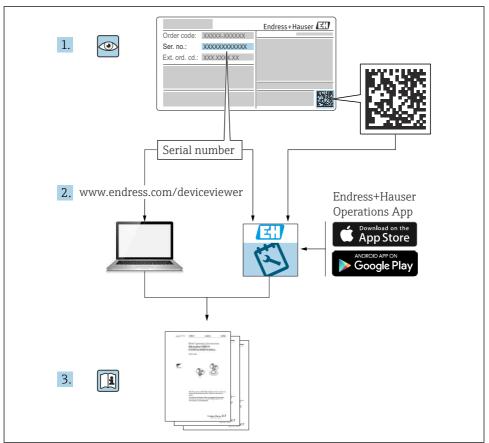
Краткое руководство по эксплуатации **Liquiphant FTL62**

Вибрационный датчик Датчик предельного уровня для жидкостей с покрытием высокой коррозионной стойкости

Настоящее краткое руководство по эксплуатации не заменяет собой руководство по эксплуатации прибора.


Подробные сведения приведены в руководстве по эксплуатации и другой документации.

Документацию для приборов во всех вариантах исполнения можно получить в следующих источниках:

- Интернет: www.endress.com/deviceviewer
- смартфон/планшет: приложение Endress+Hauser Operations

1 Сопутствующая документация

A0023555

2 Информация о документе

2.1 Символы

2.1.1 Символы техники безопасности

⚠ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

2.1.2 Электротехнические символы

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

2.1.3 Символы для обозначения инструментов

● / Отвертка с плоским наконечником

Рожковый гаечный ключ

2.1.4 Описание информационных символов

☑ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

🔀 Запрещено

Означает запрещенные процедуры, процессы или действия.

🚹 Рекомендация

Указывает на дополнительную информацию.

📵 Ссылка на документацию

🖺 Ссылка на другой раздел

1., 2., 3. Серия шагов

2.1.5 Символы на рисунках

А, В, С ... Вид

1, 2, 3 ... Номера пунктов

🔊 Взрывоопасная зона

🔉 Безопасная зона (невзрывоопасная зона)

3 Основные правила техники безопасности

3.1 Требования к персоналу

Персонал должен соответствовать следующим требованиям для выполнения возложенной задачи, напри мер, ввода в эксплуатацию или технического обслуживания.

- Прошедшие обучение квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ▶ Изучить инструкции данного руководства и сопроводительной документации.
- ▶ Следовать инструкциям и соблюдать условия.

3.2 Назначение

- Используйте прибор только для жидкостей.
- Ненадлежащее использование сопряжено с опасностью.
- При эксплуатации следите за тем, чтобы в измерительном приборе не было дефектов.
- Используйте прибор только для тех сред, к воздействию которых смачиваемые части прибора достаточно устойчивы.
- Не допускайте нарушения верхних и нижних предельных значений для прибора.
 - 📵 Подробные сведения см. в технической документации.

3.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Остаточные риски

В результате теплообмена в ходе технологического процесса температура корпуса электроники и модулей, содержащихся в датчике, может подниматься до 80 °С (176 °F).

Опасность ожогов при соприкосновении с поверхностями!

 При необходимости следует обеспечить защиту от прикосновения, чтобы предотвратить ожоги.

В отношении требований, касающихся функциональной безопасности в соответствии со стандартом МЭК 61508, необходимо соблюдать положения соответствующей документация SIL.

3.3 Техника безопасности на рабочем месте

При работе с прибором

▶ В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

3.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за обеспечение работы прибора без помех несет оператор.

Модификации прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность.

► Если, несмотря на это, все же требуется внесение изменений в конструкцию прибора, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности

- ▶ Выполняйте ремонт прибора только в том случае, если это явно разрешено.
- Соблюдайте федеральное/национальное законодательство в отношении ремонта электрических приборов.
- Используйте только оригинальные запасные части и комплектующие производства компании Endress+Hauser.

Взрывоопасная зона

Во избежание травмирования сотрудников предприятия при использовании прибора во взрывоопасной зоне (например, со взрывозащитой), необходимо соблюдать следующие правила.

- Определите по заводской табличке, пригоден ли заказанный прибор для использования во взрывоопасной зоне.
- Учитывайте характеристики, приведенные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства.

3.5 Безопасность изделия

Описываемый прибор разработан в соответствии с современными требованиями к безопасной работе, был испытан и поставляется с завода в безопасном для эксплуатации состоянии.

Прибор соответствует применимым стандартам и нормам. Кроме того, прибор отвечает требованиям нормативных документов ЕС, перечисленных в Декларации соответствия ЕС в отношении приборов. Компания Endress+Hauser подтверждает это, нанося маркировку СЕ на прибор.

3.6 ІТ-безопасность

Гарантия на прибор действует только в том случае, если его установка и использование производятся согласно инструкциям, изложенным в руководстве по эксплуатации. В прибор встроены защитные механизмы, предотвращающие случайное изменение настроек пользователями.

Обеспечьте дополнительную защиту прибора и передачи данных с прибора/на прибор

▶ Меры IT-безопасности, определенные в собственной политике безопасности владельца/оператора установки, должны осуществляться самим владельцем/ оператором установки.

4 Приемка и идентификация изделия

4.1 Приемка

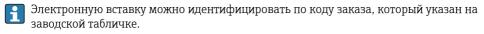
11	nu	приемке	πηγιη∩ηα	THORENLTE	CHEMMOINE
т т	LV.	TIPICMIC	πρησορα	TIPODCPDIC	следующее.

□ Совпадает	ли код заказа	в транспортной	накладной	с кодом	заказа на	а наклейке
прибора?						

	режд			

□ Совпадают ли данные, у	указанные на	заводской	табличке	прибора,	с данными	заказа в
транспортной накладной?)					

□ Если это необходимо (см. данные на заводской табличке), предоставлены ли указания по технике безопасности, например XA?


Если хотя бы одно из этих условий не выполнено, обратитесь в офис продаж компании-изготовителя.

4.2 Идентификация изделия

Прибор можно идентифицировать следующими способами:

- Технические данные, указанные на заводской табличке.
- Расширенный код заказа с разбивкой по характеристикам прибора, указанный в накладной.
- Ввод серийного номера с заводской таблички в программу W@M Device Viewer (www.endress.com/deviceviewer): будет представлена полная информация об измерительном приборе вместе со списком прилагающейся технической документации.
- Ввод серийного номера с заводской таблички в *приложение Endress+Hauser Operations* или сканирование двухмерного штрих-кода с заводской таблички с помощью *приложения Endress+Hauser Operations*.

