Technical Information

Micropilot FMR63B
HART

Free space radar

Level measurement in hygienic applications

Application
- Continuous, non-contact level measurement of liquids in hygienic applications
- Process connections: For hygiene applications (e.g.: Tri-Clamp or M24 adapter concept)
- Maximum measuring range: 80 m (262 ft)
- Temperature: –40 to +200 °C (–40 to +392 °F)
- Pressure: –1 to +25 bar (–14.5 to +363 psi)
- Accuracy: ±1 mm (±0.04 in)

Your benefits
- PTFE or PEEK antenna for hygienic requirements
- Reliable measurement thanks to strong signal focusing, even with multiple internal fixtures
- Easy, guided commissioning with intuitive user interface
- Bluetooth® wireless technology for commissioning, operation and maintenance
- SIL2 as per IEC 61508, SIL3 for homogeneous redundancy
- Longer calibration cycles with Radar Accuracy Index
Table of contents

Important document information 4
Symbols .. 4
Graphic conventions ... 5

Function and system design ... 5
Measuring principle .. 5

Input .. 6
Measured variable ... 6
Measuring range ... 6
Operating frequency .. 13
Transmission power ... 13

Output ... 13
Output signal .. 13
Signal on alarm .. 14
Linearization .. 14
Load .. 14
Protocol-specific data .. 15
Wireless data ... 15

Power supply ... 16
Terminal assignment ... 16
Terminals ... 17
Available device plugs ... 17
Supply voltage .. 18
Potential equalization .. 18
Cable entries ... 19
Cable specification .. 19
Cable specification .. 19
Overvoltage protection .. 20

Performance characteristics .. 20
Reference operating conditions 20
Maximum measured error .. 20
Measured value resolution .. 21
Response time .. 21
Influence of ambient temperature 21
Influence of gas phase .. 21

Mounting ... 22
Mounting location ... 22
Orientation ... 23
Installation instructions .. 24
Beam angle ... 25
Special mounting instructions 26

Environment .. 28
Ambient temperature range 28
Ambient temperature limits 28
Storage temperature .. 38
Climate class ... 38
Installation height as per IEC61010-1 Ed.3 38
Degree of protection .. 38
Vibration resistance .. 39
Electromagnetic compatibility (EMC) 39

Process .. 39
Process pressure range .. 39
Dielectric constant ... 41

Mechanical construction ... 41
Dimensions ... 41
Weight ... 51
Materials .. 52

Operability ... 55
Operating concept .. 55
Languages .. 55
Local operation .. 56
Local display ... 56
Remote operation .. 57
System integration ... 57
Supported operating tools .. 57

Certificates and approvals .. 57
CE mark ... 57
RoHS .. 57
RCM marking ... 57
Ex approvals .. 57
Functional safety .. 58
Pressure equipment with permitted pressure ≤ 200 bar (2 900 psi) ... 58
Radio approval ... 58
EN 302372 radio standard .. 58
FCC ... 58
Industry Canada .. 58
Other standards and guidelines 59

Ordering information .. 59
Calibration ... 59
Service ... 60
Test, certificate, declaration 60
Identification .. 60

Application packages .. 61
Heartbeat Technology .. 61

Accessories ... 62
Weather protection cover 316L 62
Plastic weather protection cover 62
M12 socket ... 63
Remote display FHX50B ... 64
Gas-tight feedthrough .. 65
Process adapter M24 ... 65
Commumbox FXA195 HART 65
HART Loop Converter HMX50 65
FieldPort SWA50 ... 65
Wireless HART adapter SWA70 65
Fieldgate FXA42 .. 65
Field Xpert SMT70 ... 66
DeviceCare SFE100 ... 66
FieldCare SFE500 ... 66
Memograph M ... 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN42</td>
<td>66</td>
</tr>
<tr>
<td>Documentation</td>
<td>66</td>
</tr>
<tr>
<td>Document function</td>
<td>66</td>
</tr>
<tr>
<td>Registered trademarks</td>
<td>67</td>
</tr>
</tbody>
</table>
Important document information

Symbols

Safety symbols

- **DANGER**
 This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

- **WARNING**
 This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

- **CAUTION**
 This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

- **NOTICE**
 This symbol contains information on procedures and other facts which do not result in personal injury.

Electrical symbols

- Direct current
- Alternating current
- Direct current and alternating current

- **Ground connection**
 A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

- **Protective earth (PE)**
 Ground terminals that must be connected to ground prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.
 - Inner ground terminal; protective earth is connected to the mains supply.
 - Outer ground terminal; device is connected to the plant grounding system.

Symbols for certain types of information and graphics

- **Permitted**
 Procedures, processes or actions that are permitted

- **Preferred**
 Procedures, processes or actions that are preferred

- **Forbidden**
 Procedures, processes or actions that are forbidden

- **Tip**
 Indicates additional information

- **Reference to documentation**

- **Reference to graphic**

- **Item numbers**

- **Views**

- **Hazardous area**
 Indicates the hazardous area

- **Safe area (non-hazardous area)**
 Indicates the non-hazardous area
Function and system design

Measuring principle

The Micropilot is a "downward-looking" measuring system, operating based on the frequency modulated continuous wave method (FMCW). The antenna emits an electromagnetic wave at a continuously varying frequency. This wave is reflected by the product and received again by the antenna.

![Diagram of measuring principle](image)

1. **FMCW principle: transmission and reflection of the continuous wave**
 - R: Reference point of measurement
 - D: Distance between reference point and product surface

The frequency of this wave is modulated in the form of a sawtooth signal between two limit frequencies \(f_1 \) and \(f_2 \):

![Diagram of frequency modulation](image)

2. **FMCW principle: result of frequency modulation**
 - 1: Transmitted signal
 - 2: Received signal

This results in the following difference frequency at any time between the transmitted signal and the received signal:

\[
\Delta f = k \Delta t
\]

where \(\Delta t \) is the run time and \(k \) is the specified increase in frequency modulation. \(\Delta t \) is given by the distance \(D \) between the reference point \(R \) and the product surface:
\[D = \left(\frac{c \Delta t}{2} \right) \]

where \(c \) is the speed of propagation of the wave.

In summary, \(D \) can be calculated from the measured difference frequency \(\Delta f \). \(D \) is then used to determine the content of the tank or silo.

Input

Measured variable
The measured variable is the distance between the reference point and the product surface. The level is calculated based on \(E \), the empty distance entered.

Measuring range
The measuring range starts at the point where the beam hits the tank floor. Levels below this point cannot be measured, particularly in the case of spherical bases or conical outlets.

Maximum measuring range
The maximum measuring range depends on the antenna size and design.

<table>
<thead>
<tr>
<th>Antenna</th>
<th>Maximum measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated, PEEK, 20 mm (0.75 in)</td>
<td>10 m (32.8 ft)</td>
</tr>
<tr>
<td>Cladded flush mount, PTFE, 50 mm (2 in)</td>
<td>50 m (164 ft)</td>
</tr>
<tr>
<td>Cladded flush mount, PTFE, 80 mm (3 in)</td>
<td>80 m (262 ft)</td>
</tr>
</tbody>
</table>

Usable measuring range
The usable measuring range depends on the antenna size, the medium’s reflective properties, the installation position and any possible interference reflections.

In principle, measurement is possible up to the tip of the antenna.

To avoid any material damage from corrosive or aggressive media or deposit buildup on the antenna, the end of the measuring range should be selected 10 mm (0.4 in) before the tip of the antenna.
3 Usable measuring range

A Length of antenna + 10 mm (0.4 in)
B Usable measuring range
C 50 to 80 mm (1.97 to 3.15 in); medium $\varepsilon_r < 2$
H Vessel height
R Reference point of measurement, varies depending on the antenna system

For further information on the reference point, see Mechanical construction.

