведена расшифровка обозначений, представленных в приведенном выше примере. Строка CH1: 1:1 pH glass означает: канал 1 (CH1) является гнездом 1 (базового модуля): порт 1 (вход 1), стеклянный датчик pH
- Выходы и реле обозначаются в соответствии с их функциями, например «токовый выход», и отображаются с указанием номеров гнезда и порта в порядке возрастания
- На экране дисплея отображается надпись SP1: измерительный канал анализатора 1 с точкой отбора пробы SP1 (отображение измеренного значения зависит от параметра; в приведенном примере не продемонстрировано)

Связь и обработка данных

Протоколы связи

- Системы цифровых шин
 - PROFIBUS DP (профиль 3.02)
 - Modbus TCP или RS485
 - PROFINET
 - EtherNet/IP
- Настройка посредством Ethernet

Модуль расширения 485DP/485MB и токовые выходы

Для протоколов связи PROFIBUS DP и Modbus RS485

Параллельно можно использовать до 2 токовых выходов.

Функции связи по сети Ethernet осуществляются посредством модуля Base2 и токовых выходов

Параллельно можно использовать до 6 токовых выходов.

Терминирование шины на приборе

- Осуществляется при помощи ползункового переключателя на модуле шины 485DP/485MB.
- Отображается посредством светодиодного индикатора T на модуле шины 485DP/485MB.

Надежность

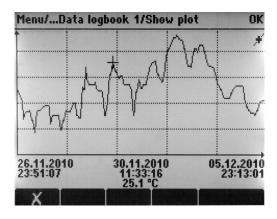
Надежность благодаря использованию технологии Memosens

Memosens MEMO(SENS

При использовании технологии Memosens значительно увеличивается надежность точки измерения:

- Оптимальная гальваническая изоляция за счет бесконтактной цифровой передачи сигналов
- Абсолютная водонепроницаемость
- Возможна калибровка датчиков в лаборатории, что повышает доступность точки измерения в процессе
- Искробезопасная электронная часть гарантирует беспроблемную эксплуатацию во взрывоопасных зонах.
- Возможность предупредительного обслуживания благодаря регистрации данных датчика, таких как:
 - Общее время работы
 - Время работы при максимальных или минимальных значениях измеряемых величин
 - Время работы в условиях высоких температур
 - Количество стерилизаций с применением пара
 - Состояние датчика

Технологичность


Модульная конструкция

Модульный анализатор можно без труда адаптировать согласно индивидуальным потребностям.

- Модернизация модулей расширения с добавлением новых или расширенных функций, таких как токовые выходы, реле и цифровые каналы передачи данных.
- Модернизация до измерительной станции с цифровыми датчиками с технологией Memosens.
- Опционально: разъем датчика M12 для подключения любого датчика Memosens.

Хранение данных

- Независимые встроенные области кольцевой памяти (FIFO) или стековой памяти для записи следующей информации:
 - аналоговое значение (например расход, значение рН, проводимость);
 - события (например, сбои питания).
- Журнал регистрации данных анализатора:
 - время опроса: автоматически согласуется с интервалом измерения;
 - не более 2 журналов регистрации данных;
 - 20000 записей на журнал регистрации;
 - графическое отображение (кривые нагрузки) или нумерованный список;
 - заводская настройка: включено для всех каналов, кольцевая память (FIFO).
- Журналы регистрации данных для цифровых датчиков:
 - настраиваемое время сканирования: 1−3600 с (1 ч);
 - не более восьми (8) журналов регистрации данных;
 - 150 000 записей в каждом журнале;
 - графическое отображение (кривые нагрузки) или нумерованный список.
- Журнал калибровки: не более 75 записей.
- Журнал регистрации аппаратного обеспечения:
 - конфигурация и изменения состава аппаратного обеспечения;
 - не более 125 записей.
- Журнал регистрации версий:
 - помимо прочего, обновления программного обеспечения;
 - не более 50 записей.
- Журнал регистрации событий.
- Журнал регистрации событий анализатора:
 - события непосредственно анализатора;
 - не более 19500 записей, кольцевая память или заполняемая буферная память для записи.
- Журнал регистрации операций: не более 250 записей.
- Диагностический журнал: не более 250 записей.

🗷 8 Журнал регистрации данных: графическое отображение на дисплее

A0024359

Математические функции (виртуальные параметры процесса)

Помимо «реальных» параметров процесса, поступающих от подключенных физических датчиков или аналоговых входов, можно использовать математические функции для вычисления до 6 «виртуальных» параметров процесса.

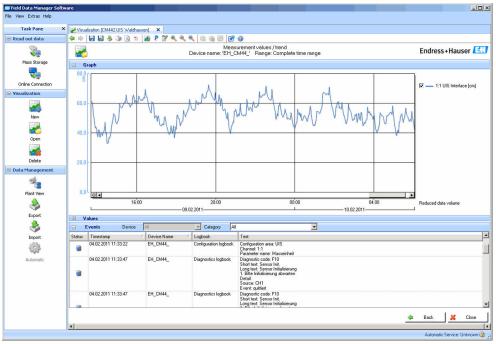
«Виртуальные» параметры процесса могут использоваться следующими способами.

- Вывод через токовый выход или цифровую шину
- В качестве управляемых переменных
- Назначение датчику предельного значения в качестве измеряемых величин
- В качестве измеряемой переменной для запуска очистки
- Отображение в пользовательских меню измерения

Доступны следующие математические функции.

- Подсчет рН для двух значений проводимости в соответствии со стандартом 405 VGB, например в питательной котловой воде.
- Расхождение между двумя значениями измеряемой величины, полученными из различных источников, например для контроля мембран.
- Дифференциальная проводимость, например для контроля эффективности ионообменников.
- Проводимость при дегазации, например для управления технологическими процессами на электростанциях.
- Резервирование для контроля над двумя или тремя одновременно работающими датчиками.
- Расчет rH на основе измеренных значений от датчика рН и ОВП.
- Редактор формул мощный математический инструмент и средство обработки логических операций с несколькими (не более трех) измеренными значениями.

FieldCare


Программное обеспечение для настройки и управления парком приборов, созданное на основе технологии FDT/DTM

- Полная настройка прибора при подключении через FXA291 и сервисный интерфейс
- Доступ ко многим параметрам настройки и данным идентификации, измерений и диагностики при подключении через модем HART
- Возможность загрузки журналов регистрации в формате CSV или двоичном формате для программного обеспечения Field Data Manager

Field Data Manager

Программное средство визуализации и база данных измерений, калибровки и настройки

- ullet База данных SQL с защитой от несанкционированного доступа
- Функции импорта, сохранения и печати журналов регистрации
- Кривые нагрузки для отображения измеряемых значений

🗷 9 Field Data Manager: отображение кривых нагрузки

A0016009

SD-карта

Сменный носитель данных обеспечивает следующие возможности.

