Technical Information Levelflex FMP50

Guided wave radar

Level measurement in liquids

Application

- Rod or rope probe
- Process connection: 3/4" thread or adapter flange
- Process temperature: $-20 \text{ to } +80 \,^{\circ}\text{C} \, (-4 \text{ to } +176 \,^{\circ}\text{F})$
- Process pressure: -1 to +6 bar (-14.5 to +87 psi)
- Maximum measuring range: Rod 4 m (13 ft); rope 12 m (39 ft)
- Accuracy: ±2 mm (±0.08 in)
- International explosion protection certificates; WHG; EN10204-3.1
- Linearity protocol (3-point, 5-point)

Your benefits

- Reliable measurement even for changing product and process conditions
- HistoROM data management for easy commissioning, maintenance and diagnostics
- Highest reliability due to Multi-Echo Tracking
- Hardware and software developed according to IEC 61508 (up to SIL3)
- Seamless integration into control or asset management systems
- Intuitive user interface in national languages
- Bluetooth® wireless technology for commissioning, operation and maintenance via free iOS / Android app SmartBlue
- Easy proof test for SIL and WHG
- Heartbeat Technology™

Table of contents

Important document information		Process pressure range	
Symbols	. 4	Extension of the rope probes due to temperature	
Function and system design	5		
Measuring principle	. 5	Mechanical construction	50
Measuring system	. 7		50
			53
Input	a	Shortening probes	
Measured variable		Weight	
Measuring range		Materials: GT19 housing (plastic)	54
Blocking distance	10	Materials: GT20 housing (die-cast aluminum, powder-	
Measuring frequency spectrum	10	coated)	
wieasuring frequency spectrum	10	Materials: Process connection	
			57
Output	11	Materials: Mounting bracket	
1 3	11	Materials: Adapter and cable for remote sensor	59
Signal on alarm	12	Materials: weather protection cover	60
Linearization	12		
Galvanic isolation	12	Operability	60
Protocol-specific data	13	Operating concept	
		Local operation	
Power supply	18	Operation with remote display and operating module	02
Terminal assignment		FHX50	62
Device plug		Operation via Bluetooth® wireless technology	
Supply voltage	23	Remote operation	
Power consumption		Integration into the Tank Gauging System	
Current consumption	26	SupplyCare inventory management software	
Power supply failure	27	supply state inventory management sortificate vivivivivi	
Potential equalization	27		
Terminals	27	Certificates and approvals	
Cable entries	27	CE mark	
Cable specification		RoHS	
Overvoltage protection		RCM marking	
g-		Ex-approval	
Danfanna a alama daniadi a	20	Dual seal according to ANSI/ISA 12.27.01	
	29	Functional safety	
Reference operating conditions	29	Overfill protection	/1
Reference accuracy	29	Pressure equipment with allowable pressure ≤	71
Resolution	30	200 bar (2 900 psi)	
Response time	31	Radio approval	
Influence of ambient temperature	31	Test, certificate	
		Product documentation on paper	
Mounting	32	Other standards and guidelines	/4
Mounting requirements	32		
		Ordering information	75
Environment	46	Ordering information	75
Ambient temperature		3-point linearity protocol	76
Ambient temperature limits	46	5-point linearity protocol	77
Storage temperature	48	Customized parameterization	78
Climate class	48	Labeling (optional)	78
Altitude according to IEC61010-1 Ed.3	48		
Degree of protection	48	Application packages	78
Vibration resistance	48	Heartbeat Diagnostics	78
Cleaning the probe	48	Heartbeat Verification	79
Electromagnetic compatibility (EMC)	48	Heartbeat Monitoring	79
Dieteromagnetic compatibility (Divie)	10	Treat to eactiviorint or mig	1)
D	4.0	A	00
	49	Accessories	
Process temperature range	49	Device-specific accessories	80

2

Levelflex FMP50

Communication-specific accessories	85
Service-specific accessories	86
System components	87
Supplementary documentation	87
Brief Operating Instructions (KA)	
Operating Instructions (BA)	
Safety Instructions (XA)	87
Functional Safety Manual (FY/SD)	87

Important document information

Symbols

Safety symbols

▲ DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

A CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

Direct current

Alternating current

Direct current and alternating current

Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Protective earth (PE)

Ground terminals that must be connected to ground prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.

- Inner ground terminal; protective earth is connected to the mains supply.
- Outer ground terminal; device is connected to the plant grounding system.

Symbols for certain types of information and graphics

✓ Permitted

Procedures, processes or actions that are permitted

⋉ Forbidden

Procedures, processes or actions that are forbidden

H Tip

Indicates additional information

Reference to documentation

Reference to graphic

Notice or individual step to be observed

1., 2., 3.

Series of steps

Result of a step

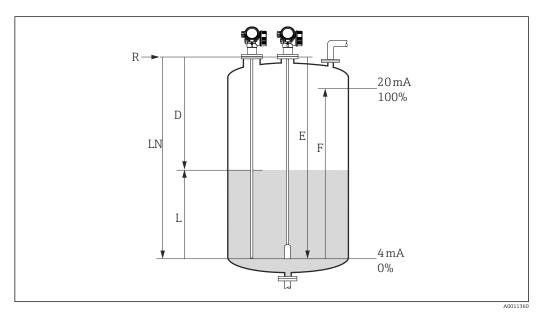
1, 2, 3, ...

Item numbers

A, B, C, ...

Views

Temperature resistance of the connection cables


Specifies the minimum value of the temperature resistance of the connection cables

Function and system design

Measuring principle

General principles

The Levelflex is a "downward-looking" measuring system that functions according to the time-of-flight method (ToF). The distance from the reference point to the product surface is measured. High-frequency pulses are injected to a probe and led along the probe. The pulses are reflected by the product surface, received by the electronic evaluation unit and converted into level information. This method is also known as TDR (time domain reflectometry).

eals 1 Parameters for level measurement with guided wave radar

- LN Probe length
- D Distance
- L Level
- R Reference point of measurement
- E Empty calibration (= zero)
- F Full calibration (= span)
- If the ε_r value is less than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight (0 to 250 mm (0 to 9.84 in) from the probe end), (lower blocking distance).
- ho The reference point **R** of the measurement is located at the process connection.

Dielectric constant

The dielectric constant (DC) of the medium directly affects the degree of reflection of the high-frequency pulses. In the case of large DC values, such as with water or ammonia, there is strong pulse reflection while, in the case of low DC values, such as with hydrocarbons, pulse reflection is weak.

Input

The reflected pulses are transmitted from the probe to the electronics. Here, a microprocessor evaluates the signals and identifies the level echo which was caused by the reflection of the high-frequency pulses at the product surface. This clear signal detection system benefits from over 30 years of experience with pulse time-of-flight procedures that have gone into the development of the PulseMaster® software.

The distance D to the product surface is proportional to the time-of-flight t of the pulse:

 $D = c \cdot t/2$.

with c being the speed of light.

Based on the known empty distance E, the level L is calculated:

L = E - D

The Levelflex has functions for interference echo suppression that can be activated by the user. They guarantee that interference echoes from internal fixtures and struts, for example, are not interpreted as level echoes.

Output

The Levelflex is preadjusted at the factory to the probe length ordered so that in most cases only the application parameters that automatically adapt the device to the measuring conditions need to be entered. For models with a current output, the factory adjustment for zero point E and span F is 4 mA and 20 mA, for digital outputs and the display module 0 % and 100 %. A linearization function with max. 32 points, based on a table entered either manually or semi-automatically, can be activated locally or remotely. This function allows the level to be converted into units of volume or mass, for example.

Life cycle of the product

Design

- Universal measuring principle
- Measurement is unaffected by product properties
- Hardware and software developed according to SIL IEC 61508
- Genuine, direct interface measurement

Procurement

- As the global market leader in level measurement, Endress+Hauser guarantees the security of your investment
- Worldwide support and service

Installation

- No special tools are required
- Protection against reverse polarity
- Modern, detachable terminals
- Main electronics protected by a separate connection compartment

Commissioning

- Fast, menu-guided commissioning in just 6 steps
- Plain text display in local language reduces the risk of error or confusion
- Direct local access to all parameters
- Printed Brief Operating Instructions in the device onsite

Operation

- Multi-echo tracking: Reliable measurement thanks to self-learning echo search algorithms taking
 into account the short-term and long-term history and plausibility of the detected signals to
 suppress interference echoes.
- In accordance with NAMUR NE107

Maintenance

- HistoROM: Data backup for device settings and measured values
- Exact device and process diagnostics to assist fast decisions with clear information regarding remedial action
- Intuitive, menu-guided operating concept in local language saves costs for training, maintenance and operation
- Cover of the electronics compartment can also be opened in the hazardous area

Retirement

- Order code translation for subsequent models
- RoHS-compliant (Restriction of certain Hazardous Substances), unleaded soldering of electronic components
- Environmentally friendly recycling approach

Measuring system

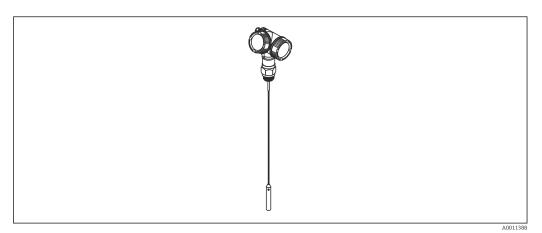
General notes on probe selection

Rod probes should normally be used for liquids. Rope probes are used in liquids for measuring ranges > 4 m (13 ft) or if the distance from the ceiling does not permit the installation of rigid probes.

Probe selection

FMP50

For level measurement in liquids


A001138

■ 2 Rod probe

- Rod probe

 Maximum probe length
 4 m (13 ft)

 Material:
- 316L

₽ 3 Rope probe with centering rod

- Rope probe
 Maximum probe length
 12 m (40 ft)
 Material:
- 316L

8

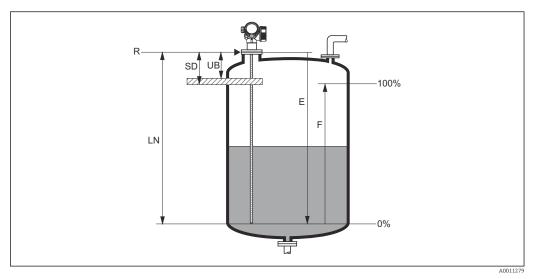
Input

Measured variable

The measured variable is the distance between the reference point and the product surface.

The level is calculated based on "E", the empty distance entered.

Optionally, the level can be converted to other variables (volume, mass) by linearization (32 points).


Measuring rangeThe following table describes the medium groups and the possible measuring range as a function of the medium group.

Levelflex FMP50					
		Teminal	Measuring range		
Medium group	$\epsilon_{ m r}$	Typical liquids	Bare metallic Rod probes	Bare metallic Rope probes	
1	1.4 to 1.6	Liquefied gases, e.g. N ₂ , CO ₂	On request		
2	1.6 to 1.9	 Liquefied gas, e.g. propane Solvents Freon Palm oil 	4 m (13 ft)	12 m (39 ft)	
3	1.9 to 2.5	Mineral oils, fuels	4 m (13 ft)	12 m (39 ft)	
4	2.5 to 4	Benzene, styrene, tolueneFuranNaphthal ene	4 m (13 ft)	12 m (39 ft)	
5	4 to 7	 Chlorobe nzene, chlorofor m Nitrocell ulose lacquers Isocyanat e, aniline 	4 m (13 ft)	12 m (39 ft)	
6	> 7	Aqueous solutionsAlcoholsAcids, alkalis	4 m (13 ft)	12 m (39 ft)	

The formation of buildup, particularly of moist products, can reduce the maximum possible measuring range.

Blocking distance

The upper blocking distance (= UB) is the minimum distance from the reference point of the measurement (mounting flange) to the maximum level.

- 4 Definition of blocking distance and safety distance
- R Reference point of measurement
- LN Probe length
- UB Upper blocking distance
- *E* Empty calibration (= zero)
- F Full calibration (= span)
- SD Safety distance

Blocking distance (factory setting):

- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes over 8 m (26 ft): 0.025 × probe length
- The specified blocking distances are factory-preset on delivery. These settings can be changed depending on the application.

For rod and rope probes, the blocking distance can generally be reduced to 100 mm (4 in) for media with DC > 7.

No blocking distance applies for applications in a bypass/stilling well.

A reliable measurement cannot be guaranteed within the blocking distance.

A safety distance SD can be defined in addition to the blocking distance. The device generates a warning if the level rises to enter this safety distance.

Measuring frequency spectrum

100 MHz to 1.5 GHz

Output

Output signal

HART

- Signal coding:
 - FSK ±0.5 mA over current signal
- Data transmission rate:
 - 1200 Bit/s
- Galvanic isolation:

Yes

Bluetooth® wireless technology

- Device version:
 - Order code 610 "Accessory mounted", option NF "Bluetooth"
- Operation / configuration:
 - Via the *SmartBlue* app
- Range under reference conditions:
 - > 10 m (33 ft)
- Encryption:

Encrypted communication and password encryption prevent incorrect operation by unauthorized persons

PROFIBUS PA

- Signal coding:
 - Manchester Bus Powered (MBP)
- Data transmission rate:
 - 31.25 kBit/s, Voltage mode
- Galvanic isolation:

Yes

FOUNDATION Fieldbus

- Signal coding:
 - Manchester Bus Powered (MBP)
- Data transmission rate:
 - 31.25 kBit/s, Voltage mode
- Galvanic isolation:

Yes

Switch output

For HART devices, the switch output is available as an option.

- Function
- Open collector switch output
- Switching behavior:

Binary (conductive or non-conductive), switches when the programmable switch-on point/switch-off point is reached

- Failure mode:
 - Non-conductive
- Electrical connection data:
 - $U = 16 \text{ to } 35 \ V_{DC}$, $I = 0 \text{ to } 40 \ mA$
- Internal resistor:

 $R_{I} < 880 \Omega$

The voltage drop at this internal resistor must be taken into account when planning the configuration. For example, the resulting voltage at a connected relay must be sufficient to switch the relay.

- Insulation voltages:
 - Floating, insulation voltage 1350 V_{DC} in relation to power supply and 500 V_{AC} ground
- Switch point:
 - User-programmable, separate for switch-on point and switch-off point
- Switching delay:
 - User-programmable in the 0 to 100 s range, separate for switch-on point and switch-off point

- Scan rate:
- Corresponds to the measuring cycle
- Signal source / device variables:
 - Level linearized
 - Distance
 - Terminal voltage
 - Electronic temperature
 - Relative echo amplitude
 - Diagnostic values, advanced diagnostic blocks
 - Only for active interface measurement
- Number of switch cycles:

Unlimited

Signal on alarm

Depending on the interface, failure information is displayed as follows:

- Current output
 - Choice of failure mode (in accordance with NAMUR Recommendation NE 43): Minimum alarm: 3.6 mA

Maximum alarm (= factory setting): 22 mA

- Failure mode with user-configurable value: 3.59 to 22.5 mA
- Local display
 - Status signal (as per NAMUR Recommendation NE 107)
 - Plain text display
- Operating tool via digital communication (HART, PROFIBUS PA, FOUNDATION Fieldbus) or service interface (CDI)
 - Status signal (as per NAMUR Recommendation NE 107)
 - Plain text display

Linearization

The device's linearization function allows the user to convert the measured value to any length or volume units. Linearization tables for calculating the volume in cylindrical vessels are preprogrammed into the device. Other tables of up to 32 value pairs can be entered manually or semi-automatically.