In the case of media with a low dielectric constant, $\varepsilon_r < 2$, the tank floor may be visible through the medium at very low levels (lower than level C). Reduced accuracy must be expected in this range. If this is not acceptable, the zero point should be positioned at a distance C above the tank floor in these applications.

The media groups and the possible measuring range are described as a function of the application and media group in the following section. If the dielectric constant of the medium is not known, to ensure a reliable measurement assume the medium belongs to group B.
Media groups

- **A0** (ε_r 1.2 to 1.4)
 e.g. n-butane, liquid nitrogen, liquid hydrogen
- **A** (ε_r 1.4 to 1.9)
 Non-conductive liquids, e.g. liquefied gas
- **B** (ε_r 1.9 to 4)
 Non-conductive liquids, e.g. gasoline, oil, toluene, etc.
- **C** (ε_r 4 to 10)
 e.g. concentrated acid, organic solvents, ester, aniline, etc.
- **D** (ε_r >10)
 Conductive liquids, aqueous solutions, diluted acids, bases and alcohol

Measurement of the following media with absorbing gas phase

For example:
- Ammonia
- Acetone
- Methylene chloride
- Methyl ethyl ketone
- Propylene oxide
- VCM (vinyl chloride monomer)

To measure absorbing gases, either use a guided radar, measuring devices with another measuring frequency or another measuring principle.

If measurements must be performed in one of these media, please contact Endress+Hauser.

For the dielectric constants (DC values) of many media commonly used in industry, please refer to:
- Dielectric constant (DC value) Compendium CP01076F
- The Endress+Hauser "DC Values app" (available for Android and iOS)

Measurement in storage vessel

Storage vessel - measuring conditions
Calm medium surface (e.g. bottom filling, filling via immersion tube or rare filling from above)

Integrated antenna, PEEK, 20 mm (0.75 in) in storage vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>2.5 m (8 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4</td>
<td>5 m (16 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>8 m (26 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>10 m (33 ft)</td>
</tr>
</tbody>
</table>
Antenna, PTFE cladded flush mount, 50 mm (2 in) in storage vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>7 m (23 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>12 m (39 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>23 m (75 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>40 m (131 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>50 m (164 ft)</td>
</tr>
</tbody>
</table>

![Antenna Diagram](image1.png)

Antenna, PTFE cladded flush mount, 80 mm (3 in) in storage vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>22 m (72 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>40 m (131 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>50 m (164 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>65 m (231 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>80 m (262 ft)</td>
</tr>
</tbody>
</table>

![Antenna Diagram](image2.png)

Cladded antenna, PEEK, 20 mm (0.75 in) in storage vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>2.5 m (8 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>5 m (16 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>8 m (26 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>10 m (33 ft)</td>
</tr>
</tbody>
</table>

![Antenna Diagram](image3.png)
Cladded antenna, PEEK, 40 mm (1.5 in) in storage vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>6 m (20 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>11 m (36 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>15 m (49 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>22 m (72 ft)</td>
</tr>
</tbody>
</table>

Measurement in buffer vessel

Buffer vessel - measuring conditions
Moving medium surface (e.g. permanent free filling from above, mixing jets)

Integrated antenna, PEEK, 20 mm (0.75 in) in buffer vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>6 m (20 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>8 m (26 ft)</td>
</tr>
</tbody>
</table>

Antenna, PTFE cladded flush mount, 50 mm (2 in) in buffer vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>4 m (13 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>7 m (23 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>13 m (43 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>28 m (92 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>44 m (144 ft)</td>
</tr>
</tbody>
</table>
Antenna, PTFE cladded flush mount, 80 mm (3 in) in buffer vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>12 m (39 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>23 m (75 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>45 m (148 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>60 m (197 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>70 m (230 ft)</td>
</tr>
</tbody>
</table>

Cladded antenna, PEEK, 20 mm (0.75 in) in buffer vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>6 m (20 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>8 m (26 ft)</td>
</tr>
</tbody>
</table>

Cladded antenna, PEEK, 40 mm (1.5 in) in buffer vessel

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε<sub>r</sub> 1.2 to 1.4)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>A (ε<sub>r</sub> 1.4 to 1.9)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>B (ε<sub>r</sub> 1.9 to 4)</td>
<td>6 m (20 ft)</td>
</tr>
<tr>
<td>C (ε<sub>r</sub> 4 to 10)</td>
<td>13 m (43 ft)</td>
</tr>
<tr>
<td>D (ε<sub>r</sub> >10)</td>
<td>20 m (66 ft)</td>
</tr>
</tbody>
</table>

Measurement in vessel with agitator

Vessel with agitator - measuring conditions

Turbulent medium surface (e.g. from filling from above, stirrers and baffles)
Integrated antenna, PEEK, 20 mm (0.75 in) in vessel with agitator

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>5 m (16 ft)</td>
</tr>
</tbody>
</table>

Antenna, PTFE cladded flush mount, 50 mm (2 in) in vessel with agitator

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>2 m (7 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>4 m (13 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>7 m (23 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>15 m (49 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>25 m (82 ft)</td>
</tr>
</tbody>
</table>

Antenna, PTFE cladded flush mount, 80 mm (3 in) in vessel with agitator

<table>
<thead>
<tr>
<th>Media group</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (ε_r 1.2 to 1.4)</td>
<td>7 m (23 ft)</td>
</tr>
<tr>
<td>A (ε_r 1.4 to 1.9)</td>
<td>13 m (43 ft)</td>
</tr>
<tr>
<td>B (ε_r 1.9 to 4)</td>
<td>25 m (82 ft)</td>
</tr>
<tr>
<td>C (ε_r 4 to 10)</td>
<td>50 m (164 ft)</td>
</tr>
<tr>
<td>D (ε_r >10)</td>
<td>60 m (197 ft)</td>
</tr>
</tbody>
</table>
Cladded antenna, PEEK, 20 mm (0.75 in) in vessel with agitator

<table>
<thead>
<tr>
<th>Media group (ε_r)</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1.4 to 1.9)</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>B (1.9 to 4)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>C (4 to 10)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>D (>10)</td>
<td>5 m (16 ft)</td>
</tr>
</tbody>
</table>

Cladded antenna, PEEK, 40 mm (1.5 in) in vessel with agitator

<table>
<thead>
<tr>
<th>Media group (ε_r)</th>
<th>Measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 (1.2 to 1.4)</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>A (1.4 to 1.9)</td>
<td>1.5 m (5 ft)</td>
</tr>
<tr>
<td>B (1.9 to 4)</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>C (4 to 10)</td>
<td>7 m (23 ft)</td>
</tr>
<tr>
<td>D (>10)</td>
<td>11 m (36 ft)</td>
</tr>
</tbody>
</table>

Operating frequency

Approx. 80 GHz
Up to 8 devices can be installed in a tank without the devices mutually influencing one another.

Transmission power

- Peak power: <1.5 mW
- Average output power: <70 µW

Output

Output signal

HART

Signal coding:
FSK ±0.5 mA over current signal

Data transmission rate:
1 200 Bit/s

Galvanic isolation:
Yes

Current output
4 to 20 mA with superimposed digital communication protocol HART, 2-wire
The current output offers a choice of three different operating modes:
- 4.0 to 20.5 mA
- NAMUR NE 43: 3.8 to 20.5 mA (factory setting)
- US mode: 3.9 to 20.8 mA

Signal on alarm
Current output
Failure mode (according to NAMUR Recommendation NE 43):
- Minimum alarm (= factory setting): 3.6 mA
- Maximum alarm: 22 mA
- Failure mode with user-configurable value: 3.59 to 22.5 mA

Local display
Status signal (according to NAMUR Recommendation NE 107):
Plain text display

Operating tool via service interface (CDI)
Status signal (according to NAMUR Recommendation NE 107):
Plain text display

Operating tool via HART communication
Status signal (according to NAMUR Recommendation NE 107):
Plain text display

Linearization
The linearization function of the device allows the conversion of the measured value into any unit of length, weight, flow or volume.