- Быстрое и простое обновление программного обеспечения
- Быстрое и простое обновление и модернизация списков параметров измерения
- Хранение данных внутренней памяти прибора (например, журналов регистрации)
- Перенос всех параметров конфигурации на прибор с идентичным составом (функция резервного копирования)
- Перенос параметров конфигурации без названия прибора и адреса системной шины на приборы с идентичным составом (функция копирования)

Endress+Hauser предлагает соответствующие отраслевым стандартам SD-карты в качестве аксессуаров. Эти карты памяти обеспечивают максимальную целостность и безопасность данных.

Также можно использовать другие карты SD. Однако Endress+Hauser не несет ответственности за безопасность данных на этих картах.

Функции самодиагностики

Электронная часть

- Токовые входы деактивируются в случае перегрузки по току и повторно активируются по окончании этой перегрузки.
- Выполняется измерение напряжений и температуры платы.

Счетчик

Счетчики обеспечивают отслеживание потребления расходных материалов, таких как реагенты или дозаторы.

Фотометр

- Автоматический контроль температуры.
- Активный контроль связи между блоком фотометра и электронной частью анализатора.

Датчик утечки в корпусе

Защита данных

Все параметры настройки, журналы регистрации и т.п. хранятся в энергонезависимой памяти, что обеспечивает сохранность данных даже при сбое питания.

ІТ-безопасность

Гарантия на устройство действует только в том случае, если его установка и использование производятся согласно инструкциям, изложенным в Руководстве по эксплуатации. Устройство оснащено механизмом обеспечения защиты, позволяющим не допустить внесение каких-либо непреднамеренных изменений в установки устройства.

Безопасность информационных технологий соответствует общепринятым стандартам безопасности оператора и разработана с целью предоставления дополнительной защиты устройства, в то время как передача данных прибора должна осуществляться операторами самостоятельно.

Вход

Измеряемые переменные	e Общее содержание азота [мг/л, ppm]		
Диапазон измерения	CA80TN-**S5:	0-10 мг/л N общ.	
	CA80TN-**S6:	0-50 мг/л N общ.	
	CA80TN-**S7:	0-200 мг/л N общ.	
Типы входов	 от 1 до 4 цифровых входов для датчиков с поддержкой технологии Memosens (дополнительно) Аналоговые токовые входы (дополнительно) Двоичные входы (дополнительно) 		
Входной сигнал	В зависимости от исполнения 2 x 0/4 20 мA (опция), пассивный, потенциально изолированный		
Токовый вход, пассивный	Диапазон > 0 20 мА		
	Характеристика сигнала Линейная		
	Внутреннее сопротивлен Нелинейное	ие	
	Испытательное напряже 500 В	ние	
Спецификация кабелей (для опциональных датчиков с поддержкой технологии Memosens)	Тип кабеля Кабель передачи данных Memosens CYK10 или фиксированный кабель датчика, каждый с лужеными концами или круглым разъёмом М12 (опция,) Длина кабеля Макс. 100 м (330 футов)		

Выход

Выходной сигнал

В зависимости от исполнения

- 2 x 0/4-20 мA, активный, потенциально изолированный (стандартное исполнение)
- 4 х 0/4–20 мА, активный, потенциально изолированный (исполнение с 2 аналоговыми выходами)
- 6 x 0/4-20 мA, активный, потенциально изолированный (исполнение с 4 аналоговыми выходами)
- Двоичные выходы

PROFIBUS DP/RS485	
Кодирование сигнала	EIA/TIA-485, совместимость с интерфейсом PROFIBUS DP согласно стандарту МЭК 61158
Скорость передачи данных	9,6 кбод, 19,2 кбод, 45,45 кбод, 93,75 кбод, 187,5 кбод, 500 кбод, 1,5 Мбод, 6 Мбод, 12 Мбод
Гальваническая развязка	Да
Разъемы	Пружинная клемма (не более 1,5 мм), с внутренней перемычкой (Т-функция), М12 (опционально)
Терминирование шины	Внутренний ползунковый переключатель со светодиодной индикацией

Modbus RS485	
Кодирование сигнала	EIA/TIA-485
Скорость передачи данных	2400, 4800, 9600, 19 200, 38 400, 57 600 и 115 200 бод
Гальваническая развязка	Да
Терминирование шины	Внутренний ползунковый переключатель со светодиодной индикацией

Веб-сервер и система Modbus TCP		
Кодирование сигнала	IEEE 802.3 (Ethernet)	
Скорость передачи данных	10/100 Мбод	
Гальваническая развязка	Да	
Подключение	RJ45, опционально - M12	
ІР-адрес	DHCP или настройка с помощью меню	

EtherNet/IP	
Кодирование сигнала	IEEE 802.3 (Ethernet)
Скорость передачи данных	10/100 Мбод
Гальваническая развязка	Да
Подключение	RJ45, опционально – M12 (D-кодирование)
ІР-адрес	DHCP (по умолчанию) или настройка через меню

PROFINET	
Кодирование сигнала	IEEE 802.3 (Ethernet)
Скорость передачи данных	100 Мбод
Гальваническая развязка	Да
Подключение	RJ45
Название станции	Через протокол DCP с помощью инструмента настройки (например, Siemens PRONETA)
ІР-адрес	Через протокол DCP с помощью инструмента настройки (например, Siemens PRONETA)

Аварийный сигнал

Регулируемый, согласно рекомендации NAMUR NE 43

- В диапазоне измерений 0...20 мА:
 - Ток наличия ошибки 0 ... 23 мА
- В диапазоне измерения 4...20 мА:
 Ток наличия ошибки 2,4 ... 23 мА
- Заводская настройка тока наличия ошибки для обоих диапазонов измерения: 21.5 мА

Нагрузка

Макс. 500 Ом

Режим передачи данных

Линейная

Токовые выходы, активные

Диапазон

0...23 мА

Характеристика сигнала

Линейная

Электрические параметры

Выходное напряжение

Макс. 24 В

Испытательное напряжение

500 B

Спецификация кабелей

Тип кабеля

Рекомендуется экранированный кабель

Спецификация кабелей

Макс. 2,5 мм² (14 AWG)

Релейные выходы

Электрические параметры

Типы реле

- 1 одноштырьковый переключающий контакт (сигнальное реле)
- 2 или 4 одноштырьковых переключающих контакта (опция, с модулями расширения)

Максимальная нагрузка

Сигнальное реле: 0,5 AВсе остальные реле: 2,0 A

Коммутационная способность реле

Базовый модуль (Сигнальное реле)