Galvanic isolation

All circuits for the outputs are galvanically isolated from each other.

Protocol-specific data

HART

Manufacturer ID	17 (0x11)
Device type ID	0x1122
HART specification	7.0
Device description files (DTM, DD)	Information and files under: www.endress.com www.fieldcommgroup.org
HART load	min. 250 Ω
HART device variables	The measured values can be freely assigned to the device variables. Measured values for PV (primary variable) Level linearized Distance Electronic temperature Relative echo amplitude
	Measured values for SV, TV, QV (second, third and fourth variable) Level linearized Distance Terminal voltage Electronic temperature Absolute echo amplitude Relative echo amplitude Calculated ε _r value
Supported functions	Burst modeAdditional transmitter status

Wireless HART data

Minimum starting voltage	17.5 V
Start-up current	4 mA
Starting time	80 s
Minimum operating voltage	17.5 V
Multidrop current	4.0 mA
Time for connection setup	30 s

PROFIBUS PA

Manufacturer ID	17 (0x11)
Ident number	0x1558
Profile version	3.02
GSD file	Information and files under:
GSD file version	www.endress.comwww.profibus.org
Output values	Analog Input: Level linearized Distance Terminal voltage Electronic temperature Absolute echo amplitude Relative echo amplitude Calculated ε _r value
	Digital Input: Extended diagnostic blocks Status output PFS Block
Input values	Analog Output: Analog value from PLC (for sensor block, external pressure and temperature) Analog value from PLC to be indicated on the display Digital Output: Extended diagnostic block Level Limiter Sensor Block Measurement On Sensor Block Save History On Status output
Supported functions	 Identification & Maintenance Simple device identification via control system and nameplate Automatic Ident Number Adoption GSD compatibility mode with predecessor Levelflex M FMP4x Physical Layer Diagnostics Installation check of the PROFIBUS segment and the Levelflex M FMP4x using terminal voltage and message monitoring PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur

FOUNDATION Fieldbus

Manufacturer ID	0x452B48		
Device type	0x1028		
Device revision	0x01		
DD revision	Information and files under:		
CFF revision	www.endress.comwww.fieldcommgroup.org		
Device Tester Version (ITK version)	6.0.1		
ITK Test Campaign Number	IT085300		
Link Master capability (LAS)	Yes		
Choice of "Link Master" and "Basic Device"	Yes; Factory setting: Basic Device		
Node address	Factory setting: 247 (0xF7)		

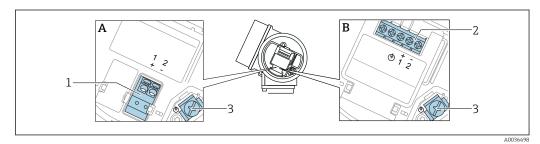
Supported functions	The following methods are supported: Restart ENP Restart Setup Linearization Self Check
Virtual Communication Relationships (VCRs)	
Number of VCRs	44
Number of link objects in VFD	50
Permanent entries	1
Client VCRs	0
Server VCRs	10
Source VCRs	43
Sink VCRs	0
Subscriber VCRs	43
Publisher VCRs	43
Device Link Capabilities	
Slot time	4
Min. delay between PDU	8
Max. response delay	20

Transducer Blocks

Block	Contents	Output values
Setup Transducer Block	Contains all the parameters for standard commissioning	 Level or volume (channel (depending on the block configuration) Distance (channel 2)
Advanced Setup Transducer Block	Contains all the parameters for more accurate measurement configuration	No output values
Display Transducer Block	Contains parameters to configure the onsite display	No output values
Diagnostic Transducer Block	Contains diagnostic information	No output values
Advanced Diagnostic Transducer Block	Contains parameters for advanced diagnostics	No output values
Expert Configuration Transducer Block	Contains parameters that require the user to have in-depth knowledge of the operation of the device in order to configure the parameters appropriately	No output values
Expert Information Transducer Block	Contains parameters that provide information about the state of the device	No output values
Service Sensor Transducer Block	Contains parameters that can only be accessed by Endress+Hauser Service	No output values
Service Information Transducer Block	Contains parameters that provide Endress+Hauser Service with information about the state of the device	No output values
Data Transfer Transducer Block	Contains parameters for backing up the device configuration in the display module and for writing the saved configuration to the device. Access to these parameters is reserved for Endress+Hauser Service.	No output values

Function blocks

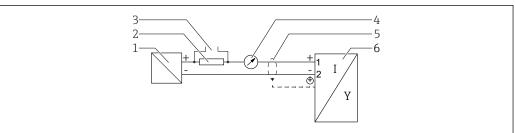
Block	Contents	Number of permanent blocks	Number of instantiatable blocks	Execution time	Functionality
Resource Block	The Resource Block contains all the data that uniquely identify the device. It is an electronic version of a nameplate of the device.	1	0	-	Enhanced
Analog Input Block	The AI Block receives the measuring data from the Sensor Block (selectable via a channel number), and makes the data available to other blocks at its output.	2	3	25 ms	Enhanced
Discrete Input Block	The Discrete Input Block receives a discrete value (e.g. indicator that measuring range has been exceeded) and makes the value available for other blocks at the output.	1	2	20 ms	Standard
Multiple Analog Output Block	The Multiple Analog Output Block is used to transmit analog values from the bus to the device.	1	0	20 ms	Standard
Multiple Discrete Output Block	The Multiple Discrete Output Block is used to transmit discrete values from the bus to the device.	1	0	20 ms	Standard
PID Block	The PID Block is used as a proportional-integral-derivative controller and can be used universally for closed-loop-control in the field. It enables cascade mode and feedforward control.	1	1	25 ms	Standard
Arithmetic Block	The Arithmetic Block is designed to permit simple use of popular measurement math functions. The user does not have to know how to write equations. The math algorithm is selected by name, chosen by the user for the function to be performed.	1	1	25 ms	Standard
Signal Characterizer Block	The Signal Characterizer Block has two sections, each with an output value that is a non-linear function of the input value. The non-linear function is generated by a single look-up table with 21 arbitrary x-y pairs.	1	1	25 ms	Standard
Input Selector Block	The Input Selector Block facilitates the selection of up to four inputs and generates an output value based on the configured action. This block normally receives its inputs from AI Blocks. The block enables the selection of maximum, minimum, average and 'first good' values.	1	1	25 ms	Standard


Block	Contents	Number of permanent blocks	Number of instantiatable blocks	Execution time	Functionality
Integrator Block	The Integrator Block integrates a variable as a function of the time or accumulates the counts from a Pulse Input Block. The Block can be used as a totalizer that totalizes until a reset, or as a batch totalizer whereby the integrated value is compared against a target value generated before or during the control routine and generates a binary signal when the target value is reached.	1	1	25 ms	Standard
Analog Alarm Block		1	1	25 ms	Standard

 $\begin{tabular}{ll} \textbf{Ip to 20 blocks can be instantiated in the device altogether, including the blocks already instantiated.} \end{tabular}$

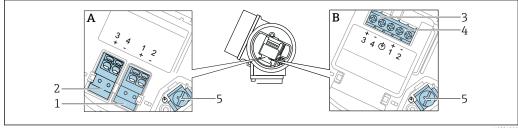
Power supply

Terminal assignment


Terminal assignment, 2-wire: 4 to 20 mA HART

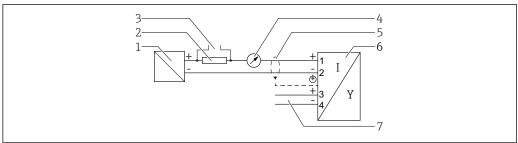
■ 5 Terminal assignment, 2-wire: 4 to 20 mA HART

- A Without integrated overvoltage protection
- B With integrated overvoltage protection
- 1 Connection 4 to 20 mA, HART passive: terminals 1 and 2, without integrated overvoltage protection
- 2 Connection 4 to 20 mA, HART passive: terminals 1 and 2, with integrated overvoltage protection
- 3 Terminal for cable shield


Block diagram, 2-wire: 4 to 20 mA HART

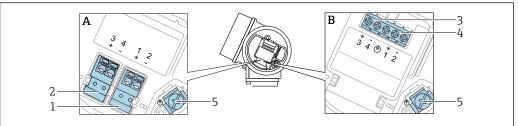
A00364

- 6 Block diagram, 2-wire: 4 to 20 mA HART
- 1 Active barrier for power supply (e.g. RN221N); observe terminal voltage
- 2 Resistor for HART communication ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device


Terminal assignment, 2-wire: 4 to 20 mA HART, switch output

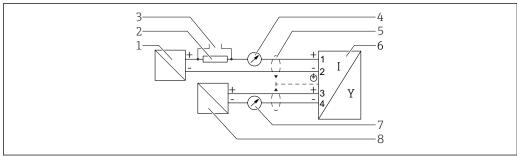
A003650

- 7 Terminal assignment, 2-wire: 4 to 20 mA HART, switch output
- A Without integrated overvoltage protection
- B With integrated overvoltage protection
- 1 Connection 4 to 20 mA, HART passive: terminals 1 and 2, without integrated overvoltage protection
- 2 Connection, switch output (open collector): terminals 3 and 4, without integrated overvoltage protection
- 3 Connection, switch output (open collector): terminals 3 and 4, with integrated overvoltage protection
- 4 Connection 4 to 20 mA, HART passive: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable shield


Block diagram, 2-wire: 4 to 20 mA HART, switch output

A0036501

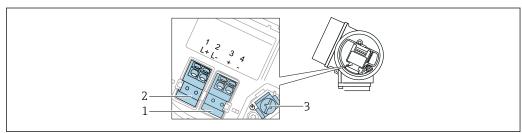
- 8 Block diagram, 2-wire: 4 to 20 mA HART, switch output
- 1 Active barrier for power supply (e.g. RN221N); observe terminal voltage
- Resistor for HART communication ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Switch output (open collector)


Terminal assignment, 2-wire: 4 to 20 mA HART, 4 to 20 mA

A003650

- 9 Terminal assignment, 2-wire: 4 to 20 mA HART, 4 to 20 mA
- A Without integrated overvoltage protection
- *B* With integrated overvoltage protection
- 1 Connection current output 1, 4 to 20 mA HART passive: terminals 1 and 2, without integrated overvoltage
- 2 Connection current output 2, 4 to 20 mA: terminals 3 and 4, without integrated overvoltage protection
- 3 Connection current output 2, 4 to 20 mA: terminals 3 and 4, with integrated overvoltage protection
- 4 Connection current output 1, 4 to 20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable shield

Block diagram, 2-wire: 4 to 20 mAHART, 4 to 20 mA

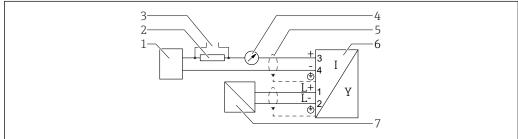


A0036502

■ 10 Block diagram, 2-wire: 4 to 20 mAHART, 4 to 20 mA

- 1 Active barrier for power supply (e.g. RN221N), current output 1; observe terminal voltage
- 2 Resistor for HART communication ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Analog display unit; observe maximum load
- 8 Active barrier for power supply (e.g. RN221N), current output 2; observe terminal voltage

Terminal assignment, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})

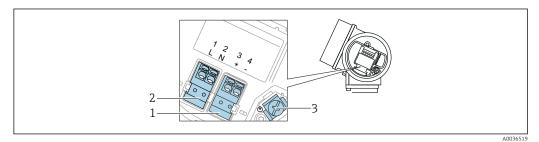


A003651

 \blacksquare 11 Terminal assignment, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})

- 1 Connection 4 to 20 mA HART (active): terminals 3 and 4
- 2 Connection, supply voltage: terminals 1 and 2
- 3 Terminal for cable shield

Block diagram, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})



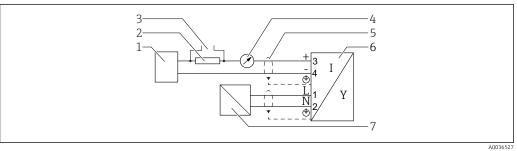
A0036526

 \blacksquare 12 Block diagram, 4-wire: 4 to 20 mA HART (10.4 to 48 V_{DC})

- 1 Evaluation unit, e.g. PLC
- 2 Resistor for HART communication ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Supply voltage; observe terminal voltage, observe cable specification

Terminal assignment, 4-wire: 4 to 20 mA HART (90 to 253 V_{AC})

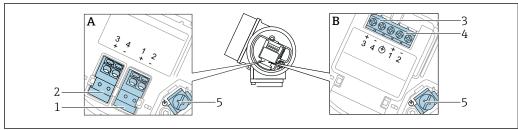
 \blacksquare 13 Terminal assignment, 4-wire: 4 to 20 mAHART (90 to 253 V_{AC})


- 1 Connection 4 to 20 mA HART (active): terminals 3 and 4
- 2 Connection, supply voltage: terminals 1 and 2
- 3 Terminal for cable shield

A CAUTION

To ensure electrical safety:

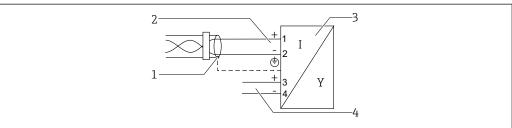
- ▶ Do not disconnect the protective ground connection.
- ▶ Disconnect the device from the supply voltage before disconnecting the protective ground.
- Connect protective ground to the inner ground terminal (3) before connecting the supply voltage. If necessary, connect the potential matching line to the outer ground terminal.
- In order to ensure electromagnetic compatibility (EMC): do **not** ground the device exclusively via the protective ground conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.
- An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).