4.2.1 Электронная вставка

4.2.2 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору.

Liquiphant FTL62 Монтаж

4.2.3 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

Используйте оригинальную упаковку.

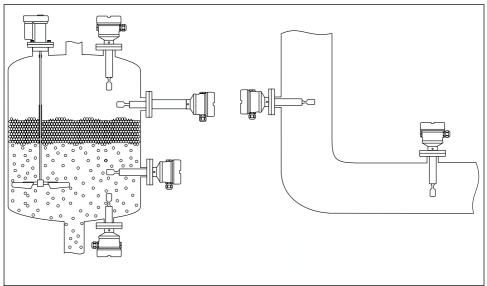
Температура хранения

-40 до +80 °C (-40 до +176 °F) Опционально: -50 °C (-58 °F), -60 °C (-76 °F)

4.3.2 Транспортировка прибора

УВЕДОМЛЕНИЕ

Фланец, трубный удлинитель и вибрационная вилка защищены полимерным или эмалевым покрытием. Царапины или удары могут вызвать повреждение этого покрытия.

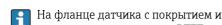

- ► Держите прибор только за корпус, фланец или удлинительную трубку, принимайте надлежащие меры по защите покрытия.
- Транспортировку прибора к месту измерения осуществляйте в оригинальной упаковке.
- ▶ Не сгибайте, не укорачивайте и не удлиняйте вибрационную вилку.

5 Монтаж

Руководство по монтажу

- Для прибора с трубкой длиной прибл. до 500 мм (19,7 дюйм) допустима любая ориентация
- Для прибора с длинной трубкой вертикальная ориентация, сверху
- Минимально допустимое расстояние между вибрационной вилкой и стенкой резервуара или трубы: 10 мм (0,39 дюйм)

Liquiphant FTL62 Монтаж

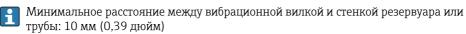

1 Примеры монтажа в резервуаре, баке или трубопроводе

5.1 Требования к монтажу

УВЕДОМЛЕНИЕ

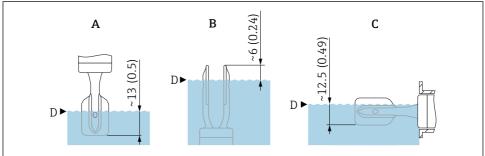
Царапины или удары могут повредить покрытие прибора.

▶ Прибор требует правильного профессионального обращения на каждом этапе установки.



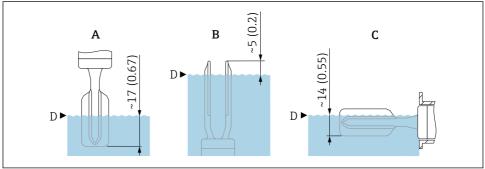
На фланце датчика с покрытием из материала ЕСТFE или PFA закрепляется уплотнение из материала PTFE.

5.1.1 Учитывайте точку переключения прибора


Ниже приведены стандартные точки переключения в зависимости от ориентации датчика предельного уровня и типа покрытия.

Вода +23 °C (+73 °F)

Liquiphant FTL62 Монтаж


Вибрационная вилка с пластиковым покрытием (ECTFE, PFA)

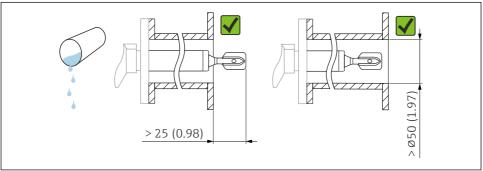
A0042269

- Стандартные точки переключения, вибрационная вилка с пластиковым покрытием (ЕСТFE, PFA). Единица измерения мм (дюйм)
- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку
- D Точка переключения

Вибрационная вилка с эмалевым покрытием

A0043327

- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку
- D Точка переключения


Монтаж Liquiphant FTL62

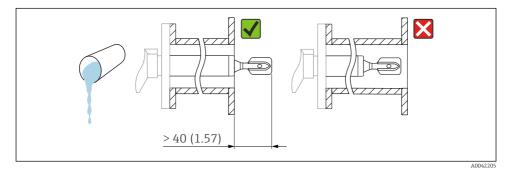
5.1.2 Учет вязкости

- Значения вязкости
 - Низкая вязкость: < 2 000 мПа·с
 - Высокая вязкость: > 2 000 до 10 000 мПа·с

Низкая вязкость

Возможна установка вибрационной вилки в монтажном патрубке.

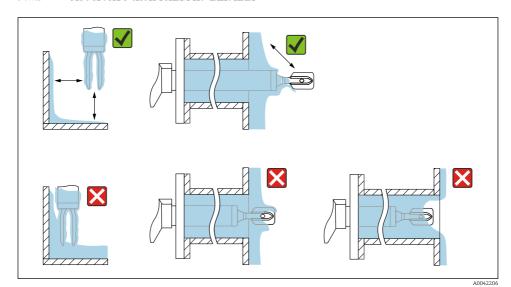
A0042204


₽ 4 Пример монтажа для жидкостей с низкой вязкостью. Единица измерения мм (дюйм)

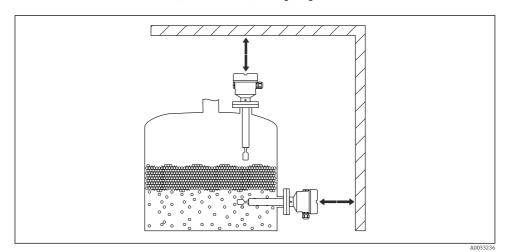
Высокая вязкость

УВЕДОМЛЕНИЕ

Жидкости с высокой вязкостью могут провоцировать задержку переключения.


- ▶ Убедитесь в том, что жидкость может легко стекать с вибрационной вилки.
- ▶ Зачистите поверхность патрубка.
- Вибрационная вилка не должна устанавливаться в монтажном патрубке!

₩ 5 Пример монтажа для жидкостей с высокой вязкостью. Единица измерения мм (дюйм)


Liquiphant FTL62 Монтаж

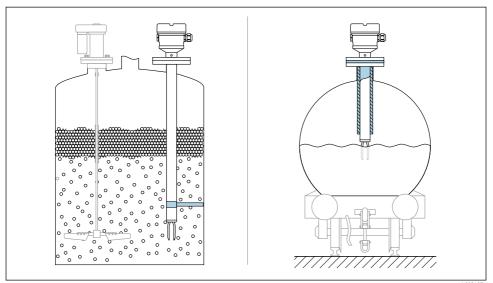
5.1.3 Избегайте скопления налипаний

🗷 6 Примеры монтажа для технологической среды высокой вязкости

5.1.4 Учитывайте необходимое свободное пространство

🗷 7 Учитывайте необходимое свободное пространство снаружи резервуара

Mohtax Liquiphant FTL62


5.1.5 Обеспечьте опору прибора

УВЕДОМЛЕНИЕ

Если используется неверная опора, удары и вибрации могут повредить покрытие зонда.