Pre-programmed linearization curves
Linearization tables for calculating the volume in the following vessels are preprogrammed into the device:
- Pyramid bottom
- Conical bottom
- Angled bottom
- Horizontal cylinder
- Sphere

Other linearization tables of up to 32 value pairs can be entered manually.

Load
4 to 20 mA HART

1. Power supply 10.5 to 30 VDC Ex i
2. Power supply 10.5 to 35 VDC, for other types of protection and non-certified device versions
3. $R_{L\text{ max}}$, maximum load resistance
4. U, Supply voltage

Operation via handheld terminal or PC with operating program: take minimum communication resistor of 250 Ω into consideration.
Protocol-specific data

HART

Manufacturer ID:
17 (0x11{hex})

Device type ID:
0x11C1

Device revision:
1

HART specification:
7

DD version:
1

Device description files (DTM, DD)

Information and files available at:

- www.endress.com
 On the product page for the device: Documents/Software → Device drivers
- www.fieldcommgroup.org

HART load:

Min. 250 Ω

HART device variables

The following measured values are assigned to the device variables at the factory:

<table>
<thead>
<tr>
<th>Device variable</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign PV</td>
<td>Level linearized</td>
</tr>
<tr>
<td>(The PV is always applied to the current output)</td>
<td></td>
</tr>
<tr>
<td>Assign SV</td>
<td>Distance</td>
</tr>
<tr>
<td>Assign TV</td>
<td>Absolute echo amplitude</td>
</tr>
<tr>
<td>Assign QV</td>
<td>Relative echo amplitude</td>
</tr>
</tbody>
</table>

Choice of HART device variables

- Level linearized
- Distance
- Terminal voltage
- Electronics temperature
- Sensor temperature
- Absolute echo amplitude
- Relative echo amplitude
- Area of incoupling
- Percent of range
- Loop current
- Terminal current
- Not used
- Build-up index, optional (Guidance → Heartbeat Technology → Build-up detection → Configuration → Build-up index)
- **Build-up detection** parameter, optional (Guidance → Heartbeat Technology → Build-up detection → Configuration → Build-up detection)
- Foam index parameter, optional (Guidance → Heartbeat Technology → Foam detection → Configuration → Foam index)
- **Foam detection** parameter, optional (Guidance → Heartbeat Technology → Foam detection → Configuration → Foam detection)

Supported functions

- Burst mode
- Additional transmitter status
- Device locking

Wireless HART data

Minimum start-up voltage:
10.5 V
Start-up current:
< 3.6 mA

Starting time:
< 15 s

Minimum operating voltage:
10.5 V

Multidrop current:
4 mA

Time to establish connection:
< 30 s

Power supply

<table>
<thead>
<tr>
<th>Terminal assignment</th>
<th>Single compartment housing</th>
</tr>
</thead>
</table>

1. **Positive terminal**
2. **Negative terminal**
3. **Internal ground terminal**

Connection terminals and ground terminal in the connection compartment
Dual compartment housing

![Dual compartment housing diagram](image)

- **Connection terminals and ground terminal in the connection compartment**
 1. Positive terminal
 2. Negative terminal
 3. Internal ground terminal

Terminals
- Supply voltage and internal ground terminal: 0.5 to 2.5 mm² (20 to 14 AWG)
- External ground terminal: 0.5 to 4 mm² (20 to 12 AWG)

Available device plugs
- In the case of devices with a plug, it is not necessary to open the housing for connection purposes.
 - Use the enclosed seals to prevent the penetration of moisture into the device.
Devices with M12 plug

Various M12 sockets are available as accessories for devices with M12 plugs.

Measuring devices with Harting plug Han7D

Material
CuZn, gold-plated plug-in jack and plug contacts

Supply voltage

<table>
<thead>
<tr>
<th>Type</th>
<th>Supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-hazardous, Ex d, Ex e</td>
<td>10.5 to 35 VDC</td>
</tr>
<tr>
<td>Ex i</td>
<td>10.5 to 30 VDC</td>
</tr>
<tr>
<td>Nominal current</td>
<td>4 to 20 mA</td>
</tr>
</tbody>
</table>

The power unit must be tested to ensure it meets safety requirements (e.g., PELV, SELV, Class 2) and complies with the relevant protocol specifications.

A suitable circuit breaker must be provided for the device in accordance with IEC/EN61010-1

Potential equalization

The protective ground on the device must not be connected. If necessary, the potential matching line can be connected to the outer ground terminal of the transmitter before the device is connected.
A0046583

A Single compartment housing, plastic
B Single compartment housing, aluminum
C Single compartment housing, 316L hygiene (Ex device)
D Dual compartment housing
E Dual compartment housing, L-form

1 Ground terminal for connecting the potential matching line

WARNING

Explosion Hazard!

- Please refer to the separate documentation on applications in hazardous areas for the safety instructions.

For optimum electromagnetic compatibility:
- Keep the potential matching line as short as possible
- Observe a cross-section of at least 2.5 mm² (14 AWG)

Cable entries

A Single compartment housing, plastic
B Single compartment housing, aluminum
C Single compartment housing, 316L hygiene
D Dual compartment housing
E Dual compartment housing, L-form

1 Cable entry
2 Dummy plug

The type of cable entry depends on the device version ordered.

Always route connecting cables downwards so that moisture cannot penetrate the connection compartment.

If necessary, create a drip loop or use a weather protection cover.

Cable specification

Rated cross-section
- Supply voltage
 - 0.5 to 2.5 mm² (20 to 13 AWG)
- Protective earth or grounding of the cable shield
 - > 1 mm² (17 AWG)
- External ground terminal
 - 0.5 to 4 mm² (20 to 12 AWG)
Cable outer diameter
The cable outer diameter depends on the cable gland used
- Coupling, plastic:
 Ø5 to 10 mm (0.2 to 0.38 in)
- Coupling, nickel-plated brass:
 Ø7 to 10.5 mm (0.28 to 0.41 in)
- Coupling, stainless steel:
 Ø7 to 12 mm (0.28 to 0.47 in)

Overvoltage protection
The overvoltage protection can optionally be ordered as a 'Mounted accessory' via the product structure

Devices without optional overvoltage protection
The equipment fulfills the requirements of the product standard IEC / DIN EN 61326-1 (Table 2 Industrial Environment).
Depending on the type of port (DC power supply, input/output port) different testing levels according to IEC / DIN EN 61326-1 against transient overvoltages (Surge) are applied (IEC / DIN EN 61000-4-5 Surge):
Test level on DC power ports and input/output ports is 1000 V line to earth

Devices with optional overvoltage protection
- Spark-over voltage: min. 400 V DC
- Tested according to IEC / DIN EN 60079-14 sub chapter 12.3 (IEC / DIN EN 60060-1 chapter 7)
- Nominal discharge current: 10 kA

NOTICE
Device could be destroyed
- Always ground device with integrated overvoltage protection.

