Operating Instructions
Liquiphant FTL64

Vibronic
HART
Point level switch for liquids in high-temperature applications
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>About this document</td>
</tr>
<tr>
<td>1.1</td>
<td>Purpose of this document</td>
</tr>
<tr>
<td>1.2</td>
<td>Symbols</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Safety symbols</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Electrical symbols</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Tool symbols</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Communication-specific symbols</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Symbols for certain types of information</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Symbols in graphics</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Registered trademarks</td>
</tr>
<tr>
<td>2</td>
<td>Basic safety instructions</td>
</tr>
<tr>
<td>2.1</td>
<td>Requirements for the personnel</td>
</tr>
<tr>
<td>2.2</td>
<td>Intended use</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Incorrect use</td>
</tr>
<tr>
<td>2.3</td>
<td>Workplace safety</td>
</tr>
<tr>
<td>2.4</td>
<td>Operational safety</td>
</tr>
<tr>
<td>2.5</td>
<td>Product safety</td>
</tr>
<tr>
<td>2.6</td>
<td>Functional Safety SIL (optional)</td>
</tr>
<tr>
<td>2.7</td>
<td>IT security</td>
</tr>
<tr>
<td>2.8</td>
<td>Device-specific IT security</td>
</tr>
<tr>
<td>3</td>
<td>Product description</td>
</tr>
<tr>
<td>3.1</td>
<td>Product design</td>
</tr>
<tr>
<td>4</td>
<td>Incoming acceptance and product identification</td>
</tr>
<tr>
<td>4.1</td>
<td>Incoming acceptance</td>
</tr>
<tr>
<td>4.2</td>
<td>Product identification</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Nameplate</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Manufacturer address</td>
</tr>
<tr>
<td>4.3</td>
<td>Storage and transport</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Storage conditions</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Transporting the device</td>
</tr>
<tr>
<td>5</td>
<td>Mounting</td>
</tr>
<tr>
<td>5.1</td>
<td>Mounting requirements</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Pay attention to the temperature for devices with a PFA coating (conductive)</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Take switch point into consideration</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Take viscosity into consideration</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Avoid buildup</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Take clearance into consideration</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Support the device</td>
</tr>
<tr>
<td>5.2</td>
<td>Mounting the device</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Required tool</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Installation</td>
</tr>
<tr>
<td>5.3</td>
<td>Sliding sleeves</td>
</tr>
<tr>
<td>5.4</td>
<td>Post-mounting check</td>
</tr>
<tr>
<td>6</td>
<td>Electrical connection</td>
</tr>
<tr>
<td>6.1</td>
<td>Required tool</td>
</tr>
<tr>
<td>6.2</td>
<td>Connecting requirements</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Cover with securing screw</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Potential equalization</td>
</tr>
<tr>
<td>6.3</td>
<td>Connecting the device</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Terminals</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Cable specification</td>
</tr>
<tr>
<td>6.3.4</td>
<td>4 to 20 mA HART</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Overvoltage protection</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Wiring</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Terminal assignment</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Cable entries</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Available device plugs</td>
</tr>
<tr>
<td>6.4</td>
<td>Ensuring the degree of protection</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Degree of protection</td>
</tr>
<tr>
<td>6.5</td>
<td>Post-connection check</td>
</tr>
<tr>
<td>7</td>
<td>Operation options</td>
</tr>
<tr>
<td>7.1</td>
<td>Overview of operating options</td>
</tr>
<tr>
<td>7.2</td>
<td>FEL60H electronic insert</td>
</tr>
<tr>
<td>7.3</td>
<td>Function test using operating key on electronic insert</td>
</tr>
<tr>
<td>7.4</td>
<td>Structure and function of the operating menu</td>
</tr>
<tr>
<td>7.4.1</td>
<td>User roles and related access authorization</td>
</tr>
<tr>
<td>7.5</td>
<td>Access to the operating menu via the onsite display</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Device display (optional)</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Operation via Bluetooth® wireless technology (optional)</td>
</tr>
<tr>
<td>7.6</td>
<td>Access to the operating menu via the operating tool</td>
</tr>
<tr>
<td>7.7</td>
<td>HistoROM data management</td>
</tr>
<tr>
<td>8</td>
<td>System integration</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview of device description files</td>
</tr>
<tr>
<td>8.2</td>
<td>Measured variables via HART protocol</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Device variables and measured values</td>
</tr>
<tr>
<td>8.2.2</td>
<td>System units</td>
</tr>
<tr>
<td>9</td>
<td>Commissioning</td>
</tr>
<tr>
<td>9.1</td>
<td>Preparations</td>
</tr>
<tr>
<td>9.1.1</td>
<td>As-delivered state</td>
</tr>
<tr>
<td>9.2</td>
<td>Function check</td>
</tr>
<tr>
<td>9.3</td>
<td>Connecting via FieldCare and DeviceCare</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Via HART protocol</td>
</tr>
<tr>
<td>9.3.2</td>
<td>FieldCare/DeviceCare via service interface (CDI)</td>
</tr>
<tr>
<td>9.4</td>
<td>Configuring the device address via software</td>
</tr>
</tbody>
</table>
9.5 Setting the operating language 33
9.5.1 Local display 33
9.5.2 FieldCare 33
9.5.3 DeviceCare 33
9.6 Configuring the device 34
9.6.1 Commissioning with DIP switch and operating keys on the electronic insert 34
9.6.2 Resetting the password or device via operating keys 35
9.6.3 Commissioning with "Commissioning" wizard 35
9.6.4 Storing the oscillation frequencies 35
9.7 Simulation 35
9.8 Protecting settings from unauthorized access 36
9.8.1 Locking or unlocking the hardware 36
9.8.2 Locking or unlocking the display operation 36
9.8.3 Parameter configuration - locking or enabling 36

10 Operation 37
10.1 Reading off the device locking status 37
10.2 Reading off measured values 37
10.3 Adapting the device to process conditions 37
10.3.1 Level limit detection 37
10.3.2 Sensor frequency 38
10.4 Heartbeat Technology (optional) 38
10.4.1 Heartbeat Verification 38
10.4.2 Heartbeat Verification/Monitoring 38
10.5 Proof testing for SIL/WHG devices (optional) 39

11 Diagnosis and troubleshooting 39
11.1 General troubleshooting 39
11.1.1 General errors 39
11.1.2 Error - SmartBlue operation with Bluetooth® 40
11.1.3 Additional tests 41
11.1.4 Behavior of current output in the event of a fault 41
11.2 Diagnostic information on local display 41
11.2.1 Diagnostic message 41
11.3 Diagnostic event in the operating tool 43
11.4 Adapting the diagnostic information 43
11.5 Queued diagnostic messages 43
11.6 Diagnostic list 43
11.7 Event logbook 45
11.7.1 Event history 45
11.7.2 Filtering the event logbook 46
11.7.3 Overview of information events 46
11.8 Resetting the device 47
11.8.1 Resetting the device via the operating software or display 47
11.8.2 Resetting the device via operating keys on the electronic insert 47
11.9 Device information 47

11.10 Firmware history 48
11.10.1 Version 01.00.zz 48

12 Maintenance 48
12.1 Maintenance tasks 48
12.1.1 Cleaning 48

13 Repair 48
13.1 General notes 48
13.1.1 Repair concept 48
13.1.2 Repairs to Ex-approved devices 48
13.2 Spare parts 49
13.3 Replacement 49
13.3.1 HistoROM 49
13.4 Return 49
13.5 Disposal 49

14 Accessories 50
14.1 Device Viewer 50
14.2 Protective cover for aluminum dual compartment housing 50
14.3 Protective cover for single compartment housing, aluminum or 316L 50
14.4 M12 socket 50
14.5 Sliding sleeves for unpressurized operation 51
14.6 High pressure sliding sleeves 52

15 Technical data 53
15.1 Input 53
15.1.1 Measured variable 53
15.1.2 Measuring range 53
15.2 Output 53
15.2.1 Output signal 53
15.2.2 Signal on alarm 54
15.2.3 Load 54
15.2.4 Damping 54
15.2.5 Switch output 55
15.2.6 Ex connection data 55
15.2.7 Protocol-specific data 55
15.2.8 Wireless HART data 56
15.2.9 Heartbeat Technology 56
15.3 Environment 56
15.3.1 Ambient temperature range 56
15.3.2 Storage temperature 57
15.3.3 Humidity 57
15.3.4 Operating height 57
15.3.5 Climate class 57
15.3.6 Degree of protection 57
15.3.7 Vibration resistance 58
15.3.8 Shock resistance 58
15.3.9 Mechanical load 58
15.3.10 Pollution degree 58
15.3.11 Electromagnetic compatibility (EMC) 58
15.4 Process 59
15.4.1 Process temperature range 59
15.4.2 Medium conditions 59
15.4.3 Thermal shock 59
15.4.4 Process pressure range 59
15.4.5 Overpressure limit 60
15.4.6 Medium density 60
15.4.7 Viscosity 60
15.4.8 Pressure tightness 60
15.4.9 Solids contents 60
15.5 Additional technical data 61

Index 62
1 About this document

1.1 Purpose of this document

These Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

⚠️ **DANGER**
This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

⚠️ **WARNING**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

⚠️ **CAUTION**
This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

⚠️ **NOTICE**
This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

_VOLTAGE
Ground connection
Grounded clamp, which is grounded via a grounding system.

GROUND
Protective earth (PE)
Ground terminals, which must be grounded prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.

1.2.3 Tool symbols

🪛 Flat-blade screwdriver
ุม Allen key
🪛 Open-ended wrench

1.2.4 Communication-specific symbols

Bluetooth
Wireless data transmission between devices over a short distance.

1.2.5 Symbols for certain types of information

✔️ Permitted
Procedures, processes or actions that are permitted.