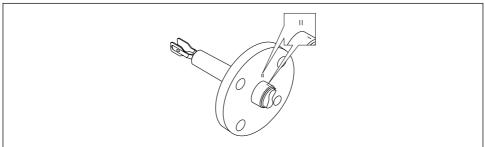
- ▶ Используйте опору только для датчиков с покрытием ЕСТFE или PFA.
- ▶ Используйте только подходящие опоры.

При наличии динамической нагрузки необходимо обеспечить опору прибора. Максимально допустимая боковая нагрузка на трубные удлинители и датчики: 75 Нм (55 фунт сила фут).

A00318

🗷 8 Примеры использования опоры при динамической нагрузке

5.2 Монтаж прибора

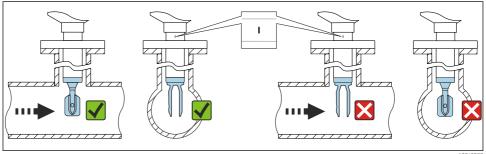

5.2.1 Требуемый инструмент

- Рожковый гаечный ключ для закрепления фланца
- Шестигранный ключ для работы со стопорным винтом корпуса

Liquiphant FTL62 Монтаж

5.2.2 Монтаж

Выравнивание вибрационной вилки с помощью маркировки

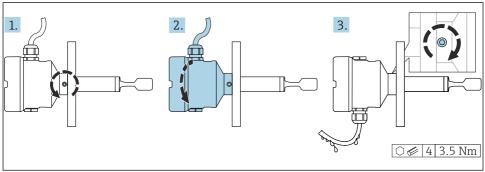


A0042207

Я Положение вибрационной вилки при горизонтальном монтаже в резервуаре с помощью маркировки

Монтаж прибора в трубопроводе

- Скорость потока до 5 м/с при вязкости 1 мПа·с и плотности 1 g/cm³ (62,4 lb/ft³) (SGU).
 При других условиях технологической среды следует проверить правильность работы.
- У потока среды не будет существенных преград, если вибрационная вилка будет правильно сориентирована, а маркировка будет соответствовать направлению потока.
- Маркировка видна при смонтированном приборе.



A0042208

🖩 10 Монтаж в трубопроводе (следует учитывать положение вилки и маркировку)

Монтаж Liquiphant FTL62

Выравнивание кабельного ввода

■ 11 Корпус с наружным стопорным винтом и ниспадающей каплеуловительной кабельной петлей

- Корпуса со стопорным винтом:
 - Чтобы повернуть корпус и выровнять кабель, можно использовать стопорный винт.
 - При поставке прибора стопорный винт не затянут.
- 1. Ослабьте наружный стопорный винт (максимум на 1,5 оборота).
- 2. Поверните корпус, выровняйте положение кабельного ввода.
 - Не допускайте попадания влаги в корпус, сделайте петлю, чтобы влага могла стекать.
- 3. Прикрутите стопорный винт.

УВЕДОМЛЕНИЕ

Корпус невозможно отвернуть полностью.

- ▶ Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- ▶ Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Hm (2,58 фунт сила фут) \pm 0,3 Hm (\pm 0,22 фунт сила фут).

Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

Повреждение резьбы и крышки корпуса вследствие загрязнения!

- ▶ Удаляйте загрязнения (например, песок) с резьбы крышек и корпуса.
- Если при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.

Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

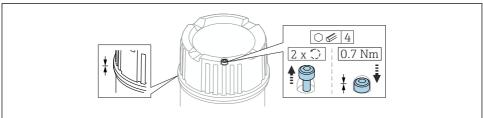
Следующее указание относится ко всем материалам корпуса:

6 Электрическое подключение

6.1 Требуемый инструмент

- Отвертка для электрического подключения
- Шестигранный ключ для стопорного винта крышки

6.2 Требования к подключению


6.2.1 Крышка с крепежным винтом

В приборах, предназначенных для использования во взрывоопасных зонах с определенной степенью взрывозащиты, крышка фиксируется крепежным винтом.

УВЕДОМЛЕНИЕ

Если стопорный винт расположен ненадлежащим образом, надежная герметизация крышки не будет обеспечена.

- ▶ Откройте крышку: ослабьте стопорный винт крышки не более чем на 2 оборота, чтобы винт не выпал. Установите крышку и проверьте уплотнение крышки.
- Закройте крышку: плотно заверните крышку на корпус и убедитесь в том, что стопорный винт расположен должным образом. Между крышкой и корпусом не должно быть зазора.

A0039520

🖪 12 Крышка с крепежным винтом

6.2.2 Защитное заземление (РЕ)

Защитный заземляющий проводник прибора должен подключаться, только если рабочее напряжение прибора ≥ 35 В пост. тока или ≥ 16 В пер. тока.

Если прибор используется во взрывоопасных зонах, вне зависимости от рабочего напряжения, защитный заземляющий проводник должен быть подключен к линии выравнивания потенциалов измерительной системы.

На выбор предлагается пластмассовый корпус с соединением для подключения внешнего защитного заземления (РЕ) и без него. Если рабочее напряжение электронной вставки < 35 В, пластиковый корпус не имеет внешнего защитного заземления.

6.3 Подключение прибора

Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

6.3.1 2-проводное подключение перем. тока (электронная вставка FEL61)

- Двухпроводное исполнение для питания от переменного тока.
- Включает нагрузку непосредственно в цепь питания через электронный переключатель; необходимо подключать последовательно с нагрузкой.
- Функциональный тест без изменения уровня.
 Функциональный тест можно выполнить на приборе с помощью кнопки запуска теста, которая находится на электронной вставке.

Сетевое напряжение

U = 19 до 253 В пер. тока, 50 Гц/60 Гц

Остаточное напряжение при переключении: не более 12 В

Согласно требованиям стандарта МЭК/EN 61010-1, необходимо обращать внимание на следующие моменты: следует оснастить прибор подходящим автоматическим выключателем и ограничить ток до 1 A, например путем установки предохранителя 1 A (с задержкой срабатывания) в цепь питания (не в провод нейтрали).

