Safety Instructions Proline Prosonic Flow P 500 INMETRO: Zone 1 Zone 21 # Segurança OCP 0004 INMETRO ## Proline Prosonic Flow P 500 #### Table of contents | Associated documentation 4 | |---| | Certificates and declarations | | Certificate holder | | Extended order code5 | | Safety instructions: General | | Safety instructions: Installation | | Safety instructions: Zone 21 | | Temperature tables | | Explosion hazards arising from gas and dust | | Connection values: Signal circuits | ## Associated documentation For an overview of the scope of the associated Technical Documentation, refer to the following: - *Device Viewer* (www.endress.com/deviceviewer): Enter serial number from nameplate. - Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate. To commission the device, please observe the Operating Instructions pertaining to the device: | Measuring device | Documentation code | | | |---------------------|--------------------|--------------|--| | | HART | Modbus RS485 | | | Prosonic Flow P 500 | BA02025D | BA02026D | | #### Additional documentation | Contents | Document type | Documentation code | | |----------------------|---------------|--------------------|--| | Explosion Protection | Brochure | CP00021Z/11 | | Please note the documentation associated with the device. ## Certificates and declarations #### **Declaration of conformity** INMETRO CERTIFICADO DE CONFORMIDADE #### **Certificate of Conformity** Certificate number: - TÜV 19 1341X - TÜV 23.0040X - TÜV 23.0041X - TÜV 23.0042X Affixing the certificate number certifies conformity with the standards under www.abnt.org.br (depending on the device version). - ABNT NBR IEC 60079-0: 2020 - ABNT NBR IEC 60079-1: 2016 - ABNT NBR IEC 60079-7: 2018 - ABNT NBR IEC 60079-11: 2013 - ABNT NBR IEC 60079-26: 2016 - ABNT NBR IEC 60079-31: 2014 #### Certificate holder Endress+Hauser Flowtec AG Kägenstrasse 7 4153 Reinach BL Switzerland #### Extended order code The extended order code is indicated on the nameplate, which is affixed to the device in such a way that it is clearly visible. Additional information about the nameplate is provided in the associated Operating Instructions. #### Structure of the extended order code specification is displayed instead of the placeholders. #### Device type The device and the device design is defined in the "Device type" section (Product root). #### Basic specifications The features that are absolutely essential for the device (mandatory features) are specified in the basic specifications. The number of positions depends on the number of features available. The selected option of a feature can consist of several positions. #### Optional specifications The optional specifications describe additional features for the device (optional features). The number of positions depends on the number of features available. The features have a 2-digit structure to aid identification (e.g. IA). The first digit (ID) stands for the feature group and consists of a number or a letter (e.g. J = Test, Certificate). The second digit constitutes the value that stands for the feature within the group (e.g. A = 3.1 material (wetted parts), inspection certificate). More detailed information about the device is provided in the following tables. These tables describe the individual positions and IDs in the extended order code which are relevant to hazardous locations. #### Device type | Position | Order code for | Option selected | Description | |----------|-------------------|-----------------|---| | 1 | Instrument family | 9 | Ultrasonic transit time flowmeter | | 2 | Sensor | P | Sensor type | | 3 | Transmitter | 5 | Transmitter type:
4-wire, remote version | | 4 | Generation index | В | Platform generation | | 5, 6 | Nominal diameter | DN 15 to 4000 | Nominal diameter of sensor | #### **Basic specifications** | Position 1, 2
Order code for
"Approval"
Option selected | Position 10