❌ Forbidden
Procedures, processes or actions that are forbidden.
2 Basic safety instructions

2.1 Requirements for the personnel
The personnel must fulfill the following requirements to carry out the necessary tasks, e.g., commissioning and maintenance:

► Trained, qualified specialists must have a relevant qualification for the specific function and task
► Are authorized by the plant owner/operator
► Are familiar with federal/national regulations
► Must have read and understood the instructions in the manual and supplementary documentation
► Follow instructions and comply with conditions

2.2 Intended use

► Only use the device for liquids
► Improper use can pose hazards
► Ensure that the measuring device is free of defects while it is in operation
► Use the device only for media to which the wetted materials have an adequate level of resistance
► Do not exceed or drop below the relevant limit values for the device

For more details, see the 'Technical data' section
See the Technical Documentation
2.2.1 Incorrect use

The manufacturer is not liable for damage caused by improper or non-intended use.

Residual risks

Due to heat transfer from the process, the temperature of the electronics housing and the assemblies contained therein may rise to 80 °C (176 °F) during operation.

Danger of burns from contact with surfaces!

▶ If necessary, ensure protection against contact to prevent burns.

For requirements concerning functional safety in accordance with IEC 61508, the associated SIL documentation must be observed.

2.3 Workplace safety

For work on and with the device:

▶ Wear the required personal protective equipment according to federal/national regulations.

2.4 Operational safety

Risk of injury!

▶ Operate the device only if it is in proper technical condition, free from errors and faults.
▶ The operator is responsible for ensuring the interference-free operation of the device.

Modifications to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability:

▶ Only perform repair work on the device if this is expressly permitted.
▶ Observe federal/national regulations pertaining to the repair of an electrical device.
▶ Use original spare parts and accessories from Endress+Hauser only.

Hazardous area

To eliminate danger to persons or the facility when the device is used in the hazardous area (e.g. explosion protection):

▶ Check the nameplate to verify whether the ordered device can be used for the intended purpose in the hazardous area.
▶ Observe the specifications in the separate supplementary documentation that is an integral part of this manual.

2.5 Product safety

This device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets the general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.
2.6 **Functional Safety SIL (optional)**
The Functional Safety Manual must be strictly observed for devices that are used in functional safety applications.

2.7 **IT security**
We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device has safety mechanisms integrated to prevent users from inadvertently changing settings.

Provide additional protection for the device and data transfer to/from the device

- IT security measures defined in the plant owner/operator's own security policy must be implemented by plant owners/operators themselves.

2.8 **Device-specific IT security**
The device offers specific functions to support protective measures by the operator. These functions can be configured by the user and guarantee greater in-operation safety if used correctly. An overview of the most important functions is provided in the following section:

- Write protection via hardware write protection switch
- Access code (applies for operation via display, Bluetooth or FieldCare, DeviceCare, AMS, PDM)

3 **Product description**
- Point level switch for all liquids, for minimum or maximum detection in tanks, vessels and pipes
- Suitable for high-temperature applications up to 280 °C (536 °F)
3.1 Product design

1. Housing with electronic insert and cover
2. Temperature spacer with gas-tight glass feedthrough → 2 lengths available, depending on the process temperature
3. Process connection (flange or thread)
4. Probe design with compact version
5. Probe design, pipe extension

4 Incoming acceptance and product identification

4.1 Incoming acceptance

Check the following during incoming acceptance:

- Are the order codes on the delivery note and the product sticker identical?
- Are the goods undamaged?
- Do the data on the nameplate match the ordering information on the delivery note?
- If required (see nameplate): are the Safety Instructions e.g. XA provided?

⚠️ If one of these conditions is not met, please contact the manufacturer's sales office.
4.2 Product identification

The following options are available for identification of the device:

- Nameplate data
- Extended order code with breakdown of the device features on the delivery note
- Enter serial number from nameplates in W@M Device Viewer www.endress.com/deviceviewer. All of the information on the measuring device is displayed along with an overview of the scope of technical documentation provided.
- Enter the serial number on the nameplate into the Endress+Hauser Operations app or scan the 2-D matrix code on the nameplate with the Endress+Hauser Operations app

4.2.1 Nameplate

The information that is required by law and is relevant to the device is shown on the nameplate, e.g.:

- Manufacturer identification
- Order number, extended order code, serial number
- Technical data, degree of protection
- Firmware version, hardware version
- Approval-related information, reference to Safety Instructions (XA)
- DataMatrix code (information about the device)

4.2.2 Manufacturer address

Endress+Hauser SE+Co. KG
Hauptstraße 1
79689 Maulburg, Germany
Place of manufacture: See nameplate.

4.3 Storage and transport

4.3.1 Storage conditions

Use original packaging.

Storage temperature

-40 to +80 °C (−40 to +176 °F)
Optional −50 °C (−58 °F) or −60 °C (−76 °F)

4.3.2 Transporting the device

- Transport the device to the measuring point in the original packaging
- Hold the device by the housing, temperature spacer, flange or extension pipe
 Take suitable measures to protect the coating!
- Do not bend, shorten or extend the tuning fork
5 Mounting

Mounting instructions
- Any orientation for version with a pipe length of up to 500 mm (19.7 in) approx.
- Vertical orientation from above for device with long pipe
- Minimum distance between the tuning fork and the tank wall or pipe wall: 10 mm (0.39 in)

5.1 Mounting requirements

NOTICE
Scratches or impacts damage the coated surface of the device.
- Ensure the device is handled properly and professionally during all mounting work.

5.1.1 Pay attention to the temperature for devices with a PFA coating (conductive)

The difference in temperature between the outer and inner side of the flange may not exceed 60 °C (140 °F).
If necessary, use external insulation.

![Diagram]

<table>
<thead>
<tr>
<th>4</th>
<th>Difference in temperature between outer and inner side of flange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insulation</td>
</tr>
<tr>
<td>A</td>
<td>Temperature of flange, outer side</td>
</tr>
<tr>
<td>B</td>
<td>Temperature of flange, inner side, for PFA (conductive) maximum 230 °C (446 °F)</td>
</tr>
<tr>
<td>C</td>
<td>Difference in temperature for PFA (conductive) maximum 60 °C (140 °F)</td>
</tr>
</tbody>
</table>

5.1.2 Take switch point into consideration

The following are typical switch points, depending on the orientation of the point level switch.

Water +23 °C (+73 °F)

Minimum distance between the tuning fork and the tank wall or pipe wall: 10 mm (0.39 in)

![Diagram]

![Diagram]

5 Typical switch points. Unit of measurement mm (in)

A	Installation from above
B	Installation from below
C	Installation from the side
D	Switch point

5.1.3 Take viscosity into consideration

Viscosity values
- Low viscosity: < 2,000 mPa·s
- High viscosity: > 2,000 to 10,000 mPa·s

Low viscosity
- Low viscosity, e.g. water: < 2,000 mPa·s
 - It is permitted to position the tuning fork within the installation socket.
6 Installation example for low-viscosity liquids. Unit of measurement mm (in)

High viscosity

NOTICE

Highly viscous liquids may cause switching delays.
- Make sure that the liquid can run off the tuning fork easily.
- Deburr the socket surface.

High viscosity, e.g. viscous oils: ≤ 10 000 mPa·s

The tuning fork must be located outside the installation socket!

7 Installation example for a highly viscous liquid. Unit of measurement mm (in)

5.1.4 **Avoid buildup**

- Use short installation sockets to ensure that the tuning fork projects freely into the vessel
- Leave sufficient distance between the buildup expected on the tank wall and the tuning fork
5.1.5 Take clearance into consideration

Allow sufficient space outside the tank for mounting, connection and settings involving the electronic insert.

5.1.6 Support the device

NOTICE

If the device is supported incorrectly, shocks and vibrations can damage the coated surface.

- Use suitable supports only.

Support the device in the event of severe dynamic load. Maximum lateral loading capacity of the pipe extensions and sensors: 75 Nm (55 lbf ft).
Marine approval: In the case of pipe extensions or sensors longer than 1600 mm (63 in), a support is needed at least every 1600 mm (63 in).

5.2 Mounting the device

5.2.1 Required tool

- Open-ended wrench for sensor installation
- Allen key for housing locking screw

5.2.2 Installation

Aligning the tuning fork using the marking

The tuning fork can be aligned using the marking in such a way that the medium drains off easily and buildup is avoided.

Markings are identified on the process connection by:

Material specification, thread designation, circle, line or double line
Installing the device in piping
- Flow velocity up to 5 m/s with a viscosity of 1 mPa·s and density of 1 g/cm³ (62.4 lb/ft³) (SGU). Check for correct functioning in the event of other process medium conditions.
- The flow will not be significantly impeded if the tuning fork is correctly aligned and the marking is pointing in the direction of flow.
- The marking is visible when installed

Screwing in the device
- Turn by the hex bolt only, 15 to 30 Nm (11 to 22 lbf ft)
- Do not turn at the housing!
Aligning the cable entry

1. Housings with locking screw:
 - The housing can be turned and the cable aligned by turning the locking screw.
 - The locking screw is not tightened when the device is delivered.

1. Loosen the external locking screw (maximum 1.5 turns).
2. Turn the housing, align the cable entry.
 - Avoid moisture in the housing, provide a loop to allow moisture to drain off.
3. Tighten the external locking screw.

Turning the housing

The housing can be rotated up to 380° by loosening the locking screw.

NOTICE

The housing cannot be unscrewed fully.

- Loosen the external locking screw by a maximum of 1.5 turns. If the screw is unscrewed too much or completely (beyond the screw anchor point), small parts (counter disk) can become loose and fall out.
- Tighten the securing screw (hexagon socket 4 mm (0.16 in)) with maximum 3.5 Nm (2.58 lbf ft) ±0.3 Nm (±0.22 lbf ft).

Closing the housing covers

NOTICE

Thread and housing cover damaged from dirt and fouling!

- Remove dirt (e.g. sand) on the thread of the covers and housing.
- If you continue to encounter resistance when closing the cover, check the thread again for fouling.

Housing thread

The threads of the electronics and connection compartment can be coated with an anti-friction coating.

The following applies for all housing materials:

Do not lubricate the housing threads.
Turning the display module

⚠️ WARNING

Supply voltage switched on!
Risk of electric shock and/or explosion!

- Switch off the supply voltage before opening the device.