Block diagram, 4-wire: 4 to 20 mA HART (90 to 253 VAC)

AUU

- \blacksquare 14 Block diagram, 4-wire: 4 to 20 mA HART (90 to 253 V_{AC})
- 1 Evaluation unit, e.g. PLC
- 2 Resistor for HART communication ($\geq 250 \Omega$); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display unit; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Supply voltage; observe terminal voltage, observe cable specification

Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

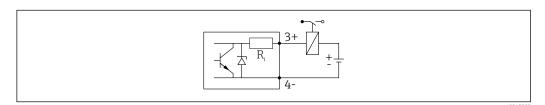


A0036500

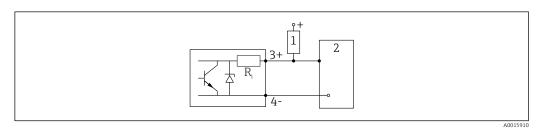
■ 15 Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

- A Without integrated overvoltage protection
- B With integrated overvoltage protection
- 1 Connection, PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, without integrated overvoltage protection
- Connection, switch output (open collector): terminals 3 and 4, without integrated overvoltage protection
- 3 Connection, switch output (open collector): terminals 3 and 4, with integrated overvoltage protection
- 4 Connection, PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable shield

Block diagram PROFIBUS PA / FOUNDATION Fieldbus


A0036530

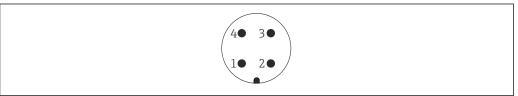
■ 16 Block diagram PROFIBUS PA / FOUNDATION Fieldbus


- 1 Cable screen; observe cable specification
- 2 Connection PROFIBUS PA / FOUNDATION Fieldbus
- 3 Measuring device
- 4 Switch output (open collector)

Connection examples for the switch output

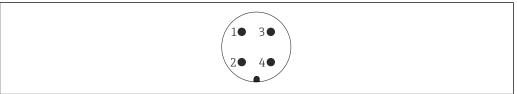
For HART devices, the switch output is available as an option.

■ 17 Connection of a relay



■ 18 Connection to a digital input

- 1 Pull-up resistor
- 2 Digital input
- For optimum interference immunity we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of $< 1000 \Omega$.


Device plug

In the case of the device versions with a plug, the housing does not need to be opened to connect the signal cable.

A0011175

- 19 Pin assignment of M12 plug
- 1 Signal +
- 2 Not assigned
- 3 Signal -
- 4 Ground

A001117

- 20 Pin assignment of 7/8" plug
- 1 Signal -
- 2 Signal +
- 3 Not assigned
- 4 Shielding

Supply voltage

An external power supply is necessary.

Various power supply units can be ordered from Endress+Hauser.

2-wire, 4-20mA HART, passive

2-wire; 4-20mA HART 1)

"Approval" ²⁾	Terminal voltage U at device	Maximum load R, depending on the supply voltage \mathbf{U}_0 of the power supply unit
Non-hazardousEx nAEx icCSA GP	11.5 to 35 V ^{3) 4)}	R [Ω] 500
Ex ia / IS	11.5 to 30 V ⁴⁾	0 10 20 30 35 U ₀ [V] 11.5 22.5
 Ex d / XP Ex ic[ia] Ex tD / DIP 	13.5 to 30 V ^{4) 5)}	R [Ω] 500 10 20 30 U ₀ [V] 13.5 24.5

- 1) Feature 020 in the product structure: option A
- 2) Feature 010 in the product structure
- At ambient temperatures $T_a \le -30$ °C, a terminal voltage $U \ge 14$ V is required to start the device with the minimum failure current (3.6 mA). At ambient temperatures $T_a \ge 60$ °C, a terminal voltage $U \ge 12$ V is required to start the device with the minimum failure current (3.6 mA). The start-up current can be configured. If the device is operated with a fixed current $I \ge 4.5$ mA (HART Multidrop mode), a voltage $U \ge 11.5$ V in the entire ambient temperature range suffices.
- 4) If the Bluetooth module is used, the minimum supply voltage increases by 2 V.
- 5) At ambient temperatures $T_a \le -30$ °C, a terminal voltage $U \ge 16$ V is required to start the device with the minimum failure current (3.6 mA).

2-wire; 4-20 mA HART, switch output 1)

"Approval" ²⁾	Terminal voltage U at device	Maximum load R, depending on the supply voltage U_0 of the power supply unit
 Non-hazardous Ex nA Ex nA(ia) Ex ic Ex ic[ia] Ex d[ia] / XP Ex ta / DIP CSA GP 	13.5 to 35 V ^{3) 4)}	R [Ω]
■ Ex ia / IS ■ Ex ia + Ex d[ia] / IS + XP	13.5 to 30 V ^{3) 4)}	0 10 20 30 U ₀ [V] 13.5 24.5 35

- 1) Feature 020 in the product structure: option B
- 2) Feature 010 in the product structure
- At ambient temperatures $T_a \le -30$ °C, a terminal voltage $U \ge 16$ V is required to start the device with the minimum failure current (3.6 mA).
- 4) If the Bluetooth module is used, the minimum supply voltage increases by 2 V.

2-wire; 4-20mA HART, 4-20mA 1)

"Approval" 2)	Terminal voltage U at device	Maximum load R, depending on the supply voltage $\mbox{\bf U}_0$ of the power supply unit
All	Channel 1:	
	13.5 to 30 V ^{3) 4) 5)}	$R[\Omega]$
		0 U ₀ [V] 10 20 30 U ₀ [V] 13.5 24.5
	Channel 2:	
	12 to 30 V	R $[\Omega]$
		500 10 20 30 U ₀ [V] 12 23

- Feature 020 in the product structure: option C Feature 010 in the product structure $\,$ 1)
- 2)
- 3) At ambient temperatures $T_a \le -30$ °C, a terminal voltage $U \ge 16$ V is required to start the device with the minimum failure current (3.6 mA).
- At ambient temperatures $T_a \leq$ -40 °C, the maximum terminal voltage must be limited to U \leq 28 V. 4)
- If the Bluetooth module is used, the minimum supply voltage increases by 2 $\,\mathrm{V}.$

Integrated polarity reversal protection	Yes
Permitted residual ripple with f = 0 to 100 Hz	$U_{SS} < 1 \text{ V}$
Permitted residual ripple with f = 100 to 10000 Hz	U _{SS} < 10 mV

4-wire, 4-20mA HART, active

"Power supply; output" 1)	Terminal voltage U	Maximum load R _{max}
K: 4-wire 90-253VAC; 4-20mA HART	90 to 253 V_{AC} (50 to 60 Hz), overvoltage category II	500 Ω
L: 4-wire 10.4-48VDC; 4-20mA HART	10.4 to 48 V _{DC}	

PROFIBUS PA, FOUNDATION Fieldbus

"Power supply; output" 1)	"Approval" ²⁾	Terminal voltage
E: 2-wire; FOUNDATION Fieldbus, switch output G: 2-wire; PROFIBUS PA, switch output	 Non-hazardous Ex nA Ex nA[ia] Ex ic Ex ic[ia] Ex d[ia] / XP Ex ta / DIP CSA GP 	9 to 32 V ³⁾
	Ex ia / ISEx ia + Ex d[ia] / IS + XP	9 to 30 V ³⁾

- Feature 020 in the product structure Feature 010 in the product structure 1)
- 2) Input voltages up to 35 V do not destroy the device.

Polarity-dependent	No
FISCO/FNICO compliant according to IEC 60079-27	Yes

Power consumption

"Power supply; Output" 1)	Power consumption
A: 2-wire; 4-20mA HART	< 0.9 W
B: 2-wire; 4-20mA HART, switch output	< 0.9 W
C: 2-wire; 4-20mA HART, 4-20mA	< 2 x 0.7 W
K: 4-wire 90-253VAC; 4-20mA HART	6 VA
L: 4-wire 10,4-48VDC; 4-20mA HART	1.3 W

1) Feature 020 of the product structure

Current consumption

HART

Nominal current	$3.6\ to\ 22\ mA,$ the start-up current for multidrop mode can be parametrized (is set to $3.6\ mA$ on delivery)
Breakdown signal (NAMUR NE43)	adjustable: 3.59 to 22.5 mA

PROFIBUS PA

Nominal current	14 mA
Failure current FDE (Fault Disconnection Electronic)	0 mA

26

FOUNDATION Fieldbus

Device basic current	15 mA
Failure current FDE (Fault Disconnection Electronic)	0 mA

FISCO

U _i	17.5 V
I _i	550 mA
P _i	5.5 W
C _i	5 nF
Li	10 μΗ

Power supply failure

- Configuration is retained in the HistoROM (EEPROM).
- Error messages (incl. value of operated hours counter) are stored.

Potential equalization

No special measures for potential equalization are required.

If the device is designed for hazardous areas, observe the information in the documentation "Safety Instructions" (XA).

Terminals

Without integrated overvoltage protection

Plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

With integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)

Cable entries

Connection of the power supply and signal cables

To be selected in feature 050 "Electrical connection":

- Coupling M20, material depends on approval:
- For non-Ex, ATEX, IECEx, NEPSI Ex ia/ic:
 - Plastic M20x1.5 for cable Ø5 to 10 mm (0.2 to 0.39 in)
- For Dust-Ex, FM IS, CSA IS, CSA GP, Ex ec:
- For Ex db:

No cable gland available

- Thread
 - ½" NPT
 - G ½"
 - M20 × 1.5
- M12 plug / 7/8" plug

Only available for non-Ex, Ex ic, Ex ia

Connection of remote display FHX50

Feature 030 "Display, operation"	Cable entry for connection of FHX50
L: "Prepared for display FHX50 + M12 connection"	M12 socket
M: "Prepared for display FHX50 + custom connection"	M12 cable gland

Cable specification

Devices without integrated overvoltage protection

Pluggable spring-force terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Devices with integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)

■ For ambient temperature $T_{IJ} \ge 60 \,^{\circ}\text{C}$ (140 $^{\circ}\text{F}$): use cable for temperature $T_{IJ} + 20 \,\text{K}$.

HART

- A normal device cable suffices if only the analog signal is used.
- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.
- For 4-wire devices: Standard device cable is sufficient for the power line.

PROFIBILS

Use a twisted, screened two-wire cable, preferably cable type A.

For further information on the cable specifications, see Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning", PNO Guideline 2.092 "PROFIBUS PA User and Installation Guideline" and IEC 61158-2 (MBP).

FOUNDATION Fieldbus

Endress+Hauser recommends using twisted, shielded two-wire cables.

For further information on the cable specifications, see Operating Instructions BA00013S "FOUNDATION Fieldbus Overview", FOUNDATION Fieldbus Guideline and IEC 61158-2 (MBP).

Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20 μs), an overvoltage protection module has to be installed.

Integrated overvoltage protection module

An integrated overvoltage protection module is available for 2-wire HART as well as PROFIBUS PA and FOUNDATION Fieldbus devices.

Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".

Technical data		
Resistance per channel	$2 \times 0.5 \Omega$ max.	
Threshold DC voltage	400 to 700 V	
Threshold impulse voltage	< 800 V	
Capacitance at 1 MHz	< 1.5 pF	
Nominal arrest impulse voltage (8/20 μs)	10 kA	

External overvoltage protection module

HAW562 or HAW569 from Endress+Hauser are suited as external overvoltage protection.

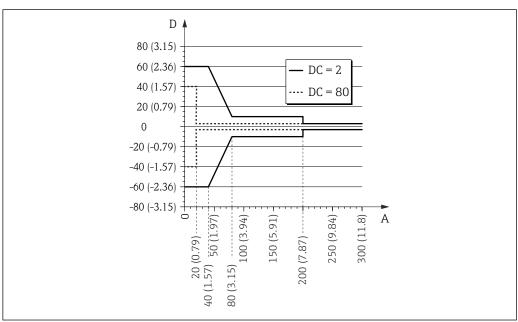
For detailed information please refer to the following documents:

- HAW562: TI01012K
- HAW569: TI01013K

Performance characteristics

Reference operating conditions

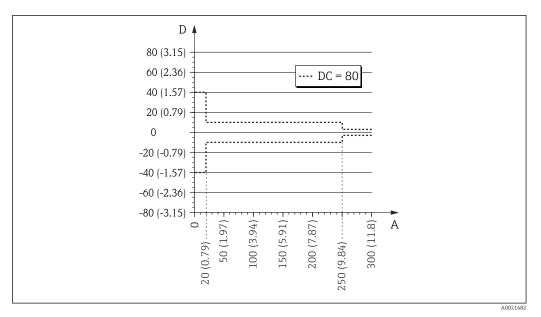
- Temperature = $+24 \,^{\circ}\text{C} \, (+75 \,^{\circ}\text{F}) \, \pm 5 \,^{\circ}\text{C} \, (\pm 9 \,^{\circ}\text{F})$
- Pressure = 960 mbar abs. $(14 \text{ psia}) \pm 100 \text{ mbar } (\pm 1.45 \text{ psi})$
- Humidity = $60 \% \pm 15 \%$
- Reflection factor ≥ 0.8 (metal plate for rod and rope probe with min. 1 m (40 in) diameter)
- Flange for rod or rope probe ≥ 300 mm (12 in) diameter
- Distance to obstacles ≥ 1 m (40 in)


Reference accuracy

Typical data under reference operating conditions: DIN EN IEC 61298-2 / DIN EN IEC 60770-1; percentage values in relation to the span.

Output:	digital	analog 1)
Accuracy (sum of non- linearity, non-repeatability and hysteresis) ²⁾	±2 mm (±0.08 in)	±0.02 %
Non-repeatability 3)	≤1 mm (0.04 in)	

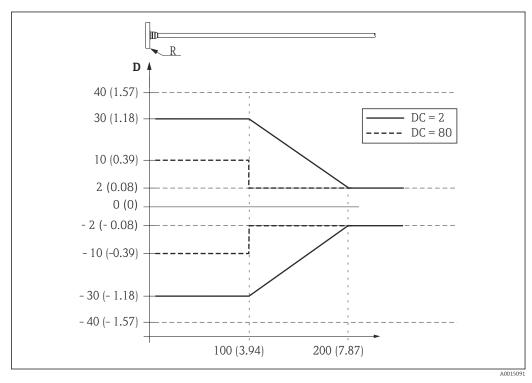
- Add error of the analog value to the digital value.
- If the reference conditions are not met, the offset/zero point resulting from the installation conditions can 2) be up to ± 16 mm (± 0.63 in). This additional offset/zero point can be compensated for by entering a correction ("Level correction" parameter) during commissioning.
- The non-repeatability is already considered in the accuracy. 3)


Differing from this, the following measured error applies in the area of the lower probe end:

A002148

Measured error at the probe end for rod and coax probes

- Α Distance from the probe end [mm(in)]
- Measured error: Sum of non-linearity, non-repeatability and hysteresis



■ 22 Measured error at the probe end for rope probes

- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis

If the DC value is less than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight (0 to 250 mm from the probe end), (lower blocking distance).