Переключающее напряжение	Нагрузка (макс.)	Количество циклов переключения (мин.)
230 B~, cosΦ = 0,81	0,1 A	700 000
	0,5 A	450 000
115 B~, cosΦ = 0,81	0,1 A	1 000 000
	0,5 A	650 000
24 B=, L/R = 01 MC	0,1 A	500 000
	0,5 A	350 000

Модул расширения

Переключающее напряжение	Нагрузка (макс.)	Количество циклов переключения (мин.)
230 B~, cosΦ = 0,81	0,1 A	700 000
	0,5 A	450 000
	2 A	120 000
115 B~, cosΦ = 0,81	0,1 A	1 000 000
	0,5 A	650 000
	2 A	170 000
24 B=, L/R = 01 MC	0,1 A	500 000
	0,5 A	350 000
	2 A	150,000

Минимальная нагрузка (типовая)

Мин. 100 мА при 5 В=

■ Мин. 1 мА при 24 В=

Мин. 5 мА при 24 В~
Мин. 1 мА при 230 В~

Характеристики протоколов

חח	^	ויח	וחו	ו זכי	DP
PК	u	rı	Ю	כנו	אנו

Идентификатор изготовителя	11 _h
Тип прибора	155E _h
Версия профиля	3.02
Файлы базы данных прибора (GSD- файлы)	www.endress.com/profibus Менеджер интеграции устройств (DIM)
Выходные переменные	16 блоков аналогового ввода, 8 блоков цифрового ввода
Входные переменные	4 блока аналогового вывода, 8 блоков цифрового вывода
Поддерживаемые функции	 1 разъём MSCYO (циклическая связь, главное устройство класса 1 к ведомому) 1 разъём MSAC1 (ациклическая связь, главное устройство класса 1 к ведомому) 2 разъёма MSAC2 (ациклическая связь, главное устройство класса 2 к ведомому) Блокировка прибора: возможна аппаратная или программная блокировка прибора. Адресация с помощью DIL-переключателей или через ПО GSD, PDM DD, DTM

Modbus RS485

Протокол	RTU / ASCII
Коды функций	03, 04, 06, 08, 16, 23
Поддержка широковещательной передачи для кодов функций	06, 16, 23
Выходные данные	16 измеренных значений (величина, единица измерения, состояние), 8 цифровых значений (величина, состояние)
Входные данные	4 контрольные точки (величина, единица измерения, состояние), 8 цифровых значений (величина, состояние), диагностическая информация
Поддерживаемые функции	Возможность настройки адреса посредством переключателя или программного обеспечения

Modbus TCP

порт ТСР	502
Соединения ТСР	3
Протокол	Данные датчиков передаются от датчиков Memosens по протоколам цифровых шин EtherNet/IP и Modbus TCP
Коды функций	03, 04, 06, 08, 16, 23
Поддержка широковещательной передачи для кодов функций	06, 16, 23
Выходные данные	16 измеренных значений (величина, единица измерения, состояние), 8 цифровых значений (величина, состояние)
Входные данные	4 контрольные точки (величина, единица измерения, состояние), 8 цифровых значений (величина, состояние), диагностическая информация
Поддерживаемые функции	Возможность настройки адреса посредством DHCP или программного обеспечения

Веб-сервер

Веб-сервер обеспечивает полный доступ к настройке прибора, измеренным значениям, диагностическим сообщениям, журналам и сервисным данным через стандартные маршрутизаторы WiFi/WLAN/LAN/GSM или 3G с помощью IP-адреса, заданного пользователем.

Порт ТСР	80
Поддерживаемые функции	 Настройка прибора посредством дистанционного доступа(1 сеанс) Сохранение/восстановление параметров настройки прибора (посредством SD-карты) Экспорт журнала (форматы файлов: CSV, FDM) Доступ к веб-серверу через интерфейс DTM или веббраузер Internet Explorer Вход в систему Веб-сервер можно деактивировать

Ethernet/IP

	I	
Протокол	EtherNet/IP	
Сертификация ODVA	Да	
Профиль прибора	Семейство устройств (тип продукта: 0х2В)	
ID изготовителя	0x049E _h	
ID типа прибора	0x109F	
Полярность	Auto-MIDI-X	
Соединения	CIP	12
	I/O	6
	Явное сообщение	6
	Многоадресная передача	3 принимающих точки
Мин. RPI	100 мс (по умолчанию)	
Makc. RPI	10 000 мс	
Системная интеграция	EtherNet/IP	EDS
	Rockwell	Add-on-Profile Level 3, лицевая панель для Factory Talk SE

Данные ввода/вывода	Вход (Т → О)	Состояние прибора и диагностическое сообщение с наивысшим приоритетом Измеренные значения: 16 AI (аналоговый вход) + состояние + единица измерения 8 DI (дискретный вход) + состояние
	Выход→ Т)	Управляющие значения: 4 АО (аналоговый выход) + состояние + единица измерения 8 DO (дискретный выход) + состояние

PROFINET

Протокол	«Протокол прикладного уровня для периферийных приборов и распределенных автоматизированных систем», PNIO версии 2.34	
Тип связи	100 Мбит/с	
Класс соответствия	Класс соответствия В	
Класс действительной нагрузки	Класс действительной нагрузки II	
Скорость передачи	Автоматический выбор 100 Мбит/с определением полнодуплексного режима	
Периоды циклов	От 32 мс	
Профиль прибора	Идентификатор прикладного интерфейса 0xF600 Общего назначения	
Интерфейс PROFINET	1 порт, Realtime класс 1 (RT_CLASS_1)	
Идентификатор изготовителя	0x11 _h	
Идентификатор типа прибора	0x859F _h	
Файлы описания прибора (GSD)	Информацию и файлы можно получить в следующих источниках. ■ www.endress.com На странице изделия: Documents/Software → Device drivers ■ www.profibus.com С помощью веб-сайта, используя средство поиска изделий	
Полярность	Автоматическая настройка полярности для коррекции перекрещивающихся пар TxD и RxD	
Поддерживаемые подключения	 1 х AR (контроллер ввода/вывода AR) 1 х AR (допустимо подключение к устройству контроля ввода/вывода AR) 1 х вход CR (Интерфейс связи) 1 х выход CR (Интерфейс связи) 1 х аварийный сигнал CR (Интерфейс связи) 	
Опции настройки измерительного прибора	 Веб-браузер Программное обеспечение данного изготовителя (FieldCare, DeviceCare) Основной файл прибора (GSD), доступен для чтения посредством встроенного веб-сервера измерительного прибора 	
Настройка названия прибора	Протокол DCP	