Overvoltage category
Overvoltage category II

Performance characteristics

Reference operating conditions
- Temperature = +24 °C (+75 °F) ±5 °C (±9 °F)
- Pressure = 960 mbar abs. (14 psia) ±100 mbar (±1.45 psi)
- Humidity = 60 % ±15 %
- Reflector: metal plate with diameter ≥ 1 m (40 in)
- No major interference reflections inside the signal beam

Maximum measured error
Reference accuracy

Accuracy
The accuracy is the sum of the non-linearity, non-repeatability and hysteresis.
- Measuring distance up to 0.8 m (2.62 ft): max. ±4 mm (±0.16 in)
- Measuring distance > 0.8 m (2.62 ft): ±1 mm (±0.04 in)

Non-repeatability
Non-repeatability is already included in the accuracy.
≤ 1 mm (0.04 in)

If conditions deviate from the reference operating conditions, the offset/zero point that results from the installation conditions can be up to ±4 mm (±0.16 in). This additional offset/zero point can be eliminated by entering a correction (Level correction parameter) during commissioning.
Differing values in near-range applications

<table>
<thead>
<tr>
<th>D [m (ft)]</th>
<th>Δ [mm (in)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8 (2.62)</td>
<td>4 (0.16)</td>
</tr>
<tr>
<td>1 (0.04)</td>
<td></td>
</tr>
<tr>
<td>-1 (-0.04)</td>
<td></td>
</tr>
<tr>
<td>-4 (-0.16)</td>
<td></td>
</tr>
</tbody>
</table>

Δ Maximum measured error in near-range applications

R Reference point of the distance measurement

D Distance from reference point of antenna

Measured value resolution

- Dead band according to DIN EN IEC 61298-2 / DIN EN IEC 60770-1:
 - Digital: 1 mm
 - Analog: 1 µA

Response time

According to DIN EN IEC 61298-2 / DIN EN IEC 60770-1, the step response time is the time following an abrupt change in the input signal up until the changed output signal has adopted 90% of the steady-state value for the first time.

The response time can be configured.

The following step response times apply (in accordance with DIN EN IEC 61298-2 / DIN EN IEC 60770-1) when damping is switched off:

- Pulse frequency ≥ 5/s (cycle time ≤ 200 ms)
 - at $U=10.5$ to 35 V, $I=4$ to 20 mA and $T_{\text{amb}}=-50$ to +80 °C (−58 to +176 °F)
- Step response time < 1 s

Influence of ambient temperature

The output changes due to the effect of the ambient temperature with respect to the reference temperature.

The measurements are performed according to DIN EN IEC 61298-3 / DIN EN IEC 60770-1

Digital output (HART)

- Average $T_C = 2$ mm/10 K

Analog (current output)

- Zero point (4 mA): average $T_C = 0.02$ %/10 K
- Span (20 mA): average $T_C = 0.05$ %/10 K

Influence of gas phase

High pressure reduces the speed of propagation of the measuring signals in the gas/vapor above the medium. This effect depends on the type of gas phase and its temperature. This results in a systematic measured error that increases with increasing distance between the reference point of the measurement (flange) and the surface of the product. The following table shows this measured error:

- 0.8 (2.62) mm
- 4 (0.16) mm
- 1 (0.04) mm
- -1 (-0.04) mm
- -4 (-0.16) mm

$A0032636$
error for some typical gases/vapors (with regard to the distance, a positive value means that an excessively large distance is measured):

Measured error for some typical gases/vapors

<table>
<thead>
<tr>
<th>Gas phase</th>
<th>Temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 bar (14.5 psi)</td>
</tr>
<tr>
<td>Air/nitrogen</td>
<td>+20 °C (+68 °F)</td>
<td>0.00 %</td>
</tr>
<tr>
<td></td>
<td>+200 °C (+392 °F)</td>
<td>−0.01 %</td>
</tr>
<tr>
<td></td>
<td>+400 °C (+752 °F)</td>
<td>−0.02 %</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>+20 °C (+68 °F)</td>
<td>−0.01 %</td>
</tr>
<tr>
<td></td>
<td>+200 °C (+392 °F)</td>
<td>−0.02 %</td>
</tr>
<tr>
<td></td>
<td>+400 °C (+752 °F)</td>
<td>−0.02 %</td>
</tr>
<tr>
<td>Water (saturated steam)</td>
<td>+100 °C (+212 °F)</td>
<td>+0.02 %</td>
</tr>
<tr>
<td></td>
<td>+180 °C (+356 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+263 °C (+505 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+310 °C (+590 °F)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+364 °C (+687 °F)</td>
<td>-</td>
</tr>
</tbody>
</table>

With a known, constant pressure, it is possible to compensate for this measured error with a linearization, for example.

Mounting

Mounting location

1. Use of a weather protection cover; protection from direct sunlight or rain
2. Installation in the center, interference can cause signal loss
3. Do not install above the filling curtain

A Recommended distance from wall to nozzle outer edge = 1/6 of the vessel diameter. The device should never be mounted closer than 15 cm (5.91 in) to the tank wall.
Avoid internal fittings (point level switches, temperature sensors, struts, vacuum rings, heating coils, baffles etc.) inside the signal beam. Pay attention to the beam angle α.

Avoiding interference echoes

Metal deflector plates, installed at an angle to scatter the radar signals, help prevent interference echoes.

Vertical alignment of antenna axis

Align the antenna so that it is perpendicular to the product surface.

⚠️ The maximum reach of the antenna can be reduced, or additional interference signals can occur, if the antenna is not installed perpendicular to the product.
Radial alignment of the antenna
Based on the directional characteristic, radial alignment of the antenna is not necessary.

Installation instructions

Integrated antenna, PEEK 20 mm (0.75 in)

Information about the mounting nozzle
The maximum nozzle length H_{max} depends on the nozzle diameter D.

Maximum nozzle length H_{max} as a function of the nozzle diameter D

<table>
<thead>
<tr>
<th>ϕD</th>
<th>H_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 to 50 mm (1.6 to 2 in)</td>
<td>200 mm (8 in)</td>
</tr>
<tr>
<td>50 to 80 mm (2 to 3.2 in)</td>
<td>300 mm (12 in)</td>
</tr>
<tr>
<td>80 to 100 mm (3.2 to 4 in)</td>
<td>450 mm (18 in)</td>
</tr>
<tr>
<td>100 to 150 mm (4 to 6 in)</td>
<td>550 mm (22 in)</td>
</tr>
<tr>
<td>\geq 150 mm (6 in)</td>
<td>850 mm (34 in)</td>
</tr>
</tbody>
</table>

In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:
- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

Antenna, PTFE cladded, flush mount 50 mm (2 in)

Information about the mounting nozzle
The maximum nozzle length H_{max} depends on the nozzle diameter D.

The maximum length of the nozzle H_{max} depends on the nozzle diameter D.

<table>
<thead>
<tr>
<th>ϕD</th>
<th>H_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 to 80 mm (2 to 3.2 in)</td>
<td>600 mm (24 in)</td>
</tr>
<tr>
<td>80 to 100 mm (3.2 to 4 in)</td>
<td>1000 mm (40 in)</td>
</tr>
<tr>
<td>100 to 150 mm (4 to 6 in)</td>
<td>1250 mm (50 in)</td>
</tr>
<tr>
<td>\geq 150 mm (6 in)</td>
<td>1850 mm (74 in)</td>
</tr>
</tbody>
</table>

In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:
- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

Antenna, PTFE cladded, flush mount 80 mm (3 in)

Information about the mounting nozzle
The maximum nozzle length H_{max} depends on the nozzle diameter D.
The maximum length of the nozzle H_{max} depends on the nozzle diameter D.

<table>
<thead>
<tr>
<th>ϕD</th>
<th>H_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 to 100 mm (3.2 to 4 in)</td>
<td>1750 mm (70 in)</td>
</tr>
<tr>
<td>100 to 150 mm (4 to 6 in)</td>
<td>2200 mm (88 in)</td>
</tr>
<tr>
<td>\geq 150 mm (6 in)</td>
<td>3300 mm (132 in)</td>
</tr>
</tbody>
</table>

In the case of longer nozzles, reduced measuring performance must be expected.

Please note the following:
- The end of the nozzle must be smooth and free from burrs.
- The edge of the nozzle should be rounded.
- Mapping must be performed.
- Please contact the manufacturer's support department for applications with nozzles that are higher than indicated in the table.