The following measured error applies in the area of the upper probe end:

 \blacksquare 23 Measured error at the upper probe end; engineering unit: mm (in)

- D Sum of non-linearity, non-repeatability and hysteresis
- R Reference point of measurement
- DC Dielectric constant

Resolution

■ Digital: 1 mm

Analog: 1 μA

Response time

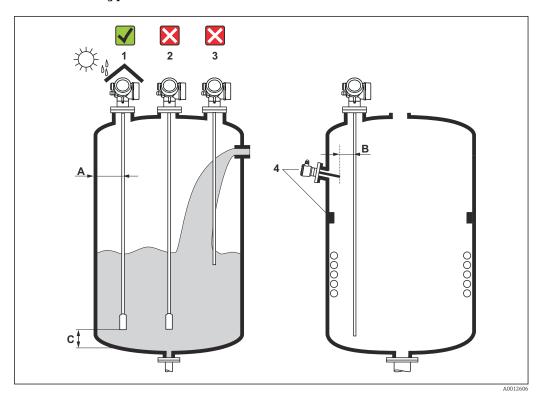
The response time can be configured. The following step response times (in accordance with DIN EN IEC 61298-2 / DIN EN IEC 60770-1) $^{1)}$ are when damping is switched off:

Level measurement			
Probe length	Sampling rate	Response time	
< 12 m (39 ft)	3.6 measurements per second	< 0.8 s	

Influence of ambient temperature

The measurements are performed according to DIN EN IEC 61298-3 / DIN EN IEC 60770-1

- Digital (HART, PROFIBUS PA, FOUNDATION Fieldbus): average $T_K = 0.6 \text{ mm}/10 \text{ K}$ For devices with a remote sensor, ²⁾ there is an additional offset error of $\pm 0.3 \text{ mm}/10 \text{ K}$ ($\pm 0.01 \text{ in}/10 \text{ K}$) per 1 m (3.3 ft) of the remote cable.
- Analog (current output):
 - Zero point (4 mA): average $T_K = 0.02 \%/10 K$
 - Span (20 mA): average $T_K = 0.05 \%/10 K$


¹⁾ According to DIN EN IEC 61298-2 / DIN EN IEC 60770-1, the step response time is the time that elapses after an abrupt change in the input signal until the change in the output signal has adopted 90% of the steady-state value for the first time.

²⁾ Product structure: feature 600, version MB, MC or MD)

Mounting

Mounting requirements

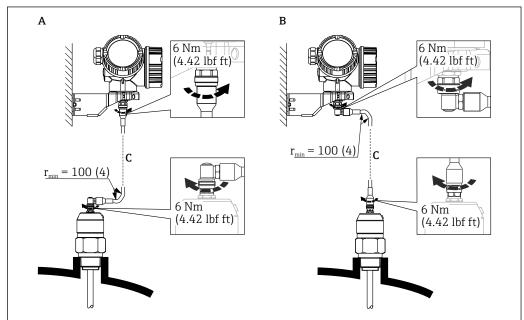
Suitable mounting position

 \blacksquare 24 Installation conditions for Levelflex

Spacing requirements when mounting

- Distance (A) between the vessel wall and rod and rope probes:
 - For smooth metallic walls: > 50 mm (2 in)
 - For plastic walls: > 300 mm (12 in) to metallic parts outside the vessel
 - For concrete walls: > 500 mm (20 in), otherwise the permitted measuring range may be reduced.
- Distance (B) between rod probes and internal fittings (3): > 300 mm (12 in)
- When using more than one Levelflex:
 - Minimum distance between the sensor axes: 100 mm (3.94 in)
- Distance (C) from the end of the probe to the bottom of the vessel:
 - Rope probe: > 150 mm (6 in)
 - Rod probe: > 10 mm (0.4 in)

32


Additional conditions

- When mounting outdoors, a weather protection cover (1) can be used to protect the device against extreme weather conditions.
- In metallic vessels, preferably do not mount the probe in the center of the vessel (2), as this would lead to increased interference echoes.
 If a central mounting position cannot be avoided, it is essential to perform interference echo
 - suppression (mapping) after commissioning the device.
- Do not mount the probe in the filling curtain (3).
- Avoid buckling the rope probe during installation or operation (e.g. as a result of product movement against silo wall) by selecting a suitable mounting location.
- In the case of freely suspended rope probes (probe end not fixed at the bottom), the distance between the probe rope and internal fittings, which can change due to the movement of the product, must never be less than 300 mm (12 in). Occasional contact between the probe end weight and the cone of the vessel, however, does not influence the measurement provided that the dielectric constant is at least DC = 1.8.
- When the housing is mounted in a recess (e.g. in a concrete ceiling), observe a minimum distance of 100 mm (4 in) between the cover of the connection compartment/electronics compartment and the wall. Otherwise the connection compartment/electronics compartment will not be accessible after installation.

Mounting under confined conditions

Mounting with remote probe

The device version with a remote probe is suitable for applications with restricted mounting space. In this case, the electronics housing is mounted at a separate position from the probe.

- Α Angled plug at the probe
- В Angled plug at the electronics housing
- Length of the remote cable as ordered
- Product structure, feature 600 "Probe design":
 - Version MB "Sensor remote, 3m cable"

 - Version MC "Sensor remote, 6m cable"Version MD "Sensor remote, 9m cable"
- The connecting cable is included in the delivery with these versions. Minimum bending radius: 100 mm (4 inch)
- The mounting bracket for the electronics housing is included in the delivery with these versions. Mounting options:
 - Wall mounting
- Mounting on DN32 to DN50 (1-1/4 to 2 inch) post or pipe
- The connection cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.
- The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.

Notes on the mechanical load of the probe

Tensile loading capacity of rope probes

FMP50

Rope 4mm (1/6") 316

2 kN

Lateral loading capacity (flexural strength) of rod probes

FMP50

Rod 8mm (1/3") 316L

10 Nm

Lateral load (bending moment) from flow conditions

The formula for calculating the bending moment M acting on the probe:

$$M = c_w \times \rho/2 \times v^2 \times d \times L \times (L_N - 0.5 \times L)$$

With:

 c_w : coefficient of friction

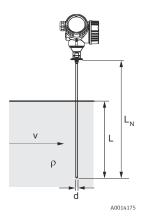
 ρ [kg/m³]: density of the medium

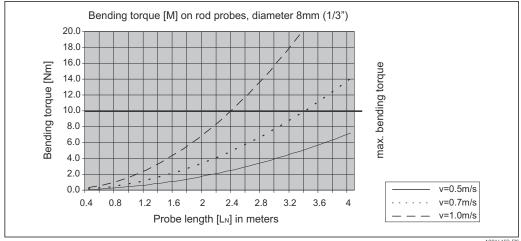
v [m/s]: flow velocity of the medium, perpendicular to the probe rod

d [m]: diameter of the probe rod

L [m]: level

LN [m]: probe length

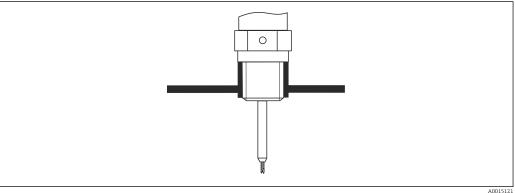

Sample calculation


Coefficient of friction c_w 0.9 (assuming turbulent flow - high Reynolds number)

Density ρ [kg/m³] 1000 (e.g. water)

Probe diameter d [m] 0.008

 $L = L_N$ (unfavorable conditions)



Information concerning the process connection

Probes are mounted on the process connection with threaded connections or flanges. If there is the danger with this installation that the probe end moves so much that it occasionally touches the vessel floor or cone, the probe may need to be shortened at the lower end and fixed in place.

Threaded connection

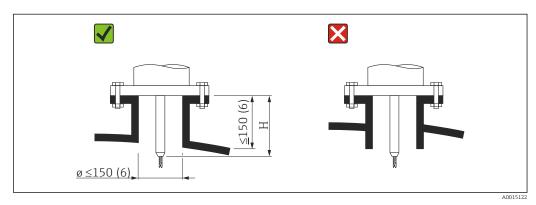
■ 25 Mounting with threaded connection; flush with the vessel ceiling

A001512

Seal

The thread and the type of seal comply with DIN 3852 Part 2, screwed plug, form A.

The following types of sealing ring can be used:

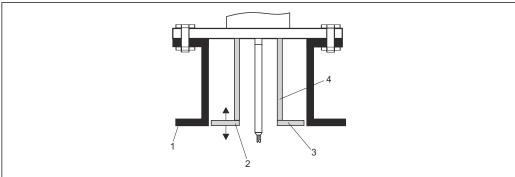

For thread G3/4": According to DIN 7603 with dimensions 27 mm \times 32 mm

Use a sealing ring according to this standard in form A, C or D and of a material that offers appropriate resistance for the application.

Refer to the dimensional drawing for the length of the screwed plug:

Nozzle installation

H Length of the centering rod or the rigid part of the rope probe

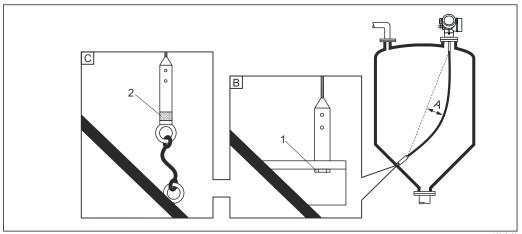

Permissible nozzle diameter: ≤ 150 mm (6 in)
 For larger diameters, the near-range measuring capability may be reduced.
 For large nozzles, see the section "Mounting in nozzles ≥ DN300"

- Permissible nozzle height: ≤ 150 mm (6 in)
 For larger heights, the near-range measuring capability may be reduced.
- The end of the nozzle should be flush with the tank ceiling in order to avoid ringing effects.

In thermally insulated vessels, the nozzle should also be insulated in order to prevent condensate formation.

Mounting in nozzles $\geq DN300$

If installation in nozzles \geq 300 mm (12 in) is unavoidable, installation must be carried out in accordance with the following diagram in order to avoid interference signals in the near range.

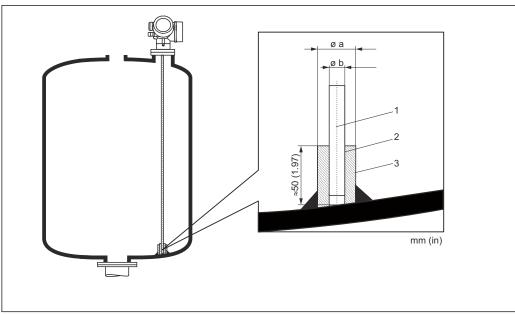


A0014199

- 1 Lower edge of the nozzle
- 2 Approximately flush with the lower edge of the nozzle (±50 mm)
- Plate, nozzle Ø 300 mm (12 in) = plate Ø 280 mm (11 in); nozzle Ø ≥ 400 mm (16 in) = plate Ø ≥ 350 mm (14 in)
- 4 Pipe Ø 150 to 180 mm

Securing the probe

Securing rope probes



A001260

- A Rope sag: \geq 10 mm/(1 m probe length) [0.12 in/(1 ft probe length)]
- B Reliably grounded end of probe
- C Reliably insulated end of probe
- 1 Fastener in female thread of probe end weight
- 2 Insulated fastening kit
- The end of the rope probe must be secured (fixed down) under the following conditions: If the probe would otherwise temporarily come into contact with the vessel wall, the cone, internal fittings/beams or another part of the installation
- A female thread is provided in the probe weight to secure the end of the probe: Rope 4 mm (1/6"), 316: M 14
- When fixed down, the end of the probe must be either reliably grounded or reliably insulated. Use an insulated fastening kit if it is not otherwise possible to secure the probe with a reliably insulated connection.

Securing rod probes

- For WHG approval: A support is required for probe lengths \geq 3 m (10 ft).
- In general, rod probes must be secured in the event of horizontal flow (e.g. from an agitator) or strong vibrations.
- Only secure rod probes directly at the end of the probe.

- 1 Probe rod
- 2 Sleeve with narrow bore to ensure electrical contact between the sleeve and the rod.
- Short metal pipe, e.g. welded in place

Probe Ø 8 mm (0.31 in)

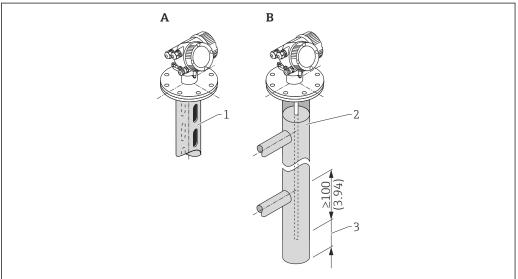
- a < Ø 14 mm (0.55 in)
- $b = \emptyset 8.5 \text{ mm } (0.34 \text{ in})$

NOTICE

Poor grounding of the probe end may cause incorrect measurements.

Use a sleeve with a narrow bore to ensure good electrical contact between the sleeve and the probe rod.

NOTICE


Welding can damage the main electronics module.

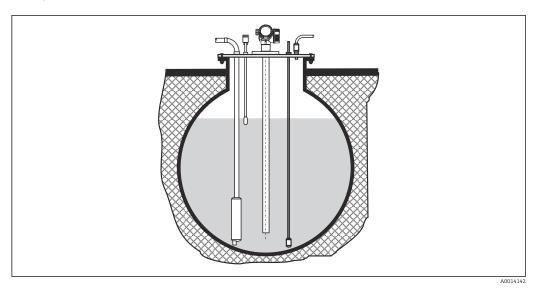
Before welding: Ground the probe rod and remove the electronics.

Special installation situations

Bypasses and stilling wells

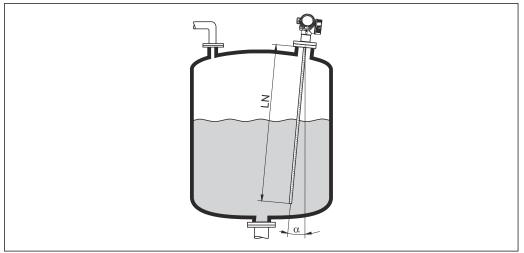
- The use of centering disks/stars/weights (available as accessories) is recommended in bypass and stilling well applications.
- As the measuring signal penetrates many plastics, installation in plastic bypasses or stilling wells can produce incorrect results. For this reason use a metal bypass or stilling well.

A0014129

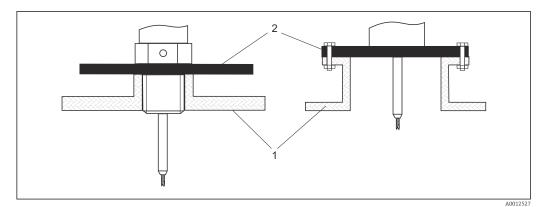

- 1 Mounting in stilling well
- 2 Mounting in bypass
- 3 Minimum distance between probe end and lower edge of bypass 10 mm (0.4 in)
- Pipe diameter: > 40 mm (1.6 in) (for rod probes).
- A rod probe can be installed in pipes with a diameter of up to 150 mm (6 in). The use of FMP51 with a coax probe is recommended for larger pipe diameters.
- Side outlets, holes, slots and welds with a maximum inward projection of 5 mm (0.2 in) do not
 affect the measurement.
- There should not be any changes in the diameter of the pipe.
- The probe must be 100 mm (4 in) longer than the lower outlet.
- The probes must not touch the pipe wall within the measuring range. Support or brace the probe if necessary. All rope probes are prepared for bracing in vessels (tensioning weight with anchor hole).
- For bypasses with condensate formation (water) and a medium with a low dielectric constant (e.g. hydrocarbons):

Over time, the bypass fills with condensate up to the lower outlet. When levels are low, the level echo is masked by the echo of the condensate as a result. In this range, the level of the condensate is output and the correct value is only output when levels are higher. For this reason, ensure that the lower outlet is 100 mm (4 in) below the lowest level to be measured and fit a metal centering disk at the level of the lower edge of the lower outlet.