Потребляемая мощность

S≤2BA

Потребление тока

Остаточный ток при блокировке: I ≤ 3,8 мA

В случае перегрузки или короткого замыкания начинает мигать красный светодиод. Проверяйте наличие перегрузки или короткого замыкания через каждые 5 с. Тест деактивируется через 60 с.

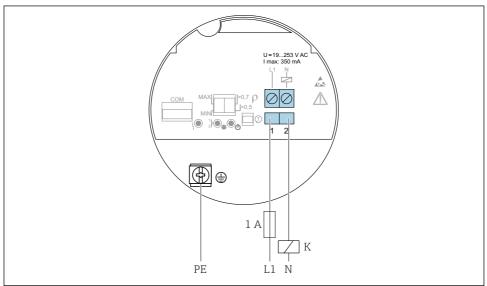
Подключаемая нагрузка

- Нагрузка с минимальной удерживающей/номинальной мощностью 2,5 ВА при 253 В (10 мА) или 0,5 ВА при 24 В (20 мА).
- Нагрузка с минимальной удерживающей/номинальной мощностью 89 ВА при 253 В (350 мА) или 8,4 ВА при 24 В (350 мА).
- С защитой от перегрузки и короткого замыкания

Поведение выходного сигнала

- Исправное состояние: нагрузка включена (путем переключения).
- Режим запроса: нагрузка выключена (заблокирована).
- Аварийное состояние: нагрузка выключена (заблокирована).

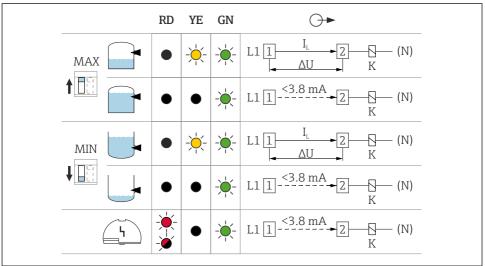
Клеммы


Клеммы для кабелей с поперечным сечением до 2,5 мм² (14 AWG). Используйте наконечники для жил кабелей.

Защита от перенапряжения

Категория перенапряжения II

Назначение клемм


Обязательно подсоедините внешнюю нагрузку. Электронная вставка оснащена встроенной защитой от короткого замыкания.

A0036060

🗷 13 2-проводное подключение перем. тока, электронная вставка FEL61

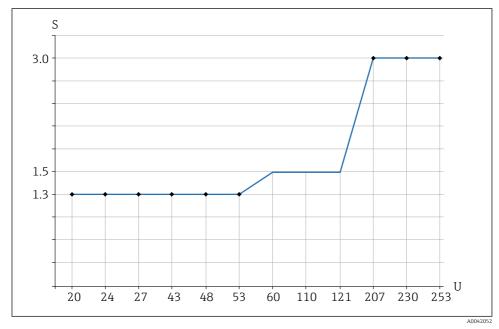
Поведение релейного выхода и сигнализации

A0031901

🗷 14 Поведение релейного выхода и сигнализации, электронная вставка FEL61

MAXDIP-переключатель для настройки отказоустойчивого режима MAX

MIN DIP-переключатель для настройки отказоустойчивого режима MIN


RD Красный светодиод для предупреждающих и аварийных сигналов

ҮЕ Желтый светодиод для указания состояния переключения

GN Зеленый светодиод для указания рабочего состояния (прибор включен)

I_L Ток нагрузки при переключении

Инструмент выделения для реле

🗷 15 Рекомендуемая минимальная удерживающая/номинальная мощность для нагрузки

S Удерживающая/номинальная мощность в В·А

U Рабочее напряжение в вольтах

Режим перем. тока

■ Рабочее напряжение: 24 В, 50 Гц/60 Гц

Удерживающая/номинальная мощность: > 0,5 BA, < 8,4 BA

■ Рабочее напряжение: 110 В, 50 Гц/60 Гц

Удерживающая/номинальная мощность: > 1,1 BA, < 38,5 BA

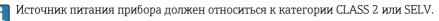
■ Рабочее напряжение: 230 В, 50 Гц/60 Гц

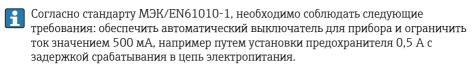
Удерживающая/номинальная мощность: > 2,3 BA, < 80,5 BA

6.3.2 3-проводное подключение пост. тока (DC), PNP (электронная вставка FEL62)

- Прибор в трехпроводном исполнении с питанием от источника постоянного тока
- Рекомендуется эксплуатировать в сочетании с программируемыми логическими контроллерами (ПЛК) и модулями цифрового ввода согласно стандарту EN 61131-2.
 Положительный сигнал на релейном выходе модуля электроники (PNP)
- Функциональный тест без изменения уровня
 Функциональный тест прибора можно выполнить с помощью кнопки запуска теста на электронной вставке или с помощью тестового магнита (заказывается отдельно) при закрытом корпусе.

Сетевое напряжение


▲ ОСТОРОЖНО


Использование непредусмотренного блока питания.

Опасность поражения электрическим током с угрозой для жизни!

► Питание на прибор FEL62 можно подавать только от устройства с надежной гальванической развязкой согласно стандарту IEC 61010-1.

U = 10 до 55 В пост. тока

Потребляемая мощность

 $P \le 0.5 BT$

Потребление тока

I ≤ 10 мА (без нагрузки)

В случае перегрузки или короткого замыкания начинает мигать красный светодиод. Проверяйте наличие перегрузки или короткого замыкания через каждые 5 с.

Ток нагрузки

I \leq 350 мA с защитой от перегрузки и короткого замыкания

Емкостная нагрузка

 $C \le 0,5$ мк Φ при 55 B, $C \le 1,0$ мк Φ при 24 B

Остаточный ток

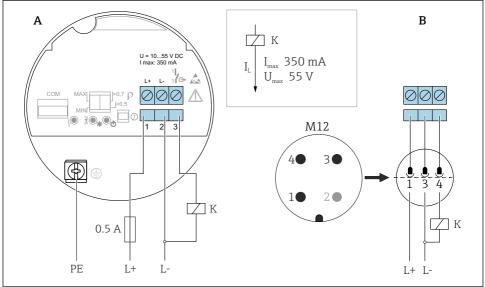
I < 100 мкА (для заблокированного транзистора)

Остаточное напряжение

U < 3 В (для датчика с переключением через транзистор)

Поведение выходного сигнала

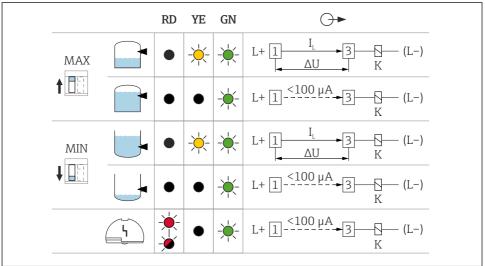
- Исправное состояние: транзистор открыт
- Режим запроса: транзистор закрыт
- Аварийный режим: транзистор закрыт


Клеммы

Клеммы для кабелей с поперечным сечением до $2,5~{\rm km^2}$ ($14~{\rm AWG}$). Используйте наконечники для жил кабелей.

