Texническое описание Prosonic M FMU42

Ультразвуковая измерительная технология

Компактный преобразователь для бесконтактного измерения уровня HART

Применение

- Двухпроводное исполнение для бесконтактного измерения уровня и расхода
- Присоединение к процессу: резьба
- Температура: -40 до 80 °C (-40 до 176 °F)
- Давление: 0,7 до 2,5 бар (10,15 до 36,25 фунт/кв. дюйм)
- Максимальный диапазон измерения: жидкости 10 м (33 фут), сыпучие материалы 5 м (16 фут)
- Блокирующая дистанция: жидкости и сыпучие материалы 0,4 м (1,3 фут)
- Международные сертификаты взрывозащиты

Преимущества

- Надежный бесконтактный метод измерения
- Простое локальное управление с помощью меню, 4-строчный текстовый дисплей, выбор из 7 языков
- Отображение огибающих кривых на локальном дисплее позволяет осуществлять точную диагностику
- Герметичный датчик
- Химически стойкий датчик из материала PVDF
- Калибровка без заполнения или опорожнения
- Встроенный датчик температуры для коррекции времени пролета сигнала, обеспечивающий точное измерение даже при изменении температуры

Содержание

Информация о документе	3
Принцип действия и архитектура системы	4
Принцип измерения	4 5
измерительная система)
Вход . Измеряемая переменная . Диапазон измерения . Рабочая частота, уровень звукового давления	6
Выход Выходной сигнал Аварийный сигнал Нагрузка Демпфирование выходного сигнала Линеаризация	7 7 7 7
Источник питания Назначение клемм Сетевое напряжение Потребляемая мощность Потребление тока Клеммы Кабельные вводы Спецификация кабеля НАRT Пульсация НАRT	8 8 9 9 9 9 9
Рабочие характеристики Стандартные рабочие условия Разрешение измеренного значения Максимальная погрешность измерения Погрешность измерения Время отклика Частота импульсов Влияние газовой фазы	9 9 9
Монтаж	10 10 14
Условия окружающей среды Диапазон температуры окружающей среды Температура хранения Сопротивляемость термическому удару Климатический класс Степень защиты Вибростойкость Электромагнитная совместимость	15 15 15 15 15 15 16 16
Параметры технологического процесса	16 16 16

Механическая конструкция Конструкция, размеры Размеры Масса Материалы Присоединения к процессу	16 16 19
Управление Языки Локальное управление Дистанционное управление Системная интеграция	20 20 21
Сертификаты и свидетельства	25
Информация о заказе	26
Аксессуары	28
Сопроводительная документация	30
Запегистрированные товарные знаки	31

Информация о документе

Символы

Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

Электротехнические символы

<u></u>

— Заземление

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

Термостойкость соединительных кабелей

Минимально допустимое значение термостойкости соединительных кабелей

Описание информационных символов

✓ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

🔀 Запрещено

Означает запрещенные процедуры, процессы или действия.

Рекомендация.

Указывает на дополнительную информацию.

📵 Ссылка на документацию

1., 2., 3. Серия шагов

▶ Результат отдельного этапа

Символы, изображенные на рисунках

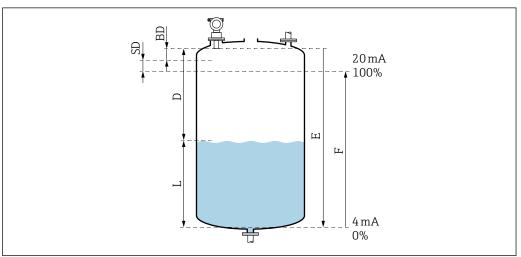
1., 2., 3. Серия шагов

1, 2, 3 ... Номера пунктов

Принцип действия и архитектура системы

Принцип измерения

Датчик излучает ультразвуковые импульсы в направлении поверхности жидкости. Ультразвуковые импульсы отражаются от поверхности среды и принимаются датчиком. Прибор измеряет время t между передачей и приемом импульса. Прибор использует время t (и скорость звука c) для расчета расстояния D между мембраной датчика и поверхностью среды:


$D = c \cdot t/2$

Из значения D выводится уровень L. При линеаризации из значения L выводится объем (V) или масса (M).

Расстояние при пустом резервуаре E известно из данных, введенных пользователем, поэтому рассчитать уровень в системе прибора можно следующим образом:

L = E - D

Встроенный датчик температуры (типа NTC) обеспечивает компенсацию связанных с температурой изменений скорости звука.

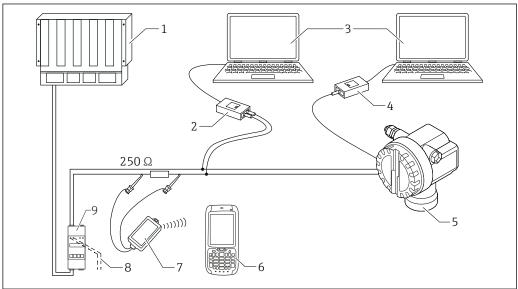
A003838

- 🗉 1 Параметры, необходимые для надлежащей работы прибора
- SD Безопасное расстояние
- BD Блокирующая дистанция
- Е Расстояние при пустом резервуаре
- L Уровень
- D Расстояние от мембраны датчика до поверхности среды
- F Диапазон измерения (полное расстояние)

Подавление эхо-помех (сканирование)

Эхо-помехи (например, от ребер, сварных швов или внутренних креплений) не интерпретируются как эхо-сигналы уровня.

Калибровка


Для регулировки прибора необходимо указать расстояние при пустом резервуаре (E) и диапазон измерения (F).

Блокирующая дистанция

Диапазон (F) должен находиться вне блокирующей дистанции (BD). Эхо-сигналы уровня в пределах блокирующей дистанции невозможно оценить ввиду переходных характеристик датчика.

Измерительная система

Выход 4-20 мА с протоколом HART

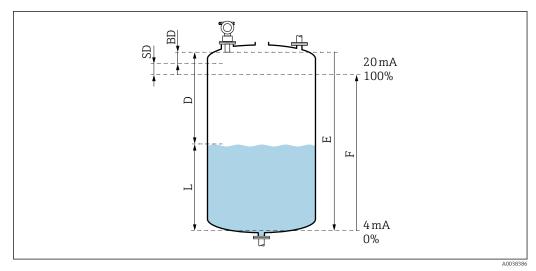
- **₽** 2 Полная измерительная система Prosonic M
- 1 ПЛК (программируемый логический контроллер)
- 2 Commubox FXA195
- 3 Компьютер с управляющей программой (например, FieldCare)
- 4 Commubox FXA291 с адаптером ToF, FXA291
- Прибор, например Prosonic
- 6 Field Xpert
- Bluetooth-модем VIATOR с соединительным кабелем
- 8 Подключение для прибора Commubox или Field Xpert
- Блок питания преобразователя с резистором связи
- Если резистор связи HART не встроен в блок питания, необходимо встроить резистор сопротивлением 250 Ом в двухпроводной кабель.

Локальное управление

- Посредством блока управления и дисплея
- Посредством персонального компьютера, адаптера ТоF модели FXA291 (USB) и управляющей программы FieldCare
- FieldCare представляет собой графическую управляющую программу для измерительных приборов, например для использования с радарами, ультразвуковыми волнами и направленными микроимпульсами. Эту программу можно использовать для ввода приборов в эксплуатацию, сохранения данных, описания анализа сигнала и документирования точки измерения.

Дистанционное управление

- Посредством прибора Field Xpert
- Посредством персонального компьютера, модема Commubox FXA195 и управляющей программы FieldCare


Вход

Измеряемая переменная

Расстояние (D) между мембраной датчика и поверхностью среды

Используя функцию линеаризации, прибор использует расстояние D для вычисления следующих параметров в любых единицах измерения:

- уровень (L);
- объем (V);
- расход (Q) в мерных желобах или открытых лотках.