Beam angle

The beam angle is defined as the angle α where the energy density of the radar waves reaches half the value of the maximum energy density (3 dB width). Microwaves are also emitted outside the signal beam and can be reflected off interfering installations.

\[
W = 2 \cdot D \cdot \tan \frac{\alpha}{2}
\]

The beamwidth diameter W depends on the beam angle α and the distance D.

Integrated antenna, PEEK 20 mm / 3/4", α 14 °

<table>
<thead>
<tr>
<th>$W = D \times 0.26$</th>
<th>D</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 m (16 ft)</td>
<td>1.23 m (4.04 ft)</td>
</tr>
<tr>
<td></td>
<td>10 m (33 ft)</td>
<td>2.46 m (8.07 ft)</td>
</tr>
</tbody>
</table>
PTFE cladded, flush mount 50 mm (2 in) antenna, α 7°

<table>
<thead>
<tr>
<th>W = D × 0.12</th>
<th>D</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m (16 ft)</td>
<td>0.61 m (2.00 ft)</td>
<td></td>
</tr>
<tr>
<td>10 m (33 ft)</td>
<td>1.22 m (4.00 ft)</td>
<td></td>
</tr>
<tr>
<td>15 m (49 ft)</td>
<td>1.83 m (6.00 ft)</td>
<td></td>
</tr>
<tr>
<td>20 m (66 ft)</td>
<td>2.44 m (8.01 ft)</td>
<td></td>
</tr>
<tr>
<td>25 m (82 ft)</td>
<td>3.05 m (10.01 ft)</td>
<td></td>
</tr>
<tr>
<td>30 m (98 ft)</td>
<td>3.66 m (12.01 ft)</td>
<td></td>
</tr>
<tr>
<td>35 m (115 ft)</td>
<td>4.27 m (14.01 ft)</td>
<td></td>
</tr>
<tr>
<td>40 m (131 ft)</td>
<td>4.88 m (16.01 ft)</td>
<td></td>
</tr>
<tr>
<td>45 m (148 ft)</td>
<td>5.50 m (18.04 ft)</td>
<td></td>
</tr>
<tr>
<td>50 m (164 ft)</td>
<td>6.11 m (20.05 ft)</td>
<td></td>
</tr>
</tbody>
</table>

PTFE cladded, flush mount 80 mm (3 in) antenna, α 3°

<table>
<thead>
<tr>
<th>W = D × 0.05</th>
<th>D</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m (16 ft)</td>
<td>0.25 m (0.82 ft)</td>
<td></td>
</tr>
<tr>
<td>10 m (33 ft)</td>
<td>0.50 m (1.64 ft)</td>
<td></td>
</tr>
<tr>
<td>15 m (49 ft)</td>
<td>0.75 m (2.46 ft)</td>
<td></td>
</tr>
<tr>
<td>20 m (66 ft)</td>
<td>1.00 m (3.28 ft)</td>
<td></td>
</tr>
<tr>
<td>25 m (82 ft)</td>
<td>1.25 m (4.10 ft)</td>
<td></td>
</tr>
<tr>
<td>30 m (98 ft)</td>
<td>1.50 m (4.92 ft)</td>
<td></td>
</tr>
<tr>
<td>35 m (115 ft)</td>
<td>1.75 m (5.74 ft)</td>
<td></td>
</tr>
<tr>
<td>40 m (131 ft)</td>
<td>2.00 m (6.56 ft)</td>
<td></td>
</tr>
<tr>
<td>45 m (148 ft)</td>
<td>2.25 m (7.38 ft)</td>
<td></td>
</tr>
<tr>
<td>50 m (164 ft)</td>
<td>2.50 m (8.20 ft)</td>
<td></td>
</tr>
<tr>
<td>60 m (197 ft)</td>
<td>3.00 m (9.84 ft)</td>
<td></td>
</tr>
<tr>
<td>70 m (230 ft)</td>
<td>3.50 m (11.48 ft)</td>
<td></td>
</tr>
<tr>
<td>80 m (262 ft)</td>
<td>4.00 m (13.12 ft)</td>
<td></td>
</tr>
</tbody>
</table>

Special mounting instructions

Measurement through a ball valve
• Measurements can be performed through an open full bore ball valve without any problems.
• At the transitions, no gap exceeding 1 mm (0.04 in) may be left.
• Opening diameter of ball valve must always correspond to the pipe diameter; avoid edges and constrictions.

External measurement through plastic cover or dielectric windows

• Dielectric constant of medium: \(\varepsilon_r \geq 10 \)
• The distance from the tip of the antenna to the tank should be approx. 100 mm (4 in).
• Avoid installation positions where condensate or buildup can form between the antenna and the vessel.
• In the case of outdoor installations, ensure that the area between the antenna and the tank is protected from the weather.
• Do not install any fittings or attachments between the antenna and the tank that could reflect the signal.

The thickness of the tank ceiling or the dielectric window depends on the \(\varepsilon_r \) of the material. The material thickness can be a full multiple of the optimum thickness (table); it is important to note, however, that the microwave transparency decreases significantly with increasing material thickness.

Optimum material thickness

<table>
<thead>
<tr>
<th>Material</th>
<th>Optimum material thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE; (\varepsilon_r 2.3)</td>
<td>1.25 mm (0.049 in)</td>
</tr>
<tr>
<td>PTFE; (\varepsilon_r 2.1)</td>
<td>1.30 mm (0.051 in)</td>
</tr>
<tr>
<td>PP; (\varepsilon_r 2.3)</td>
<td>1.25 mm (0.049 in)</td>
</tr>
<tr>
<td>Perspex; (\varepsilon_r 3.1)</td>
<td>1.10 mm (0.043 in)</td>
</tr>
</tbody>
</table>

Container with heat insulation

If process temperatures are high, the device should be included in the usual container insulation system (2) to prevent the electronics from heating as a result of thermal radiation or convection. The rib structure (1) must not be insulated.
Environment

Ambient temperature range

The following values apply up to a process temperature of +85 °C (+185 °F). At higher process temperatures, the permitted ambient temperature is reduced.

- Without LCD display:
 - Standard: –40 to +85 °C (–40 to +185 °F)
 - Optionally available: –50 to +85 °C (–58 to +185 °F) with restricted operating life and performance
 - Optionally available: –60 to +85 °C (–76 to +185 °F) with restricted operating life and performance; below –50 °C (–58 °F): devices can be damaged permanently
- With LCD display: –40 to +85 °C (–40 to +185 °F) with limitations in optical properties such as display speed and contrast. Can be used without limitations up to –20 to +60 °C (–4 to +140 °F)

If operating outdoors in strong sunlight:
- Mount the device in the shade.
- Avoid direct sunlight, particularly in warm climatic regions.
- Use a weather protection cover (see accessories).

Ambient temperature limits

The permitted ambient temperature (T_a) depends on the selected housing material (Product Configurator → Housing; Material →) and the selected process temperature range (Product Configurator → Application →).

In the event of temperature (T_p) at the process connection, the permitted ambient temperature (T_a) is reduced.

The following information only takes functional aspects into consideration. Additional restrictions may apply for certified device versions.