In thermally insulated vessels, the bypass should also be insulated in order to prevent condensate formation.


Assignment of centering disk/centering star/centering weight to the pipe diameter

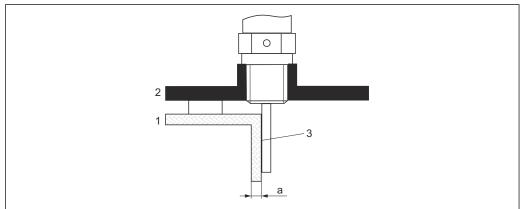
Underground tanks


In the case of nozzles with large diameters, use FMP51 with a coax probe to avoid reflections at the nozzle wall.

Mounting at an angle

- For mechanical reasons, the probe should be installed as vertically as possible.
 If the probe is installed at an angle, the length of the probe must be reduced depending on the angle of installation.
 α 5 °: LN_{max.} 4 m (13.1 ft)
 α 10 °: LN_{max.} 2 m (6.6 ft)
 α 30 °: LN_{max.} 1 m (3.3 ft)

Non-metal vessels



- 1 Non-metal vessel
- 2 Metal sheet or metal flange

To ensure good measurement results when mounting on non-metal vessels, at the process connection mount a metal sheet with a diameter of at least $200\,$ mm (8 in) at a right angle to the probe.

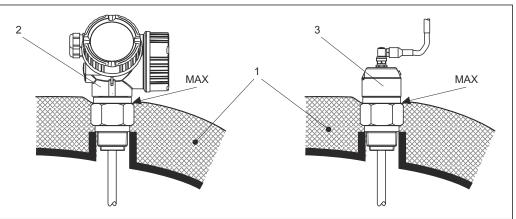
Plastic and glass vessels: Mounting the probe on the outside wall

In the case of plastic and glass vessels, the probe can also be mounted on the outside wall under certain conditions.

A00141

- 1 Plastic or glass vessel
- 2 Metal plate with screw-in sleeve
- 3 No space between vessel wall and probe!

Requirements


- Dielectric constant of the medium: $\varepsilon_r > 7$.
- Non-conductive vessel wall.
- Maximum wall thickness (a):
 - Plastic: < 15 mm (0.6 in)
 - Glass: < 10 mm (0.4 in)
- No metal reinforcements on the vessel.

Note the following when mounting the device:

- Mount the probe directly on the vessel wall without any space between the wall and probe.
- To prevent any influence on the measurement, fit a plastic half pipe with a diameter of at least 200 mm (8 in), or a similar protective unit, on the probe.
- For vessel diameters less than 300 mm (12 in):
 On the opposite side of the vessel, fit a grounding plate that is conductively connected to the process connection and covers around half of the vessel's circumference.
- For vessel diameters of 300 mm (12 in) and higher:
 At the process connection, fit a metal plate with a diameter of at least 200 mm (8 in) at a right angle to the probe (see above).

Vessel with thermal insulation

If process temperatures are high, the device must be included in normal vessel insulation (1) in order to prevent the electronics heating up as a result of thermal radiation or convection. The insulation may not go beyond the points labeled "MAX" in the drawings.

■ 26 Process connection with thread

- 1 Vessel insulation
- 2 Compact device
- 3 Sensor, remote

Endress+Hauser 45

A0014653

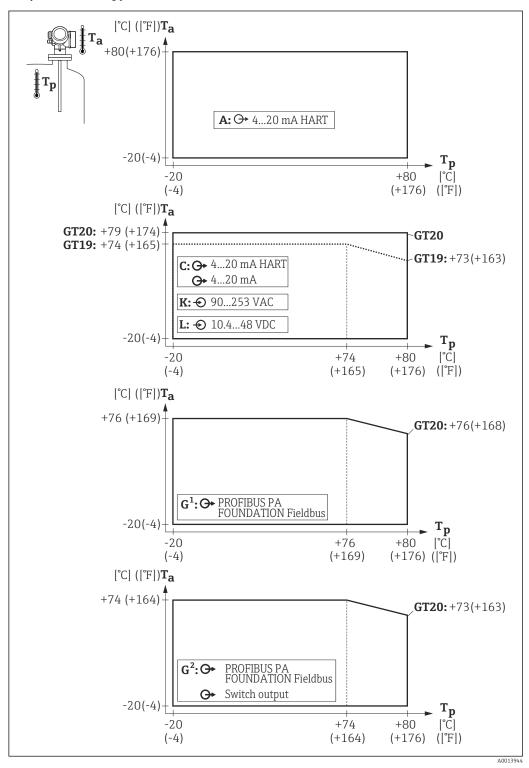
Environment

Ambient temperature

Measuring device	-20 to +80 °C (-4 to +176 °F)
Local display	-20 to +70 °C (-4 to +158 °F), the readability of the local display may be impaired at temperatures outside the temperature range.
Connecting cable (for "Sensor, remote" probe design)	−50 to +100 °C (−58 to +212 °F)
Remote display FHX50	-40 to 80 °C (-40 to 176 °F)
Remote display FHX50 (option)	-50 to 80 °C (-58 to 176 °F) ¹⁾

1) This range applies if the option JN "Transmitter ambient temperature -50 °C (-58 °F)" has been selected in order code 580 "Test, certificate". If the temperature is permanently below -40 °C (-40 °F), higher failure rates can be expected.

If operating outdoors in strong sunlight:


- Mount the device in the shade.
- Avoid direct sunlight, particularly in warm climatic regions.
- Use a weather protection cover (see accessories).

Ambient temperature limits

The following diagrams only consider functional aspects. Additional restrictions may apply for certified device versions. See the separate Safety Instructions for more information.

In the event of temperature (T_p) at the process connection, the permitted ambient temperature (T_a) is reduced as indicated in the following diagram (temperature derating):

Temperature derating for FMP50 with threaded connection G¾ or NPT¾

GT19 = Plastic housing GT20 = Aluminum housing A = 1 current output C = 2 current outputs G^1 , $G^2 = PROFIBUS PA <math>^1$) K, L = 4-wire T_a = Ambient temperature T_p = Temperature at the process connection

1) In the case of PROFIBUS PA and FOUNDATION Fieldbus, the temperature derating depends on whether the switch output (terminals 3 and 4) is used (G^2) or not (G^1) .

Storage temperature

- Permitted storage temperature: -40 to +80 °C (-40 to +176 °F)
- Use original packaging.

Climate class

DIN EN 60068-2-38 (test Z/AD)

Altitude according to IEC61010-1 Ed.3

- Generally up to 2000 m (6600 ft) above MSL.
- Above 2000 m (6600 ft) if the following conditions are met:
 - Ordering feature 020 "Power supply; Output" = A, B, C, E or G (2-wire versions)
- Supply voltage U < 35 V
- Supply voltage of overvoltage category 1

Degree of protection

Tested according to:

- With housing closed: IP68, NEMA6P (24 h at 1.83 m (6 ft) under water) (also applies for the "Remote sensor" version)
 - For housing: GT19 dual compartment, PBT plastic in combination with display, operation: SD02 or SD03: IP68 (24 h at 1 m (3.28 ft) under water)
 - IP66, NEMA4X
- With housing open: IP20, NEMA1
- Display module: IP22, NEMA2
- For M12 plug: IP68 NEMA6P, only if the cable is plugged in and also specified according to IP68 NEMA6P

Vibration resistance

DIN EN 60068-2-64 / IEC 60068-2-64: 20 to 2000 Hz, 1 $(m/s^2)^2$ /Hz

Cleaning the probe

Dirt or buildup may form on the probe depending on the application. A thin, even layer has little impact on the measurement. Thick layers can dampen the signal and reduce the measuring range. Very uneven deposit formation or caking (e.g. due to crystallization) can result in incorrect measurements. In such cases, use a non-contact measuring principle, or regularly inspect the probe for contamination.

Cleaning with sodium hydroxide solution (e.g. in CIP procedures): if the coupling is wetted, larger measurement errors can occur than under reference operating conditions. Wetting can cause temporary incorrect measurements.

Electromagnetic compatibility (EMC)

Electromagnetic compatibility in accordance with all the relevant requirements outlined in the EN 61326 series and NAMUR Recommendation EMC (NE 21). For details, refer to the Declaration of Conformity.

Download at www.endress.com.

Use a shielded cable for signal transmission.

Maximum measured error during EMC testing: < 0.5 % of the span.

When the probes are installed in metal and concrete vessels and when a coax probe is used:

- Interference emission according to EN 61326 x series, Class B equipment.
- Interference immunity according to EN 61326 x series, requirements for industry and NAMUR Recommendation NE 21 (EMC)

When probes are installed without a shielding/metal wall, e.g. installation in plastic and wooden silos, or if the "Remote sensor" device version is used, the effect of strong electromagnetic fields can influence the measured value.

- Interference emission according to EN 61326 x series, Class A equipment.
- Interference immunity: the effect of strong electromagnetic fields can influence the measured value.

Process

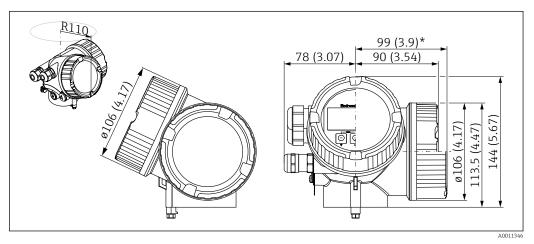
Process temperature range

The maximum temperature permitted at the process connection is determined by the O-ring version ordered:

Device	O-ring material	Process temperature	Approval
FMP50	FKM (Viton GLT)	-20 to +80 °C (-4 to 176 °F)	FDA

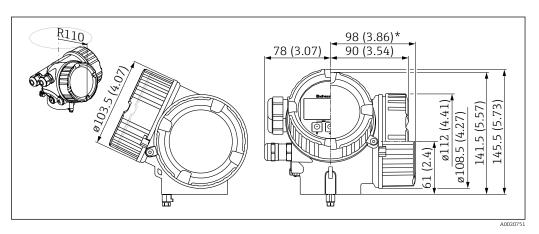
Process pressure range	Device	Process pressure
	FMP50	-1 to 6 bar (-14.5 to 87 psi)

Dielectric constant (DC) $\text{Rod and rope probe: DC } (\epsilon_r) \geq 1.6$


Extension of the rope probes due to temperature

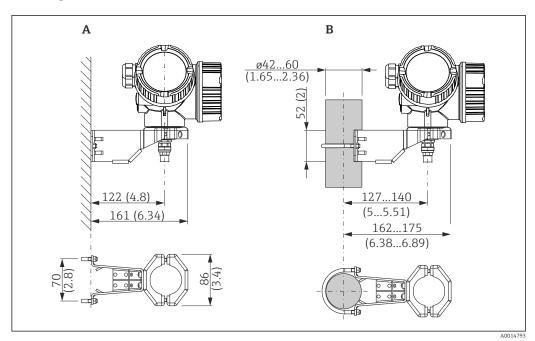
Elongation from temperature increase from 30 °C (86 °F) to 80 °C (176 °F): 1 mm / m rope length

Mechanical construction


Dimensions

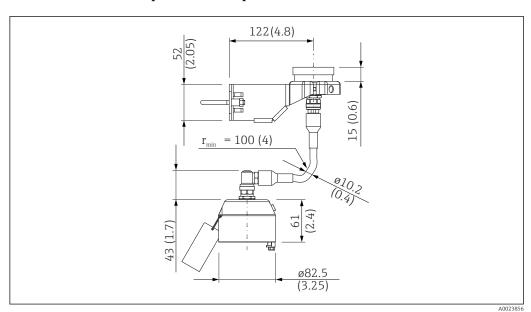
Dimensions of the electronics housing

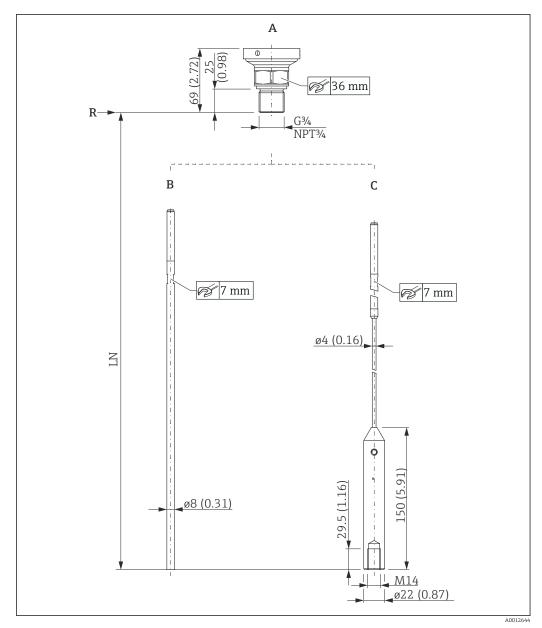
 \blacksquare 27 GT19 housing (plastic PBT). Unit of measurement mm (in)


*For devices with integrated overvoltage protection.

🛮 28 Housing GT20 (aluminum coated). Unit of measurement mm (in)

*For devices with integrated overvoltage protection.


Mounting bracket dimensions


■ 29 Mounting bracket for electronics housing. Unit of measurement mm (in)

- A Wall mounting
- B Post mounting
- With "remote sensor" device versions (see feature 060 in the product structure), the mounting bracket is included in the scope of delivery. However, it can also be ordered separately as an accessory (order number: 71102216).

Dimensions of connection piece for remote probe

🗷 30 Connection piece for remote probe; length of connecting cable: as per order. Unit of measurement mm (in)

FMP50: Dimensions of process connection/probe

■ 31 FMP50: Process connection / probe. Unit of measurement mm (in)

- A Thread ISO228 G3/4 or ANSI MNPT3/4 (feature 100)
- B Rod probe 8mm or 1/3" (feature 060)
- C Rope probe 4mm or 1/6" (feature 060)
- LN Probe length
- R Reference point of measurement

Probe length tolerances

Rod probes

Permitted tolerance depending on the probe length:

- < 1 m (3.3 ft) = -5 mm (-0.2 in)
- 1 to 3 m (3.3 to 9.8 ft) = -10 mm (-0.39 in) 3 to 6 m (9.8 to 20 ft) = -20 mm (-0.79 in)
- > 6 m (20 ft) = -30 mm (-1.18 in)

Rope probes

Permitted tolerance depending on the probe length:

- < 1 m (3.3 ft) = -10 mm (-0.39 in)
- 1 to 3 m (3.3 to 9.8 ft) = -20 mm (-0.79 in)
- 3 to 6 m (9.8 to 20 ft) = -30 mm (-1.18 in)
- \bullet > 6 m (20 ft) = -40 mm (-1.57 in)

Shortening probes

If necessary, probes can be shortened by observing the following instructions:

Shortening rod probes

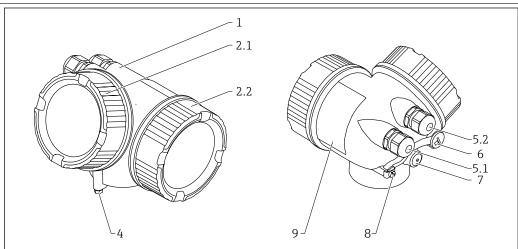
Rod probes must be shortened if the distance to the vessel floor or outlet cone is less than 10 mm (0.4 in). To shorten, saw off the bottom end of the rod probe.