Order code for
"Integrated ISEM
electronics"
Option selected | Type of protection Transmitter | Sensor | |--|--|---|---| | MB | В | Ex db eb ia [ia Ga] IIC T6T5 Gb
Ex tb [ia Da] IIIC T85 °C Db | Ex ia IIC T6T1 Gb
Ex ia IIIC T** °C Db | | MD | В | Ex db ia [ia Ga] IIC T6T5 Gb
Ex tb [ia Da] IIIC T85 °C Db | Ex ia IIC T6T1 Gb
Ex ia IIIC T** °C Db | | Position | Order code for | Option selected | Description | |----------|-----------------|-----------------|--------------------------| | 4, 5 | Output, input 1 | BA | 4-20mA HART | | | | CA | 4-20mA HART Ex-i passive | | | | СС | 4-20mA HART Ex-i active | | | | MA | Modbus RS485 | | 6 | Output, input 2 | A | W/o | | Position | Order code for | Option selected | Description | |----------|----------------------------|-----------------|--| | | | В | 4-20mA | | | | С | 4-20mA Ex-i passive | | | | D | Configurable I/O initial setting off | | | | Е | Pulse/frequency/switch output | | | | F | Pulse output, phase-shifted | | | | G | Pulse/frequency/switch output Ex-i passive | | | | Н | Relay | | | | I | 4-20mA input | | | | J | Status input | | 7 | Output, input 3 | A | W/o | | 7 Ou | | В | 4-20mA | | | | С | 4-20mA Ex-i passive | | | | D | Configurable I/O initial setting off | | | | Е | Pulse/frequency/switch output | | | | F | Pulse output, phase-shifted | | | | G | Pulse/frequency/switch output Ex-i passive | | | | Н | Relay | | | | I | 4-20mA input | | | | J | Status input | | 8 | Display; Operation | F | 4-line, illuminated; touch control | | | | G | 4-line, illuminated; touch control + WLAN | | 9 | Integrated ISEM Electronic | В | Transmitter | | 10 | Transmitter Housing | A | Alu, coated | | | | L | Cast, stainless | | 19 | Device Model | A2 | 2 | ### **Optional specifications** | ID | Order code for | Option selected | Description | |----|----------------------|-----------------|--| | Jx | Test, certificate | JN | Ambient temperature transmitter −50 °C; sensor see specification | | Px | Enclosed accessories | P8 | Wireless antenna, wide area (external WLAN antenna) 1) | 1) The external WLAN antenna is available with the order code for "Accessory Enclosed", option P8. #### Safety instructions: General - Staff must meet the following conditions for mounting, electrical installation, commissioning and maintenance of the device: - Be suitably qualified for their role and the tasks they perform - Be trained in explosion protection - Be familiar with national regulations or guidelines (e.q. ABNT NBR IEC 60079-14) - Install the device according to the manufacturer's instructions and national regulations. - Do not operate the device outside the specified electrical, thermal and mechanical parameters. - Refer to the temperature tables for the relationship between the permitted ambient temperature for the sensor and/or transmitter, depending on the range of application, and the temperature classes. - Alterations to the device can affect the explosion protection and must be carried out by staff authorized to perform such work by Endress+Hauser. - When using in hybrid mixtures (gas and dust occurring simultaneously), observe additional measures for explosion protection. - Open the housing cover of the transmitter housing in explosion protection only if one of the following conditions is met: - An explosive atmosphere is not present. - A waiting time of 10 minutes is observed after switching off the power supply. The following warning notice is on the device: Atenção - Aguardar 10 minutos após desenergização antes de abrir o invólucro do transmissor em tipo de proteção Ex d. - In devices with damaged Ex d threads: - Use in hazardous areas is not permitted. - Repair of Ex d threads is not permitted. - Observe all the technical data of the device (see nameplate). - Avoid electrostatic charge (e.g. caused by friction, cleaning, maintenance, strong currents in the medium): On the attached stainless steel