Plastic housing

Plastic housing: process temperature –10 to +150 °C (+14 to +302 °F)

![Diagram of temperature ranges]

10 Plastic housing: process temperature –10 to +150 °C (+14 to +302 °F)

- $P_1 = T_p: -10 °C (+14 °F) | T_a: +76 °C (+169 °F)$
- $P_2 = T_p: +76 °C (+169 °F) | T_a: +76 °C (+169 °F)$
- $P_3 = T_p: +150 °C (+302 °F) | T_a: +25 °C (+77 °F)$
- $P_4 = T_p: +150 °C (+302 °F) | T_a: -10 °C (+14 °F)$
- $P_5 = T_p: -10 °C (+14 °F) | T_a: -10 °C (+14 °F)$

The selected process temperature range is restricted from –10 to +150 °C (+14 to +302 °F) to 0 to +150 °C (+32 to +302 °F) in devices with a plastic housing and CSA C/US approval.
Micropilot FMR63B HART

Process temperature restricted to 0 to +150 °C (+32 to +302 °F) for CSA C/US approval and plastic housing

![Diagram](image1)

11 Plastic housing; process temperature 0 to +150 °C (+32 to +302 °F) for CSA C/US approval

\[
P_1 = T_p: 0 °C (+32 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_2 = T_p: +76 °C (+169 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_3 = T_p: +150 °C (+302 °F) \quad | \quad T_a: +25 °C (+77 °F)
\]

\[
P_4 = T_p: +150 °C (+302 °F) \quad | \quad T_a: 0 °C (+32 °F)
\]

\[
P_5 = T_p: 0 °C (+32 °F) \quad | \quad T_a: 0 °C (+32 °F)
\]

Plastic housing; process temperature –10 to +200 °C (+14 to +392 °F)

![Diagram](image2)

12 Plastic housing; process temperature –10 to +200 °C (+14 to +392 °F)

\[
P_1 = T_p: -10 °C (+14 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_2 = T_p: +76 °C (+169 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_3 = T_p: +200 °C (+392 °F) \quad | \quad T_a: +27 °C (+81 °F)
\]

\[
P_4 = T_p: +200 °C (+392 °F) \quad | \quad T_a: 0 °C (+32 °F)
\]

\[
P_5 = T_p: -10 °C (+14 °F) \quad | \quad T_a: -10 °C (+14 °F)
\]

The selected process temperature range is restricted from –10 to +200 °C (+14 to +392 °F) to 0 to +200 °C (+32 to +392 °F) in devices with a plastic housing and CSA C/US approval.

Process temperature restricted to 0 to +200 °C (+32 to +392 °F) for CSA C/US approval and plastic housing

![Diagram](image3)

13 Plastic housing; process temperature 0 to +200 °C (+32 to +392 °F) for CSA C/US approval

\[
P_1 = T_p: 0 °C (+32 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_2 = T_p: +76 °C (+169 °F) \quad | \quad T_a: +76 °C (+169 °F)
\]

\[
P_3 = T_p: +200 °C (+392 °F) \quad | \quad T_a: +27 °C (+81 °F)
\]

\[
P_4 = T_p: +200 °C (+392 °F) \quad | \quad T_a: 0 °C (+32 °F)
\]

\[
P_5 = T_p: 0 °C (+32 °F) \quad | \quad T_a: 0 °C (+32 °F)
\]
Plastic housing; process temperature \(-20\) to \(+150\) °C (\(-4\) to \(+302\) °F)

\[P_1 = T_p: -20 °C (-4 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_2 = T_p: +76 °C (+169 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_3 = T_p: +150 °C (+302 °F) \mid T_a: +25 °C (+77 °F) \]
\[P_4 = T_p: +150 °C (+302 °F) \mid T_a: -20 °C (-4 °F) \]
\[P_5 = T_p: -20 °C (-4 °F) \mid T_a: -20 °C (-4 °F) \]

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of \(-20\) to \(+150\) °C (\(-4\) to \(+302\) °F) is limited to \(0\) to \(+150\) °C (\(+32\) to \(+302\) °F).

Restriction to a process temperature of \(0\) to \(+150\) °C (\(+32\) to \(+302\) °F) with CSA C/US approval and plastic housing

\[P_1 = T_p: 0 °C (+32 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_2 = T_p: +76 °C (+169 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_3 = T_p: +150 °C (+302 °F) \mid T_a: +25 °C (+77 °F) \]
\[P_4 = T_p: +150 °C (+302 °F) \mid T_a: 0 °C (+32 °F) \]
\[P_5 = T_p: 0 °C (+32 °F) \mid T_a: 0 °C (+32 °F) \]

Plastic housing; process temperature \(-20\) to \(+200\) °C (\(-4\) to \(+392\) °F)

\[P_1 = T_p: -20 °C (-4 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_2 = T_p: +76 °C (+169 °F) \mid T_a: +76 °C (+169 °F) \]
\[P_3 = T_p: +200 °C (+392 °F) \mid T_a: +27 °C (+81 °F) \]
\[P_4 = T_p: +200 °C (+392 °F) \mid T_a: -20 °C (-4 °F) \]
\[P_5 = T_p: -20 °C (-4 °F) \mid T_a: -20 °C (-4 °F) \]

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of \(-20\) to \(+200\) °C (\(-4\) to \(+392\) °F) is limited to \(0\) to \(+200\) °C (\(+32\) to \(+392\) °F).
Restriction to a process temperature of 0 to +200 °C (+32 to +392 °F) with CSA C/US approval and plastic housing

![Diagram of temperature settings](image)

17 Plastic housing; process temperature 0 to +200 °C (+32 to +392 °F) with CSA C/US approval

- \(P_1 = T_p: 0 °C (+32 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_2 = T_p: +76 °C (+169 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_3 = T_p: +200 °C (+392 °F) \) | \(T_a: +27 °C (+81 °F) \)
- \(P_4 = T_p: +200 °C (+392 °F) \) | \(T_a: 0 °C (+32 °F) \)
- \(P_5 = T_p: 0 °C (+32 °F) \) | \(T_a: 0 °C (+32 °F) \)

Plastic housing; process temperature –40 to +150 °C (–40 to +302 °F)

![Diagram of temperature settings](image)

18 Plastic housing; process temperature –40 to +150 °C (–40 to +302 °F)

- \(P_1 = T_p: –40 °C (–40 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_2 = T_p: +76 °C (+169 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_3 = T_p: +150 °C (+302 °F) \) | \(T_a: +25 °C (+77 °F) \)
- \(P_4 = T_p: +150 °C (+302 °F) \) | \(T_a: –40 °C (–40 °F) \)
- \(P_5 = T_p: –40 °C (–40 °F) \) | \(T_a: –40 °C (–40 °F) \)

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of –40 to +150 °C (–40 to +302 °F) is limited to 0 to +150 °C (+32 to +302 °F).

Restriction to a process temperature of 0 to +150 °C (+32 to +302 °F) with CSA C/US approval and plastic housing

![Diagram of temperature settings](image)

19 Plastic housing; process temperature 0 to +150 °C (+32 to +302 °F) with CSA C/US approval

- \(P_1 = T_p: 0 °C (+32 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_2 = T_p: +76 °C (+169 °F) \) | \(T_a: +76 °C (+169 °F) \)
- \(P_3 = T_p: +150 °C (+302 °F) \) | \(T_a: +25 °C (+77 °F) \)
- \(P_4 = T_p: +150 °C (+302 °F) \) | \(T_a: 0 °C (+32 °F) \)
- \(P_5 = T_p: 0 °C (+32 °F) \) | \(T_a: 0 °C (+32 °F) \)
Plastic housing; process temperature –40 to +200 °C (–40 to +392 °F)

\[P_1 = T_p -40 ^\circ C (-40 ^\circ F) \mid T_a +76 ^\circ C (+169 ^\circ F) \]
\[P_2 = T_p +76 ^\circ C (+169 ^\circ F) \mid T_a +76 ^\circ C (+169 ^\circ F) \]
\[P_3 = T_p +200 ^\circ C (+392 ^\circ F) \mid T_a +27 ^\circ C (+81 ^\circ F) \]
\[P_4 = T_p +200 ^\circ C (+392 ^\circ F) \mid T_a -40 ^\circ C (-40 ^\circ F) \]
\[P_5 = T_p -40 ^\circ C (-40 ^\circ F) \mid T_a -40 ^\circ C (-40 ^\circ F) \]

In the case of devices with a plastic housing and CSA C/US approval, the selected process temperature of –40 to +200 °C (–40 to +392 °F) is limited to 0 to +200 °C (+32 to +392 °F).