Защита от перенапряжения

Категория перенапряжения I


Назначение клемм

A0036061

- 📵 16 3-проводное подключение пост. тока (DC), PNP (электронная вставка FEL62)
- А Соединительные кабели с клеммами
- В Подключение соединительных кабелей при наличии разъема M12 в корпусе согласно стандарту EN 61131-2

Поведение релейного выхода и сигнализации

A003350

■ 17 Поведение релейного выхода и сигнализации, электронная вставка FEL62

MAXDIP-переключатель для настройки отказоустойчивого режима MAX

MIN DIP-переключатель для настройки отказоустойчивого режима MIN

RD Красный светодиод для предупреждающих и аварийных сигналов

YE Желтый светодиод для указания состояния переключения

GN Зеленый светодиод для указания рабочего состояния (прибор включен)

 $I_{\rm I}$ Ток нагрузки при переключении

6.3.3 Универсальное токовое подключение с релейным выходом (электронная вставка FEL64)

- Переключает нагрузку через 2 пары беспотенциальных перекидных контактов
- 2 пары гальванически развязанных перекидных контактов (DPDT), обе пары перекидных контактов переключаются одновременно
- Функциональный тест без изменения уровня. Функциональный тест прибора можно выполнить с помощью кнопки запуска теста на электронной вставке или с помощью тестового магнита (заказывается отдельно) при закрытом корпусе.

▲ ОСТОРОЖНО

Ошибка электронной вставки может привести к превышению допустимой температуры на безопасных для прикосновения поверхностях. Это создает опасность ожогов.

▶ Не прикасайтесь к электронике в случае ошибки!

Сетевое напряжение

U = 19 до 253 В пер. тока, 50 Гц/60 Гц / 19 до 55 В пост. тока

Согласно стандарту МЭК/EN61010-1, необходимо соблюдать следующие требования: обеспечить автоматический выключатель для прибора и ограничить ток значением 500 мА, например путем установки предохранителя 0,5 A с задержкой срабатывания в цепь электропитания.

Потребляемая мощность

S < 25 BA, P < 1.3 BT

Подключаемая нагрузка

Нагрузка переключается через 2 беспотенциальных переключающих контакта (DPDT)

- $I_{AC} \le 6$ A, $U \sim AC 253$ B; $P \sim 1500$ BA, $\cos \varphi = 1$, $P \sim 750$ BA, $\cos \varphi > 0.7$
- $I_{DC} \le 6 \text{ A} DC 30 \text{ B}, I DC \le 0.2 \text{ A} 125 \text{ B}$

Дополнительные ограничения в отношении подключаемой нагрузки зависят от выбранного разрешения. Обратите внимание на информацию в указаниях по технике безопасности (XA).

Согласно стандарту IEC 61010 применяется следующее правило: суммарное напряжение релейных выходов и источника питания ≤ 300 В.

Используйте электронную вставку FEL62 (постоянный ток – PNP) при небольшом постоянном токе нагрузки, например для подключения к ПЛК.

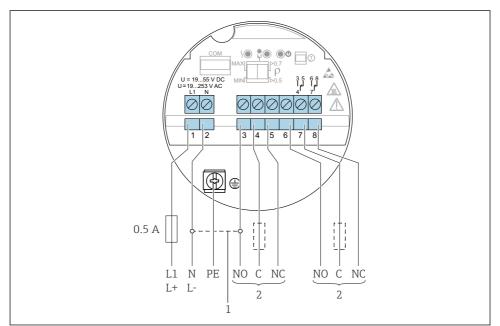
Материал релейных контактов: cepeбpo/никель, AqNi 90/10

При подключении прибора с высокой индуктивностью следует установить искрогаситель для защиты релейных контактов. Плавкий предохранитель (в зависимости от подключенной нагрузки) защищает контакты реле в случае короткого замыкания.

Обе пары релейных контактов переключаются одновременно.

Поведение выходного сигнала

- Исправное состояние: реле задействовано.
- Режим запроса: реле обесточено.
- Аварийный режим: реле обесточено.

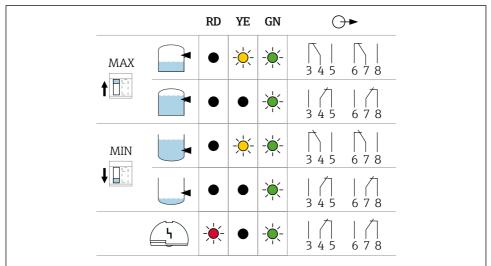

Клеммы

Клеммы для кабелей с поперечным сечением до 2,5 мм² (14 AWG). Используйте наконечники для жил кабелей.

Защита от перенапряжения

Категория перенапряжения II

Назначение клемм



A0036062

🖻 18 Универсальное токовое подключение с релейным выходом, электронная вставка FEL64

- 1 В случае соединения перемычкой релейный выход работает по схеме транзистора NPN
- 2 Подключаемая нагрузка

Поведение релейного выхода и сигнализации

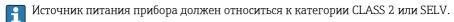
A0023513

🖪 19 🛮 Поведение релейного выхода и сигнализации, электронная вставка FEL64

MAXDIP-переключатель для настройки отказоустойчивого режима MAX MIN DIP-переключатель для настройки отказоустойчивого режима MIN

RD Красный светодиод аварийного сигнала

YE Желтый светодиод для указания состояния переключения


GN Зеленый светодиод для указания рабочего состояния (прибор включен)

6.3.4 Подключение пост. тока, релейный выход (электронная вставка FEL64, пост. ток)

- Переключает нагрузку через 2 пары беспотенциальных перекидных контактов
- 2 пары гальванически развязанных перекидных контактов (DPDT); обе пары перекидных контактов переключаются одновременно
- Функциональный тест без изменения уровня. Полный функциональный тест прибора можно выполнить с помощью кнопки запуска теста на электронной вставке или с помощью тестового магнита (заказывается отдельно) при закрытом корпусе.

Сетевое напряжение

U = 9 до 20 В пост. тока

Согласно стандарту МЭК/EN61010-1, необходимо соблюдать следующие требования: обеспечить автоматический выключатель для прибора и ограничить ток значением 500 мА, например путем установки предохранителя 0,5 А с задержкой срабатывания в цепь электропитания.