nameplate and on painted metallic housings that are not integrated into the local potential equalization system. #### Safety instructions: Installation Continuous service temperature of the connecting cable: −40 to +80 °C (−50 to +60 °C for optional specifications, ID Jx (Test, Certificate) = JN); in accordance with the range of service temperature taking into account additional influences of the process conditions (T_{a.min} and T_{a.max} + 20 K). - Only use certified cable entries suitable for the application. Observe selection criteria as per ABNT NBR IEC 60079-14. - The following applies when connecting the transmitter with a connection compartment in Ex db: Only use separately certified cables and wire entries (Ex db IIC) which are suitable for operating temperatures up to 85 $^{\circ}$ C and for IP 66/67. If using conduit entries, the associated sealing mechanisms must be mounted directly on the housing. Plastic sealing plugs act as transport protection and have to be replaced by suitable, individually approved installation material. The mounted metal thread extensions and blind plugs are tested and certified as part of the housing for type of protection Ex db IIC. The thread extension or the blind plug labeled as follows for identification purposes: Md: M20 x 1.5 d: NPT ½" ■ Gd: G ½" The following applies when connecting the transmitter with a connection compartment in Ex eb: Only use separately certified cable and wire entries and sealing plugs (Ex eb IIC) which are suitable for operating temperatures up to 85 $^{\circ}$ C and for IP 66/67. The cables must be routed such that they are securely seated, and sufficient strain relief must be ensured. The mounted metal thread extensions and blind plugs supplied are tested and certified as part of the housing for type of protection Ex eb IIC. Plastic sealing plugs act as transport protection and have to be replaced by suitable, individually approved installation material. Supplied cable glands are separately certified and marked as components and meet device specification requirements. - When the measuring device is connected, attention must be paid to explosion protection at the transmitter. - In potentially explosive atmospheres: - Do not disconnect the electrical connection of the power supply circuit when energized. - Do not open the connection compartment cover when energized. When connecting through a conduit entry approved for this purpose, mount the associated sealing unit directly at the enclosure. - Seal unused entry glands with approved sealing plugs that correspond to the type of protection. The plastic transport sealing plug does not meet this requirement and must therefore be replaced during installation. - Only use certified sealing plugs. The metal sealing plugs supplied meet this requirement. - Transmitters with Ex db eb approval must not be connected via the service interface (CDI-RJ45)! Order code "Approval; Transmitter; Sensor", options (Ex de): MB #### Optional external WLAN antenna - The external WLAN antenna can be used only in conjunction with an Ex eb or Ex ec connection compartment. Order code for "Integrated ISEM Electronic", option B: Use with an Ex db connection compartment is not permitted. - Connect the antenna bushing H337 to the transmitter housing and tighten by hand. - Use only external antennas supplied by Endress+Hauser. - Connect antenna or antenna cable with plug-in connector type N (MIL-STD-348) to antenna bushing H337. #### Intrinsic safety - Observe the guidelines for interconnecting intrinsically safe circuits (e.g. ABNT NBR IEC 60079-14, Proof of Intrinsic Safety). - When the intrinsically safe Ex ia circuits of the device are connected to certified intrinsically safe circuits of Category Ex ib for Equipment Groups IIC or IIB, the type of protection changes to Ex ib IIC or Ex ib IIB. #### Potential equalization - Integrate the device into