It is **not** possible to shorten FMP52 rod probes due to their coating.

Shortening rope probes

Rope probes must be shortened if the distance to the vessel floor or outlet cone is less than 150 mm (6 in).

Weight

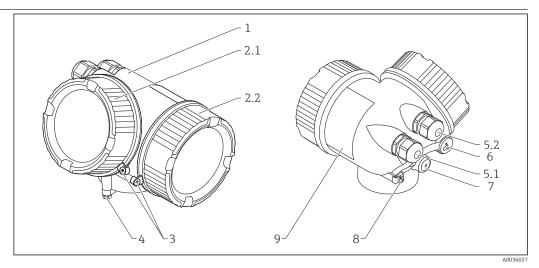

Housing

Part	Weight
GT19 housing - plastic	Approx. 1.2 kg
GT20 housing - aluminum	Approx. 1.9 kg

FMP50

Part	Weight	Part	Weight
Sensor	Approx. 0.25 kg	Rope probe 4 mm	Approx. 0.1 kg/m probe length
		Rod probe 8 mm	Approx. 0.4 kg/m probe length

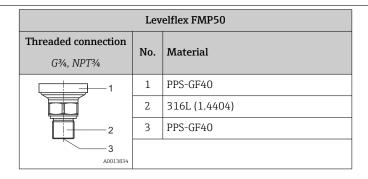
Materials: GT19 housing (plastic)



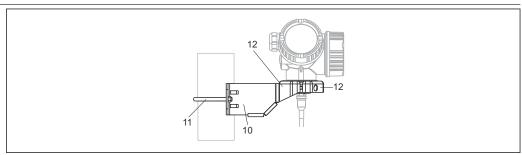
A001378

🖪 32 🛮 Material; GT19 housing

- 1 Housing; PBT
- 2.1 Electronics compartment cover; PBT-PC, seals; EPDM, window; PC, thread coating; graphite-based lubricant varnish
- 2.2 Connection compartment cover; PBT, seal; EPDM, thread coating; graphite-based lubricant varnish
- 4 Lock at the housing neck; 316L (1.4404), A4-70
- 5.1 Dummy plug, gland, adapter or plug (depending on the device version); 316L (1.4404), EPDM, PE, PBT-GF, nickel-plated brass (CuZn), PA
- 5.2 Dummy plug, gland, adapter or plug (depending on the device version); 316L (1.4404), EPDM, PE, PBT-GF, galvanized steel, nickel-plated brass (CuZn), PA
- 6 Dummy plug; nickel-plated brass (CuZn), M12 socket; GD-Zn nickel-plated
- 7 Pressure relief plug; nickel-plated brass (CuZn)
- 8 Ground terminal; 316L (1.4404), A4 (1.4571)
- 9 Adhesive nameplate; plastic

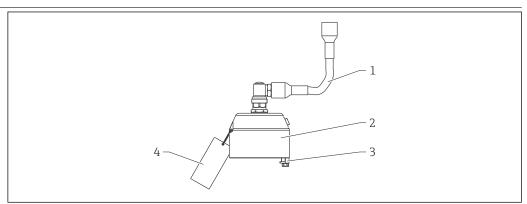

Materials: GT20 housing (die-cast aluminum, powder-coated)

■ 33 Material; GT20 housing


- Housing RAL 5012 (blue); AlSi10Mg (<0.1% Cu), coating; polyester
- 2.1 Electronics compartment cover RAL 7035 (gray); AlSi10Mg (<0.1% Cu), seals; NBR, window; glass, thread coating; graphite-based lubricant varnish
- 2.2 Connection compartment cover RAL 7035 (gray); AlSi10Mg (<0.1% Cu), seals; NBR, thread coating; graphite-based lubricant varnish
- 3 Cover lock; 316L (1.4404), A4
- 4 Lock at the housing neck; 316L (1.4404), A4-70
- 5.1 Dummy plug, gland, adapter or plug (depending on the device version); 316L (1.4404), EPDM, PE, PBT-GF, nickel-plated brass (CuZn), PA
- 5.2 Dummy plug, gland, adapter or plug (depending on the device version); 316L (1.4404), EPDM, PE, PBT-GF, galvanized steel, nickel-plated brass (CuZn), PA
- 6 Dummy plug; nickel-plated brass (CuZn), M12 socket; GD-Zn nickel-plated
- 7 Pressure relief plug; nickel-plated brass (CuZn)
- 8 Ground terminal; 316L (1.4404), A4 (1.4571)
- 9 Adhesive nameplate; plastic

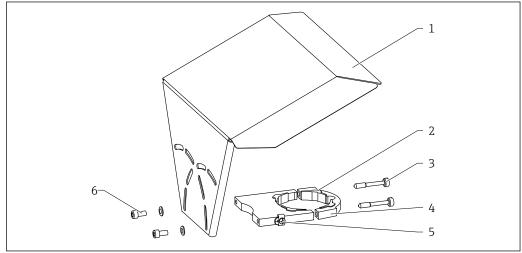
Materials: Process connection

Levelflex FMP50			
Feature 060 "Probe"			
AA: rod 8mmAB: rod 1/3"	■ LA: rope 4mm ■ LB: rope 1/6"	No.	Material
1	İ	1	316L (1.4404)
		2	316 (1.4401)
	₩ В—— 1	3	Setscrew: A4-70
	2	4	Bracing screw: A2-70
	3 		
Ц A0036583	A0036584		


Materials: Mounting bracket

A0015143

Mountin	Mounting bracket for "remote sensor" version		
No. Component Material		Material	
10 Holder 316L (1.4404)		316L (1.4404)	
11	Round bracket	316Ti (1.4571)	
	Screws/nuts	A4-70	
	Distance sleeves	316Ti (1.4571) or 316L (1.4404)	
12	Half-shells	316L (1.4404)	


Materials: Adapter and cable for remote sensor

A0021722

Adapter and cable for "remote sensor" version		
No.	Component	Material
1	Cable	FRNC
2	Sensor adapter	304 (1.4301)
3	Terminal	316L (1.4404)
	Screw	A4-70
4	Band	316 (1.4401)
	Crimp sleeve	Aluminum
	Nameplate	304 (1.4301)

Materials: weather protection cover

A001

■ 34 Material; weather protection cover

- 1 Protection cap; 316L (1.4404)
- 2 Molded rubber part (4x); EPDM
- 3 Clamping screw; 316L (1.4404) + carbon fiber
- 4 Bracket; 316L (1.4404)
- 5 Ground terminal; A4, 316L (1.4404)
- 6 Fillister-head screw; A4-70 + washer; A4

Operability

Operating concept

$Operator\hbox{-}oriented\ menu\ structure\ for\ user\hbox{-}specific\ tasks$

- Commissioning
- Operation
- Diagnostics
- Expert level

Operating languages

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- Bahasa Indonesia
- tiếng Việt (Vietnamese)
- čeština (Czech)

Fast and safe commissioning

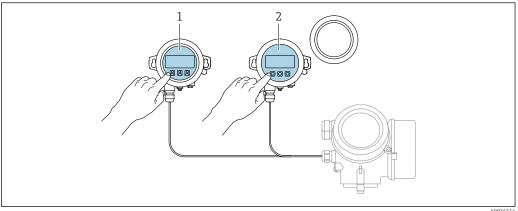
- Interactive wizard with graphical user interface for guided commissioning in FieldCare/DeviceCare
- Menu guidance with short explanations of the individual parameter functions
- Standardized operation at the device and in the operating tools

Integrated data memory (HistoROM)

- Adoption of data configuration when electronics modules are replaced
- Up to 100 event messages recorded in the device
- Data logging with up to 1000 logged values
- A reference signal curve is saved during commissioning for later use as a reference during operation

Efficient diagnostic behavior increases measurement availability

- Remedial measures are integrated in plain text
- Diverse simulation options and line recorder functions

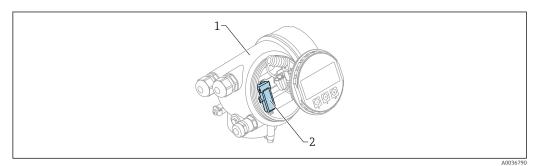

Integrated Bluetooth module (option for HART devices)

- Quick and easy setup with the SmartBlue app
- No additional tools or adapters needed
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and password-protected communication via *Bluetooth*® wireless technology

Local operation

Operation with	Pushbuttons	Touch Control	
Order code for "Display; Operation"	Option C "SD02"	Option E "SD03"	
Display elements	A0036312 4-line display	4-line display white background lighting; switches to red in	
	Format for displaying measured variables and st	event of device error	
	Permitted ambient temperature for the display: $-20 \text{ to } +70 ^{\circ}\text{C}$ ($-4 \text{ to } +158 ^{\circ}\text{F}$) The readability of the display may be impaired at temperatures outside the temperature range.		
Operating elements	local operation with 3 push buttons (±, □, □) external operation via touch control; 3 optical keys: ±, □, □		
	Operating elements also accessible in various hazardous areas		
Additional functionality	Data backup function The device configuration can be saved in the display module.		
	Data comparison function The device configuration saved in the display module can be compared to the current device configuration.		
	Data transfer function The transmitter configuration can be transmitted to another device using the display module.		

Operation with remote display and operating module FHX50

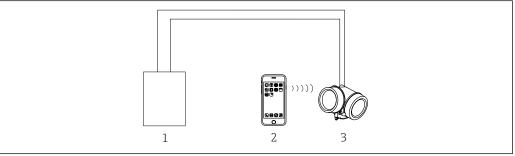

A0036314

■ 35 FHX50 operating options

- Display and operating module SD03, optical keys; can be operated through the glass of the cover Display and operating module SD02, push buttons; cover must be removed

Operation via Bluetooth® wireless technology

Requirements

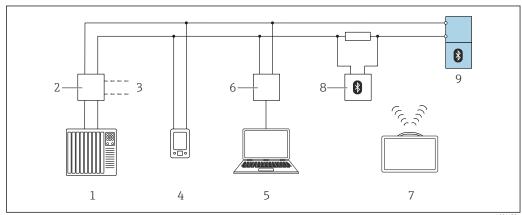

₹ 36 Device with Bluetooth module

- Electronics housing of the device
- 2 Bluetooth module

This operation option is only available for devices with Bluetooth module. There are the following options:

- The device has been ordered with a Bluetooth module: Feature 610 "Accessory Mounted", option NF "Bluetooth"
- The Bluetooth module has been ordered as an accessory (ordering number: 71377355) and has been mounted. See Special Documentation SD02252F.

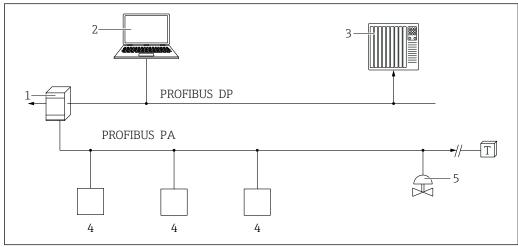
Operation via SmartBlue (app)



■ 37 Operation via SmartBlue (app)

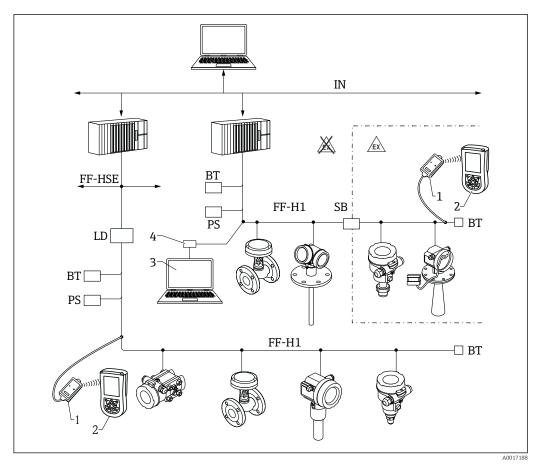
- Transmitter power supply unit
- Smartphone / tablet with SmartBlue (app)
- Transmitter with Bluetooth module

Remote operation


Via HART protocol

38 ⊡ Options for remote operation via HART protocol

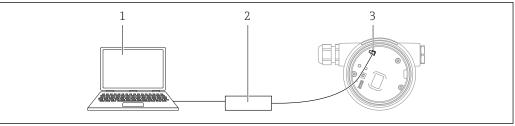
- 1 PLC (programmable logic controller)
- 2 Transmitter power supply unit, e.g., RN42
- 3 Connection for Commubox FXA195 and AMS TrexTM device communicator
- AMS TrexTM device communicator 4
- Computer with operating tool (e.g., DeviceCare/FieldCare, AMS Device View, SIMATIC PDM) Commubox FXA195 (USB) 5
- 6
- 7 Field Xpert SMT70
- 8 Bluetooth modem with connecting cable (e.g., VIATOR)
- Transmitter


Via PROFIBUS PA protocol

- Segment coupler
- Computer with PROFlusb and operating tool (e.g. DeviceCare/FieldCare) 2
- PLC (programmable logic controller) 3
- 4 Transmitter
- Additional functions (valves etc.)

64

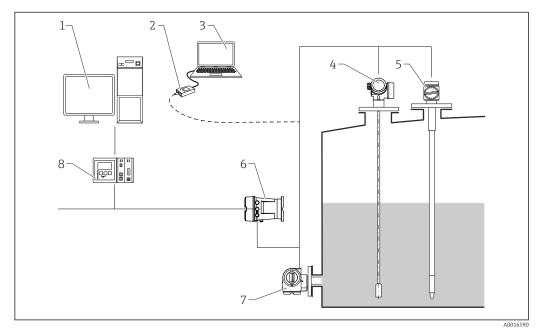
Via FOUNDATION Fieldbus



FOUNDATION Fieldbus system architecture with associated components

- FFblue Bluetooth modem 1
- Field Xpert SFX350/SFX370 DeviceCare/FieldCare 2
- 3
- NI-FF interface card

IN	Industrial network
FF-HSE	High Speed Ethernet
FF-H1	FOUNDATION Fieldbus-H1
LD	Linking Device FF-HSE/FF-H1
PS	Bus Power Supply
SB	Safety Barrier
BT	Bus Terminator


Via service interface (CDI)

- 1
- Computer with FieldCare/DeviceCare operating tool
 Commubox FXA291
 Service interface (CDI) of the measuring device (= Endress+Hauser Common Data Interface) 2 3

Integration into the Tank Gauging System

The Endress+Hauser Tank Side Monitor NRF81 has integrated communication functions for sites with multiple tanks, wherein each tank can have one or more sensors, e.g. radar, spot or average temperature sensors, capacitance probes for water detection and/or pressure sensors. As the Tank Side Monitor supports multiple protocols, it can work with virtually all industry standard tank gauging protocols. Optional connectivity of 4-20 mA sensors, digital inputs/outputs and analog outputs simplifies the full integration of all sensors on the tank. Use of the proven concept of the intrinsically safe HART bus for all on-tank sensors enables extremely low wiring costs, while at the same time ensuring maximum safety, reliability and data availability.