Потребляемая мощность

P < 1.0 Вт

Подключаемая нагрузка

Нагрузка переключается через 2 беспотенциальных переключающих контакта (DPDT)

- $I_{AC} \le 6$ A, $U \sim AC$ 253 B; $P \sim 1500$ BA, $\cos \varphi = 1$, $P \sim 750$ BA, $\cos \varphi > 0.7$
- $I_{DC} \le 6 \text{ A} DC 30 \text{ B}, I DC \le 0.2 \text{ A} 125 \text{ B}$

Дополнительные ограничения в отношении подключаемой нагрузки зависят от выбранного разрешения. Обратите внимание на информацию в указаниях по технике безопасности (XA).

Согласно IEC 61010 применяется следующее правило: суммарное напряжение релейных выходов и источника питания ≤ 300 В

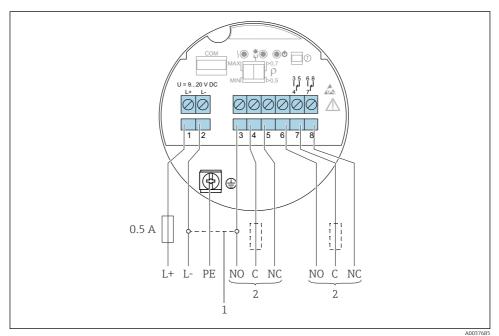
Предпочтительно использование электронной вставки FEL62 DC PNP с небольшими нагрузками постоянного тока, например для подключения к ПЛК.

Материал релейных контактов: cepeбpo/никель, AqNi 90/10

При подключении прибора с высокой индуктивностью предусмотрите искрогасительные средства для защиты контактов реле. Плавкий предохранитель (в зависимости от подключенной нагрузки) защищает контакты реле в случае короткого замыкания.

Поведение выходного сигнала

- Исправное состояние: реле задействовано.
- Режим запроса: реле обесточено.
- Аварийный режим: реле обесточено.


Клеммы

Клеммы для кабелей с поперечным сечением до 2,5 мм² (14 AWG). Используйте наконечники для жил кабелей.

Защита от перенапряжения


Категория перенапряжения I

Назначение клемм

- 20 Подключение пост. тока с релейным выходом (электронная вставка FEL64, пост. ток)
- В случае соединения перемычкой релейный выход работает по схеме транзистора NPN
- 2 Подключаемая нагрузка

Поведение релейного выхода и сигнализации

A0033513

21 Алгоритм действий релейного выхода и сигнальных элементов, электронная вставка FEL64, пост. ток

MAXDIP-переключатель для настройки отказоустойчивого режима MAX

MIN DIP-переключатель для настройки отказоустойчивого режима MIN

RD Красный светодиод аварийного сигнала

ҮЕ Желтый светодиод для указания состояния переключения

GN Зеленый светодиод для указания рабочего состояния (прибор включен)

6.3.5 Выход ЧИМ (электронная вставка FEL67)

- Для подключения к преобразователям Endress+Hauser Nivotester FTL325P и FTL375P
- Передача сигнала ЧИМ (с частотно-импульсной модуляцией) методом наложения по двухпроводному кабелю питания
- Функциональный тест без изменения уровня:
 - Функциональный тест можно выполнить на приборе с помощью кнопки запуска теста, которая находится на электронной вставке.
 - Функциональный тест можно также запустить отключением электропитания или непосредственно на преобразователе Nivotester FTL325P или FTL375P.

Напряжение питания

U = 9,5 до 12,5 В пост. тока

🎦 Источник питания прибора должен относиться к категории CLASS 2 или SELV.

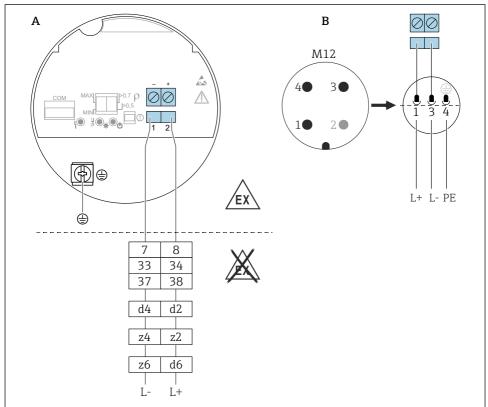
Соблюдайте следующие требования в соответствии со стандартом МЭК/EN 61010-1: предусмотрите пригодный для этой цели автоматический выключатель.

Потребляемая мощность

P ≤150 мВт с устройством Nivotester FTL325P или FTL375P

Поведение выходного сигнала

- Исправное состояние: рабочий режим MAX 150 Гц, рабочий режим MIN 50 Гц.
- Режим запроса: рабочий режим MAX 50 Гц, рабочий режим MIN 150 Гц.
- Аварийный режим: рабочий режим MAX/MIN 0 Гц.


Клеммы

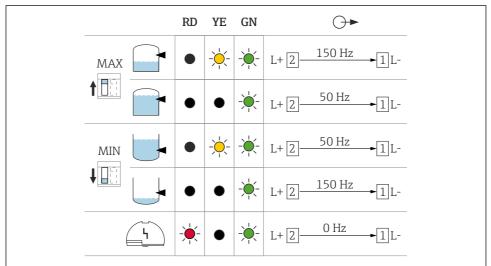
Клеммы для кабелей с поперечным сечением до $2,5~{\rm mm}^2$ ($14~{\rm AWG}$). Используйте наконечники для жил кабелей.

Защита от перенапряжения

Категория перенапряжения I

Назначение клемм

A0036065


🗷 22 Выход ЧИМ, электронная вставка FEL67

- А Соединительные кабели с клеммами
- В Подключение соединительных кабелей при наличии разъема M12 в корпусе согласно стандарту EN 61131-2
- 7/ 8: Nivotester FTL325P 1 CH, FTL325P 3 CH, 6xod 1
- 33/ 34: Nivotester FTL325P 3 CH, вход 2
- 37/ 38: Nivotester FTL325P 3 CH, вход 3
- d4/ d2: Nivotester FTL375P, вход 1
- z4/ z2: Nivotester FTL375P, вход 2
- z6/ d6: Nivotester FTL375P, вход 3

Соединительный кабель

- Максимальное сопротивление кабеля: 25 Ом на жилу
- Максимальная емкость кабеля: < 100 нФ
- Максимальная длина кабеля: 1000 м (3281 фут):

Поведение релейного выхода и сигнализации

A0037696

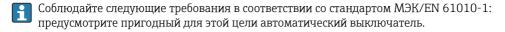
🖪 23 — Алгоритм действий и сигнализации при переключении, электронная вставка FEL67

MAXDIP-переключатель для настройки отказоустойчивого режима MAX

MIN DIP-переключатель для настройки отказоустойчивого режима MIN

- RD Красный светодиод аварийного сигнала
- YE Желтый светодиод для указания состояния переключения
- GN Зеленый светодиод для указания рабочего состояния (прибор включен)

Переключатели для режимов MAX/MIN на электронной вставке и преобразователе FTL325P должны быть переведены в такие положения, которые соответствуют условиям применения. Только в этом случае возможно корректное выполнение функционального теста.