🗷 3 Параметры, необходимые для надлежащей работы прибора

- BD Блокирующая дистанция
- SD Безопасное расстояние
- Е Расстояние при пустом резервуаре
- L Уровень
- Расстояние от мембраны датчика до поверхности среды
- F Диапазон измерения (полное расстояние)

Диапазон измерения

Диапазон

Диапазон датчика зависит от следующих условий измерения:

- блокирующая дистанция (BD): 0,4 м (1,3 фут);
- максимальный диапазон для жидкостей: 10 м (33 фут);
- максимальный диапазон для сыпучих материалов: 5 м (16 фут).

Условия эксплуатации и значения затухания

Оценка диапазона датчика

- 1. Сложите все применимые значения затухания.
- По общему расчетному значению затухания используйте приведенную ниже таблицу диапазонов, чтобы рассчитать диапазон датчика.

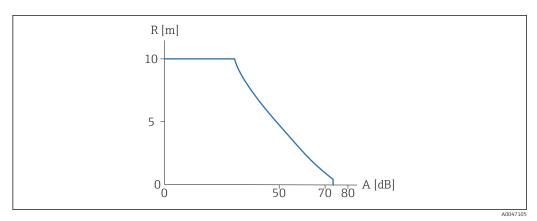
Поверхность жидкости

- Спокойная: 0 дБ
- С волнами: 5 до 10 дБ
- Сильная турбулентность, например при использовании мешалок: 10 до 20 дБ
- Пенообразование: обратитесь в торговую организацию компании Endress+Hauser.

Поверхность сыпучего материала

- Твердая, грубая, например щебень: 40 дБ
- Мягкая, например торф, пылеватый клинкер: 40 до 60 дБ

Пыль


- Пылеобразование отсутствует: 0 дБ
- Незначительное пылеобразование: 5 дБ
- Значительное пылеобразование: 5 до 20 дБ
- Для типичных условий применения с сыпучими материалами характерно наличие некоторого количества пыли.

Наличие струи заполнения в диапазоне обнаружения

- Отсутствует: 0 дБ
- Незначительное количество: 5 до 10 дБ • Значительное количество: 10 до 40 дБ

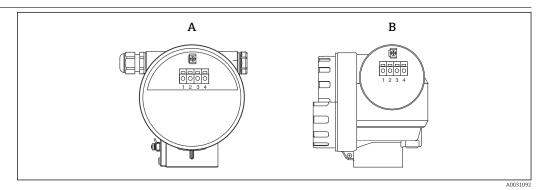
Температурная разница между датчиком и поверхностью среды

- < 20 °C (68 °F): 0 дБ
- < 40 °C (104 °F): 5 до 10 дБ
- < 80 °C (176 °F): 10 до 20 дБ

₽ 4 График диапазона

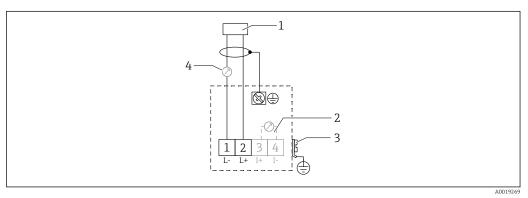
Рабочая частота, уровень звукового давления

- Рабочая частота: примерно 42 кГц
- Максимальный уровень звукового давления непосредственно перед датчиком: 149 дБ
- Расстояние для порогового значения 110 дБ: 2,7 м (8,9 фут)


Выход

Выходной сигнал	4 до 20 мА с интерфейсом HART
 Аварийный сигнал	Просмотр информации о неисправности Локальный дисплей (символ ошибки, код ошибки и текстовое описание) Токовый выход, режим отказа можно выбрать, например согласно рекомендации NAMUF NE43 Цифровой интерфейс
Нагрузка	Нагрузка, минимально необходимая для связи через интерфейс HART: 250 Ом
	Определяется пользователем, 0 до 255 с
Линеаризация	Функция линеаризации предоставляет следующие возможности: преобразование измеренного значения в любую единицу измерения длины или объема; с помощью линеаризации возможно измерение расхода в открытых лотках или мерных желобах

- - (преобразование уровня воды в соответствующий расход);
- предварительно запрограммированная таблица линеаризации для расчета объема в горизонтальных цилиндрических резервуарах;
- ввод информации в таблицы осуществляется вручную или полуавтоматически. Объем измеряется в литрах. Допускается не более 32 пар значений;
- управляющая программа FieldCare сохраняет и автоматически рассчитывает таблицу для резервуара, желоба или лотка любой формы;
- рассчитывайте графики расхода для открытых лотков и загружайте их в память прибора с помощью управляющей программы FieldCare.


Источник питания

Назначение клемм

■ 5 Расположение клемм

- A Kopnyc F12
- B Kopnyc T12

🗉 6 Назначение клемм для прибора в двухпроводном исполнении

- 1 Сетевое напряжение
- 2 Контрольная клемма для проверки сигнального тока
- 3 PAL (выравнивание потенциалов)
- 4 4-20 мA HART
- Присоедините соединительную линию к винтовым клеммам в клеммном отсеке.
- Используйте витую пару (экранированный двухжильный кабель).
- Встроены цепи защиты от обратной полярности, высокочастотного воздействия и скачков перенапряжения (ТІОО241F/ОО/EN, «Процедуры испытания на ЭМС»).
- Аналоговый сигнал: используйте стандартный монтажный кабель.
- Сигнал связи (HART): используйте экранированный кабель.

Сетевое напряжение

Двухпроводное исполнение, HART

Напряжение непосредственно на клеммах прибора

Стандартное исполнение

- Потребление тока 4 мА | напряжение на клеммах 14 до 36 В
- Потребление тока 20 мА | напряжение на клеммах 8 до 36 В

Ex ia

- Потребление тока 4 мА | напряжение на клеммах 14 до 30 В
- Потребление тока 20 мА | напряжение на клеммах 8 до 30 В

Ex d

- Потребление тока 4 мА | напряжение на клеммах 14 до 30 В
- Потребление тока 20 мА | напряжение на клеммах 11 до 30 В

Фиксированный ток, напряжение непосредственно на клеммах прибора

Настраивается пользователем, например для работы от солнечной батареи (измеренное значение передается через интерфейс HART).