■ 40 The complete measuring system consists of:

- 1 Tankvision workstation
- 2 Commubox FXA195 (USB) optional
- 3 Computer with operating tool (ControlCare) optional
- 4 Level transmitter
- 5 Temperature measuring device
- 6 Tank Side Monitor NRF81
- 7 Pressure measuring device
- 8 Tankvision Tank Scanner NXA820

SupplyCare inventory management software

SupplyCare is a web-based operating program for coordinating the flow of material and information along the supply chain. SupplyCare provides a comprehensive overview of the levels of geographically distributed tanks and silos, for instance, providing complete transparency over the current inventory situation, regardless of time and location.

Based on the measuring and transmission technology installed onsite, the current inventory data are collected and sent to SupplyCare. Critical levels are clearly indicated and calculated forecasts provide additional security for material requirements planning.

The main functions of SupplyCare:

Inventory visualization

SupplyCare determines the inventory levels in tanks and silos at regular intervals. It displays current and historical inventory data and calculated forecasts of future demand. The overview page can be configured to suit the user's preferences.

Master data management

With SupplyCare you can create and manage the master data for locations, companies, tanks, products and users, as well as user authorization.

Report Configurator

The Report Configurator can be used to create personalized reports quickly and easily. The reports can be saved in a variety of formats, such as Excel, PDF, CSV and XML. The reports can be transmitted in many ways, such as by http, ftp or e-mail.

Event management

Events, such as when levels drop below the safety stock level or plan points, are indicated by the software. In addition, SupplyCare can also notify pre-defined users by e-mail.

Alarms

If technical problems occur, e.g. connection issues, alarms are triggered and alarm e-mails are sent to the System Administrator and the Local System Administrator.

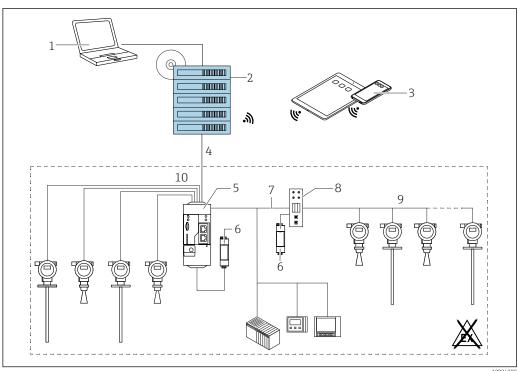
Delivery planning

The integrated delivery planning function automatically generates an order proposal if a pre-set minimum inventory level is undershot. Scheduled deliveries and disposals are monitored continuously by SupplyCare. SupplyCare notifies the user if scheduled deliveries and disposals are not going to be met as planned.

Analysis

In the Analysis module, the most important indicators for the inflow and outflow of the individual tanks are calculated and displayed as data and charts. Key indicators of material management are automatically calculated and form the basis for optimizing the delivery and storage process.

Geographical visualization

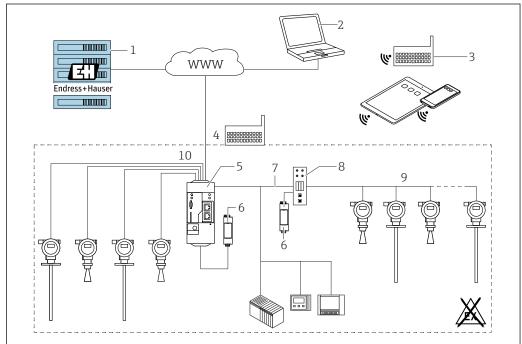

All the tanks and the tank inventories are represented graphically on a map (based on Google Maps). The tanks and inventory situations can be filtered by tank group, product, supplier or location.

Multi-language support

The multi-language user interface supports 9 languages, thereby enabling global collaboration on a single platform. The language and settings are recognized automatically using the browser settings.

SupplyCare Enterprise

SupplyCare Enterprise runs by default as a service under Microsoft Windows on an application server in an Apache Tomcat environment. The operators and administrators operate the application via a Web browser from their workstations.



₽ 41 Example of inventory management platform with SupplyCare Enterprise SCE30B

- 1 SupplyCare Enterprise (via Web browser)
- 2
- SupplyCare Enterprise installation SupplyCare Enterprise on mobile devices (via Web browser)
- 4 Ethernet/WLAN/UMTS
- Fieldgate FXA42
- Power supply 24 V DC
- Modbus TCP via Ethernet as server/client Converter from Modbus to HART Multidrop 8
- HART Multidrop
- 4 x 4 to 20 mA analog input (2-wire/4-wire) 10

Cloud-based application: SupplyCare Hosting

SupplyCare Hosting is offered as a hosting service (software as a service). Here, the software is installed within the Endress+Hauser IT infrastructure and made available to the user in the Endress+Hauser portal.

A003428

■ 42 Example of inventory management platform with SupplyCare Hosting SCH30

- 1 SupplyCare Hosting installation in Endress+Hauser data center
- 2 PC workstation with Internet connection
- 3 Warehouse locations with Internet connection via 2G/3G with FXA42 or FXA30
- 4 Warehouse locations with Internet connection with FXA42
- 5 Fieldgate FXA42
- 6 Power supply 24 V DC
- 7 Modbus TCP via Ethernet as server/client
- 8 Converter from Modbus to HART Multidrop
- 9 HART Multidrop
- 10 4 x 4 to 20 mA analog input (2-wire/4-wire)

With SupplyCare Hosting, users do not need to make the initial software purchase or install and run the IT infrastructure needed. Endress+Hauser constantly update SupplyCare Hosting and enhance the capability of the software in conjunction with the customer. The hosted version of SupplyCare is thus always up-to-date and can be customized to meet different customer requirements. Other services are also offered in addition to the IT infrastructure and the software that is installed in a secure, redundant Endress+Hauser data center. These services include defined availability of the global Endress+Hauser Service and Support Organization and defined response times in a service event.

Certificates and approvals

Current certificates and approvals that are available for the product can be selected via the Product Configurator at www.endress.com:

- 1. Select the product using the filters and search field.
- 2. Open the product page.
- 3. Select **Configuration**.

CE mark

The measuring system meets the legal requirements of the applicable EU directives. These are listed in the corresponding EU Declaration of Conformity together with the standards applied.

The manufacturer confirms successful testing of the device by affixing to it the CE mark.

RoHS

The measuring system meets the substance restrictions of the Directive on the Restriction of the Use of Certain Hazardous Substances 2011/65/EU (RoHS 2) and the Delegated Directive (EU) 2015/863 (RoHS 3).

RCM marking

The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products bear the RCM marking on the nameplate.

A0029561

Ex-approval

The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA, ZD) document. Reference is made to this document on the nameplate.

The separate "Safety Instructions" documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales organization.

Dual seal according to ANSI/ISA 12.27.01

The devices have been designed according to ANSI/ISA 12.27.01 as dual seal devices, allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC) These instruments comply with the North-American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids.

Further information can be found in the Safety Instructions (XA) of the relevant devices.

Functional safety

Use for level monitoring (MIN, MAX, range) up to SIL 3 (homogeneous redundancy), independently evaluated by $T\ddot{U}V$ Rheinland in accordance with IEC 61508, refer to the "Functional Safety Manual" SD00326F for more information.

Overfill protection

WHG

DIBt Z-65.16-501

Pressure equipment with allowable pressure ≤ 200 bar (2900 psi)

Pressure instruments with a flange and threaded boss that do not have a pressurized housing do not fall within the scope of the Pressure Equipment Directive, irrespective of the maximum allowable pressure.

Reasons:

According to Article 2, point 5 of EU Directive 2014/68/EU, pressure accessories are defined as "devices with an operational function and having pressure-bearing housings".

If a pressure instrument does not have a pressure-bearing housing (no identifiable pressure chamber of its own), there is no pressure accessory present within the meaning of the Directive.

Radio approval

Satisfies "Part 15" of the FCC rules for an unintentional radiator. All probes meet the requirements for a Class A digital device.

In addition, coax probes and all probes in metal vessels meet the requirements for a Class B digital device.

Test, certificate

Feature 580 "Test, certificate"	Designation	Approval
JA	3.1 Material documentation, wetted metal parts, EN10204-3.1 inspection certificate	FMP50

Test reports, declarations and inspection certificates are available in electronic format in the W@M Device Viewer:

Enter the serial number from the nameplate (www.endress.com/deviceviewer)

This concerns the options for the following order codes:

- 550 "Calibration"
- 580 "Test, certificate"

Product documentation on paper

A printed (hard copy) version of test reports, declarations and inspection certificates can optionally be ordered via order code 570 "Service", option I7 "Product documentation on paper". The documents are then supplied with the product.

Other standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

■ IEC/EN 61326

"Emission in accordance with Class A requirements". Electromagnetic compatibility (EMC requirements).

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 107

Status classification as per NE107

■ NAMUR NE 131

Requirements for field devices for standard applications

■ IEC61508

Functional safety of safety-related electric/electronic/programmable electronic systems

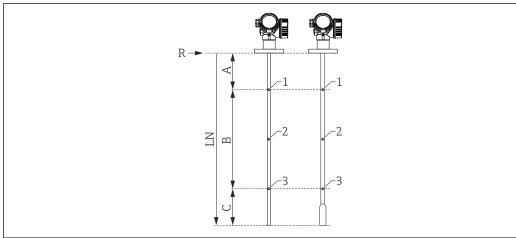
Ordering information

Ordering information

Detailed ordering information is available for your nearest sales organization www.addresses.endress.com or in the Product Configurator under www.endress.com :

- 1. Click Corporate
- 2. Select the country
- 3. Click Products
- 4. Select the product using the filters and search field
- 5. Open the product page

The Configuration button to the right of the product image opens the Product Configurator.


Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

3-point linearity protocol

The following points must be considered if option F3 (3-point linearity protocol) was selected in feature 550 ("Calibration").

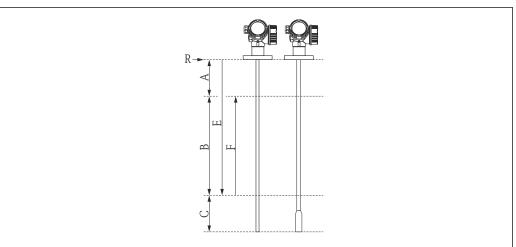
The 3 points of the linearity protocol are defined as follows, depending on the selected probe:

A0021843

- A Distance from the reference point R to the first measuring point
- B Measuring range
- *C* Distance from the probe end to the third measuring point
- LN Probe length
- R Reference point of measurement
- 1 First measuring point
- 2 Second measuring point (in the middle between the first and third measuring point)
- 3 Third measuring point

	Rod probe	Rope probe LN ≤ 6 m (20 ft)	Rope probe LN > 6 m (20 ft)
Position of 1st measuring point	A = 350 mm (13.8 in)	A = 350 mm (13.8 in)	A = 350 mm (13.8 in)
Position of 2nd measuring point	In the middle between the 1st and 3rd measuring point	In the middle between the 1st and 3rd measuring point	In the middle between the 1st and 3rd measuring point
Position of 3rd measuring point	C = 250 mm (9.84 in)	C = 500 mm (19.7 in)	A+B = 5500 mm (217 in)
Minimum measuring range	B ≥ 400 mm (15.7 in)	B ≥ 400 mm (15.7 in)	B ≥ 400 mm (15.7 in)
Minimum probe length	LN ≥ 1000 mm (39.4 in)	LN ≥ 1250 mm (49.2 in)	LN ≥ 1250 mm (49.2 in)

- The position of the measuring points can vary by ± 1 cm (± 0.04 in).
- In the case of rod and rope probes, the linearity check is performed with the entire device.
 The linearity check is performed under reference operating conditions.


5-point linearity protocol

i

The following points must be considered if option F4 (5-point linearity protocol) was selected in feature 550 ("Calibration").

The 5 points of the linearity protocol are evenly distributed over the measuring range (0% - 100%). **Empty calibration** (E) and **Full calibration** (F) must be specified in order to define the measuring range $^{3)}$.

The following restrictions must be considered when selecting E and F:

A0014673

- A Distance from the reference point R to the 100% mark
- B Measuring range
- C Distance from the probe end to the 0% mark
- E Empty calibration
- F Full calibration
- R Reference point of measurement

Sensor	Minimum distance between reference point R and 100% mark	Minimum measuring range
FMP50	A ≥ 250 mm (10 in)	B ≥ 400 mm (16 in)

Type of probe	Minimum distance from the probe end to the 0% mark	Maximum value for "Empty calibration"
Rod	C ≥ 100 mm (4 in)	E ≤ 3.9 m (12.8 ft)
Rope	C ≥ 1000 mm (40 in)	E ≤ 11 m (36 ft)

- In the case of rod and rope probes, the linearity check is performed with the entire device.
- The linearity check is performed under reference operating conditions.

The selected values for **Empty calibration** and **Full calibration** are only used to create the linearity protocol. Afterwards, the values are reset to the default values specific for the probe. If values other than the default values are required, they must be ordered as a customized parameterization $\rightarrow \blacksquare 78$.

³⁾ If (E) and (F) are not specified, probe-dependent default values will be used instead.

Customized parameterization

If the option IJ: "Customized parameterization HART", IK "Customized parameterization PA" or IL "Customized parameterization FF" has been selected in feature 570 "Service", presettings that differ from the default settings can be selected for the following parameters:

Parameter	Communication protocol	Picklist / value range
Setup → Unit of length	• HART • PA • FF	• in • ft • mm • m
Setup → Empty calibration	HARTPAFF	0 to 12 m (0 to 36 ft)
$Setup \to Full \ calibration$	HARTPAFF	0 to 12 m (0 to 36 ft)
Setup \rightarrow Extended setup \rightarrow Curr. output 1/2 \rightarrow Damping	HART	0 to 999.9 s
Setup \rightarrow Extended setup \rightarrow Curr. output $1/2 \rightarrow$ Failure mode	HART	Min Max Last valid value
Expert \rightarrow Comm. \rightarrow HART config. \rightarrow Burst mode	HART	Off On

Labeling (optional)

Various types of measuring point labeling can be selected in the Product Configurator.

This includes:

- Tag
- Adhesive label
- RFID TAG
- Labeling according to DIN91406, also with NFC.

Tag name

3 lines with a maximum of 18 characters per line

Labeling in the electronic nameplate (ENP)

The first 32 characters of the tag name

Labeling on the display module

The first 12 characters of the tag name

Application packages

Heartbeat Diagnostics

Availability

Available in all device versions.

Function

- Continuous self-monitoring of the device.
- Diagnostic messages output to
 - the local display.
 - an asset management system (e.g. FieldCare/DeviceCare).
 - an automation system (e.g. PLC).