Поддерживаемые функции	 Идентификация и техническое обслуживание Простая идентификация прибора по следующим данным. Система управления технологическими процессами Заводская табличка Состояние измеренного значения Переменные процесса связаны с состоянием измеренного значения Режим мигания индикатора (FLASH_ONCE) на локальном дисплее для простой идентификации и назначения прибора Управление прибором посредством управляющей программы (например, FieldCare, DeviceCare)
Системная интеграция	Дополнительную информацию о системной интеграции см. в руководстве по эксплуатации Циклическая передача данных Обзор и описание модулей Кодировка состояния Настройка запуска Заводская настройка

Источник питания

Напряжение питания	■ От 100 до 120 В перем. тока/от 200 до 240 В перем. тока ■ 50 или 60 Гц
Подключение к шине Fieldbus	Напряжение питания: неприменимо
Потребляемая мощность	180 B·A
Кабельные вводы	 4 отверстия под M16, G3/8, NPT3/8", соединение Memosens ¹⁾ 4 просверленных отверстия для M20, G1/2, NPT1/2"

Спецификация кабелей

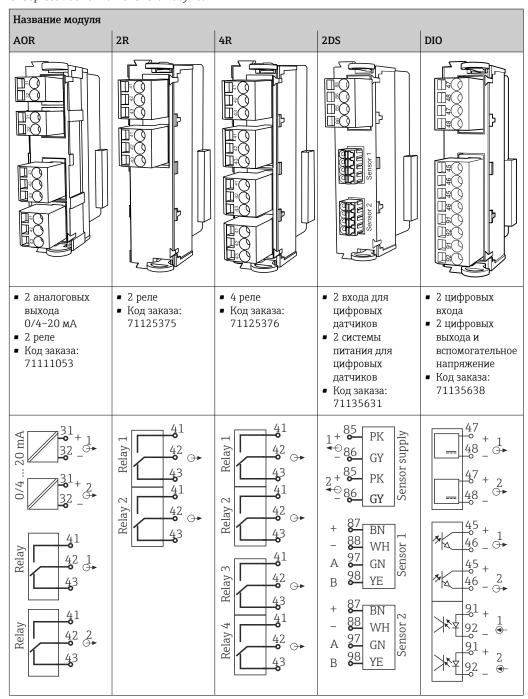
Кабельное уплотнение	Разрешенный диаметр кабеля
М16 х 1,5 мм	От 4 до 8 мм (от 0,16 до 0,32 дюйма)
M12 x 1,5 мм (заказываемый вариант исполнения с разъемом M12 для датчиков Memosens)	От 2 до 5 мм (от 0,08 до 0,20 дюйма)
М20 х 1,5 мм	От 6 до 12 мм (от 0,24 до 0,48 дюйма)
NPT ³ / ₈ "	От 4 до 8 мм (от 0,16 до 0,32 дюйма)
$G^3/_8$	От 4 до 8 мм (от 0,16 до 0,32 дюйма)
NPT½"	От 6 до 12 мм (от 0,24 до 0,48 дюйма)
G½	От 7 до 12 мм (от 0,28 до 0,48 дюйма)

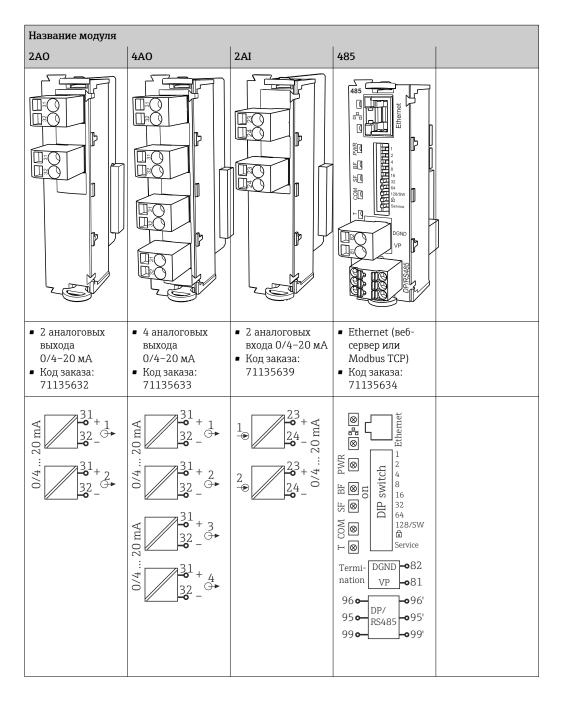
? Кабельные уплотнения, установленные производителем, затянуты моментом 2 $H \cdot M$.

Подключение опциональных блоков

Модули расширения позволяют расширять функциональные возможности имеющегося прибора.

1)


УВЕДОМЛЕНИЕ


Недопустимые комбинации аппаратных средств (вызывающие конфликты в системе электропитания)

Возможно ухудшение точности измерений или общий отказ точки измерения в результате нагрева или перегрузки

- ▶ Выясните, приведет ли запланированное обновление прибора к допустимой комбинации аппаратных средств (конфигуратор на веб-сайте www.endress.com).
- ▶ Допускается не более восьми токовых входов и токовых выходов.
- ▶ Допускается не более двух блоков DIO.
- ▶ При наличии любых вопросов свяжитесь с региональным торговым представительством Endress+Hauser.
- 📺 Кабельные вводы и допустимые значения диаметра кабелей

Обзор всех дополнительных модулей

PROFIBUS DP (модуль 485) Контакты 95, 96 и 99 соединены в разъеме перемычками. Это позволяет избежать прерывания связи по протоколу PROFIBUS при отсоединении разъема.

Подключение датчиков (опционально)

Датчики с протоколом Memosens

Типы датчиков	Кабель датчика	Датчики
Цифровые датчики без дополнительного встроенного источника питания	Со вставным соединением и передачей индуктивного сигнала	 Датчики рН Датчики ОВП Комбинированные датчики Датчики кислорода (амперометрические и оптические) Датчики проводимости с кондуктивным измерением проводимости Датчики хлора (дезинфекция)
	Фиксированный кабель	Датчики проводимости с индуктивным измерением проводимости
Цифровые датчики с дополнительным встроенным источником питания	Фиксированный кабель	 Датчики мутности Датчики для измерения уровня границы раздела сред Датчики для измерения коэффициента спектральной абсорбции (SAC) Датчики нитратов Оптические датчики кислорода Ионоселективные датчики

Рабочие характеристики

Максимальная погрешность измерения ²⁾	0-10 мг/л (ppm) N (без разбавления) 0 - 20/50/100 мг/л (ppm) N 0-200 мг/л (ppm) N	$0.1 \ \mathrm{Mr/n}$ (ppm) N $\leq 2 \ \mathrm{Mr/n}$ 3% от верхнего предела диапазона измерения $> 2 \ \mathrm{Mr/n}$ 3% от верхнего предела диапазона измерения 5% от верхнего предела диапазона измерения
Максимальная погрешность измерения для входов датчиков	→ Документация подключенного датчика	
Максимальная погрешность измерения для токовых входов и выходов	Типичные погрешности измерения: < 20 мкА (для значений тока < 4 мА) < 50 мкА (для значений тока 420 мА) при 25 °C (77° F) во всех вариантах	