Restriction to a process temperature of 0 to +200 °C (+32 to +392 °F) with CSA C/US approval and plastic housing

Aluminum housing, coated

Aluminum housing; process temperature –10 to +150 °C (+14 to +302 °F)

\[P_1 = T_p -10 ^\circ C (+14 ^\circ F) \mid T_a +79 ^\circ C (+174 ^\circ F) \]
\[P_2 = T_p +79 ^\circ C (+174 ^\circ F) \mid T_a +79 ^\circ C (+174 ^\circ F) \]
\[P_3 = T_p +150 ^\circ C (+302 ^\circ F) \mid T_a +53 ^\circ C (+127 ^\circ F) \]
\[P_4 = T_p +150 ^\circ C (+302 ^\circ F) \mid T_a -10 ^\circ C (+14 ^\circ F) \]
\[P_5 = T_p -10 ^\circ C (+14 ^\circ F) \mid T_a -10 ^\circ C (+14 ^\circ F) \]
Aluminum housing; process temperature –10 to +200 °C (+14 to +392 °F)

![Diagram](image1)

23. Aluminum housing, coated; process temperature –10 to +200 °C (+14 to +392 °F)

P1 = \(T_p = -10 \, ^\circ C \) (+14 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P2 = \(T_p = 79 \, ^\circ C \) (+174 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P3 = \(T_p = 200 \, ^\circ C \) (+392 °F) | \(T_a = +47 \, ^\circ C \) (+117 °F)

P4 = \(T_p = 200 \, ^\circ C \) (+392 °F) | \(T_a = -10 \, ^\circ C \) (+14 °F)

P5 = \(T_p = -10 \, ^\circ C \) (+14 °F) | \(T_a = -10 \, ^\circ C \) (+14 °F)

Aluminum housing; process temperature –20 to +150 °C (–4 to +302 °F)

![Diagram](image2)

24. Aluminum housing, coated; process temperature –20 to +150 °C (–4 to +302 °F)

P1 = \(T_p = -20 \, ^\circ C \) (–4 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P2 = \(T_p = 79 \, ^\circ C \) (+174 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P3 = \(T_p = 150 \, ^\circ C \) (+302 °F) | \(T_a = +53 \, ^\circ C \) (+127 °F)

P4 = \(T_p = 150 \, ^\circ C \) (+302 °F) | \(T_a = -20 \, ^\circ C \) (–4 °F)

P5 = \(T_p = -20 \, ^\circ C \) (–4 °F) | \(T_a = -20 \, ^\circ C \) (–4 °F)

Aluminum housing; process temperature –20 to +200 °C (–4 to +392 °F)

![Diagram](image3)

25. Aluminum housing, coated; process temperature –20 to +200 °C (–4 to +392 °F)

P1 = \(T_p = -20 \, ^\circ C \) (–4 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P2 = \(T_p = 79 \, ^\circ C \) (+174 °F) | \(T_a = +79 \, ^\circ C \) (+174 °F)

P3 = \(T_p = 200 \, ^\circ C \) (+392 °F) | \(T_a = +47 \, ^\circ C \) (+117 °F)

P4 = \(T_p = 200 \, ^\circ C \) (+392 °F) | \(T_a = -20 \, ^\circ C \) (–4 °F)

P5 = \(T_p = -20 \, ^\circ C \) (–4 °F) | \(T_a = -20 \, ^\circ C \) (–4 °F)
Aluminum housing; process temperature –40 to +150 °C (–40 to +302 °F)

P1 = \(T_p \): –40 °C (–40 °F) | \(T_a \): +79 °C (+174 °F)
P2 = \(T_p \): +79 °C (+174 °F) | \(T_a \): +79 °C (+174 °F)
P3 = \(T_p \): +150 °C (+302 °F) | \(T_a \): +53 °C (+127 °F)
P4 = \(T_p \): +150 °C (+302 °F) | \(T_a \): –40 °C (–40 °F)
P5 = \(T_p \): –40 °C (–40 °F) | \(T_a \): –40 °C (–40 °F)

Aluminum housing; process temperature –40 to +200 °C (–40 to +392 °F)

P1 = \(T_p \): –40 °C (–40 °F) | \(T_a \): +79 °C (+174 °F)
P2 = \(T_p \): +79 °C (+174 °F) | \(T_a \): +79 °C (+174 °F)
P3 = \(T_p \): +200 °C (+392 °F) | \(T_a \): +47 °C (+117 °F)
P4 = \(T_p \): +200 °C (+392 °F) | \(T_a \): –40 °C (–40 °F)
P5 = \(T_p \): –40 °C (–40 °F) | \(T_a \): –40 °C (–40 °F)

316L housing

316L housing; process temperature –10 to +150 °C (+14 to +302 °F)

P1 = \(T_p \): –10 °C (+14 °F) | \(T_a \): +77 °C (+171 °F)
P2 = \(T_p \): +77 °C (+171 °F) | \(T_a \): +77 °C (+171 °F)
P3 = \(T_p \): +150 °C (+302 °F) | \(T_a \): +43 °C (+109 °F)
P4 = \(T_p \): +150 °C (+302 °F) | \(T_a \): –10 °C (+14 °F)
P5 = \(T_p \): –10 °C (+14 °F) | \(T_a \): –10 °C (+14 °F)
316L housing; process temperature –10 to +200 °C (+14 to +392 °F)

P1 = Tp: –10 °C (+14 °F) | Ta: +77 °C (+171 °F)
P2 = Tp: +77 °C (+171 °F) | Ta: +77 °C (+171 °F)
P3 = Tp: +200 °C (+392 °F) | Ta: +38 °C (+100 °F)
P4 = Tp: +200 °C (+392 °F) | Ta: –10 °C (+14 °F)
P5 = Tp: –10 °C (+14 °F) | Ta: –10 °C (+14 °F)

316L housing; process temperature –20 to +150 °C (–4 to +302 °F)

P1 = Tp: –20 °C (–4 °F) | Ta: +77 °C (+171 °F)
P2 = Tp: +77 °C (+171 °F) | Ta: +77 °C (+171 °F)
P3 = Tp: +150 °C (+302 °F) | Ta: +43 °C (+109 °F)
P4 = Tp: +150 °C (+302 °F) | Ta: –20 °C (–4 °F)

316L housing; process temperature –20 to +200 °C (–4 to +392 °F)

P1 = Tp: –20 °C (–4 °F) | Ta: +77 °C (+171 °F)
P2 = Tp: +77 °C (+171 °F) | Ta: +77 °C (+171 °F)
P3 = Tp: +200 °C (+392 °F) | Ta: +38 °C (+100 °F)
P4 = Tp: +200 °C (+392 °F) | Ta: –20 °C (–4 °F)
316L housing; process temperature –40 to +150 °C (–40 to +302 °F)

316L housing; process temperature range: –40 to +150 °C (–40 to +302 °F)

$P_1 = T_p: –40 \degree C (–40 \degree F) \ | \ T_a: +77 \degree C (+171 \degree F)$

$P_2 = T_p: +77 \degree C (+171 \degree F) \ | \ T_a: +77 \degree C (+171 \degree F)$

$P_3 = T_p: +150 \degree C (+302 \degree F) \ | \ T_a: +43 \degree C (+109 \degree F)$

$P_4 = T_p: +150 \degree C (+302 \degree F) \ | \ T_a: –40 \degree C (–40 \degree F)$

$P_5 = T_p: –40 \degree C (–40 \degree F) \ | \ T_a: –40 \degree C (–40 \degree F)$