the potential equalization . - The antenna bushing H337 of the external antenna must be integrated into the potential equalization system. This is the case if the sensor is connected in accordance with the regulations via the coupling. #### Safety instructions: Zone 21 - To ensure dust-tightness, securely seal all housing openings, cable entries and sealing plugs. - Only open all housing briefly, ensuring that no dust or moisture enters the housing. - Cable routing shall be arranged so that the cables are not exposed to friction effects and static buildup due to the passage of dust. Precautions shall be taken to prevent the build-up of static an surfaces of cables. ## Temperature tables #### Ambient temperature Minimum ambient temperature - $T_a = -40$ °C depending on the selected device variant (see nameplate) - Optional specification, ID Jx (Test, Certificate) = JN T_a = -50 °C depending on the selected device variant (see nameplate) Maximum ambient temperature $T_a = +80$ °C depending on the temperature class and sensor #### Proline 500 transmitter #### 7.one 1 | T _a [°C] | | | | | |---------------------|----|--|--|--| | T6 T5 | | | | | | 55 | 60 | | | | #### Zone 21 | Maximum surface temperature $T_a = 60 ^{\circ}\text{C}$ | 85 ℃ | |---|------| #### Medium temperature Minimum medium temperature $$T_{\rm m}$$ = -50 °C Maximum medium temperature T_{m} for T6...T1 depending on the maximum ambient temperature T_{a} #### Proline 500 Order code for "Integrated ISEM electronics", option B "Transmitter" Maximum medium temperature with or without thermal insulation according to Endress+Hauser specifications | Sensor type | T _a | T _m [°C] | | | | | | |-------------|----------------|---------------------|----------------|---------------|----------------|----------------|---------------| | | [°C] | T6
[85 °C] | T5
[100 °C] | T4
[135 ℃] | T3
[200 °C] | T2
[300 °C] | T1
[450°C] | | C-030-A | 80 | 80 | 95 | 120 | 120 | 120 | 120 | | C-100-B | 50 | 50 | 80 | 80 | 80 | 80 | 80 | | | 80 | - | 80 | 80 | 80 | 80 | 80 | | C-100-C | 50 | 50 | 95 | 130 | 170 | 170 | 170 | | | 80 | - | 95 | 130 | 170 | 170 | 170 | | C-200-B | 65 | 65 | 80 | 80 | 80 | 80 | 80 | | | 80 | - | 80 | 80 | 80 | 80 | 80 | | C-200-C | 65 | 65 | 95 | 130 | 170 | 170 | 170 | | | 80 | - | 95 | 130 | 170 | 170 | 170 | | C-500-A | 75 | 75 | 95 | 130 | 150 | 150 | 150 | | | 80 | ı | 95 | 130 | 150 | 150 | 150 | # Explosion hazards arising from gas and dust ## Determining the temperature class and surface temperature with the temperature table - In the case of gas: Determine the temperature class as a function of the maximum ambient temperature T_a and the maximum medium temperature $T_{\rm m}$. - In the case of dust: Determine the maximum surface temperature as a function of the maximum ambient temperature T_a and the maximum medium temperature T_m . #### Example - Measured maximum ambient temperature: $T_{ma} = 55 \, ^{\circ}\text{C}$ - Measured maximum medium temperature: $T_{mm} = 78 \, ^{\circ}\text{C}$ A003126 - 1 Procedure for determining the temperature class and surface temperature - 1. In the column for the maximum ambient temperature T_a select the temperature that is immediately greater than or equal to the maximum ambient temperature T_{ma} that is present. - $T_a = 60\,^{\circ}\text{C}$. The row showing the maximum medium temperature is determined. - 2. Select the maximum medium temperature T_m of this row, which is immediately greater than or equal to the maximum medium temperature T_{mm} that is present. - The column with the temperature class for gas is determined: $78 \,^{\circ}\text{C} < 80 \,^{\circ}\text{C} \rightarrow T4$. - 3. The maximum temperature of the temperature class determined corresponds to the maximum surface temperature for dust: T4 = 135 °C. # Connection values: Signal circuits The following tables contain specifications which are dependent on the transmitter type and its input and output assignment. Compare the following specifications with those on the nameplate of the transmitter. #### Terminal assignment *Transmitter:* supply voltage, input/outputs #### HART | Supply | voltage | Input/ | output