Дополнительное отклонение измерения в зависимости от температуры:

LOD (предел обнаружения)

 $0.06 \text{ мг/л (ppm) N}^{3)}$

< 1,5 mkA/K

Повторяемость 2)

Диапазон измерения	Повторяемость
0-10 мг/л (ppm) N	0,06 мг/л (ppm) или 3% измеряемой величины
0-20 мг/л (ppm) N	0,12 мг/л (ppm) N или 3% измеряемой величины
0-50 мг/л (ppm) N	0,3 мг/л (ppm) N или 3% измеряемой величины
0-100 мг/л (ppm) N	0,6 мг/л (ppm) N или 3% измеряемой величины
0-200 мг/л (ppm) N	2 мг/л (ppm) N или 5% измеряемой величины

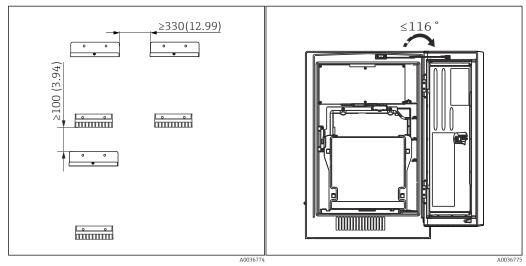
²⁾ Погрешность измерения включает в себя все погрешности анализатора. При этом она не включает погрешности стандартных растворов, используемых в качестве эталона.

³⁾ В диапазоне без разбавления

Повторяемость результатов измерений для входов с датчиков	→ Документация подключенного датчика
	Непрерывный (примерно 55 мин), регулируемый от 45 мин до 24 ч
Требования, предъявляемые к пробам	Без блока разбавления 27 мл (0,91 ж Унция)
	С блоком разбавления Проба: 15 мл (0,51 ж Унция) Разбавляющая вода: приблизительно 20 мл (0,68 fl.oz) на одно измерение Используйте деминерализованную воду для проб с прогнозируемой концентрацией < 50 мг/л (ppm).
Требования, предъявляемые к реагентам	 ■ RB 1,35 мл (0,05 жид. унции) на один реагент и на одно измерение ■ RK 0,9 мл (0,03 жид. унции) на один реагент и на одно измерение При интервале измерения 1 час срок расхода одного набора реагентов составляет 3 месяца
Требования, предъявляемые к стандартным растворам	При интервале калибровки 96 часов—примерно 330 мл (11,2 fl.oz) в месяц
Периодичность калибровки	4 дня
Периодичность технического обслуживания	Один раз в неделю, в зависимости от области применения
Мероприятия технического обслуживания	 Еженедельно: внешний осмотр Ежемесячно: 1 час
	Монтаж
	При монтаже прибора необходимо соблюдать следующие правила.

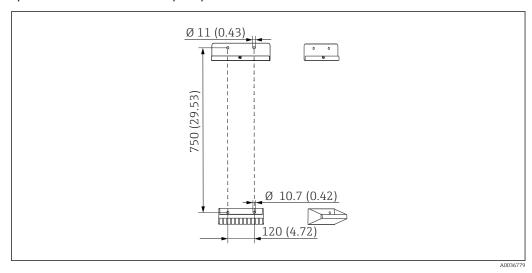
Место монтажа

- При настенном монтаже убедитесь в достаточной несущей способности стены и в том, что она абсолютно вертикальна.
- При монтаже на опоре устанавливайте прибор на горизонтальную поверхность.
- Защитите прибор от дополнительного нагрева (например, от системы отопления).
- Обеспечьте защиту прибора от механических вибраций.
- Защитите прибор от коррозионно-опасных газов, например от сероводорода (H₂S) .
- Учитывайте максимальный перепад высоты и максимальное расстояние от точки забора.
- Проследите за тем, чтобы из устройства был обеспечен свободный слив, без эффекта сифона.
- Убедитесь в свободной циркуляции воздуха через переднюю панель корпуса.
- Открытые анализаторы (т. е. анализаторы, поставляемые без дверцы) можно монтировать только в закрытых помещениях, в защитных шкафах или аналогичных местах.


Инструкции по монтажу

Прибор можно монтировать в следующих вариантах компоновки.

- Прибор, монтируемый на стену.
- Прибор, монтируемый на опору.


Endress+Hauser

Зазоры, необходимые при монтаже анализатора

- 10 Минимальные расстояния для монтажа.Единица измерения мм (дюйм).
- 🗷 11 Максимальный угол раскрытия

Требования в отношении зазоров при настенном монтаже

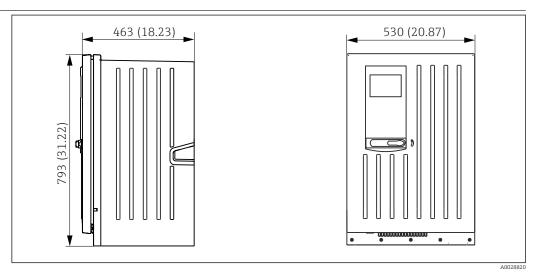
🗷 12 🛮 Размеры блока держателя. Единица измерения – мм (дюйм)

Условия окружающей среды

Диапазон температуры окружающей среды	от +5 до +40 °C (от 41 до 104 °F)
Температура хранения	−20 до 60 °C (−4 до 140 °F)
Относительная влажность	10 до 95 %, без конденсации
Степень защиты	IP55 (корпус, стойка анализатора), TYPE 3R (корпус)
Электромагнитная совместимость ⁴⁾	Помехи и устойчивость к помехам согласно EN 61326-1: 2013, класс A, промышленные нормативы

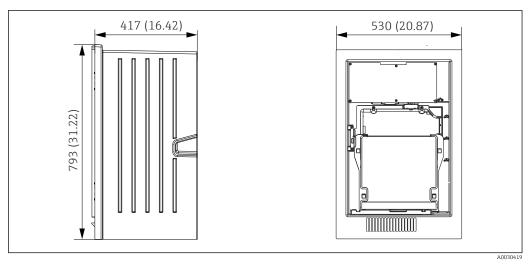
⁴⁾ Для обеспечения нормальной работы прибора характеристики электросети должны соответствовать заявленным требованиям.