	Стандартное исполнение
	Потребление тока 11 мА напряжение на клеммах 10 до 36 В
	Ex ia Потребление тока 11 мА напряжение на клеммах 10 до 30 В
	Фиксированный ток для режима Multidrop
	Стандартное исполнение Потребление тока 4 мА (пусковой ток: 11 мА), напряжение на клеммах 14 до 36 В
	Ex ia Потребление тока 4 мА (пусковой ток: 11 мА), напряжение на клеммах 14 до 30 В
Потребляемая мощность	Прибор в двухпроводном исполнении: 51 до 800 мВт
Потребление тока	Прибор в двухпроводном исполнении: 3,6 до 22 мА
Клеммы	Площадь поперечного сечения проводника: 0,5 до 2,5 мм² (от 20 до 14 AWG)
	Не изолированные провода или многопроволочный провод Максимально допустимая длина: 7 мм (0,28 дюйм) Для многопроволочных проводов следует использовать кабельные наконечники
Кабельные вводы	 Резьба G ½ или NPT ½ Кабельное уплотнение: M20 × 1,5 (диаметр кабеля 6 до 10 мм (0,24 до 0,39 дюйм))
Спецификация кабеля HART	 Для передачи наложенных сигналов связи (НАRT): используйте экранированный кабель. Встроены цепи защиты от обратной полярности, высокочастотного воздействия и скачков перенапряжения. Для передачи аналоговых сигналов используйте стандартный монтажный кабель.
Пульсация HART	47 до 125 Гц: U _{ss} = 200 мВ (при сопротивлении 500 Ом)
Помехи HART	От 500 Гц до 10 кГц: U _{eff} = 2,2 мВ (при сопротивлении 500 Ом)
	Рабочие характеристики
Стандартные рабочие условия	 ■ Температура: +20 °C (+68 °F) ■ Давление: 1013 мбар абс. (15 psi абс.) ■ Влажность: 50 %
	 Идеальная отражающая поверхность, например спокойная, гладкая поверхность жидкости Отсутствие интерференционных отражений внутри сигнального луча Настройка прикладных параметров: Tank shape – Dome ceiling; Medium property – Liquid; Process cond. – Standard liquid.
Разрешение измеренного значения	2 мм (0,08 дюйм)
Максимальная	Согласно стандарту EN 61298-2, в стандартных рабочих условиях
погрешность измерения	±0,2 % по отношению к максимальному диапазону датчика
Погрешность измерения	Не хуже чем ±4 мм (±0,16 дюйм) или 0,2 % от измеряемого расстояния (действительно наибольшее значение).
	Учитывайте типичную погрешность измерения в стандартных рабочих условиях. Пинейность Воспроизводимость Гистерезис

Время отклика	Время отклика зависит от настроенных прикладных параметров. Минимальные значения Прибор в двухпроводном исполнении: ≥ 2 с
Частота импульсов	Точные значения зависят от типа прибора и настройки параметров. Прибор в двухпроводном исполнении: ≤ 0,5 Гц

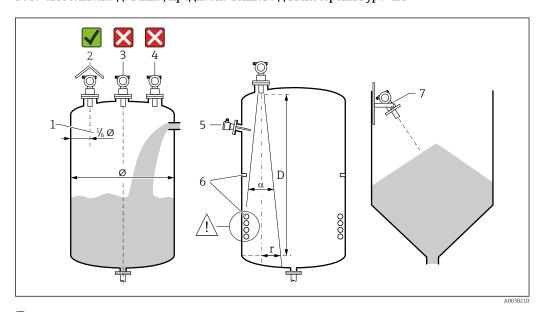
Влияние газовой фазы

Давление паров технологической среды при температуре 20 °C (68 °F) является показателем точности измерения уровня ультразвуковым методом.

Точность

Очень высокая точность: давление паров при температуре 20 °C (68 °F) составляет меньше 50 мбар (1 фунт/кв. дюйм). Это действительно для следующих технологических сред:

- вода
- водные растворы;
- водные взвеси твердых веществ;
- разбавленные кислоты, например соляная или серная кислота;
- разбавленные щелочи, например раствор гидроксида натрия;
- масла, смазки, известковая вода, шламы и пасты.

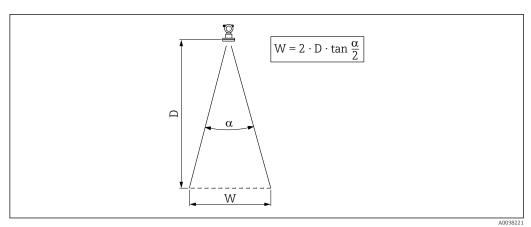

На точность влияет высокое давление паров или выделение газа из технологической среды. Например:

- этанол:
- ацетон;
- аммиак.
- Если предполагается негативное влияние на точность, обратитесь в торговую организацию.

Монтаж

Требования, предъявляемые к монтажу

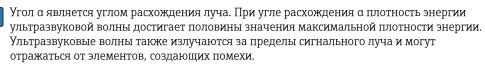
Условия монтажа датчика, предназначенного для измерения уровня

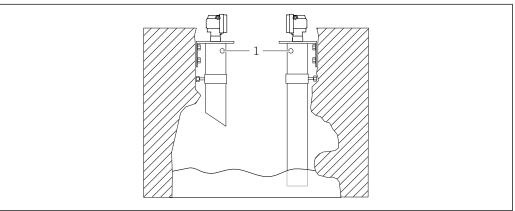

🗷 7 Требования, предъявляемые к монтажу

- 1 Расстояние до стенки резервуара: ¹/₆ от диаметра резервуара
- Используйте защитный козырек от погодных явлений для защиты прибора от воздействия прямых солнечных лучей и дождя
- 3 Не устанавливайте датчик в середине резервуара
- 4 Не следует выполнять измерение сквозь струю заполнения
- 5 Не устанавливайте датчики предельного уровня и датчики температуры в пределах конуса расхождения луча
- 6 Наличие симметричных внутренних элементов, например нагревательных змеевиков и перегородок, негативно влияет на процесс измерения
- 7 Сориентируйте датчик перпендикулярно поверхности среды

10

- Устанавливайте только по одному прибору на каждый резервуар: сигналы от нескольких приборов оказывают взаимное влияние друг на друга.
- Определите диапазон обнаружения с использованием угла расхождения луча 3 дБ (α).


Угол расхождения луча


₩ 8 Взаимосвязь между углом расхождения луча α , расстоянием D и диаметром луча W

Диаметр луча W зависит от угла расхождения луча (α) и расстояния (D).

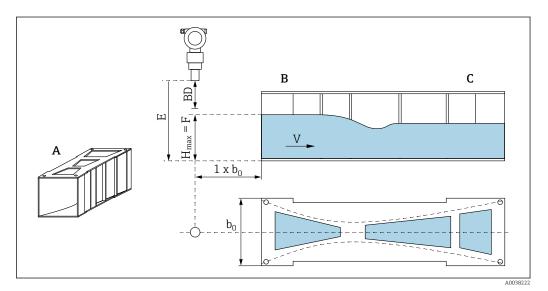
- α: 9 град
- D_{макс.}: 10 м (33 фут)
- r_{макс.}: 0,79 м (2,6 фут)

Узкие шахты, неровные стенки шахт

Монтаж в узких шахтах с очень неровными стенками

Вентиляционное отверстие

В узких шахтах и при наличии значительных неровностей возможны интенсивные эхо-помехи.

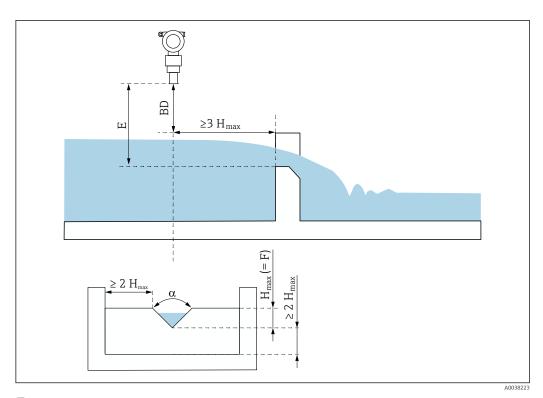

Используйте ультразвуковой волновод диаметром не менее 100 мм (3,94 дюйм), например канализационную трубу из полиэтилена или поливинилхлорида

Не допускайте скопления загрязнений в трубе.

▶ Регулярно очищайте трубу.

Условия монтажа датчика, предназначенного для измерения расхода

- Установите измерительный прибор на входной стороне непосредственно над максимальным уровнем воды в верхнем бъефе Н_{макс.}
- Учитывайте блокирующую дистанцию.
- Расположите измерительный прибор по центру лотка или желоба.
- Выровняйте мембрану датчика так, чтобы она была параллельна поверхности воды.
- Соблюдайте монтажное расстояние от лотка или желоба.
- Введите график линеаризации «расход-уровень» (Q/h curve) с помощью управляющей программы FieldCare или вручную, посредством локального дисплея.