Advantages

- Device condition information is available immediately and processed in time.
- The status signals are classified in accordance with VDI/VDE 2650 and NAMUR recommendation NE 107 and contain information about the cause of the error and remedial action.

Detailed description

See the "Diagnostics and troubleshooting" section of the Operating Instructions for the device.

Heartbeat Verification

Availability

Available for the following versions of feature 540 "Application package":

■ EH

Heartbeat Verification + Monitoring

EJ

Heartbeat Verification

Device functionality checked on demand

- Verification of the correct functioning of the measuring device within specifications.
- The verification result provides information about the condition of the device: **Passed** or **Failed**.
- The results are documented in a verification report.
- The automatically generated report supports the obligation to demonstrate compliance with internal and external regulations, laws and standards.
- Verification is possible without interrupting the process.

Advantages

- No onsite presence is required to use the function.
- The DTM triggers verification in the device and interprets the results. No specific knowledge is required on the part of the user.
 - (DTM: Device Type Manager; controls device operation via DeviceCare, FieldCare or a DTM-based process control system.)
- The verification report can be used to prove quality measures to a third party.
- Heartbeat Verification can replace other maintenance tasks (e.g. periodic check) or extend the
 test intervals.

SIL/WHG-locked devices

Only relevant for devices with SIL or WHG approval: order code 590 ("Additional approval"), option LA ("SIL") or LC ("WHG").

- The Heartbeat Verification module contains a wizard for the proof test which must be performed at appropriate intervals for the following applications:
 - SIL (IEC61508/IEC61511)
 - WHG (German Water Resources Act)
- To perform a proof test, the device must be locked (SIL/WHG locking).
- The wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.
- wit

In the case of SIL-locked and WHG-locked devices, it is **not** possible to perform verification without taking additional measures (e.g. bridging the output current) because the output current must be simulated (Increased safety mode) or the level must be approached manually (Expert mode) during subsequent re-locking (SIL/WHG locking).

Detailed description

SD01872F

Heartbeat Monitoring

Availability

Available for the following versions of feature 540 "Application package":

EΗ

Heartbeat Verification + Monitoring

Function

- In addition to the verification parameters, the corresponding parameter values are also logged.
- Existing measured variables, such as the echo amplitude, are used in the Foam detection and Build-up detection wizards.
- In the Levelflex FMP5x, the **Foam detection** and **Build-up detection** wizards cannot be used together.

"Foam detection" wizard

- The Heartbeat Monitoring module contains the **Foam detection** wizard.
- This wizard is used to configure automatic foam detection, which detects foam on the product surface on the basis of the reduced signal amplitude. Foam detection can be linked to a switch output in order to control a sprinkler system, for example, which dissolves the foam.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

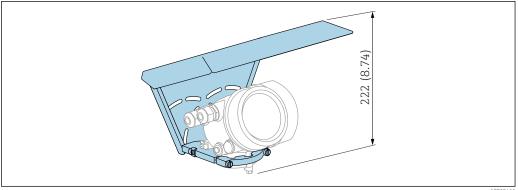
"Build-up detection" wizard

- The Heartbeat Monitoring module contains the **Build-up detection** wizard.
- The wizard is used to configure automatic buildup detection, which detects the buildup of deposits on the probe on the basis of the reduced signal amplitude.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

Advantages

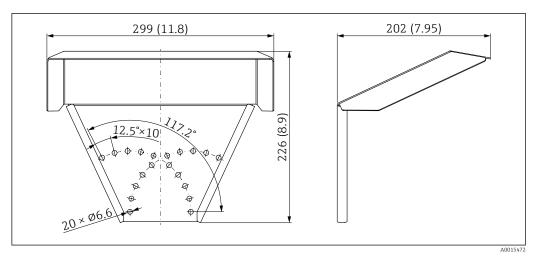
- Early detection of changes (trends) to ensure plant availability and product quality.
- Use of information for the proactive planning of measures (e.g. cleaning/maintenance).
- Identification of undesirable process conditions as the basis to optimizing the facility and the processes.
- Automated control of measures to remove foam or buildup.

Detailed description


SD01872F

Accessories

Device-specific accessories

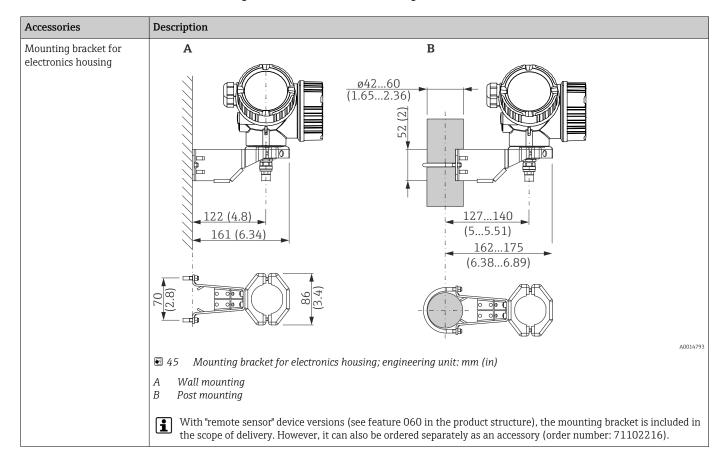

Weather protection cover

The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.

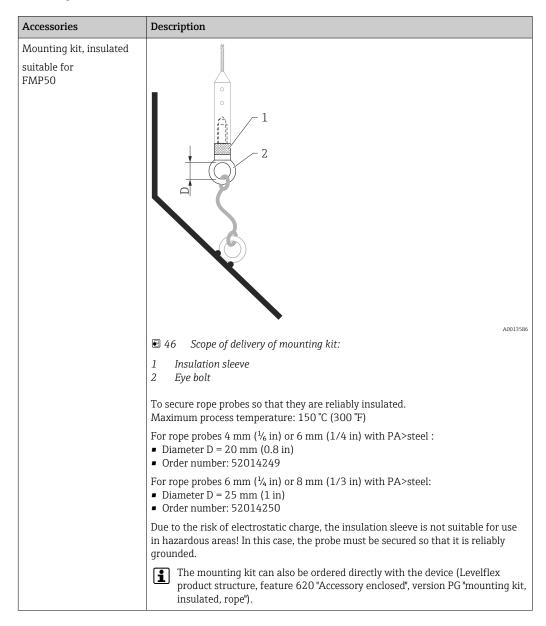
■ 43 Height. Unit of measurement mm (in)

A001546

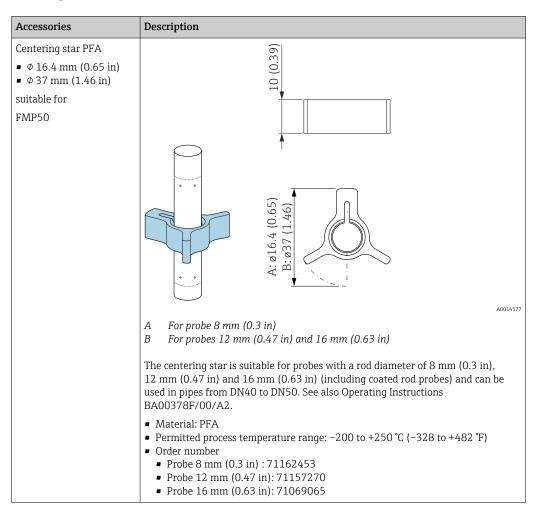
■ 44 Dimensions. Unit of measurement mm (in)

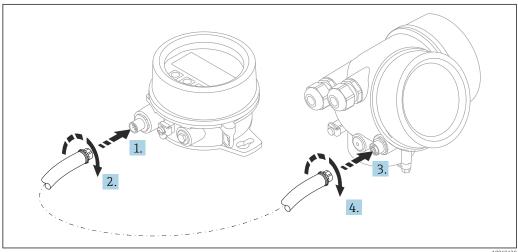

Material

316L


Order number for accessories:

71162242


Mounting bracket for electronics housing


Mounting kit, insulated

Centering star

Remote display FHX50

Endress+Hauser 83

A0019128

Technical data

- Material:
 - Plastic PBT
 - 316L/1.4404
 - Aluminum
- $\,\blacksquare\,$ Degree of protection: IP68 / NEMA 6P and IP66 / NEMA 4x
- Suitable for display modules:
 - SD02 (push buttons)
 - SD03 (touch control)
- Connecting cable:
 - Cable supplied with device up to 30 m (98 ft)
 - Standard cable supplied by customer up to 60 m (196 ft)
- Ambient temperature:-40 to 80 °C (-40 to 176 °F)

Ordering information

• If the remote display is to be used, the device version "Prepared for display FHX50" must be ordered.

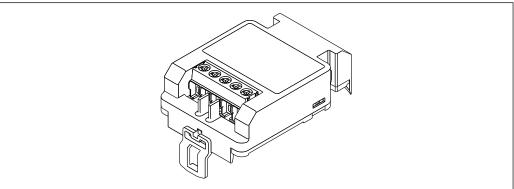
For the FHX50, the option "Prepared for display FHX50" must be selected under "Measuring device version".

- If a measuring device has not been ordered with the version "Prepared for display FHX50" and is to be retrofitted with an FHX50, the version "Not prepared for display FHX50" must be ordered for the FHX50 under "Measuring device version". In this case, a retrofit kit for the device is supplied with the FHX50. The kit can be used to prepare the device so that the FHX50 can be used.
- Use of the FHX50 may be restricted for transmitters with an approval. A device may only be retrofitted with the FHX50 if the option "Prepared for FHX50" is listed in the associated Safety Instructions (XA) under *Basic specifications*, "Display, operation".

Also pay attention to the Safety Instructions (XA) of the FHX50.

Retrofitting is not possible on transmitters with:

- An approval for use in areas with flammable dust (dust ignition-proof approval)
- Type of protection Ex nA


For details, see the "Special Documentation" SD01007F

Overvoltage protection

The surge arrester for loop-powered devices can be ordered together with the device via the "Accessory mounted" section of the product order structure.

The surge arrester can be used for loop-powered devices.

- 1-channel devices OVP10
- 2-channel devices OVP20

A0021734

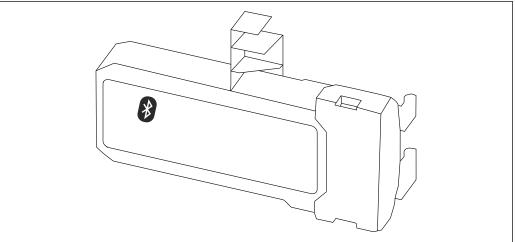
Technical data

- Resistance per channel: $2 \times 0.5 \Omega_{max}$
- Threshold DC voltage: 400 to 700 V
- Threshold surge voltage: < 800 V
- Capacitance at 1 MHz: < 1.5 pF
- Nominal leakage current (8/20 μs): 10 kA
- Suitable for conductor cross-sections: 0.2 to 2.5 mm² (24 to 14 AWG)

If retrofitting:

- Order number for 1-channel devices (OVP10): 71128617
- Order number for 2-channel devices (OVP20): 71128619
- The use of the OVP module may be restricted depending on the transmitter approval. A device may only be retrofitted with the OVP module if the option *NA* (overvoltage protection) is listed under *Optional specifications* in the Safety Instructions (XA) associated with the device.
- In order to keep the necessary safety distances when using the surge arrester module, the housing cover also needs to be replaced when the device is retrofitted.

Depending on the housing type, the suitable cover can be ordered using the following order number:


- Housing GT18: 71185516
- Housing GT19: 71185518
- Housing GT20: 71185517

For details, see the "Special Documentation" SD01090F

Bluetooth module BT10 for HART devices

The Bluetooth module BT10 can be ordered together with the device via the "Accessory mounted" section of the product order structure.

10026602

Technical data

- Quick and easy setup with the SmartBlue app
- No additional tools or adapters needed
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and password-protected communication via Bluetooth® wireless technology
- Range under reference conditions:> 10 m (33 ft)
- When the Bluetooth module is used, the minimum supply voltage of the device increases by up to 3 V.

If retrofitting:

- Order number: 71377355
- The use of the Bluetooth module may be restricted depending on the transmitter approval. A device may only be retrofitted with the Bluetooth module if the option *NF* (Bluetooth module) is listed under *Optional specifications* in the Safety Instructions (XA) associated with the device.

For details, see the "Special Documentation" SD02252F

Communication-specific accessories

Commubox FXA195 HART

For intrinsically safe HART communication with FieldCare via the USB interface

For details, see "Technical Information" TI00404F

Commubox FXA291

Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop

Order number: 51516983

For details, see "Technical Information" TI00405C

HART Loop Converter HMX50

Is used to evaluate and convert dynamic HART process variables to analog current signals or limit

Order number: 71063562

For details, see "Technical Information" TI00429F and Operating Instructions BA00371F

WirelessHART adapter SWA70

- Is used for the wireless connection of field devices
- The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless

For details, see Operating Instructions BA00061S

Fieldgate FXA42

Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or mobile communications (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.

For details, see "Technical Information" TI01297S and Operating Instructions BA01778S.

SupplyCare Enterprise SCE30B

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types.

This Web-based software is installed on a local server and can also be visualized and operated with mobile terminals such as a smartphone or tablet.

For details, see Technical Information TI01228S and Operating Instructions BA00055S

SupplyCare Hosting SCH30

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types. SupplyCare Hosting is offered as a hosting service (Software as a Service, SaaS). In the Endress +Hauser portal, the user is provided with the data over the Internet.

For details, see Technical Information TI01229S and Operating Instructions BA00050S

Field Xpert SFX350

Field Xpert SFX350 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the non-Ex

For details, see Operating Instructions BA01202S

Field Xpert SFX370

Field Xpert SFX370 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the non-Ex area and the Ex area.

For details, see Operating Instructions BA01202S

Service-specific accessories

DeviceCare SFE100

Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices

Technical Information TI01134S

FieldCare SFE500

FDT-based plant asset management tool

It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Technical Information TI00028S

System components

Memograph M graphic data manager

The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.

Technical Information TI00133R and Operating Instructions BA00247R

RN221N

Active barrier with power supply for safe separation of 4 to 20 mA standard signal circuits. Offers bidirectional HART transmission.

 $Technical\ Information\ TIO0073R\ and\ Operating\ Instructions\ BA00202R$

RN221

Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidirectional communication is possible via the HART communication jacks.

Technical Information TI00081R and Brief Operating Instructions KA00110R

Supplementary documentation

The following document types are available in the Downloads section of the Endress+Hauser website (www.endress.com/downloads):

For an overview of the scope of the associated Technical Documentation, refer to the following:

- W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the matrix code on the nameplate

Brief Operating Instructions (KA)

Guide that takes you quickly to the 1st measured value

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

Operating Instructions (BA)

Your reference guide

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.

The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

Functional Safety Manual (FY/SD)

Depending on the SIL approval, the Functional Safety Manual (FY/SD) is an integral part of the Operating Instructions and applies in addition to the Operating Instructions, Technical Information and ATEX Safety Instructions.

The different requirements that apply for the protective function are described in the Functional Safety Manual (FY \prime SD).

www.addresses.endress.com