22

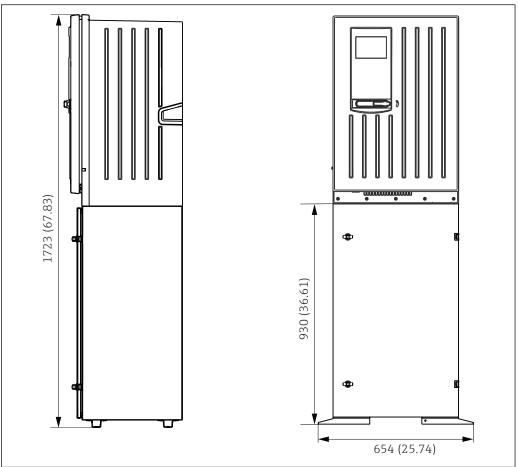

Электробезопасность	В соответствии с EN/IEC 61010-1:2010, класс оборудования I Низкое напряжение: категория защиты от повышенного напряжения II Для установки на высоте до 2000 м (6500 футов) над уровнем моря
Степень загрязнения	2-й уровень загрязненности

Параметры технологического процесса

Температура проб	4 до 40 °C (39 до 104 °F)
Консистенция проб	Небольшое содержание твердых частиц, водянистая, гомогенизированная
Подача пробы	Анализатор (без Y-образного фильтра (опционально)): Без давления
	 Y-образный фильтр (опционально): ■ Допустимый диапазон давления: макс. 4 бар (58,01 psi) ■ Расход: обеспечьте достаточную подачу к Y-образному фильтру, который должен быть полностью заполнен⁵⁾


Механическая конструкция

Размеры



🛮 13 Liquiline System CA80, закрытое исполнение, размеры в мм (дюймах)

⁵⁾ Чем выше подача, тем выше эффект самоочистки подающего трубопровода. Предпочтительно: > 1 м³/ч

€ 14 Liquiline System CA80, открытое исполнение, размеры в мм (дюймах)

■ 15 Liquiline System CA80 с опорой, размеры в мм (дюймах)

Материалы

Компоненты, не контактирующие со средой	
Исполнение с корпусом типа «шкаф», наружное покрытие	Пластмасса, акрилонитрил+поликарбонат
Открытый монтаж, наружное покрытие	
Исполнение с корпусом типа «шкаф», внутреннее покрытие	Пластмасса – полипропилен

Открытый монтаж, внутреннее покрытие	
Окно	Безосколочное стекло с покрытием
Резервуар для реагента	Пластмасса – полипропилен
Опора, опора анализатора	Листовая сталь с порошковым покрытием

Детали, контактирующие со средой	
Вентильный блокУплотнения клапановПережимной клапан	 Пластмасса ЕТFE Пластмасса FKM Пластмасса – полипропилен и РСТFE
Шланги	 ПТФЭ Шланг для подачи пробы: PharMed Шланги клапанов на сливе из реактора в емкость для отходов: C-Flex
Реактор • Клапаны реактора • Уплотнение	■ ПТФЭ ■ Пластмасса FFKM

Входы шлангов

4 х просверленных отверстия для М32, для входящего и выходящего потока пробы

Спецификация шлангов

Анализатор:

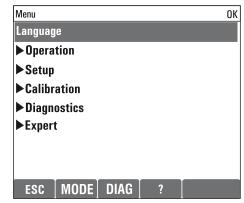
- Зазор: макс. 5,0 м (16,4 фута)
- Высота: макс. 2 м (6,6 фута)
- Внутренний диаметр шланга: 1,6 мм ($^{1}/_{16}$ дюйма)

Ү-образный фильтр (опционально):

- Шланг к анализатору:
 - Внутренний диаметр 1,6 мм ($^{1}/_{16}$ дюйма)
 - Внешний диаметр 3,2 мм (¹/₈ дюйма)
- Шланг к процессу:
 - Внутренний диаметр 0,8 мм (¹/₃₂ дюйма)
 - Внешний диаметр 1,6 мм ($^{1}/_{16}$ дюйма)

Технологическое соединение, Y-образный фильтр (опционально)

Клеевое соединение, внутренний диаметр 40 мм, прямое


Управление

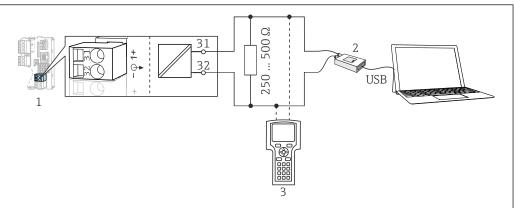
Принцип управления

Простая и упорядоченная концепция управления устанавливает новые стандарты:

- Интуитивное управление посредством навигационных и программных кнопок
- Быстрое конфигурирование опций измерения в соответствии с областью применения
- Простая настройка и диагностика с помощью текстового дисплея
- Все доступные языки интерфейса поставляются с каждым прибором

🖪 16 Простое управление

🖪 17 Текстовое меню

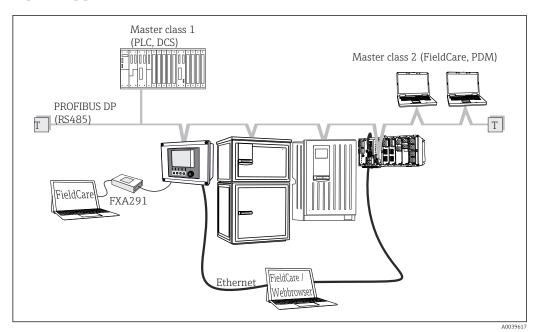

Дисплей

Графический дисплей:

- Разрешение: 240 x 160 пикселей
- Подсветка с функцией выключения
- Красный фон дисплея как предупреждение об ошибках
- Технология прозрачно-отражающего дисплея обеспечивает максимальную контрастность даже в условиях повышенной яркости

Дистанционное управление

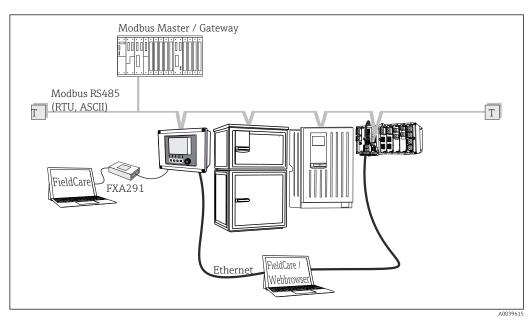
Посредством HART (например, с помощью модема HART и FieldCare)