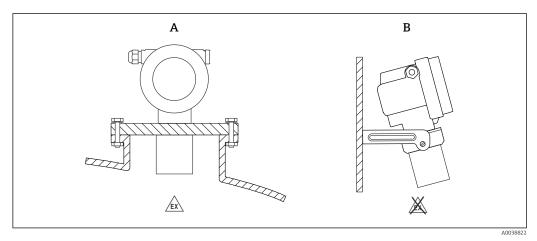

🗷 10 Поток Хафаги-Вентури (пример)

- А Лоток Хафаги-Вентури
- В Входная сторона
- С Выходная сторона
- В Блокирующая дистанция датчика
- Е Калибровка для пустого резервуара (определяется при вводе в эксплуатацию)
- Н Максимальный уровень с входной стороны

макс V

V Расход

b₀ Ширина лотка Хафаги-Вентури

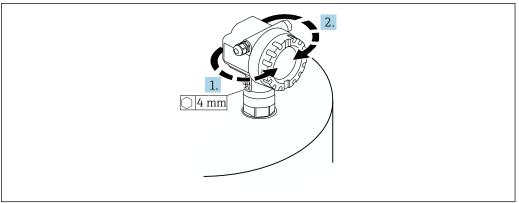


🖪 11 Треугольный желоб (пример)

- BD Блокирующая дистанция датчика
- Е Калибровка для пустого резервуара (определяется при вводе в эксплуатацию)
- F Калибровка для полного резервуара
- Н Максимальный уровень с входной стороны

макс.

Примеры монтажа



🗷 12 Примеры монтажа

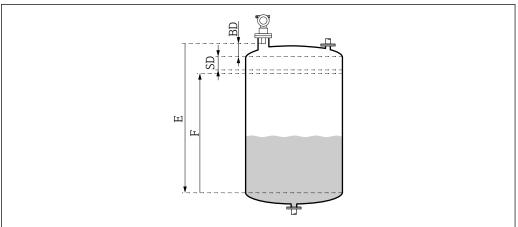
А Монтаж с помощью универсального фланца (например, во взрывоопасной зоне, в зоне категории 20)

В Монтаж с помощью монтажного кронштейна (невзрывоопасная зона, зона категории 20)

Поворот корпуса

A003777

🗉 13 Поворот корпуса F12 или T12, (для примера изображен корпус F12)

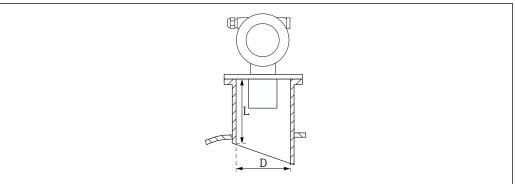

- 1. Ослабьте крепежный винт.
- 2. Поверните корпус в необходимом направлении на угол не более 350 град.
- 3. Затяните крепежный винт моментом не более 0,5 Нм (0,36 фунт сила фут).
- Зафиксируйте крепежный винт; используйте клей, специально предназначенный для металла.

Блокирующая дистанция

УВЕДОМЛЕНИЕ

Если расстояние составляет меньше блокирующей дистанции, то возможно повреждение прибора.

- Установите измерительный прибор на достаточной высоте так, чтобы блокирующая дистанция не была достигнута при максимальном уровне заполнения.
- ▶ Определите безопасное расстояние (SD).
- ► Если уровень поднимается до безопасного расстояния (SD), прибор выдает предупреждение или аварийный сигнал.
- Измерительный диапазон (F) не должен входить в пределы блокирующей дистанции (BD).
 Эхо-сигналы уровня, находящегося в пределах блокирующей дистанции, невозможно оценить вследствие непостоянного отклика датчика.


A003823

🗷 14 Параметры, которые необходимы для надлежащей работы прибора

- BD Блокирующая дистанция
- SD Безопасное расстояние
- Е Калибровка для пустого резервуара
- F Диапазон измерения

14

Установочный патрубок

40020271

■ 15 Определение длины (L) и диаметра (D) патрубка

- D Диаметр патрубка
- L Длина патрубка

Условия

- Гладкая внутренняя поверхность патрубка
 Зачистите все кромки, сварные швы и заусенцы на внутренней стороне патрубка со стороны резервуара
- Чтобы свести к минимуму искажающие факторы, требуется ввариваемый патрубок со скошенным краем (идеальный вариант – 45 град).
- Соблюдайте максимально допустимую длину патрубка

Максимально допустимая длина патрубка

Значения диаметра при максимально допустимой длине патрубка

- DN80/3 дюйма: 250 мм (9,84 дюйм)
- DN100/4 дюйма: 300 мм (11,8 дюйм)
- DN150/6 дюймов: 400 мм (15,7 дюйм)
- DN200/8 дюймов: 400 мм (15,7 дюйм)
- DN250/10 дюймов: 400 мм (15,7 дюйм)
- DN300/12 дюймов: 400 мм (15,7 дюйм)

Условия окружающей среды

Диапазон температуры окружающей среды

-40 до +80 °С (-40 до +176 °F)

При температуре Tu < -20 °C (-4 °F) и Tu > 60 °C (140 °F) функциональность ЖК-дисплея ограничивается.

В случае эксплуатации прибора на открытой площадке под воздействием прямых солнечных лучей используйте защитный козырек от погодных явлений. Можно заказать в качестве аксессуара.

-40 до +80 °С (-40 до +176 °F)

Соответствует стандарту DIN EN 60068-2-14; испытание №: +80 до –40 °C (+176 до –40 °F), 1 К/min, 100 циклов

Климатический класс

термическому удару

- DIN EN 60068-2-38 (испытание Z/AD)
- DIN/IEC 68 T2-30Db

Степень защиты

При закрытом корпусе испытания проведены согласно следующим правилам

- IP68, NEMA 6P (в течение 24 ч на глубине 1,83 м (6 фут) под водой);
- IP66, NEMA 4X.

При открытом корпусе испытания проведены согласно следующим правилам
IP20, NEMA 1 (включая степень защиты дисплея).

Вибростойкость

DIN EN 60068-2-64/IEC 68-2-64: 20 до 2 000 Гц, 1 $(\text{м/c}^2)^2$ /Гц; 3 x 100 мин

Электромагнитная совместимость

Электромагнитная совместимость соответствует всем применимым требованиям, перечисленным в стандарте серии EN 61326 и рекомендациях NAMUR в отношении ЭМС (NE 21).

Более подробные сведения приведены в декларации соответствия.

- Наложенный сигнал связи (HART): используйте экранированный кабель.
- Аналоговый сигнал: используйте стандартный монтажный кабель.

Параметры технологического процесса

Диапазон рабочей температуры

-40 до +80 °C (-40 до +176 °F)

Датчик температуры, встроенный в описываемый датчик, корректирует зависимое от температуры время пролета звукового сигнала.

Диапазон рабочего давления

0,7 до 2,5 бар абс. (10,15-36,25 рsі)

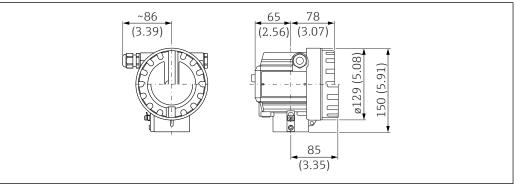
Механическая конструкция

Размеры см. в разделе Product Configurator: www.endress.com

Найдите изделие \rightarrow нажмите кнопку «Configuration» (Конфигурирование) справа от фотографии продукта \rightarrow закончив конфигурирование, нажмите кнопку CAD

Следующие значения размеров являются округленными. По этой причине они могут слегка отличаться от размеров, указанных на веб-сайте www.endress.com.