1. If fitted: release the screw of the cover lock for the electronics compartment cover using the Allen key.
2. Unscrew the cover from the housing and inspect the cover seal.
3. Press the release mechanism and remove the display module.
4. Turn the display module to the desired position: maximum 4 × 90° in each direction. Insert the display module into the desired position until it clicks into place. Screw the cover tightly back onto the housing. If fitted: tighten the screw of the cover lock using the Allen key 0.7 Nm (0.52 lbf ft) ±0.2 Nm (±0.15 lbf ft).

In the case of a dual-compartment housing, the display can be mounted in the electronics compartment as well as in the connection compartment.

5.3 Sliding sleeves

For more details, see the "Accessories" section.

5.4 Post-mouting check

- Is the device undamaged (visual inspection)?
- Does the measuring device meet the measuring point specifications?

For example:
- Process temperature
- Process pressure
- Ambient temperature
- Measuring range
- Are the measuring point number and labeling correct (visual inspection)?
- Is the device adequately protected from wet conditions and direct sunlight?
- Is the device properly secured?
6 Electrical connection

6.1 Required tool
- Screwdriver for electrical connection
- Allen key for screw of cover lock

6.2 Connecting requirements

6.2.1 Cover with securing screw
The cover is locked by a securing screw in devices for use in hazardous areas with certain explosion protection.

NOTICE
If the securing screw is not positioned correctly, the cover cannot provide secure sealing.

- Open the cover: slacken the screw of the cover lock with a maximum of 2 turns so that the screw does not fall out. Fit the cover and check the cover seal.
- Close the cover: screw the cover securely onto the housing, making sure that the securing screw is positioned correctly. There should not be any gap between the cover and housing.

![Cover with securing screw](image1)

6.2.2 Potential equalization

WARNING
Explosion Hazard!
- Please refer to the separate documentation on applications in hazardous areas for the safety instructions.

![Ground terminal for connecting the potential matching line](image2)

1 Ground terminal for connecting the potential matching line

If necessary, the potential matching line can be connected to the external ground terminal of the transmitter before the device is connected.

- For optimum electromagnetic compatibility:
 - Potential matching line as short as possible
 - Observe a cross-section of at least 2.5 mm² (14 AWG)
6.3 Connecting the device

1 Connection compartment cover

Housing thread
The threads of the electronics and connection compartment can be coated with an anti-friction coating.
The following applies for all housing materials:

Do not lubricate the housing threads.

6.3.1 Supply voltage
- U = 10.5 to 35 V_{DC} (Ex d, Ex e, non-Ex)
- U = 10.5 to 30 V_{DC} (Ex i)
- Rated current: 4 to 20 mA HART

- The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV, Class 2) and must comply with the relevant protocol specifications.
- Comply with the following according to IEC/EN61010-1: provide a suitable circuit breaker for the device.

6.3.2 Terminals
- Supply voltage and internal ground terminal: 0.5 to 2.5 mm² (20 to 14 AWG)
- External ground terminal: 0.5 to 4 mm² (20 to 12 AWG)

6.3.3 Cable specification
- The cable outer diameter depends on the cable entry used
- Cable outer diameter
 - Plastic: Ø5 to 10 mm (0.2 to 0.38 in)
 - Nickel-plated brass: Ø7 to 10.5 mm (0.28 to 0.41 in)
 - Stainless steel: Ø7 to 12 mm (0.28 to 0.47 in)
6.3.4 4 to 20 mA HART

![Diagram of HART connection](image)

The HART communication resistor of 250 Ω in the signal line is always necessary in the case of a low-impedance power supply.

Take the voltage drop into consideration:
Maximum 6 V for a 250 Ω communication resistor

6.3.5 Overvoltage protection

Devices without optional overvoltage protection

Equipment from Endress+Hauser fulfills the requirements of the product standard IEC/DIN EN 61326-1 (Table 2 Industrial Environment).

Depending on the type of port (DC supply, input/output port) different test levels according to IEC/DIN EN 61326-1 against transient overvoltages (Surge) are applied (IEC/DIN EN 61000-4-5): Test level on DC power ports and input/output ports is 1 000 V line to earth

Devices with optional overvoltage protection

- Spark-over voltage: min. 400 V_{DC}
- Tested: According to IEC/DIN EN 60079-14 sub chapter 12.3 (IEC/DIN EN 60060-1 chapter 7)
- Nominal discharge current: 10 kA

Overvoltage category

Overvoltage category II

Pollution degree

Pollution degree 2
6.3.6 Wiring

WARNING
Supply voltage might be connected!
Risk of electric shock and/or explosion!

- If the device is used in hazardous areas, make sure to comply with national standards and the specifications in the Safety Instructions (XAs). The specified cable gland must be used.
- The supply voltage must match the specifications on the nameplate.
- Switch off the supply voltage before connecting the device.
- If necessary, the potential matching line can be connected to the outer ground terminal of the transmitter before the device is connected.
- A suitable circuit breaker should be provided for the device in accordance with IEC/EN 61010.
- The cables must be adequately insulated, with due consideration given to the supply voltage and the overvoltage category.
- The connecting cables must offer adequate temperature stability, with due consideration given to the ambient temperature.
- Only operate the device with the covers closed.

Connect the device in the following order:
1. Release the cover lock (if provided).
2. Unscrew the cover.
3. Guide the cables into the cable glands or cable entries. Use a suitable tool with width across flats AF24/25 (8 Nm (5.9 lbf ft)) for the M20 cable gland.
4. Connect the cable.
5. Tighten the cable glands or cable entries so that they are leak-tight. Counter-tighten the housing entry.
6. Screw the cover securely back onto the connection compartment.
7. If fitted: tighten the screw of the cover lock using the Allen key 0.7 Nm (0.52 lbf ft) ±0.2 Nm (0.15 lbf ft).

6.3.7 Terminal assignment

Single compartment housing

![Connection terminals and ground terminal in the connection compartment](image)

17 Connection terminals and ground terminal in the connection compartment

1 Positive terminal
2 Negative terminal
3 Internal ground terminal
Dual compartment housing, L-form

![Diagram](image)

1. Connection terminals and ground terminal in the connection compartment

 1. Positive terminal
 2. Negative terminal
 3. Internal ground terminal

6.3.8 Cable entries

![Diagram](image)

1. Cable entry
2. Dummy plug

The type of cable entry depends on the device version ordered.

6.3.9 Available device plugs

In the case of devices with a plug, it is not necessary to open the housing for connection purposes.
M12 plug

![M12 plug diagram](image)

<table>
<thead>
<tr>
<th>19</th>
<th>M12 plug, pin assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal +</td>
</tr>
<tr>
<td>2</td>
<td>Not assigned</td>
</tr>
<tr>
<td>3</td>
<td>Signal –</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>

For more details, see the "Accessories" section.

6.4 Ensuring the degree of protection

6.4.1 Degree of protection

Test as per IEC 60529 and NEMA 250

IP68 test condition: 1.83 m H₂O for 24 h

Housing

See cable entries

Cable entries

- M20 threaded joint, plastic, IP66/68 NEMA Type 4X/6P
- M20 threaded joint, nickel-plated brass, IP66/68 NEMA Type 4X/6P
- M20 threaded joint, 316L, IP66/68 NEMA Type 4X/6P
- M20 thread, IP66/68 NEMA Type 4X/6P
- Thread G ½, NPT ½, IP66/68 NEMA Type 4XXX

Degree of protection for M12 plug

- When housing is closed and connecting cable is plugged in: IP66/67 NEMA Type 4X
- When housing is open or connecting cable is not plugged in: IP20, NEMA Type 1

NOTICE

M12 plug: Loss of IP protection class due to incorrect installation!

- The degree of protection only applies if the connecting cable used is plugged in and screwed tight.
- The degree of protection only applies if the connecting cable used is specified according to IP67 NEMA Type 4X.

If the 'M12 plug' option is selected as the electrical connection, **IP66/67 NEMA Type 4X** applies for all housing types.

6.5 Post-connection check

- Are the device and cables free from damage (visual check)?
- Do the cables used meet the requirements?
- Do the mounted cables have adequate strain relief?
- Are the cable glands mounted and firmly tightened?
- Does the supply voltage match the information on the nameplate?
No reverse polarity, is terminal assignment correct?
Are all housing covers installed and firmly tightened?
Optional: Are covers tightened with a securing screw?

7 Operation options

7.1 Overview of operating options
- Operation via operating keys and DIP switches on the electronic insert
- Operation via optical operating keys on the device display (optional)
- Operation via Bluetooth® wireless technology (with optional device display with Bluetooth) with SmartBlue app or FieldXpert, DeviceCare
- Operation via operating tool (Endress+Hauser FieldCare/DeviceCare, handheld terminal, AMS, PDM, ...)

7.2 FEL60H electronic insert

- Minimum/maximum quiescent current safety can be switched at the electronic insert
- MAX = maximum safety: when the tuning fork is covered the output switches to demand mode, e.g. use for overfill protection
- MIN = minimum safety: when the tuning fork is uncovered, the output switches to demand mode, e.g. use to prevent pumps from running dry

The setting of the DIP switches on the electronic insert has priority over the settings made via other operation methods (e.g. FieldCare/DeviceCare).
7.3 Function test using operating key on electronic insert

1. Make sure that no undesired switching operations are triggered!
 - The function test must take place when the device condition is OK: MAX safety and sensor uncovered or MIN safety and sensor covered.

2. Press the operating key for the proof test on the electronic insert for at least 3 s.
 - The device function check is performed.
 - The output changes from the OK state to the demand state.

3. Release the operating key.
 - If the internal test is passed, the device switches back to normal operation.

Duration of the function check: at least 10 s or if the key is pressed for longer than 10 s, the check lasts until the key is released.

If the housing may not be opened during operation due to explosion protection requirements, e.g. Ex d/XP, the function test can also be started via the digital communication interfaces (HART, CDI, Bluetooth) with the aid of the appropriate operating tool (FieldCare, DeviceCare, SmartBlue, AMS, PDM, etc.).
7.4 Structure and function of the operating menu

The differences between the structure of the operating menus of the local display and the Endress+Hauser FieldCare or DeviceCare operating tools can be summarized as follows:

The local display is suitable for configuring simple applications.
The operating tools (FieldCare, DeviceCare, SmartBlue, AMS, PDM, ...) can be used to configure the parameters of wide-ranging applications.