l | Input/ | output
2 | Input/ | output
3 | |--------|---------|------------|----------------|--------------|--------------|---------------|-------------| | 1 (+) | 2 (-) | 26 (+) | 27 (-) | 24 (+) | 25 (-) | 22 (+) | 23 (-) | | | | Device-spe | ecific termina | al assignmer | nt: adhesive | label in term | inal cover. | #### Modbus RS485 | Supply | voltage | Input/ | output
l | Input/ | output
2 | Input/ | output
3 | |--------|---------|------------|----------------|--------------|----------------|--------------|-------------| | 1 (+) | 2 (-) | 26 (B) | 27 (A) | 24 (+) | 25 (-) | 22 (+) | 23 (-) | | | | Device-spe | ecific termina | al assignmer | nt: adhesive l | abel in term | inal cover. | #### Safety-related values | Order code for "Output; input 1" | Output type | Safety-related values
"Output; input 1" | | |----------------------------------|-----------------------------------|--|--------| | | | 26 (+) | 27 (-) | | Option BA | Current output
4 to 20 mA HART | $U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$ | | | Option MA | Modbus RS485 | $U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$ | | | Order code for | Output type | Safety-related values | | | | |--------------------------------------|-----------------------------------|---|-----------------|--------|---------| | "Output; input 2"; "Output; input 3" | | Output; | Output; input 2 | | input 3 | | | | 24 (+) 25 (-) | | 22 (+) | 23 (-) | | Option B | Current output
4 to 20 mA | $U_N = 30 V_{DC}$ $U_M = 250 V_{AC}$ | | | | | Option D | User-configurable
input/output | $U_N = 30 V_{DC}$
$U_M = 250 V_{AC}$ | | | | | Option E | Pulse/frequency/
switch output | $U_{\rm N} = 30 \ V_{\rm DC}$
$U_{\rm M} = 250 \ V_{\rm AC}$ | | | | | Option F | Pulse output, phase-
shifted | $U_N = 30 \ V_{DC}$
$U_M = 250 \ V_{AC}$ | | | | | Order code for | Output type | Safety-related val | | | | |--------------------------------------|-----------------------------|---|------------------------|----------|--------| | "Output; input 2"; "Output; input 3" | | Output; input 2 Output; input | | input 3 | | | | | 24 (+) 25 (-) | | 22 (+) | 23 (-) | | Option H | Relay output | $U_N = 30 V_1$
$I_N = 100 \text{ m}$
$U_M = 250$ | A _{DC} /500 m | A_{AC} | | | Option I | Current input
4 to 20 mA | $U_{\rm N} = 30 \rm V_{\rm I}$
$U_{\rm M} = 250 \rm M_{\rm I}$ | | | | | Option J | Status input | $U_{\rm N} = 30 \rm V_{\rm I}$
$U_{\rm M} = 250 \rm T$ | oc
V _{AC} | | | ### Intrinsically safe values | Order code for "Output; input 1" | Output type | Intrinsically safe values
"Output; input 1" | | | | |----------------------------------|---|--|--------|--|--| | | | 26 (+) | 27 (-) | | | | Option CA | Current output
4-20mA HART Ex-i
passive | $\begin{split} &U_{i} = 30 \ V \\ &I_{i} = 100 \ mA \\ &P_{i} = 1.25 \ W \\ &L_{i} = 0 \ \mu H \\ &C_{i} = 6 \ nF \end{split}$ | | | | | Option CC | Current output
4-20mA HART Ex-i
active | | | | | 1) Only for the order code for "Approval", option MB, MD | Order code for | Output type | Intrinsically safe values | | | ies | |--------------------------------------|---|--|--------|---------|--------| | "Output; input 2"; "Output; input 3" | | Output; input 2 Output; in | | input 3 | | | | | 24 (+) | 25 (-) | 22 (+) | 23 (-) | | Option C | Current output
4 to 20 mA Ex i passive | $\begin{aligned} &U_i = 30 \text{ V} \\ &l_i = 100 \text{ r} \\ &P_i = 1.25 \\ &L_i = 0 \\ &C_i = 0 \end{aligned}$ | nΑ | | | | Option G | Pulse/frequency/switch
output Ex i passive | $\begin{aligned} &U_i = 30 \text{ N} \\ &l_i = 100 \text{ r} \\ &P_i = 1.25 \\ &L_i = 0 \\ &C_i = 0 \end{aligned}$ | nΑ | | | www.addresses.endress.com