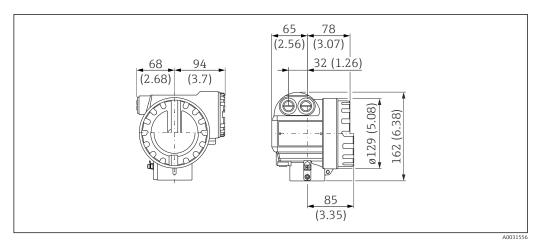
Конструкция, размеры

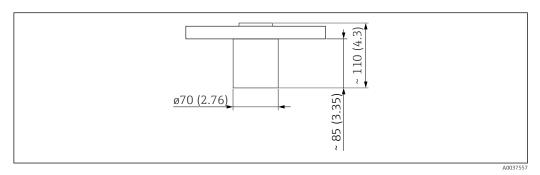

Типы корпусов

- F12: герметичный клеммный отсек, для стандартных условий применения или применения в зонах категории Ex ia
- Т12: отдельный клеммный отсек, с взрывонепроницаемой оболочкой

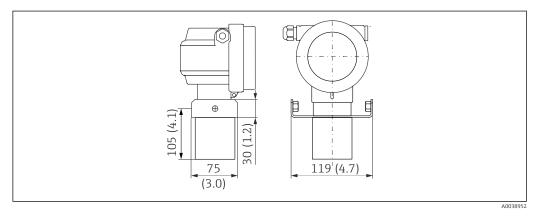
Типы крышек

- Прибор в исполнении без локального дисплея, изготовленный из алюминия
- Прибор в исполнении с локальным дисплеем и окном, без сертификата ATEX II 1/2 D

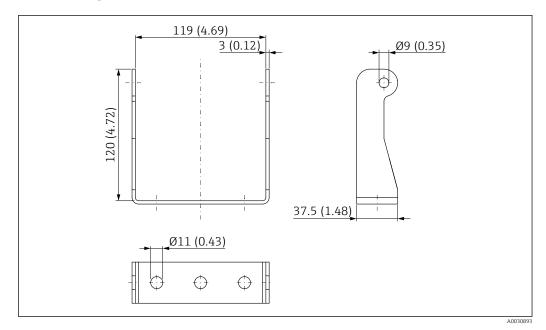

Размеры


🗷 16 Размеры корпуса F12. Единица измерения мм (дюйм)

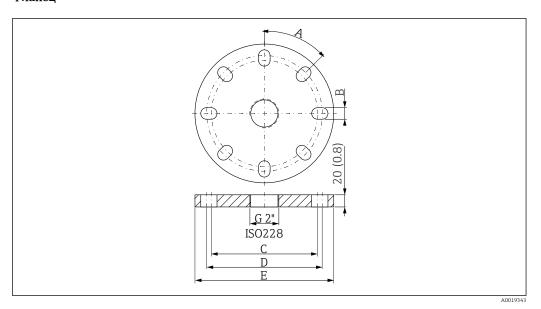
16 Endress+Hauser


A00314

🖻 17 🛮 Размеры корпуса Т12. Единица измерения мм (дюйм)



🗷 18 Размеры датчика . Единица измерения мм (дюйм)


🖻 19 Размеры вместе с монтажным кронштейном . Единица измерения мм (дюйм)

Монтажный кронштейн

🗷 20 Монтажный кронштейн. Единица измерения мм (дюйм)

Фланец

🗷 21 Фланец. Единица измерения мм (дюйм)

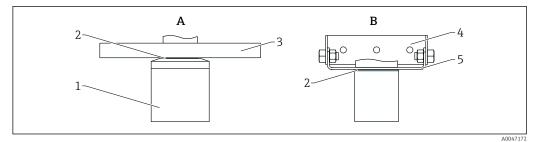
3 дюйма 150 фунтов/DN80 PN16/10K 80

- 8 отверстий
- А: 45 град
- B: 19 мм (0,75 дюйм)
- С: 150 мм (5,91 дюйм)
- D: 160 мм (6,30 дюйм)
- Е: 200 мм (7,87 дюйм)

4 дюйма 150 фунтов/DN100 PN16/10K 100

- 8 отверстий
- А: 45 град
- В: 19 мм (0,75 дюйм)
- С: 175 мм (6,90 дюйм)
- D: 190,5 мм (7,50 дюйм)
- Е: 228,6 мм (9,00 дюйм)

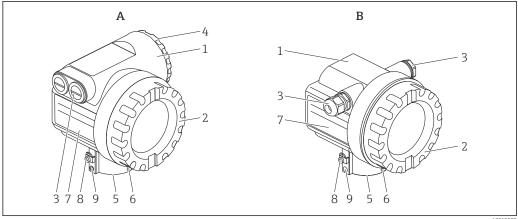
___ 18


Macca

Примерно 3 кг (6,62 фунт)

Материалы

Материалы, контактирующие с технологической средой


- Компания Endress+Hauser поставляет фланцы, изготовленные по стандарту DIN/EN из нержавеющей стали AISI 316L с номером материала 1.4435 или 1.4404. По температурной стабильности материалы 1.4435 и 1.4404 относятся к группе 13ЕО в стандарте EN 1092-1, табл. 18. Химический состав этих двух материалов может быть одним и тем же.
- Перед использованием проверьте устойчивость датчиков к воздействию химических веществ. Обратите внимание на применимые таблицы химической стойкости.

А: фланец. В: монтажный кронштейн

- Датчик: PVDF
- 2 Уплотнение: EPDM или FKM
- 3 Фланец: PP, PVDF или нержавеющая сталь 316L (1.4435 или 1.4404)
- Монтажный кронштейн, винты: 316 Ti (1.4571), V2A
- Монтажный кронштейн, винты: 316 Ti (1.4571), V4A

Материалы, не контактирующие с технологической средой

■ 23 А: корпус Т12. В: корпус F12

- Корпус 1
- 2 Крышка
- 3 Муфта
- Крышка
- Присоединение к процессу
- Ушко для крепления таблички с маркировкой на проволоке
- Заводская табличка
- 8 Клемма заземления
- Винт

Корпус, крышка

- Корпуса Т12 и F12: порошковое покрытие AlSi10Mg
- Крышка (дисплей, клеммный отсек): AlSi10Mg

■ Окно: стекло ESG-K

- Зажим: никелированный сплав CuZn
 - Винт: А4
 - Пружинная шайба: А4
- Клемма заземления
 - Винт: А2
 - Пружинная шайба: А4Зажим: 304 (1.4301)
 - Кронштейн: 301 (1.4310)
- Винт: А2-70
- Уплотнения
 - Уплотнительное кольцо: EPDM
 - Уплотнение окна: силиконовый герметик Gomastit 402

Кабель

- Кабельное уплотнение: полиамид (PA), никелированный сплав CuZn
- Вилка: PBT-GF30 или оцинкованная сталь 1.0718; PE или 3.1655
- Переходник: 316L (1.4435) или AlMgSiPb (анодированный)
- Уплотнительное кольцо: EPDM
- Кабель: VA
- Обжимная втулка: алюминий

Пластины

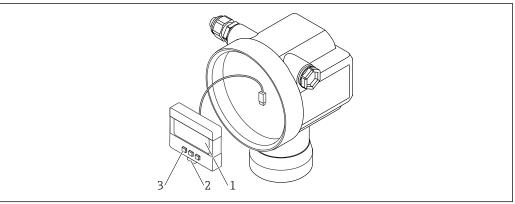
- Табличка с маркировкой, прикрепляемая на проволоке: 304 (1.4301)
- Заводская табличка: 316L (1.4404)
 Штифт с пазом: А4 (1.4571)
- Комплектующие, устойчивые к воздействию морской воды, следует заказывать отдельно (полностью из стали 316L (1.4404)).