Wizards help the user to commission the various applications. The user is guided through the individual configuration steps.

7.4.1 User roles and related access authorization

The two user roles Operator and Maintenance (as-delivered state) have different write access to the parameters if a device-specific access code has been defined. This access code protects the device configuration from unauthorized access.

If an incorrect access code is entered, the user obtains the access rights of the Operator role.

7.5 Access to the operating menu via the onsite display

7.5.1 Device display (optional)

Possible to operate the optical operating keys through the cover. No need to open the device.

Functions:
- Display of measured values and fault and notice messages
- Background lighting, which switches from green to red in the event of an error
- The device display can be removed for easier operation

Backlighting is switched on or off depending on the supply voltage and the current consumption.

The device display is also optionally available with Bluetooth® wireless technology.

![Graphic display with optical operating keys (1)]
Operation options

- **Key ▶**
 - Navigate downwards in the picklist
 - Edit the numerical values or characters within a function
- **Key ◀**
 - Navigate upwards in the picklist
 - Edit the numerical values or characters within a function
- **Key ⏙**
 - Change from main display to main menu
 - Confirm entry
 - Jump to the next item
 - Select a menu item and activate the edit mode
 - Unlock/lock the display operation
 - Press and hold the ⏙ key to display a short description of the selected parameter (if available)
- **▶ key and ◀ key (ESC function)**
 - Exit edit mode for a parameter without saving the changed value
 - Menu at a selection level: pressing the keys simultaneously takes the user back up a level in the menu
 - Press and hold the keys simultaneously to return to the upper level

7.5.2 Operation via Bluetooth® wireless technology (optional)

Prerequisite
- Device with device display including Bluetooth
- Smartphone or tablet with Endress+Hauser SmartBlue app or PC with DeviceCare from version 1.07.05 or FieldXpert SMT70

The connection has a range of up to 25 m (82 ft). The range can vary depending on environmental conditions such as attachments, walls or ceilings.

![Bluetooth Symbol](image)

A flashing Bluetooth symbol indicates that a Bluetooth connection is available.

SmartBlue app

1. Scan the QR code or enter “SmartBlue” in the search field of the App Store or Google Play.

2. Start the SmartBlue app.
3. Select device from livelist displayed.
4. Login:
 - Enter the user name: admin
 - Password: serial number of the device.
5. Change the password after logging in for the first time!

Prerequisites

System requirements

The SmartBlue app is available to download for smartphones or tablets. Please see the ‘App Store (Apple)’ or ‘Google Play Store’ for information regarding the compatibility of the SmartBlue app with mobile terminals.
Initial password
The serial number of the device serves as the initial password when the connection is established for the first time.

Please note the following
If the Bluetooth display is removed from one device and installed in another device:
- All the log-in data are only saved in the Bluetooth display and not in the device
- The password changed by the user is also saved in the Bluetooth display

7.6 Access to the operating menu via the operating tool
Access via the operating tool is possible:
- Via HART communication, e.g. Commubox FXA195
- Via Endress+Hauser Commubox FXA291
 With the Commubox FXA291, a CDI connection can be established with the device interface and a Windows PC/notebook with a USB port

7.7 HistoROM data management
When replacing the electronic insert, the stored data is transferred by reconnecting the HistoROM.

The device serial number is saved in the HistoROM. The electronics serial number is saved in the electronics.

8 System integration

8.1 Overview of device description files
- Manufacturer ID: 17 (0x11)
- Device type code: 0x11C4
- Device revision: 1
- HART specification: 7
- DD revision: 1
- Device description files (DTM, DD) information and files at:
 - www.endress.com
 - www.fieldcommgroup.org
 - HART load: min. 250 Ω

8.2 Measured variables via HART protocol
The following measured values are assigned to the device variables at the factory:

<table>
<thead>
<tr>
<th>Device variable</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary variable (PV) parameter (Primary variable)</td>
<td>Level limit detection</td>
</tr>
<tr>
<td>Secondary variable (SV) parameter (Secondary variable)</td>
<td>Sensor frequency</td>
</tr>
</tbody>
</table>

[1) 1
[2) 2
[3) 3]
The assignment of the measured values to the device variables can be changed in the following submenu:

Navigation: Application → HART output → HART output

In a HART Multidrop loop, only one device may use the analog current value for signal transmission. For all other devices in the Loop current mode parameter, select the Disable option.

Navigation: Application → HART output → Configuration → Loop current mode → Disable option

8.2.1 Device variables and measured values

The following codes are assigned to the device variables at the factory:

<table>
<thead>
<tr>
<th>Device variable</th>
<th>Device variable code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level limit detection</td>
<td>0</td>
</tr>
<tr>
<td>Sensor frequency</td>
<td>1</td>
</tr>
<tr>
<td>Fork state</td>
<td>2</td>
</tr>
<tr>
<td>Sensor temperature</td>
<td>3</td>
</tr>
<tr>
<td>Terminal current</td>
<td>5</td>
</tr>
<tr>
<td>Terminal voltage</td>
<td>6</td>
</tr>
</tbody>
</table>

The device variables can be queried by a HART® master using HART® command 9 or 33.

8.2.2 System units

The oscillation frequency is specified in Hz. The temperature can be displayed in °C, °F or K.

9 Commissioning

9.1 Preparations

WARNING

The settings of the current output are relevant for safety!

Incorrect settings may cause the product to overflow or a pump to run dry.

- The setting for the current output depends on the setting in the Assign PV parameter.
- After changing the setting of the current output: check the settings for the range (Lower range value output (LRV) and Upper range value output (URV)) and reconfigure them if necessary!
9.1.1 As-delivered state

If no customized settings were ordered:

- **Assign PV** parameter Level limit detection (8/16 mA mode)
- MAX safety mode
- Alarm condition set to min. 3.6 mA
- DIP switch for locking in OFF position
- Bluetooth switched on
- Density range > 0.7 g/cm³ (43.7 lb/ft³)
- Switching times 0.5 s when the fork is covered and 1.0 s when it is uncovered
- HART burst mode switched off

9.2 Function check

Before commissioning the measuring point, check whether the post-installation and post-connection checks have been performed.

- → Post-installation check
- → Post-connection check

9.3 Connecting via FieldCare and DeviceCare

9.3.1 Via HART protocol

23 Options for remote operation via HART protocol

1 PLC (programmable logic controller)
2 Transmitter power supply unit, e.g., RN42
3 Connection for Commubox FXA195 and AMS Trex™ device communicator
4 AMS Trex™ device communicator
5 Computer with operating tool (e.g., DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
6 Commubox FXA195 (USB)
7 Field Xpert SMT70
8 Bluetooth modem with connecting cable (e.g., VIATOR)
9 Transmitter
9.3.2 FieldCare/DeviceCare via service interface (CDI)

1. Computer with FieldCare/DeviceCare operating tool
2. Commubox FXA291
3. Service interface (CDI) of the device (= Endress+Hauser Common Data Interface)

At least 22 mA is required to update (flash) the device firmware.

9.4 Configuring the device address via software

See HART address parameter.

Navigation: Application → HART output → Configuration → HART address

9.5 Setting the operating language

9.5.1 Local display

Setting the operating language

To set the operating language, the display first needs to be unlocked:

1. Press the ⌁ key for at least 2 s.
 - A dialog box appears.
2. Unlock the display operation.
3. Select the Language parameter in the main menu.
4. Press the ⌁ key.
5. Select the desired language with the ⬆ or ⬇ key.
6. Press the ⌁ key.

9.5.2 FieldCare

1. In the "Extras" menu, click "Options".
2. Set the preferred language for FieldCare in the "Language" section.

Setting the language for the local display via FieldCare

Navigation: System → Display → Language

- Set the desired language in the Language parameter.

9.5.3 DeviceCare

Click the menu icon:
Click “Settings” and select the desired language:

Setting the language for the local display via DeviceCare
Navigation: System → Display → Language

- Set the desired language in the Language parameter.

9.6 Configuring the device

9.6.1 Commissioning with DIP switch and operating keys on the electronic insert

Setting the MIN or MAX safety mode via the DIP switch
- When the switch is set to "SW", the MIN or MAX setting is defined by the software, with MAX being the default value.
- In the 'MIN' switch position, the setting is permanently MIN irrespective of the software.
9.6.2 Resetting the password or device via operating keys

Resetting the password

1. Briefly press operating key I 3 times within 4 seconds.
 ▶️ The (green) LED flashes twice repeatedly at short intervals.

2. Press operating key I again to confirm and release the key.
 ▶️ The password has been reset.
 The LED stops flashing.

If the time until confirmation is longer than 15 s, the device quits the "Reset Password" state and the LED stops flashing. The password is not reset. Repeat procedure if necessary.

Resetting the device (order configuration)

‣ Press both operating keys simultaneously for at least 12 s.
 ▶️ The device has been reset (as-delivered state).

9.6.3 Commissioning with "Commissioning" wizard

In FieldCare, DeviceCare 1), SmartBlue and on the display, the Commissioning wizard is available to guide the user through the initial commissioning steps.

1. Connect the device to the operating tool.

2. Open the device in the operating tool.
 ▶️ The dashboard (homepage) of the device is displayed:

3. Open the wizard: Guidance menu → Commissioning wizard

4. Enter the appropriate value in each parameter or select the appropriate option. These values are written directly to the device.

5. Click "Next" to go to the next page.

6. Once all the pages have been completed, click "End": the Commissioning wizard is closed.

If the Commissioning wizard is cancelled before all the necessary parameters have been configured, the device may be in an undefined state. In such situations, it is advisable to reset the device to the factory default settings.

9.6.4 Storing the oscillation frequencies

Two frequencies (uncovered/covered) can be stored in the device so that the current oscillation frequency can be compared later on to the condition at the time of commissioning.

The frequencies can only be stored in the respective fork state. For example, if the fork is covered it is only possible to save the frequency when the fork is covered (Stored covered frequency parameter).

The value is saved via the Commissioning wizard or via
Navigation: Application → Sensor → Stored frequency

9.7 Simulation

In the Simulation submenu the user can simulate with the options Fork state (uncovered/covered), Sensor frequency, Current output and Diagnostic event simulation.