A00396

■ 18 Передача данных по протоколу НАЯТ посредством модема

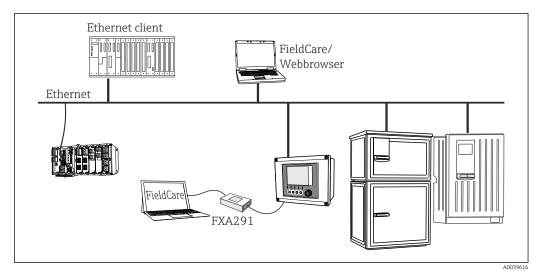
- 1 Модуль прибора Base2-E: токовый выход 1 с интерфейсом HART
- 2 Модем HART для подключения к ПК, например Commubox FXA191 (RS232) или FXA195 ¹⁾ (USB)
- 3 Портативный терминал HART

¹⁾ Положение выключателя ВКЛ. (заменяет резистор)


Через интерфейс PROFIBUS DP

■ 19 PROFIBUS DP

Т Оконечный резистор


Через интерфейс Modbus RS485

■ 20 Modbus RS485

Т Оконечный резистор

Через интерфейс Ethernet: веб-сервер/Modbus TCP/PROFINET/Ethernet/IP

🗷 21 Modbus TCP или EtherNet/IP или PROFINET

Языковые пакеты

Предварительно заданным языком управления является язык, выбранный при заполнении комплектации изделия. Выбор других языков осуществляется при помощи меню.

- Английский (США)
- Немецкий
- Китайский (упрощенный, КНР)
- Чешский
- Голландский
- Французский
- Итальянский
- Японский
- Польский
- Португальский
- Русский
- Испанский
- Турецкий
- Венгерский
- ХорватскийВьетнамский

Доступность других языков можно проверить в разделе комплектации изделия на веб-сайте www.endress.com/.

Сертификаты и свидетельства

Те сертификаты и свидетельства, которые уже получены для изделия, перечислены в конфигураторе выбранного продукта на веб-сайте www.endress.com.

- 1. Выберите изделие с помощью фильтров и поля поиска.
- 2. Откройте страницу изделия.
- 3. Откройте вкладку Конфигурация.

Оформление заказа

Конфигуратор изделия

- 1. Конфигурация: нажмите эту кнопку на странице изделия.
- 2. Выберите пункт **Выбор варианта Extended**.
 - ▶ В отдельном окне откроется средство конфигурирования.

28

- 3. Выполните конфигурирование прибора в соответствии с собственными потребностями, выбрав нужный параметр для каждой функции.
 - 🕒 В результате будет создан действительный полный код заказа прибора.
- 4. **Apply**: добавьте сконфигурированное изделие в покупательскую корзину.
- Пля многих изделий предусмотрена загрузка чертежей изделия в выбранном исполнении в формате CAD или 2D.
- 5. Show details: откройте эту вкладку для изделия в покупательской корзине.
 - Отображается ссылка на чертежи в формате САD. При соответствующем выборе формат отображения 3D входит в число вариантов загрузки различных форматов.

Комплект поставки

В комплект поставки входят следующие компоненты.

- 1 анализатор в заказанном исполнении с дополнительным оборудованием
- 1 краткое руководство по эксплуатации (бумажный экземпляр)
- 1 руководство по техническому обслуживанию
- Дополнительные аксессуары

Аксессуары

Далее перечислены наиболее важные аксессуары, доступные на момент выпуска настоящей документации.

Перечисленные ниже аксессуары технически совместимы с изделием, указанным в инструкции.

- 1. Возможны ограничения комбинации продуктов в зависимости от области применения. Убедитесь в соответствии точки измерения условиям применения. За это отвечает оператор измерительного пункта.
- 2. Обращайте внимание на информацию в инструкциях ко всем продуктам, особенно на технические данные.
- 3. Для получения информации о не указанных здесь аксессуарах обратитесь в сервисный центр или отдел продаж.

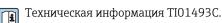
Аксессуары к прибору

Расходные материалы

Коды заказа указаны на веб-сайте: https://www.endress.com/device-viewer.

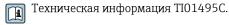
- 1. Укажите серийный номер прибора.
- 2. Выполните поиск.
 - ┕ Будут отображены сведения о приборе.
- 3. Откройте вкладку «Запасные части».
- 4. Выберите семейство изделий.
 - ▶ Будет отображена полная спецификация изделия.

Выпускаются перечисленные ниже расходные материалы.

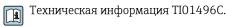

- Реагенты и стандартные растворы CY80TN
- Очиститель СҮ800 (для шлангов в приборе)

Датчики

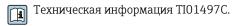
Стеклянные рН-электроды


Memosens CPS11E

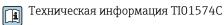
- Датчик измерения рН для стандартных применений в промышленности и экотехнологиях
- Цифровой датчик с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps11e


Memosens CPS41E

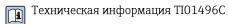
- Датчик рН для технологического процесса.
- С керамической диафрагмой и жидким электролитом KCl.
- Цифровой датчик с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps41e


Memosens CPS71E

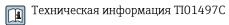
- Датчик рН для химико-технологического применения
- С ионной ловушкой для устойчивого к отравлению электрода сравнения
- Цифровой датчик с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps71e


Memosens CPS91E

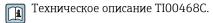
- Датчик уровня рН для сильнозагрязненных сред
- С открытой диафрагмой
- Цифровой датчик с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps91e


Memosens CPS31E

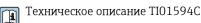
- Датчик рН для стандартного применения в сферах подготовки питьевой воды и воды для бассейнов
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps31e


Memosens CPS71E

- Датчик рН для химико-технологического применения
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps71e


Memosens CPS91E

- Датчик рН для сильно загрязненных сред
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps91e


Ceramax CPS341D

- Датчик рН с чувствительной к рН эмалью.
- Соответствует самым высоким требованиям в отношении точности измерения, давления, температуры, стерильности и прочности.
- Product Configurator на странице изделия: www.endress.com/cps341d.

Memosens CPF81E

- Датчик измерения рН для горнодобывающей промышленности, для очистки промышленных и сточных вод
- Цифровой, с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cpf81e

ОВП-электроды

Memosens CPS12E

- Датчик измерения ОВП для стандартных применений в промышленности и экотехнологиях
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps12e

Техническая информация TI01494C

Memosens CPS42E

- Датчик ОВП для технологического процесса
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps42e

Техническая информация TI01575C

Memosens CPS72E

- Датчик ОВП для применения в химико-технологической сфере
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps72e

Техническая информация TI01576C

Memosens CPS92E

- Датчик ОВП для сильно загрязненных сред
- Цифровой датчик с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cps92e

Техническая информация TI01577C

Memosens CPF82E

- Датчик измерения ОВП для горнодобывающей промышленности, для очистки промышленных и сточных вод
- Цифровой, с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cpf82e

Техническое описание TI01595C

Датчики проводимости, работающие по принципу индуктивного измерения

Indumax CLS50D

- Индуктивный датчик проводимости с высокой износостойкостью
- Для применения в безопасных и взрывоопасных зонах
- С поддержкой технологии Memosens
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cls50d