Присоединения к процессу

- Универсальный фланец DN 80 PN16/ANSI 3 дюйма, 150 фунтов/JIS 10K 80
- Универсальный фланец DN 100 PN16/ANSI 4 дюйма, 150 фунтов/JIS 16K 100
- Монтажный кронштейн

Управление

Языки


7 языков

- de: немецкий
- en: английский
- es: испанский
- fr: французский
- ја: японский
- it: итальянский
- nl: голландский

Локальное управление

Модуль ЖК-дисплея VU331

- Модуль находится под крышкой корпуса.
- Измеренное значение считывается через стекло в крышке.
- Чтобы осуществить операцию управления, следует открыть крышку.

A0038871

🗗 24 Модуль ЖК-дисплея в корпусе

- Жидкокристаллический дисплей
- 2 Фиксирующий выступ
- 3 Кнопки

Управление с помощью модуля ЖК-дисплея VU331

Меню делится на группы функций и функции. Сопровождение пользователя осуществляется на протяжении всего процесса ввода в эксплуатацию.

- Настройка выполняется с помощью трех кнопок, которые находятся на самом приборе.
- Все функции прибора настраиваются с помощью меню.
- Можно считывать и настраивать прикладные параметры.

Управление посредством прибора Field Xpert

Компактный, универсальный, прочный промышленный портативный терминал для дистанционной настройки параметров и получения измеренных значений через токовый выход HART или через интерфейс FOUNDATION Fieldbus. Более подробные сведения см. в документе «Руководство по эксплуатации» (BA00060S/04).

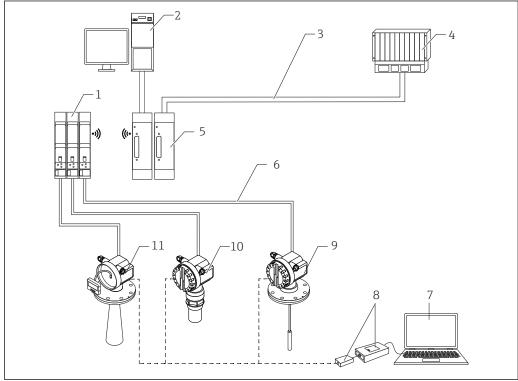
Дистанционное управление

Органы управления FieldCare

FieldCare представляет собой разработанное компанией Endress+Hauser средство управления активами предприятия, основанное на технологии FDT. С помощью ПО FieldCare можно настраивать любые приборы, выпускаемые компанией Endress+Hauser, а также приборы других изготовителей, совместимые со стандартом FDT.

Требования, предъявляемые к аппаратному и программному обеспечению: www.endress.com – выполните поиск по ключевому слову FieldCare

ПО FieldCare поддерживает перечисленные ниже функции:


- настройка преобразователя в интерактивном режиме;
- анализ сигнала с помощью огибающей кривой;
- линеаризация резервуаров;
- загрузка/выгрузка и сохранение данных прибора;
- протоколирование точки измерения.

Варианты подключения:

- интерфейс HART через модем Commubox FXA195 и USB-порт компьютера;
- модем Commubox FXA291 с адаптером ToF, FXA291, через сервисный интерфейс.

Системная интеграция

Endress+Hauser Rackbus

A003837

🗉 25 Системная интеграция с помощью средства Rackbus от компании Endress+Hauser

- 1 Интерфейсный модуль
- 2 Персональный компьютер с коммуникационным программным обеспечением
- 3 Шина
- 4 ПЛК
- 5 Шлюз для интерфейса MODBUS, FIP, PROFIBUS, INTERBUS и т. п.
- 6 4-20 мА HART
- 7 FieldCare
- 8 Commubox FXA291 с адаптером ToF, FXA291
- 9 Levelflex M
- 10 Prosonic M
- 11 Прибор Micropilot M с блоком управления и дисплея

Подключите измерительные приборы к системе Rackbus:

- не более 64 двухпроводных измерительных приборов с поддержкой протокола НАRT;
- через один интерфейсный модуль в каждом случае;
- системная интеграция более высокого уровня осуществляется через шлюз.

ПО SupplyCare для управления складским хозяйством

ПО SupplyCare представляет собой операционное веб-приложение для координации движения материалов и передачи информации по цепочке поставок. ПО SupplyCare обеспечивает, например, комплексный обзор данных об уровнях продукта в географически распределенных резервуарах и бункерах, обеспечивая полную прозрачность в отношении текущего состояния складского хозяйства независимо от времени и местоположения.

С использованием технологии измерения и передачи, реализованной на объекте, текущие данные складского хозяйства собираются и отправляются в ПО SupplyCare. Четко обозначаются критические уровни, а расчетные прогнозы обеспечивают дополнительную безопасность при планировании требований к материальным ресурсам.

Ниже перечислены основные функции ПО SupplyCare.

Визуализация складского хозяйства

ПО SupplyCare регулярно определяет уровни продукта в резервуарах и бункерах. Программа отображает текущие и архивные данные складского хозяйства, а также расчеты

прогнозируемых потребностей. Обзорная страница может быть настроена в соответствии с предпочтениями пользователя.

Обработка основных данных

С помощью ПО SupplyCare можно создавать и обрабатывать основные данные в отношении складских площадок, компаний, резервуаров, продуктов и пользователей, а также авторизации пользователей.

Конфигуратор отчетов

Конфигуратор отчетов может использоваться для быстрого и удобного создания персонализированных отчетов. Отчеты можно создавать в различных форматах, например Excel, PDF, CSV или XML. Передача отчетов возможна по протоколам http, ftp или по электронной почте.

Обработка событий

Программа выделяет различные события, например падение уровня ниже безопасного резерва или плановой точки. К тому же, ПО SupplyCare может уведомлять определенных пользователей по электронной почте.

Аварийные сигналы

При возникновении технической проблемы (например, нарушении подключения) срабатывает аварийная сигнализация и происходит отправка сообщений электронной почты системному администратору и администратору локальной системы.

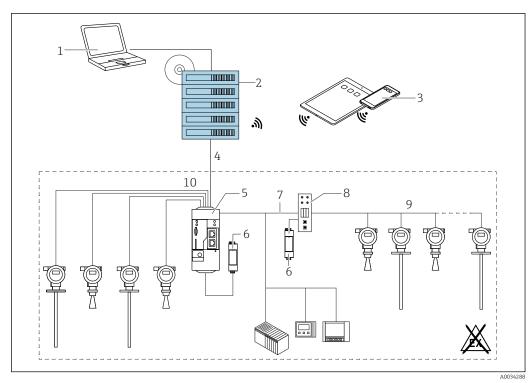
Планирование поставки

Встроенная функция планирования поставки автоматически формирует заявку на заказ при израсходовании запасов ниже предварительно установленного минимального уровня. ПО SupplyCare непрерывно контролирует плановые поставки и расход материалов. ПО SupplyCare уведомляет пользователя об отклонении поставок и расхода от составленного графика.

Анализ

В аналитическом блоке наиболее важные показатели притока и оттока для отдельных резервуаров рассчитываются и отображаются в виде данных и диаграмм. Ключевые показатели управления материальными запасами автоматически рассчитываются и формируют основу для оптимизации процесса доставки и хранения.