1) DeviceCare is available for download at www.software-products.endress.com. You must register in the Endress+Hauser software portal to download the product.
9.8 Protecting settings from unauthorized access

9.8.1 Locking or unlocking the hardware

DIP switch (2) on the electronic insert is used to lock or unlock operation.

- If operation is locked via the DIP switch, you can only unlock operation again via the DIP switch.
- If operation is locked via the operating menu, you can only unlock operation again via the operating menu.
- If operation is locked via the DIP switch, the lock icon appears on the local display.

9.8.2 Locking or unlocking the display operation

Lock or unlock display operation:

1. Press the key for at least 2 s.
 - A dialog box appears.
2. Lock or unlock display operation.

Display operation locks automatically (except in the SIL wizard):
- After 1 minute on the main page if no key has been pressed
- After 10 minutes within the operating menu if no key has been pressed

9.8.3 Parameter configuration - locking or enabling

If operation is locked by means of the DIP switch, you can only unlock operation again by means of the DIP switch.

Software - via password in FieldCare, DeviceCare, SmartBlue app

As-delivered state:
The user role is set to Maintenance when the device is delivered to the customer.

Parameter configuration (Maintenance user role):
The device can be fully configured with the Maintenance user role.

Locking access:
After configuring with the Maintenance user role, access can be locked by assigning a password. The lock changes the Maintenance user role to the Operator user role.
Parameter configuration (Operator user role):
Parameter configuration of the device is locked in the Operator user role.

Unlocking access:
Access to parameter configuration can be unlocked by entering the password. The user role changes back to Maintenance.

Navigation for assigning the password and changing the user role: System → User management

Delete password:
If necessary, the password can be deleted in the User management.

Navigation: System → User management → Delete password → Start

10 Operation

10.1 Reading off the device locking status
Displaying active write protection in the Locking status parameter
- Local display 🜗:
 The 🜗 symbol appears on the main page
- Operating tool (FieldCare/DeviceCare) 🜗:
 Navigation: System → Device management → Locking status

10.2 Reading off measured values
All the measured values can be read off using the Measured values submenu.
Navigation: Application menu → Measured values submenu

10.3 Adapting the device to process conditions
The following menus are available for this purpose:
- Basic settings in the Guidance menu
- Advanced settings in:
 - Diagnostics menu
 - Application menu
 - System menu

10.3.1 Level limit detection
Operating as a point level switch in the 8/16 mA mode.
Output of point level:
- 8 mA (demand mode: MIN uncovered or MAX covered)
- 16 mA (OK status: MIN covered or MAX uncovered)

1. Navigation: Application → Sensor → Sensor configuration
2. Set the Mode of operation to Level limit detection.
3. Set the Safety function to MIN (dry-running prevention) or MAX (overfill protection), according to the application.
4. Set the Density setting parameter according to the application (> 0.4 g/cm³, > 0.5 g/cm³, > 0.7 g/cm³).
5. Optionally: Set the Switching delay uncovered to covered parameter and the Switching delay covered to uncovered parameter.
10.3.2 Sensor frequency
Continuous operation in the 4 to 20 mA mode. Loop current proportional to oscillation frequency of fork.
1. Navigation: Application → Sensor → Sensor configuration
2. Set the Mode of operation parameter to the Sensor frequency option.
3. Set the Density setting parameter according to the application (> 0.4 g/cm³, > 0.5 g/cm³, > 0.7 g/cm³).
 This is used to ensure that the Fork state parameter (covered/uncovered) continues to be displayed correctly.
4. Navigation: Guidance → Commissioning
5. Set the Lower range value output parameter to the frequency that should correspond to a 4 mA output current.
6. Set the Upper range value output parameter to the frequency that should correspond to a 20 mA output current.

10.4 Heartbeat Technology (optional)

10.4.1 Heartbeat Verification
The 'Heartbeat Verification' module contains the Heartbeat Verification wizard, which verifies the current instrument health and creates the Heartbeat Technology verification report:
- The wizard can be used via the operating tools (SmartBlue app, DTM, display).
- The wizard guides the user through the entire process for creating the verification report.
- The operating hours counter, minimum/maximum temperature indicator and minimum/maximum frequency indicator are displayed.
- If the oscillation frequency of the fork increases, a corrosion warning appears.
- The as-delivered state of the oscillation frequency in air is indicated on the verification report. A high oscillation frequency is an indicator of corrosion. A lower oscillation frequency indicates buildup or a sensor covered by the medium. Deviations of the oscillation frequency from the oscillation frequency in the as-delivered state can be caused by the process temperature and process pressure.

10.4.2 Heartbeat Verification/Monitoring
The Heartbeat submenu is only available when operating via FieldCare, DeviceCare or the SmartBlue app. It contains the wizards that are provided with the Heartbeat Verification and Heartbeat Monitoring application packages.

Documentation on the Heartbeat Technology: Endress+Hauser website:
www.endress.com → Downloads.

2) The wizard can be started on the display but it only shows the Passed option or Failed option result.
10.5 Proof testing for SIL/WHG devices (optional) 3)

The "Proof test" module contains the Proof test wizard, which must be performed at appropriate intervals in the following applications: SIL (IEC61508), WHG (German Water Resources Act (Gesetz zur Ordnung des Wasserhaushalts)):
- The wizard can be used via the operating tools (SmartBlue app, DTM).
- The wizard guides the user through the entire process for creating the verification report.
- The verification report can be saved as a PDF file.

11 Diagnosis and troubleshooting

11.1 General troubleshooting

11.1.1 General errors

Device not responding
- Possible cause: Supply voltage does not match the specification on the nameplate
 Remedial action: Apply the correct voltage
- Possible cause: The polarity of the supply voltage is wrong
 Remedial action: Correct the polarity
- Possible cause: The cables do not contact the terminals properly
 Remedial action: Check the electrical contact between cables and correct if necessary
- Possible cause: Load resistance too high
 Remedial action: Increase the supply voltage to reach the minimum terminal voltage

No values visible on the display
- Possible cause: Graphic display is set too bright or too dark
 Remedial action: Increase or decrease the contrast with the Contrast display parameter
 Navigation path: System → Display → Contrast display
- Possible cause: The plug of the display cable is not connected correctly
 Remedial action: Connect the plug correctly
- Possible cause: Display is defective
 Remedial action: Replace the display

No background lighting on the graphic display
Possible cause: There is insufficient power available
Remedial action: Increase the supply voltage

"Communication error" is indicated on the display when the device is started or the display is connected
- Possible cause: Electromagnetic interference influence
 Remedial action: Check grounding of the device
- Possible cause: Defective cable connection or display plug
 Remedial action: Replace the display

HART communication not working
- Possible cause: Communication resistor missing or incorrectly installed
 Remedial action: Install the communication resistor (250 Ω) correctly
- Possible cause: The HART modem is not properly connected
 Remedial action: Connect the HART modem correctly

3) Available only for devices with SIL or WHG approval
Communication via CDI interface not working
Possible cause: Wrong setting of the COM port on the computer
Remedial action: Check the setting of the COM port on the computer and correct it if necessary

Device measures incorrectly
Possible cause: Parametrization error
Remedial action: Check and correct the parameter configuration

No communication with device via SmartBlue
- Possible cause: No Bluetooth connection available
 Remedial action: Enable the Bluetooth function on the smartphone, tablet and device
- Possible cause: The device is already connected with another smartphone/tablet
 Remedial action: Disconnect the device from the other smartphone/tablet
- Ambient conditions (e.g. walls/tanks) disturbing the Bluetooth connection
 Remedial action: Establish direct line-of-sight connection
- Display does not have Bluetooth

Login via SmartBlue not possible
- Possible cause: Device is being put into operation for the first time
 Remedial action: Enter the user name ("admin") and the password (device serial number)
- Possible cause: There is insufficient power available.
 Remedial action: Increase the supply voltage.

Device cannot be operated via SmartBlue
- Possible cause: Incorrect password entered
 Remedial action: Enter the correct password
- Possible cause: Forgotten password
 Remedial action: Use the operating key on the electronic insert to reset the password or contact Endress+Hauser Service (www.addresses.endress.com)
- Possible cause: Operator user role has no authorization
 Remedial action: Change to the Maintenance user role

11.1.2 Error - SmartBlue operation with Bluetooth®

Device is not visible in the live list
- Possible cause: No Bluetooth connection available
 Remedial action: Enable Bluetooth in the field device via display or software tool and/or in the smartphone/tablet
- Possible cause: Bluetooth signal outside of range
 Remedial action: Reduce distance between field device and smartphone/tablet
 The connection has a range of up to 25 m (82 ft).
 Operating radius with intervisibility 10 m (33 ft)
- Possible cause: Geopositioning is not enabled on Android devices or is not permitted for the SmartBlue app
 Remedial action: Activate/allow geopositioning service on Android device for the SmartBlue app

Device appears in the live list but a connection cannot be established
- Possible cause: The device is already connected with another smartphone/tablet via Bluetooth
 Only one point-to-point connection is permitted
 Remedial action: Disconnect the smartphone/tablet from the device
- Possible cause: Incorrect user name and password
 Remedial action: The standard user name is "admin" and the password is the device serial number indicated on the device nameplate (only if the password was not changed by the user beforehand)
 If you have forgotten the password, use the operating key on the electronic insert to reset the password or contact Endress+Hauser Service (www.addresses.endress.com)
Connection via SmartBlue not possible
Possible cause: Incorrect password entered
Remedial action: Enter the correct password, paying attention to lower/upper case

Connection via SmartBlue not possible
Possible cause: Forgotten password
Remedial action: Use the operating key on the electronic insert to reset the password or contact Endress+Hauser Service (www.addresses.endress.com)

11.1.3 Additional tests
If no clear cause of the error can be identified or the source of the problem can be both the device and the application, the following additional tests can be performed:

1. Reset the device to the factory setting.
2. Check the digital point level or sensor frequency (display, HART, ..).
3. Check that the device concerned is functioning correctly. If the digital value does not correspond to the anticipated point level or sensor frequency, replace the device.
4. Switch on simulation and check the current output. Replace the main electronics if the current output does not correspond to the simulated value.