Техническое описание TI00182C

Датчики проводимости, работающие по принципу кондуктивного измерения

Memosens CLS21E

- Цифровой датчик проводимости для технологических сред со средней или высокой проводимостью
- Кондуктивное измерение
- С поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cls21e

Техническая информация TI01528C

Датчики содержания кислорода

Memosens COS51E

- Амперометрический датчик содержания кислорода для использования в секторах водоподготовки, водоотведения и коммунального хозяйства
- Цифровой, с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cos51e

Техническое описание ТІО1620С

Memosens COS81E

- Гигиенический оптический датчик измерения содержания растворенного кислорода в воде с максимальной стабильностью в течение многих циклов стерилизации
- Цифровой с поддержкой технологии Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cos81e

Техническое описание TI01558C

Memosens COS22E

- Амперометрический датчик содержания кислорода для гигиенического применения с максимальной стабильностью измерения в течение многих циклов стерилизации
- Цифровой, с технологией Memosens 2.0
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cos22e

Техническое описание TI01619C

Датчики диоксида хлора и хлора

Memosens CCS50D

- Мембранный амперометрический датчик измерения концентрации диоксида хлора
- С технологией Memosens
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/ccs50d

Техническое описание TI01353C

Memosens CCS51D

- Датчик измерения концентрации остаточного свободного хлора
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/ccs51d

Техническая информация TI01423C

Ионоселективные датчики

ISEmax CAS40D

- Ионоселективные датчики
- Product Configurator на странице изделия: www.endress.com/cas40d

Техническое описание TI00491C

Датчики мутности

Turbimax CUS51D

- Для нефелометрического измерения мутности и содержания твердых веществ в сточных водах
- Метод 4 пучков рассеянного света
- С технологией Memosens
- Product Configurator на странице изделия: www.endress.com/cus51d

Техническое описание ТІОО461С

Turbimax CUS52D

- Гигиенический датчик Memosens для измерения мутности в питьевой воде, технической воде и системах обеспечения
- С поддержкой технологии Memosens
- Product Configurator на странице изделия: www.endress.com/cus52d

Техническое описание TI01136C

Датчики коэффициента спектральной абсорбции и датчики содержания нитратов

Viomax CAS51D

- Измерение спектрального коэффициента поглощения и концентрации нитратов в питьевой воде и сточных водах
- С технологией Memosens
- Product Configurator на странице изделия: www.endress.com/cas51d

Техническое описание ТІОО459С

32

Измерение межфазного уровня

Turbimax CUS71D

- Погружной датчик для измерения межфазного уровня
- Ультразвуковой датчик для определения межфазного уровня
- Product Configurator на странице изделия: www.endress.com/cus71d

Техническое описание TI00490C

Кабельный соединитель с застежкой-липучкой

- 4 шт., для кабеля датчика
- Код заказа: 71092051

Аксессуары для связи

Дополнительные функции

▶ При заказе кодов активации необходимо указывать серийный номер прибора.

	Связь; программное обеспечение
51516983	Commubox FXA291 (аппаратное обеспечение)
71127100	SD-карта с программным обеспечением Liquiline, 1 ГБ, промышленная флэш-память
71135636	Код активации для интерфейса Modbus RS485
71219871	Код активации для интерфейса EtherNet/IP
71135635	Код активации интерфейса PROFIBUS DP для модуля 485
71449914	Код обновления для интерфейса EtherNet/IP + веб-сервер для модуля BASE2
71449915	Код обновления для интерфейса Modbus TCP + веб-сервер для модуля BASE2
71449918	Код обновления веб-сервера для модуля BASE2
71449901	Код обновления для интерфейса PROFINET + веб-сервер для модуля BASE2
71249548	Комплект СА80: код активации для первого цифрового входа датчика
71249555	Комплект СА80: код активации для второго цифрового входа датчика

	Комплекты для модернизации
71136999	Комплект CSF48/CA80: для модернизации, сервисный интерфейс (фланцевый соединитель CDI, контргайка)
71111053	Комплектный модуль AOR: 2 реле, 2 аналоговых выхода 0/4-20 мА
71125375	Комплектный модуль 2R: 2 реле
71125376	Комплектный модуль 4R: 4 реле
71135632	Комплектный модуль 2АО: 2 аналоговых выхода 0/4-20 мА
71135633	Комплектный модуль 4АО: 4 аналоговых выхода 0/4-20 мА
71135631	Комплектный модуль 2DS: 2 цифровых датчика с поддержкой технологии Memosens
71135634	Комплектный модуль 485: PROFIBUS DP или Modbus RS485. Для этого необходим дополнительный код активации, который заказывается отдельно.
71135638	Комплектный модуль DIO: 2 цифровых входа; 2 цифровых выхода; вспомогательный источник питания для цифрового выхода
71135639	Комплектный модуль 2AI: 2 аналоговых входа 0/4-20 мA
71140888	Комплект для обновления модуля 485 + Profibus DP
71140889	Комплект для обновления модуля 485 RS485+ Modbus RS485
71141366	Комплект, модуль расширения задней панели

Программное обеспечение

Memobase Plus CYZ71D

- Программное обеспечение для ПК выполнение лабораторной калибровки
- Визуализация и документирование управления датчиками
- Сохранение данных калибровки датчиков в базе данных
- Средство конфигурирования изделия на странице прибора: www.endress.com/cyz71d

Техническое описание ТІОО5О2С

Программное обеспечение Field Data Manager MS20/21

- Программное обеспечение для ПК централизованное управление данными
- Визуализация серии измерений и событий в журнале регистрации
- Надежное хранение в базе данных SQL

Системные компоненты

Измерительный кабель

Кабель данных Memosens CYK10

- Для цифровых датчиков с поддержкой технологии Memosens
- Конфигуратор выбранного продукта на странице изделия: www.endress.com/cyk10

Техническая информация ТІОО118С.

Кабель данных Memosens CYK11

- Удлинительный кабель для цифровых датчиков, подключаемых по протоколу Memosens.
- Product Configurator на странице изделия: www.endress.com/cyk11.

Техническое описание ТІОО118С

Измерительный кабель СҮК81

- Кабель без разъемов для удлинения кабелей датчиков (например, Memosens, CUS31/CUS41)
- $2 \times 2 \times 2 \times 3$ жилы, витые с экраном и покрытием ПВХ ($2 \times 2 \times 0.5 \times 4 \times 2 \times 10.5 \times 10^{-2}$ мм² + экран)
- Продажа в метрах, номер заказа.: 51502543

SD-карта

- Промышленная флэш-память, 1 Гб
- Код заказа: 71110815

www.addresses.endress.com