6.3.6 2-проводное подключение NAMUR > 2,2 мA/ < 1,0 мA (электронная вставка FEL68)

- Для подключения к изолирующему усилителю согласно спецификации NAMUR (стандарту MЭК 60947-5-6), например Nivotester FTL325N от компании Endress+Hauser.
- Для подключения к изолирующему усилителю стороннего поставщика согласно спецификации NAMUR (стандарту МЭК 60947-5-6) необходимо обеспечить наличие постоянного источника питания для электронной вставки FEL68.
- Передача сигнала в формате «переход H-L» 2,2 до 3,8 мА/0,4 до 1,0 мА согласно спецификации NAMUR (стандарту МЭК 60947-5-6) через двухпроводной кабель.
- Функциональный тест без изменения уровня. Функциональный тест прибора можно выполнить с помощью кнопки запуска теста на электронной вставке или с помощью тестового магнита (заказывается отдельно) при закрытом корпусе.
 Функциональный тест также можно запустить отключением электропитания или активировать непосредственно с прибора Nivotester FTL325N.

Сетевое напряжение

U = 8.2 B пост. тока $\pm 20 \%$

Потребляемая мощность

NAMUR M9K 60947-5-6

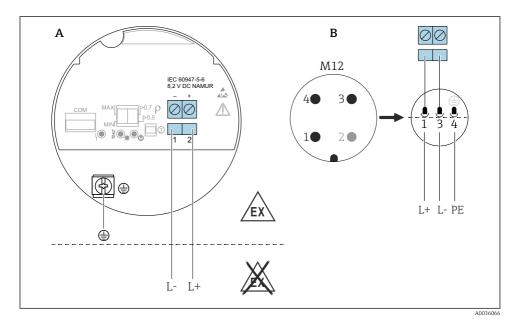
< 6 мВт при I < 1 мА; < 38 мВт при I = 3.5 мА

Подключение интерфейса передачи данных

NAMUR M9K 60947-5-6

Поведение выходного сигнала

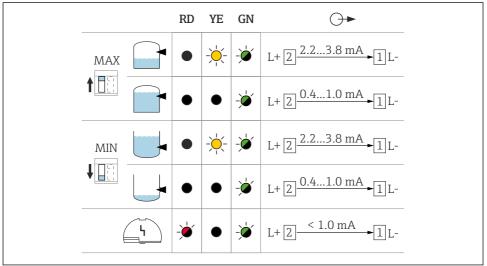
- Исправное состояние: выходной ток 2,2 до 3,8 мА.
- Режим запроса: выходной ток 0,4 до 1,0 мА.
- Аварийный режим: выходной ток 1,0 мА.


Клеммы

Клеммы для кабелей с поперечным сечением до 2,5 мм² (14 AWG). Используйте наконечники для жил кабелей.

Защита от перенапряжения

Категория перенапряжения I

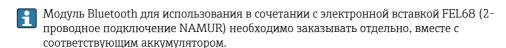

Назначение клемм

 \blacksquare 24 2-проводное подключение NAMUR \ge 2,2 мA/ \le 1,0 мA, электронная вставка FEL68

- А Соединительные кабели с клеммами
- В Подключение соединительных кабелей при наличии разъема M12 в корпусе согласно стандарту EN 61131-2

Поведение релейного выхода и сигнализации

A0037694


🗷 25 Поведение релейного выхода и сигнализации, электронная вставка FEL68

MAXDIP-переключатель для настройки отказоустойчивого режима MAX

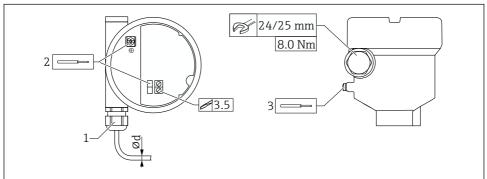
MIN DIP-переключатель для настройки отказоустойчивого режима MIN

RD Красный светодиод для выдачи аварийного сигнала YE Желтый светодиод для указания состояния реле

GN Зеленый светодиод для указания рабочего состояния (прибор включен)

6.3.7 Светодиодный модуль VU120 (опционально)

Горящий зеленым, желтым или красным цветом светодиод указывает на рабочее состояние прибора (состояние реле или аварийное состояние). Светодиодный модуль можно подключать к следующим электронным вставкам: FEL62, FEL64, FEL64DC.


6.3.8 Модуль Bluetooth VU121 (опционально)

Модуль Bluetooth можно подключить через интерфейс СОМ к следующим электронным вставкам: FEL61, FEL62, FEL64, FEL64 DC, FEL67, FEL68 (2-проводное подключение ко входу NAMUR). Модуль Bluetooth вместе с соответствующим аккумулятором для использования в сочетании с электронной вставкой FEL68 (2-проводное подключение NAMUR) необходимо заказывать отдельно.

6.3.9 Подключение кабелей

Необходимые инструменты

- Отвертка с плоским наконечником (0,6 мм х 3,5 мм) для клемм
- Инструмент с размером под ключ AF24/25 (8 Нм (5,9 фунт сила фут)) для кабельного уплотнения M20

A0018023

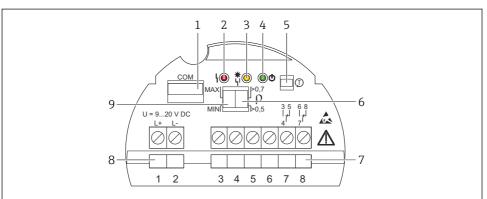
🗷 26 Пример подключения с кабельным вводом, электронная вставка с клеммами

- 1 Муфта М20 (с кабельным вводом), пример
- 2 Максимально допустимая площадь поперечного сечения проводника 2,5 мм² (AWG 14), клемма заземления внутри корпуса + клеммы на плате электроники
- 3 Максимально допустимая площадь поперечного сечения проводника 4,0 мм² (AWG 12), клемма заземления снаружи корпуса (пример: пластмассовый корпус с наружным подключением защитного заземления (PE))
- Ød Никелированная латунь 7 до 10,5 мм (0,28 до 0,41 дюйм) Пластмасса 5 до 10 мм (0,2 до 0,38 дюйм) Нержавеющая сталь 7 до 12 мм (0,28 до 0,47 дюйм)

При использовании муфты M20 обратите внимание на следующие обстоятельства.