11.1.4 Behavior of current output in the event of a fault
The behavior of the current output in the event of faults is defined by the Failure behavior current output parameter.

Parameter overview with brief description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Selection / User entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure behavior current output</td>
<td>Defines which current the output assumes in the case of an error.</td>
<td>• Min.</td>
</tr>
<tr>
<td></td>
<td>Min: < 3.6 mA</td>
<td>• Max.</td>
</tr>
<tr>
<td>Failure current</td>
<td>Enter current output value in alarm condition.</td>
<td>21.5 to 23 mA</td>
</tr>
</tbody>
</table>

11.2 Diagnostic information on local display

11.2.1 Diagnostic message

Measured value display and diagnostic message in the event of a fault
Faults detected by the device's self-monitoring system are displayed as a diagnostic message in alternating sequence with the unit.
Faults detected by the device's self-monitoring system are displayed as a diagnostic message in alternating sequence with the measured value display.

1 Status signal
2 Status symbol with diagnostic event
3 Event text
Status signal

F
Failure (F)
A device error has occurred. The measured value is no longer valid.

C
Function check (C)
The device is in the service mode (e.g. during a simulation).

S
Out of specification (S)
Device operation:
- Outside of the technical specifications (e.g. during startup or a cleaning)
- Outside of the configuration performed by the user (e.g. sensor frequency outside the configured span)

M
Maintenance required (M)
Maintenance required. The measured value is still valid.

Diagnostic event and event text

The fault can be identified by means of the diagnostic event. The event text helps you by providing information about the fault. In addition, the associated status symbol is displayed in front of the diagnostic event.

Symbol for event level

- **"Alarm" status**
Measurement is interrupted. The signal outputs adopt the defined alarm state. A diagnostic message is generated.

- **"Warning" status**
The device continues to measure. A diagnostic message is generated.

"Active diagnostics" parameter

- **operating key**
Opens the message about the remedial measures.

- **operating key**
Acknowledge warnings.

- **operating key**
Back to operating menu.
11.3 Diagnostic event in the operating tool

If there is a diagnostic event in the device, the status signal appears on the top left in the status section of the operating tool together with the associated icon for event behavior according to NAMUR NE 107:

- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)

Click the status signal to see the detailed status signal.

The diagnostic events and remedial measures can be printed in the Diagnostic list submenu.

11.4 Adapting the diagnostic information

The event level can be configured:

Navigation: Diagnostics → Diagnostic settings → Configuration

11.5 Queued diagnostic messages

The display alternates between the queued diagnostic messages and the measured value. Queued diagnostic messages can also be displayed in the Active diagnostics parameter.

Navigation: Diagnostics → Active diagnostics

11.6 Diagnostic list

All the diagnostic messages that are currently queued can be displayed in the Diagnostic list submenu.

Navigation: Diagnostics → Diagnostic list

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Remedy instructions</th>
<th>Status signal [from the factory]</th>
<th>Diagnostic behavior [from the factory]</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>Sensor defective</td>
<td>1. Restart device 2. Replace electronics 3. Replace device</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>007</td>
<td>Sensor defective</td>
<td>1. Check fork 2. Replace device</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>042</td>
<td>Sensor corroded</td>
<td>1. Check fork 2. Replace device</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>049</td>
<td>Sensor corroded</td>
<td>1. Check fork 2. Replace device</td>
<td>M</td>
<td>Warning 1)</td>
</tr>
<tr>
<td>061</td>
<td>Sensor electronics faulty</td>
<td>Replace electronics</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>062</td>
<td>Sensor connection faulty</td>
<td>1. Check Main to sensor connection 2. Replace electronics</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>081</td>
<td>Sensor initialization faulty</td>
<td>1. Restart device 2. Contact service</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>Diagnostic number</td>
<td>Short text</td>
<td>Remedy instructions</td>
<td>Status signal [from the factory]</td>
<td>Diagnostic behavior [from the factory]</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Diagnostic of electronic</td>
<td>201</td>
<td>Electronics faulty</td>
<td>1. Restart device 2. Replace electronics</td>
<td>F</td>
</tr>
<tr>
<td>203</td>
<td>HART Device Malfunction</td>
<td>Check device specific diagnosis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>HART Electronic Defect</td>
<td>Check device specific diagnosis.</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>242</td>
<td>Firmware incompatible</td>
<td>1. Check software 2. Flash or change main electronic module</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>252</td>
<td>Module incompatible</td>
<td>1. Check if correct electronic module is plugged 2. Replace electronic module</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>263</td>
<td>Electronic incompatible</td>
<td>Check electronic module type</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>270</td>
<td>Main electronics defective</td>
<td>Replace electronic module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>Main electronics faulty</td>
<td>1. Restart device 2. Contact service</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>273</td>
<td>Main electronics defective</td>
<td>Replace main electronics</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>282</td>
<td>Data storage inconsistent</td>
<td>Restart device</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>283</td>
<td>Memory content inconsistent</td>
<td>1. Restart device 2. Contact service</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>287</td>
<td>Memory content inconsistent</td>
<td>1. Restart device 2. Contact service</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>388</td>
<td>Electronics and HistoROM defective</td>
<td>1. Restart device 2. Replace electronics and HistoROM 3. Contact service</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Diagnostic of configuration</td>
<td>410</td>
<td>Data transfer failed</td>
<td>1. Retry data transfer 2. Check connection</td>
<td>F</td>
</tr>
<tr>
<td>412</td>
<td>Processing download</td>
<td>Download active, please wait</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>420</td>
<td>HART Device Configuration Locked</td>
<td>Check device locking configuration.</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>421</td>
<td>HART Loop Current fixed</td>
<td>Check Multi-drop mode or current simulation.</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>431</td>
<td>Trim required</td>
<td>Carry out trim</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>437</td>
<td>Configuration incompatible</td>
<td>1. Update firmware 2. Execute factory reset</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>438</td>
<td>Dataset different</td>
<td>1. Check dataset file 2. Check device parameterization 3. Download new device parameterization</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>441</td>
<td>Current output 1 saturated</td>
<td>1. Check process 2. Check current output settings</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>484</td>
<td>Failure mode simulation active</td>
<td>Deactivate simulation</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>485</td>
<td>Process variable simulation active</td>
<td>Deactivate simulation</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
Diagnostic of process

<table>
<thead>
<tr>
<th>Diagnostic number</th>
<th>Short text</th>
<th>Remedy instructions</th>
<th>Status signal [from the factory]</th>
<th>Diagnostic behavior [from the factory]</th>
</tr>
</thead>
<tbody>
<tr>
<td>491</td>
<td>Current output simulation active</td>
<td>Deactivate simulation</td>
<td>C</td>
<td>Warning</td>
</tr>
<tr>
<td>495</td>
<td>Diagnostic event simulation active</td>
<td>Deactivate simulation</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>538</td>
<td>Configuration Sensor Unit invalid</td>
<td>1. Check sensor configuration</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check device configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>Supply voltage too low</td>
<td>Increase supply voltage</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td>802</td>
<td>Supply voltage too high</td>
<td>Decrease supply voltage</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>805</td>
<td>Loop current faulty</td>
<td>1. Check wiring</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Replace electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>806</td>
<td>Loop diagnostics</td>
<td>1. Check supply voltage</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check wiring and terminals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>807</td>
<td>No Baseline due to insuf. volt. at 20 mA</td>
<td>Increase supply voltage</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td>825</td>
<td>Electronics temperature</td>
<td>1. Check ambient temperature</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check process temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>826</td>
<td>Sensor temperature out of range</td>
<td>1. Check ambient temperature</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check process temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>842</td>
<td>Process limit</td>
<td>1. Check process density</td>
<td>F</td>
<td>Alarm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Check fork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>846</td>
<td>HART Non-Primary Variable Out of Limit</td>
<td>Check device specific diagnosis.</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>847</td>
<td>HART Primary Variable Out of Limit</td>
<td>Check device specific diagnosis.</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>848</td>
<td>HART Device Variable Alert</td>
<td>Check device specific diagnosis.</td>
<td>S</td>
<td>Warning</td>
</tr>
<tr>
<td>900</td>
<td>Process alert frequency too low</td>
<td>Check process conditions</td>
<td>M</td>
<td>Warning</td>
</tr>
<tr>
<td>901</td>
<td>Process alert frequency too high</td>
<td>Check process conditions</td>
<td>M</td>
<td>Warning</td>
</tr>
</tbody>
</table>

1) Diagnostic behavior can be changed.

11.7 Event logbook

11.7.1 Event history

The Event list submenu provides a chronological overview of the event messages that have occurred 4).

Navigation: Diagnostics → Event logbook

A maximum of 100 event messages can be displayed in chronological order.

The event history includes entries for:

- Diagnostic events
- Information events

4) If operating via FieldCare, the event list can be displayed with the “Event List/HistoROM” function in FieldCare.
In addition to the operating time when the event occurred, each event is also assigned a symbol that indicates whether the event has occurred or is finished:

- Diagnostic event
 - •: Occurrence of the event
 - ◊: End of the event
- Information event
 - ◊: Occurrence of the event

11.7.2 Filtering the event logbook
Filters can be used to determine which category of event messages is displayed in the **Event list** submenu.