Географическая визуализация

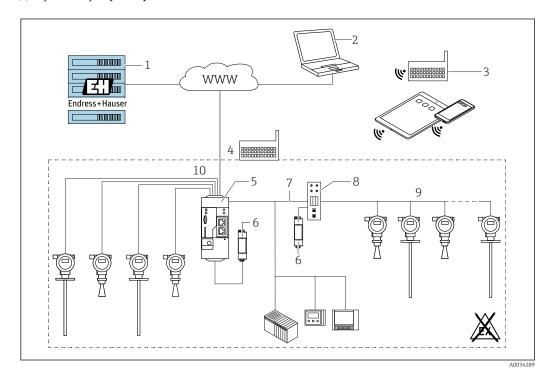

Все резервуары и емкостные парки графически обозначаются на фоне карты Google Maps. Резервуары и емкостные парки могут быть отфильтрованы по группам, продуктам, поставщикам или местоположению.

Поддержка нескольких языков

Многоязычный пользовательский интерфейс поддерживает 9 языков, что обеспечивает возможность глобального сотрудничества на единой платформе. Язык и настройки распознаются автоматически, по данным браузера.

SupplyCare Enterprise

ПО SupplyCare Enterprise работает по умолчанию в качестве службы ОС Microsoft Windows на сервере приложений в среде Apache Tomcat. Операторы и администраторы управляют приложением через веб-браузер со своих рабочих станций.



🖻 26 Пример платформы управления складским хозяйством на основе ПО SupplyCare Enterprise SCE30B

- 1 ПО SupplyCare Enterprise (управление посредством веб-браузера)
- 2 Экземпляр ПО SupplyCare Enterprise
- 3 ПО SupplyCare Enterprise на мобильных устройствах (через веб-браузер)
- 4 Ethernet/WLAN/UMTS
- 5 Fieldgate FXA42
- 6 Блок питания 24 В пост. тока
- 7 Modbus TCP через Ethernet в качестве сервера/клиента
- 8 Преобразователь из Modbus в HART Multidrop
- 9 HART Multidrop
- 10 4 аналоговых входа от 4 до 20 мА (2-проводное/4-проводное подключение)

Приложение облачного muna: SupplyCare Hosting

ПО SupplyCare Hosting служит хостингом («программное обеспечение как услуга»). В данном случае ПО установлено внутри IT-инфраструктуры Endress+Hauser, и пользователь получает доступ к нему через портал Endress+Hauser.

🗷 27 Пример платформы управления складским хозяйством на основе ПО SupplyCare Hosting SCH30

- 1 Экземпляр ПО SupplyCare Hosting в центре обработки данных Endress+Hauser
- 2 Рабочая станция (ПК с доступом к Интернету)
- 3 Складские площадки с подключением к Интернету через 2G/3G (посредством шлюзов FXA42 или FXA30)
- 4 Складские площадки с подключением к Интернету посредством шлюзов FXA42
- 5 Fieldgate FXA42
- 6 Блок питания 24 В пост. тока
- 7 Modbus TCP через Ethernet в качестве сервера/клиента
- 8 Преобразователь из Modbus в HART Multidrop
- 9 HART Multidrop
- 10 4 аналоговых входа от 4 до 20 мА (2-проводное/4-проводное подключение)

При наличии ПО SupplyCare Hosting пользователям не требуется тратить деньги на первоначальную покупку программного обеспечения или устанавливать и запускать необходимую IT-инфраструктуру. Компания Endress+Hauser непрерывно обновляет ПО SupplyCare Hosting и развивает его возможности в сотрудничестве с заказчиками. Поэтому узловая версия ПО SupplyCare всегда актуальна и может быть адаптирована для удовлетворения различных потребностей заказчиков. Кроме IT-инфраструктуры и программного обеспечения, установленного в надежном, защищенном от сбоев питания центре обработки данных, компания Endress+Hauser предлагает заказчикам другие направления обслуживания. Среди этих направлений – доступность глобальной службы технической поддержки Endress+Hauser и быстрый отклик на любое сервисное событие.

Сертификаты и свидетельства

Те сертификаты и свидетельства, которые уже получены для изделия, перечислены в конфигураторе выбранного продукта на веб-сайте www.endress.com.

- 1. Выберите изделие с помощью фильтров и поля поиска.
- 2. Откройте страницу изделия.
- 3. Откройте вкладку Конфигурация.

Информация о заказе


Подробную информацию о заказе можно получить в ближайшей торговой организации www.addresses.endress.com или в конфигураторе выбранного продукта на веб-сайте www.endress.com.

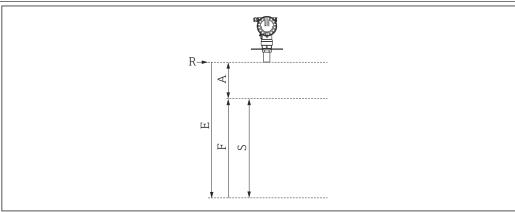
- 1. Выберите изделие с помощью фильтров и поля поиска.
- 2. Откройте страницу изделия.
- 3. Нажмите кнопку Конфигурация.

📭 Конфигуратор – инструмент для индивидуальной конфигурации продукта

- Самые последние опции продукта
- В зависимости от прибора: прямой ввод специфической для измерительной точки информации, например, рабочего диапазона или языка настройки
- Автоматическая проверка совместимости опций
- Автоматическое формирование кода заказа и его расшифровка в формате PDF или Excel

Протокол линеаризации по трем точкам

A0023651


🗷 28 Пример протокола линеаризации по трем точкам

- A 1000 мм (39 дюйм) = расстояние от контрольной точки (R) до первой точки измерения
- В 6000 мм (236 дюйм) = расстояние от контрольной точки (R) до третьей точки измерения
- R Контрольная точка измерения
- 1 Первая точка измерения
- 2 Вторая точка измерения
- 3 Третья точка измерения

3 точки измерения протокола линеаризации предопределены в зависимости от выбранного датчика. Положение точек измерения может варьироваться в пределах ± 1 см (± 0 ,04 дюйм).

Проверка линейности выполняется в стандартных рабочих условиях.

Протокол линеаризации по пяти точкам

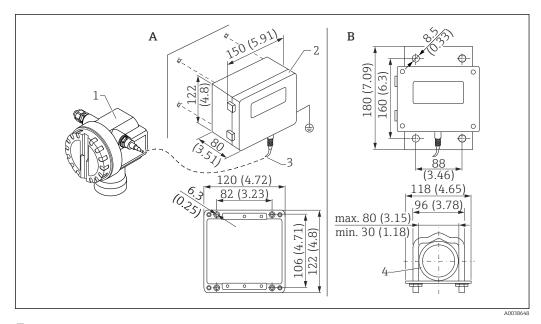
A0019522

🗷 29 Пример протокола линеаризации по пяти точкам

- R Контрольная точка измерения
- Е Максимальное значение при калибровке для пустого резервуара 10 000 мм (394 дюйм)
- A Минимальное расстояние между контрольной точкой (R) датчика и уровнем $100~\%~400~\mathrm{mm}~(15,7~\mathrm{дюйм})$
- F Максимальное значение при калибровке для полного резервуара 9 600 мм (378 дюйм)
- S Минимальный диапазон E A = S100 мм (3,94 дюйм)

5 точек протокола линеаризации равномерно распределяются в пределах диапазона измерения (0–100%). Чтобы определить диапазон измерения, необходимо выполнить калибровку для пустого резервуара (E) и калибровку для полного резервуара (F).

Проверка линейности выполняется в стандартных рабочих условиях.


Проверить прибор с использованием максимальных значений необходимо в следующих случаях:

- отсутствуют значения калибровки для полного и для пустого резервуара;
- значения выходят за рамки заданного диапазона.