После ввода кабеля выполните следующие действия:

- затяните контргайку муфты;
- затяните соединительную гайку муфты моментом 8 Нм (5,9 фунт сила фут);
- вверните прилагаемую муфту в корпус с моментом 3,75 Нм (2,76 фунт сила фут).


Опции управления Liquiphant FTL62

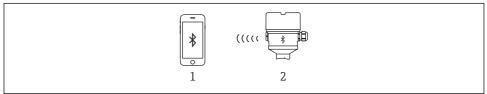
7 Опции управления

7.1 Принцип управления

- Управление с помощью кнопки и DIP-переключателей на электронной вставке.
- Дисплей с дополнительным модулем Bluetooth и приложение SmartBlue, посредством беспроводной технологии Bluetooth[®] (см. руководство по эксплуатации).
- Индикация рабочего состояния (состояние переключение или аварийное состояние) посредством дополнительного светодиодного модуля (сигнальные индикаторы видны снаружи), см. руководство по эксплуатации.

7.2 Элементы на электронной вставке

A003770


■ 27 Пример: электронная вставка FEL64DC

- 1 Интерфейс СОМ для дополнительных модулей (светодиодный модуль, модуль Bluetooth)
- 2 Красный светодиод для вывода предупреждения или аварийного сигнала
- 3 Желтый светодиод для обозначения состояния датчика
- 4 Зеленый светодиод, обозначающий рабочее состояние (прибор включен)
- 5 Кнопка запуска теста, активирует функциональный тест
- 6 DIP-переключатель для настройки плотности 0,7 или 0,5
- 7 Клеммы (3-8), релейные контакты
- 8 Клеммы (1, 2): источник питания
- 9 DIP-переключатель для настройки отказоустойчивого режима MAX/MIN

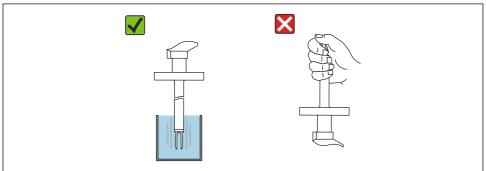
Liquiphant FTL62 Ввод в эксплуатацию

7.3 Реализация функций Heartbeat Diagnostics и Heartbeat Verification с помощью беспроводной технологии Bluetooth®

7.3.1 Доступ по протоколу беспроводной связи Bluetooth®

A0033411

- 🗷 28 🛮 Дистанционное управление с использованием технологии беспроводной связи Bluetooth®
- 1 Смартфон или планшет с приложением SmartBlue
- 2 Прибор с дополнительным модулем Bluetooth

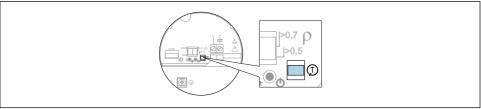

8 Ввод в эксплуатацию

УВЕДОМЛЕНИЕ

Запрещается проверять исправность работы вибрационной вилки руками.

Это может привести к повреждению покрытия вибрационной вилки и нарушению исправности работы.

▶ Погрузите вибрационную вилку в емкость с жидкостью, например, в воду.


A0051290

🗷 29 Проверка работоспособности вибрационной вилки

Ввод в эксплуатацию Liquiphant FTL62

8.1 Функциональный тест с помощью кнопки на электронной вставке

- Функциональный тест необходимо выполнять при нормальном состоянии: отказоустойчивый режим МАХ и датчик не покрыт средой, или отказоустойчивый режим МІN и датчик покрыт средой.
- Во время функционального теста светодиоды циклически поочередно мигают.
- При проведении функционального теста в защитной системе с измерительными приборами по правилам SIL или WHG необходимо соблюдать инструкции, приведенные в руководстве по обеспечению безопасности.

A0037132

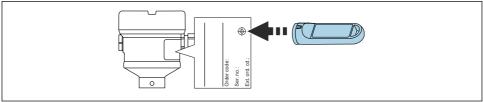
■ 30 Положение кнопки функционального теста на электронных вставках FEL61/62/64/64DC/67/68

- 1. Следите за тем, чтобы не были запущены нежелательные операции переключения!
- 2. Нажмите кнопку T на электронной вставке и удерживайте ее не менее 1 с (кнопку можно нажать, например, отверткой).
 - Выполняется функциональный тест прибора. Выход переходит из нормального состояния в состояние запроса.
 Длительность функционального теста: не менее 10 с или, если кнопка удерживается нажатой > 10 с, тест длится до отпускания кнопки запуска теста.

Если внутренний тест прошел успешно, прибор возвращается к нормальной работе.

Если корпус запрещено открывать во время работы по соображениям взрывобезопасности (например, Ex d /XP), то функциональный тест также можно запустить снаружи с помощью тестового магнита (приобретается отдельно) (FEL62, FEL64, FEL64DC, FEL68).

Функциональный тест электроники типа ЧИМ (FEL67) или типа NAMUR (FEL68) можно запустить с помощью прибора Nivotester FTL325P/N.


8.2 Функциональный тест электронного реле с помощью тестового магнита

Выполнение функциональный теста электронного реле без открывания прибора

- Удерживайте тестовый магнит рядом с заводской табличкой снаружи прибора.
 - □ Моделирование возможно с электронными вставками FEL62, FEL64, FEL64DC, FEL68.

Liquiphant FTL62 Ввод в эксплуатацию

Функциональный тест с помощью тестового магнита действует так же, как и функциональный тест с помощью кнопки запуска теста на электронной вставке.

🗷 31 Функциональный тест с помощью тестового магнита

A0033419

8.3 Включение прибора

Во время включения прибора его выход находится в безопасном состоянии или в аварийном состоянии (если это возможно).

- На электронной вставке FEL61 выход переходит в надлежащее состояние не более чем через 4 с после очередного включения питания прибора.
- На электронной вставке FEL62, FEL64 или FEL64DC выход переходит в надлежащее состояние не более чем через 3 с после очередного включения питания прибора.
- Для электронных вставок FEL68 типа NAMUR и FEL67 типа ЧИМ при каждом включении прибора обязательно проводится его функциональный тест. Выход переходит в надлежащее состояние не более чем через 10 с.

www.addresses.endress.com