Navigation: Diagnostics → Event logbook

Filter categories
- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information

11.7.3 Overview of information events

<table>
<thead>
<tr>
<th>Info number</th>
<th>Info name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1000</td>
<td>------(Device ok)</td>
</tr>
<tr>
<td>I1089</td>
<td>Power on</td>
</tr>
<tr>
<td>I1090</td>
<td>Configuration reset</td>
</tr>
<tr>
<td>I1091</td>
<td>Configuration changed</td>
</tr>
<tr>
<td>I1074</td>
<td>Device verification active</td>
</tr>
<tr>
<td>I1110</td>
<td>Write protection switch changed</td>
</tr>
<tr>
<td>I1104</td>
<td>Loop diagnostics</td>
</tr>
<tr>
<td>I1284</td>
<td>DIP MIN setting to HW active</td>
</tr>
<tr>
<td>I1285</td>
<td>DIP SW setting active</td>
</tr>
<tr>
<td>I1151</td>
<td>History reset</td>
</tr>
<tr>
<td>I1154</td>
<td>Reset terminal voltage min/max</td>
</tr>
<tr>
<td>I1155</td>
<td>Reset electronics temperature</td>
</tr>
<tr>
<td>I1157</td>
<td>Memory error event list</td>
</tr>
<tr>
<td>I1264</td>
<td>Safety sequence aborted</td>
</tr>
<tr>
<td>I1335</td>
<td>Firmware changed</td>
</tr>
<tr>
<td>I1397</td>
<td>Fieldbus: access status changed</td>
</tr>
<tr>
<td>I1398</td>
<td>CDI: access status changed</td>
</tr>
<tr>
<td>I1440</td>
<td>Main electronic module changed</td>
</tr>
<tr>
<td>I1444</td>
<td>Device verification passed</td>
</tr>
<tr>
<td>I1445</td>
<td>Device verification failed</td>
</tr>
<tr>
<td>I1461</td>
<td>Sensor verification failed</td>
</tr>
<tr>
<td>I1512</td>
<td>Download started</td>
</tr>
</tbody>
</table>
11.8 Resetting the device

11.8.1 Resetting the device via the operating software or display

Navigation: System → Device management → **Device reset** parameter

For details see the "Description of device parameters" documentation.

11.8.2 Resetting the device via operating keys on the electronic insert

![Diagram of the electronic insert with keys labeled 1 and 2.](image)

26. Operating keys on the FEL60H electronic insert

1+2 Press simultaneously: operating keys for resetting the device (as-delivered state)

Resetting the device (order configuration)

- Press both operating keys simultaneously for at least 12 s.
 - The device has been reset (as-delivered state).

11.9 Device information

All the device information is contained in the **Information** submenu.

Navigation: System → Information

For details see the "Description of device parameters" documentation.
11.10 Firmware history

The firmware version can explicitly be ordered via the product structure. This makes it possible to ensure the compatibility of the firmware version with an existing or planned system integration.

11.10.1 Version 01.00.zz

Original software

12 Maintenance

No special maintenance work is required.

12.1 Maintenance tasks

12.1.1 Cleaning

It is not permitted to use the device with abrasive media. Material abrasion on the tuning fork can result in the device malfunctioning.

- Clean the tuning fork as necessary
- Cleaning is also possible in the installed state, e.g. CIP Cleaning in Place and SIP Sterilization in Place

13 Repair

13.1 General notes

13.1.1 Repair concept

Endress+Hauser repair concept

- The devices have a modular design
- Customers can carry out repairs

For more information on service and spare parts, please contact your Endress+Hauser sales representative.

13.1.2 Repairs to Ex-approved devices

WARNING

Incorrect repair can compromise electrical safety!

Explosion hazard!

- Only specialist personnel or the manufacturer's service team may carry out repairs on Ex-certified devices in accordance with national regulations.
- Relevant standards and national regulations on hazardous areas, safety instructions and certificates must be observed.
- Only use original spare parts from the manufacturer.
- Please note the device designation on the nameplate. Only identical parts may be used as replacements.
- Carry out repairs according to the instructions.
- Only the manufacturer's service team is permitted to modify a certified device and convert it to another certified version.
13.2 Spare parts

- Some replaceable device components are identified by a spare part nameplate. This contains information about the spare part.
- All the spare parts for the measuring device, along with the order code, are listed in the W@M Device Viewer (www.endress.com/deviceviewer) and can be ordered. If available, users can also download the associated Installation Instructions.

Device serial number or QR code:
Located on the device and spare part nameplate.

13.3 Replacement

⚠️ CAUTION
Data upload/download is not permitted if the device is used for safety-related applications.

- After an entire device or an electronics module has been replaced, the parameters can be downloaded to the device again via the communication interface. For this, the data must have been uploaded to the PC beforehand using the "FieldCare/DeviceCare" software.

13.3.1 HistoROM

It is not necessary to perform a new device calibration after replacing the display or transmitter electronics.

The spare part is supplied without HistoROM.

After removing the transmitter electronics, remove HistoRom and insert it into the new spare part.

13.4 Return

The requirements for safe device return can vary depending on the device type and national legislation.

1. Refer to the web page for information:
 http://www.endress.com/support/return-material
 ➔ Select the region.

2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

13.5 Disposal

If required by the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), the product is marked with the depicted symbol in order to minimize the disposal of WEEE as unsorted municipal waste. Do not dispose of products bearing this marking as unsorted municipal waste. Instead, return them to the manufacturer for disposal under the applicable conditions.
14 Accessories

14.1 Device Viewer

All the spare parts for the device, along with the order code, are listed in the Device Viewer (www.endress.com/deviceviewer).

14.2 Protective cover for aluminum dual compartment housing

- Material: stainless steel 316L
- Order number: 71438303

![Diagram of protective cover for aluminum dual compartment housing]

14.3 Protective cover for single compartment housing, aluminum or 316L

- Material: plastic
- Order number: 71438291

![Diagram of protective cover for single compartment housing]

14.4 M12 socket

The M12 sockets listed are suitable for use in the temperature range –25 to +70 °C (–13 to +158 °F).
M12 socket IP69
- Terminated at one end
- Angled
- 5 m (16 ft) PVC cable (orange)
- Slotted nut 316L (1.4435)
- Body: PVC
- Order number: 52024216

M12 socket IP67
- Angled
- 5 m (16 ft) PVC cable (gray)
- Slotted nut Cu Sn/Ni
- Body: PUR
- Order number: 52010285

14.5 Sliding sleeves for unpressurized operation

- Not suitable for devices with PFA (conductive) coating.
- Not suitable for use in explosive atmospheres.

Switch point, infinitely adjustable.

G 1, DIN ISO 228/I
- Material: 1.4435 (AISI 316L)
- Weight: 0.21 kg (0.46 lb)
- Order number: 52003978
- Order number: 52011888, approval: with inspection certificate EN 10204 - 3.1 material

NPT 1, ASME B 1.20.1
- Material: 1.4435 (AISI 316L)
- Weight: 0.21 kg (0.46 lb)
- Order number: 52003979
- Order number: 52011889, approval: with inspection certificate EN 10204 - 3.1 material

G 1½, DIN ISO 228/I
- Material: 1.4435 (AISI 316L)
- Weight: 0.54 kg (1.19 lb)
- Order number: 52003980
- Order number: 52011890, approval: with inspection certificate EN 10204 - 3.1 material
NPT 1½, ASME B 1.20.1
- Material: 1.4435 (AISI 316L)
- Weight: 0.54 kg (1.19 lb)
- Order number: 52003981
- Order number: 52011891, approval: with inspection certificate EN 10204 - 3.1 material

More detailed information and documentation are available:
- Product Configurator on the Endress+Hauser website www.endress.com
- Endress+Hauser Sales Organization www.addresses.endress.com

14.6 High pressure sliding sleeves

Suitable for use in explosive atmospheres.

Not suitable for devices with PFA (conductive) coating.

- Switch point, infinitely adjustable
- Seal package made of graphite
- Graphite seal available as spare part 71078875
- For G 1, G 1½: seal is included in the delivery

G 1, DIN ISO 228/I
- Material: 1.4435 (AISI 316L)
- Weight: 1.13 kg (2.49 lb)
- Order number: 52003663
- Order number: 52011880, approval: with inspection certificate EN 10204 - 3.1 material

G 1, DIN ISO 228/I
- Material: AlloyC22
- Weight: 1.13 kg (2.49 lb)
- Approval: with inspection certificate EN 10204 - 3.1 material
- Order number: 71118691

NPT 1, ASME B 1.20.1
- Material: 1.4435 (AISI 316L)
- Weight: 1.13 kg (2.49 lb)
- Order number: 52003667
- Order number: 52011881, approval: with inspection certificate EN 10204 - 3.1 material
15 Technical data

15.1 Input

15.1.1 Measured variable
Level (point level), MAX or MIN safety

15.1.2 Measuring range
Depends on the installation location and the pipe extension ordered
Standard pipe extension up to 3 m (9.8 ft) and up to 6 m (20 ft) on request.

15.2 Output

15.2.1 Output signal
SIO (FEL60H electronic insert)
8/16 mA (SIO) with superimposed digital communication protocol HART, 2-wire
Continuous operation (FEL60H electronic insert)
4 to 20 mA proportional to the oscillation frequency with superimposed digital communication protocol HART, 2-wire
For continuous current output, one of the following modes of operation can be selected:
- 4.0 to 20.5 mA
- NAMUR NE 43: 3.8 to 20.5 mA (factory setting)
- US mode: 3.9 to 20.8 mA

15.2.2 Signal on alarm
Signal on alarm in accordance with NAMUR recommendation NE 43.
4 to 20 mA HART:
- Max. alarm: can be set from 21.5 to 23 mA
- Min. alarm: < 3.6 mA (factory setting)

15.2.3 Load

![Diagram showing load calculation](DiagA0039232.png)

3.1 Load 4 to 20 mA HART
1 Power supply 10.5 to 30 VDC Ex i
2 Power supply 10.5 to 35 VDC, for other types of protection and for non-certified device versions
3 $R_{L_{\text{max}}}$ maximum load resistance
U Supply voltage

Operation via handheld terminal or PC with operating program: take minimum communication resistance of 250 Ω into consideration.

15.2.4 Damping
Damping affects all the outputs (output signal, display) and is only available in the continuous 4 to 20 mA mode.

Damping has no effect on the SIO.

Activating damping:
Via local display, Bluetooth, handheld terminal or PC with operating program, continuous from 0 to 999 s
Factory setting: 1 s
15.2.5 Switch output

Preset switching delay times can be ordered:
- 0.5 s when the tuning fork is covered and 1.0 s when the tuning fork is uncovered (factory setting)
- 0.25 s when the tuning fork is covered and 0.25 s when the tuning fork is uncovered
- 1.5 s when the tuning fork is covered and 1.5 s when the tuning fork is uncovered
- 5.0 s when the tuning fork is covered and 5.0 s when the tuning fork is uncovered

The user can also set the switching delays for when the fork is covered and uncovered in the range from 1 to 60 seconds independently of one another.