Аксессуары

Аксессуары, специально предназначенные для прибора

Выносной блок управления с дисплеем FHX40

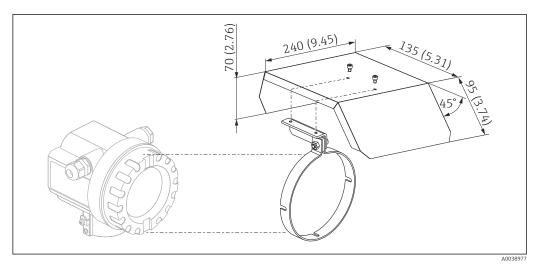
🗷 30 Выносной дисплей. Единица измерения мм (дюйм)

- А Настенный монтаж с использованием монтажного кронштейна
- B Монтаж на трубопроводе, монтажный кронштейн и монтажная пластина поставляются по дополнительному заказу
- 1 Прибор, например Prosonic
- 2 Выносной корпус FHX40, IP 65
- 3 Кабель
- 4 Труба

Технические характеристики

- Длина кабеля: 20 м (66 фут), фиксированная длина с литыми разъемами
- Диапазон температуры Т6: -40 до +60 °C (-40 до +140 °F)
 Диапазон температуры Т5: -40 до +75 °C (-40 до +167 °F)
- Степень защиты: IP65/67 (корпус); IP68 (кабель) согласно стандарту МЭК 60529
- Размеры (мм (дюймы)): 122 x 150 x 80 (4,8 x 5,91 x 3,15)

Материалы


- Корпус, крышка: AlSi12,
 - Винт: V2A
- Клемма заземления: никелированный сплав CuZn
 - Винт: V2A
- Дисплей: стекло
- Кабельное уплотнение: никелированный сплав CuZn
- Кабель: ПВХ
- Монтажный кронштейн: 316 Ti (1.4571), 316 L (1.4435) или 316 (1.4401)
- Гайка: V4A
- Пластина: 316 Ti (1.4571)
- Набор винтов (М5)

Пружинная шайба: 301 (1.431) или V2A

Винт: V4A Гайка: V4A

• Дополнительные сведения: см. краткое руководство по эксплуатации (КАОО2О2F).

Защитный козырек от погодных явлений

🖻 31 🛾 Защитный козырек от погодных явлений для корпуса F12 или T12 . Единица измерения мм (дюйм)

Материалы

- Защитный колпачок, натяжной зажим: нержавеющая сталь 304 (1.4301)
- Винт, гайка, шайба: A2
 Код заказа: 543199-0001

Аксессуары для связи

Commubox FXA195 HART

- Функция: искробезопасная связь по протоколу HART с использованием ПО FieldCare или DeviceCare через USB-порт
- Код заказа: 52027505
- Дополнительные сведения: техническая информация (ТІОО4О4F)

Commubox FXA291

- Функция: соединение интерфейса CDI (единый интерфейс обмена данными) приборов Endress+Hauser с USB-портом компьютера
- Код заказа: 51516983
- Аксессуар: адаптер ТоF, FXA291
- Дополнительные сведения: техническая информация (ТІОО405С)

Адаптер ТоҒ, ҒХА291

- Функция: соединение модема Commubox FXA291 с USB-портом компьютера или ноутбука
- Код заказа: 71007843
- Дополнительные сведения: см. краткое руководство по эксплуатации (KA00271F)

SupplyCare Hosting SCH30

Программное обеспечение для управления складскими запасами, которое визуализирует уровень, объем, массу, температуру, давление, плотность и другие параметры резервуара. Запись и передача параметров осуществляются с помощью шлюза типа Fieldgate FXA42, FXA30 или FXA30B. SupplyCare Hosting служит в качестве хостинга (программное обеспечение как услуга, SaaS). На портале Endress+Hauser пользователь получает данные через Интернет.

Код заказа: 71214483

Подробные сведения см. в документах «Техническое описание» (TI01229S) и «Руководство по эксплуатации» (BA00050S).

SupplyCare Enterprise SCE30B

Программное обеспечение для управления складскими запасами, которое визуализирует уровень, объем, массу, температуру, давление, плотность и другие параметры резервуара. Запись и передача параметров осуществляются с помощью шлюза типа Fieldgate FXA42.

Сетевое программное обеспечение установлено на локальном сервере, но к нему есть доступ с мобильных терминалов, таких как смартфоны или планшеты.

Код заказа: 71214488

Подробные сведения см. в документах «Техническое описание» (TI01228S) и «Руководство по эксплуатации» (BA00055S).

Connect Sensor FXA30/FXA30B

Полностью интегрированный шлюз с автономным питанием для выполнения простых задач, с системой SupplyCare Hosting. Возможно подключение не более 4 полевых приборов с интерфейсом связи 4 до 20 мА (FXA30/FXA30B), последовательным интерфейсом связи Modbus (FXA30B) или интерфейсом HART (FXA30B). Благодаря прочной конструкции и способности работать в течение многих лет от автономного элемента питания такой шлюз идеально пригоден для дистанционного мониторинга в изолированных зонах. Исполнение с возможностью мобильной передачи данных по технологии LTE (только США, Канада и Мексика) или 3G в общемировых масштабах.

Код заказа: 71367395

Для получения подробной информации см. документы «Техническое описание» (TI01356S) и «Руководство по эксплуатации» (BA01710S).

Fieldgate FXA42

Fieldqate обеспечивает связь между подключенными приборами с интерфейсами 4-20 мA, Modbus RS485 и Modbus TCP и системой SupplyCare Hosting или SupplyCare Enterprise. Передача сигналов осуществляется по системе Ethernet TCP/IP, WLAN или по системе мобильной связи (UMTS). Доступны различные возможности автоматизации, например интегрированный Веб-ПЛК, OpenVPN и другие функции.

Код заказа: 71274336

Подробные сведения см. в документах «Техническое описание» (TIO1297S) и «Руководство по эксплуатации» (BA01778S).

Сопроводительная документация

Обзор состава соответствующей технической документации можно получить в следующих источниках:

- W@M Device Viewer (www.endress.com/deviceviewer): введите серийный номер с заводской таблички:
- приложение Endress+Hauser Operations: введите серийный номер, указанный на заводской табличке.

Стандартная документация

Техническое описание (TI)

Средство планирования – содержит технические характеристики для планирования, а также информацию о заказе.

Руководство по эксплуатации (ВА)

Монтаж и первоначальный ввод в эксплуатацию – содержит описание всех функций, которые имеются в меню управления и необходимы для выполнения обычной измерительной задачи. Функции, выходящие за рамки этого спектра, не охвачены.

Краткое руководство по эксплуатации (КА)

Краткое руководство по получению первого измеренного значения – содержит все необходимые сведения от приемки до электрического подключения. Еще один документ, «Краткое руководство по эксплуатации», находится под крышкой корпуса прибора. В этом документе содержится краткое описание наиболее важных функций меню.

Описание параметров прибора (ВА)

Справочное руководство по параметрам – содержит подробное описание каждого параметра, содержащегося в рабочем меню. Это описание предназначено для персонала, выполняющего определенные настройки на протяжении всего срока эксплуатации прибора.

Сопроводительная документация для конкретного прибора В зависимости от заказанной версии прибора предоставляется дополнительная документация или отдельные документы. В обязательном порядке строго соблюдайте указания, приведенные в соответствующей сопроводительной документации. Сопроводительная документация является неотъемлемой частью документации, прилагаемой к прибору.

Примеры: ATEX, NEPSI, INMETRO, контрольные и монтажные чертежи для приборов с сертификатами FM, CSA и TIIS.

Актуальные указания по технике безопасности прилагаются ко всем сертифицированным исполнениям прибора. При использовании прибора в опасной зоне необходимо соблюдать все требования, содержащиеся в указаниях по технике безопасности.

Зарегистрированные товарные знаки

HART®

Зарегистрированный товарный знак FieldComm Group, Остин, Техас, США.

www.addresses.endress.com