(Operation via display, Bluetooth or FieldCare, DeviceCare, AMS, PDM)

15.2.6 Ex connection data

See safety instructions (XA): All data relating to explosion protection are provided in separate Ex documentation and are available from the Downloads area of the Endress+Hauser website. The Ex documentation is supplied as standard with all devices approved for use in explosion hazardous areas.

15.2.7 Protocol-specific data

HART
- Manufacturer ID: 17 (0x11)
- Device type code: 0x11C4
- Device revision: 1
- HART specification: 7
- DD revision: 1
- Device description files (DTM, DD) information and files at:
 - www.endress.com
 - www.fieldcommgroup.org
- HART load: min. 250 Ω

HART device variables (preset at the factory)

The following measured values are assigned to the device variables at the factory:

<table>
<thead>
<tr>
<th>Device variable</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary variable (PV) parameter (Primary variable)</td>
<td>Point level detection 2)</td>
</tr>
<tr>
<td>Secondary variable (SV) parameter (Secondary variable)</td>
<td>Sensor frequency 3)</td>
</tr>
<tr>
<td>Tertiary variable (TV) parameter (Third variable)</td>
<td>Fork state 4)</td>
</tr>
<tr>
<td>Quaternary variable (QV) parameter (Quaternary variable)</td>
<td>Sensor temperature</td>
</tr>
</tbody>
</table>

1) The PV is always applied to the current output.
2) Point level detection is the initial state depending on the fork state (uncovered/covered) and the safety function (MIN/MAX)
3) Sensor frequency is the oscillation frequency of the fork
4) Fork state is the fork state (Fork covered option/Fork uncovered option)

Choice of HART device variables
- Level limit detection
- Sensor frequency
- Fork state
• Sensor temperature
• Terminal current
 The terminal current is the read-back current on terminal block. Visibility depends on order options or device settings
• Terminal voltage
 Visibility depends on order options or device settings

Supported functions
• Burst mode
• Additional transmitter status
• Device locking

15.2.8 Wireless HART data
• Minimum start-up voltage: 10.5 V
• Start-up current: > 3.6 mA
• Start-up time: < 8 s
• Minimum operating voltage: 10.5 V
• Multidrop current: 4 mA

15.2.9 Heartbeat Technology

Heartbeat Technology module
The software package consists of 3 modules. These three modules combined check, evaluate and monitor device functionality and process conditions.

• Heartbeat Diagnostics
• Heartbeat Verification
• Heartbeat Monitoring

15.3 Environment

15.3.1 Ambient temperature range
The following values apply up to a process temperature of +90 °C (+194). At higher process temperatures, the permitted ambient temperature is reduced (see diagram).
• Without LCD display: –40 to +70 °C (~–40 to +158)
• With LCD display: –40 to +70 °C (~–40 to +158) with limitations in optical properties, such as display speed and contrast
 Can be used without limitations: −20 to +60 °C (~–4 to +140 °F)

Optionally available:
• −50 °C (~−58 °F) with restricted operating life and performance
• −60 °C (~−76 °F) with restricted operating life and performance,
 Below −50 °C (~−58 °F): measuring devices can be permanently damaged
Permitted ambient temperature T_a at the housing as a function of the process temperature T_p in the vessel:

- **A**: 230 °C (446 °F) sensor
- **B**: 280 °C (536 °F) sensor
- 1. Max. 50 h on cumulative basis
- 2. Only for ATEX and CSA certificates

Outdoor operation in strong sunlight:
- Mount the device in a shaded location
- Avoid direct sunlight, particularly in warmer climatic regions
- Use a weather protection cover, can be ordered as an accessory

Hazardous area

In the hazardous area, the permitted ambient temperature can be limited depending on the zones and gas groups. Pay attention to the information in the Ex documentation (XA).

15.3.2 Storage temperature

-40 to +80 °C (–40 to +176 °F)
Optional -50 °C (–58 °F) or -60 °C (–76 °F)

15.3.3 Humidity

Operation up to 100 %. Do not open in a condensing atmosphere.

15.3.4 Operating height

Up to 5 000 m (16 404 ft) above sea level.

15.3.5 Climate class

As per IEC 60068-2-38 test Z/AD

15.3.6 Degree of protection

Test as per IEC 60529 and NEMA 250
Technical data

Liquiphant FTL64 HART

IP68 test condition: 1.83 m H₂O for 24 h

Housing
See cable entries

Cable entries
- M20 threaded joint, plastic, IP66/68 NEMA Type 4X/6P
- M20 threaded joint, nickel-plated brass, IP66/68 NEMA Type 4X/6P
- M20 threaded joint, 316L, IP66/68 NEMA Type 4X/6P
- M20 thread, IP66/68 NEMA Type 4X/6P
- Thread G ½, NPT ½, IP66/68 NEMA Type 4XXX

Degree of protection for M12 plug
- When housing is closed and connecting cable is plugged in: IP66/67 NEMA Type 4X
- When housing is open or connecting cable is not plugged in: IP20, NEMA Type 1

NOTICE

M12 plug: Loss of IP protection class due to incorrect installation!
- The degree of protection only applies if the connecting cable used is plugged in and screwed tight.
- The degree of protection only applies if the connecting cable used is specified according to IP67 NEMA Type 4X.

If the 'M12 plug' option is selected as the electrical connection, IP66/67 NEMA Type 4X applies for all housing types.

15.3.7 Vibration resistance
As per IEC60068-2-64-2008
a(RMS) = 50 m/s², f = 5 to 2000 Hz, t = 3 axes x 2 h

15.3.8 Shock resistance
In accordance with IEC60068-2-27-2008: 300 m/s² | = 30 gₙ | + 18 ms

15.3.9 Mechanical load
Support the device in the event of severe dynamic load. Maximum lateral loading capacity of the pipe extensions and sensors: 75 Nm (55 lbf ft).
- For more details, see the 'Supporting the device' section.

15.3.10 Pollution degree
Pollution level 2

15.3.11 Electromagnetic compatibility (EMC)
- Electromagnetic compatibility as per EN 61326 series and NAMUR recommendation EMC (NE21)
- With regard to the safety function (SIL), the requirements of EN 61326-3-x are satisfied
- Maximum deviation under disturbance: < 0.5% of span
- For more details, refer to the EU Declaration of Conformity.
15.4 Process

15.4.1 Process temperature range

-60 to +230 °C (–76 to +446 °F)
-60 to +280 °C (–76 to +536 °F)/to 300 °C (572 °F) for max. 50 h on cumulative basis
-50 to +230 °C (–58 to +446 °F) with PFA coating (conductive)

The device can be ordered for use in very aggressive media with a highly corrosion-resistant PFA coating. At medium temperatures up to ≥ 150 °C (302 °F), pay attention to the chemical durability and the increasing risk of damage to the coating from diffusion.

Observe pressure and temperature dependency, see the “Process pressure range of the sensors” section.

15.4.2 Medium conditions

The service life of the device can be impacted in applications where increased hydrogen diffusion through the metallic membrane can be expected.

Typical conditions from which hydrogen diffusion is relevant:
- Temperature: > 180 °C (356 °F)
- Increasing process pressures accelerate hydrogen diffusion

15.4.3 Thermal shock

Without restrictions within the process temperature range.

With PFA coating (conductive): ≤ 120 K/s

15.4.4 Process pressure range

⚠️ WARNING

The maximum pressure for the device depends on the lowest-rated element, with regard to pressure, of the selected component. This means that it is necessary to pay attention to the process connection as well as the sensor.

- Pressure specifications, Technical Information, ‘Mechanical construction’ section.
- Only operate the device within the specified limits!
- The Pressure Equipment Directive (2014/68/EU) uses the abbreviation ‘PS’. The abbreviation ‘PS’ corresponds to the MWP (maximum working pressure) of the device.

Refer to the following standards for the permitted pressure values of the flanges at higher temperatures:
- pR EN 1092-1: With regard to its stability-temperature property, the material 1.4435 is identical to 1.4404, which is classed as 13E0 in EN 1092-1 Tab. 18. The chemical composition of the two materials can be identical.
- ASME B 16.5
- JIS B 2220

In each case, the lowest value from the derating curves of the device and the selected flange applies.

Technical data

Liquiphant FTL64 HART

Process pressure range of the sensors

![Graph showing process pressure range](image)

Ordering information: Product Configurator, feature "Application":
- PN: max. 100 bar (1450 psi) max. 230 °C (446 °F)
- PN: max. 100 bar (1450 psi) max. 280 °C (536 °F)
- With PFA coating (conductive): max. 40 bar (580 psi) max. 230 °C (446 °F)

15.4.5 Overpressure limit

- Overpressure limit = 1.5 · PN
 - Maximum 100 bar (1450 psi) at 230 °C (446 °F) and 280 °C (536 °F)
 - Membrane burst pressure at 200 bar (2900 psi)

The device function is limited during the pressure test.

Mechanical integrity is guaranteed up to 1.5 times the process nominal pressure PN.

15.4.6 Medium density

- **Liquids with density > 0.7 g/cm³ (43.7 lb/ft³)**
 - Setting > 0.7 g/cm³ (43.7 lb/ft³), as supplied to the customer

- **Liquids with density 0.5 g/cm³ (31.2 lb/ft³)**
 - Setting > 0.5 g/cm³ (31.2 lb/ft³), can be ordered as preset value or configurable

- **Liquids with density > 0.4 g/cm³ (25.0 lb/ft³)**
 - Setting > 0.4 g/cm³ (25.0 lb/ft³), can be ordered as preset value or configurable
 - SIL for defined media and process parameters on request

For information on medium differentiation/density detection: Documentation Liquiphant density (FEL60D) with density computer FML621 (Endress+Hauser website [www.endress.com → Downloads](https://www.endress.com))

15.4.7 Viscosity

≤ 10,000 mPa·s

15.4.8 Pressure tightness

Up to vacuum

- In vacuum evaporation plants, select the 0.4 g/cm³ (25.0 lb/ft³) / density setting.

15.4.9 Solids contents

Ø ≤ 5 mm (0.2 in)
15.5 Additional technical data