316L housing; process temperature –40 to +200 °C (–40 to +392 °F)

316L housing; process temperature range: –40 to +200 °C (–40 to +392 °F)

$P_1 = T_p: –40 \degree C (–40 \degree F) \ | \ T_a: +77 \degree C (+171 \degree F)$

$P_2 = T_p: +77 \degree C (+171 \degree F) \ | \ T_a: +77 \degree C (+171 \degree F)$

$P_3 = T_p: +200 \degree C (+392 \degree F) \ | \ T_a: +38 \degree C (+100 \degree F)$

$P_4 = T_p: +200 \degree C (+392 \degree F) \ | \ T_a: –40 \degree C (–40 \degree F)$

$P_5 = T_p: –40 \degree C (–40 \degree F) \ | \ T_a: –40 \degree C (–40 \degree F)$

316L housing, hygiene

316L housing, hygiene; process temperature –10 to +150 °C (+14 to +302 °F)

316L housing, hygiene; process temperature range: –10 to +150 °C (+14 to +302 °F)

$P_1 = T_p: –10 \degree C (+14 \degree F) \ | \ T_a: +76 \degree C (+169 \degree F)$

$P_2 = T_p: +76 \degree C (+169 \degree F) \ | \ T_a: +76 \degree C (+169 \degree F)$

$P_3 = T_p: +150 \degree C (+302 \degree F) \ | \ T_a: +41 \degree C (+106 \degree F)$

$P_4 = T_p: +150 \degree C (+302 \degree F) \ | \ T_a: –10 \degree C (–14 \degree F)$

$P_5 = T_p: –10 \degree C (+14 \degree F) \ | \ T_a: –10 \degree C (–14 \degree F)$
316L housing, hygiene; process temperature –10 to +200 °C (+14 to +392 °F)

\[P1 = T_p: -10 \degree C (+14 \degree F) \mid T_a: +76 \degree C (+169 \degree F) \]
\[P2 = T_p: +76 \degree C (+169 \degree F) \mid T_a: +76 \degree C (+169 \degree F) \]
\[P3 = T_p: +200 \degree C (+392 \degree F) \mid T_a: +32 \degree C (+90 \degree F) \]
\[P4 = T_p: +200 \degree C (+392 \degree F) \mid T_a: -10 \degree C (+14 \degree F) \]
\[P5 = T_p: -10 \degree C (+14 \degree F) \mid T_a: -10 \degree C (+14 \degree F) \]

316L housing, hygiene; process temperature –20 to +150 °C (–4 to +302 °F)

\[P1 = T_p: -20 \degree C (–4 \degree F) \mid T_a: +76 \degree C (+169 \degree F) \]
\[P2 = T_p: +76 \degree C (+169 \degree F) \mid T_a: +76 \degree C (+169 \degree F) \]
\[P3 = T_p: +150 \degree C (+302 \degree F) \mid T_a: +41 \degree C (+106 \degree F) \]
\[P4 = T_p: +150 \degree C (+302 \degree F) \mid T_a: -20 \degree C (–4 \degree F) \]
\[P5 = T_p: -20 \degree C (–4 \degree F) \mid T_a: -20 \degree C (–4 \degree F) \]
316L housing, hygiene; process temperature –40 to +150 °C (–40 to +302 °F)

Storage temperature
- Without LCD display: –40 to +90 °C (–40 to +194 °F)
- With LCD display: –40 to +85 °C (–40 to +185 °F)

Climate class
- DIN EN 60068-2-38 (test Z/AD)

Installation height as per IEC61010-1 Ed.3
- Generally up to 2,000 m (6,600 ft) above sea level
- Over 2,000 m (6,600 ft) under the following conditions:
 - Supply voltage < 35 VDC
 - Power supply, overvoltage category 1

Degree of protection
- Testing according to IEC 60529 and NEMA 250

Housing
- IP66/68, NEMA Type 4X/6P
- IP68 test condition: 1.83 m under water for 24 hours.

Cable entries
- M20 coupling, plastic, IP66/68 NEMA Type 4X/6P
- M20 coupling, nickel-plated brass, IP66/68 NEMA Type 4X/6P
- M20 coupling, 316L, IP66/68 NEMA Type 4X/6P
- M20 coupling, hygiene, IP66/68/69 NEMA Type 4X/6P
- M20 thread, IP66/68 NEMA Type 4X/6P
- G1/2 thread, IP66/68 NEMA Type 4X/6P
- If the G1/2 thread is selected, the device is delivered with an M20 thread as standard and a G1/2 adapter is included with the delivery, along with the corresponding documentation
Micropilot FMR63B HART

- NPT ½ thread, IP66/68 NEMA Type 4X/6P
- HAN7D plug, 90 degrees, IP65 NEMA Type 4X
- M12 plug
 - When housing is closed and connecting cable is plugged in: IP66/67 NEMA Type 4X
 - When housing is open or connecting cable is not plugged in: IP20, NEMA Type 1

NOTICE
Plug M12 and plug HAN7D: incorrect mounting can invalidate the IP protection class!

- The degree of protection only applies if the connecting cable used is plugged in and screwed tight.
- The degree of protection only applies if the connecting cable used is specified according to IP67 NEMA Type 4X.
- The protection classes are only maintained if the dummy cap is used or the cable is connected.

Vibration resistance
DIN EN 60068-2-64 / IEC 60068-2-64 for 5 to 2000 Hz: $1.5 \frac{(m/s^2)^2}{Hz}$

Electromagnetic compatibility (EMC)
- Electromagnetic compatibility as per EN 61326 series and NAMUR recommendation EMC (NE21)
- With regard to the safety function (SIL), the requirements of EN 61326-3-x are satisfied
- Maximum measured error during EMC testing: $< 0.5 \%$ of the span.

For more details refer to the EU Declaration of Conformity.

Process

Process pressure range

WARNING
The maximum pressure for the device depends on the lowest-rated component with regard to pressure (components are: process connection, optional mounted parts or accessories).
- Only operate the device within the specified limits for the components!
- MWP (Maximum Working Pressure): The MWP is specified on the nameplate. This value refers to a reference temperature of $+20 \, ^\circ C \, (+68 \, ^\circ F)$ and may be applied to the device for an unlimited time. Note temperature dependence of MWP. For flanges, refer to the following standards for the permitted pressure values at higher temperatures: EN 1092-1 (with regard to their stability/temperature property, the materials 1.4435 and 1.4404 are grouped together under EN 1092-1; the chemical composition of the two materials can be identical), ASME B16.5, JIS B2220 (the latest version of the standard applies in each case). MWP data that deviate from this are provided in the relevant sections of the Technical Information.
- The Pressure Equipment Directive (2014/68/EU) uses the abbreviation PS. This corresponds to the maximum working pressure (MWP) of the device.

The following tables show the dependencies between the seal material, process temperature (T_p) and process pressure range for each process connection that can be selected for the antenna used.

Integrated antenna, PEEK, 20 mm (0.75 in)

Process connection M24 with process adapter, accessory enclosed

<table>
<thead>
<tr>
<th>Seal</th>
<th>T_p</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKM Viton</td>
<td>-10 to $+150 , ^\circ C , (+14$ to $+302 , ^\circ F)$</td>
<td>-1 to 20 bar (-14.5 to 290 psi)</td>
</tr>
<tr>
<td>FKM Viton</td>
<td>-10 to $+200 , ^\circ C , (+14$ to $+392 , ^\circ F)$</td>
<td>-1 to 20 bar (-14.5 to 290 psi)</td>
</tr>
<tr>
<td>EPDM</td>
<td>-40 to $+150 , ^\circ C , (-40$ to $+302 , ^\circ F)$</td>
<td>-1 to 20 bar (-14.5 to 290 psi)</td>
</tr>
<tr>
<td>FFKM Kalrez</td>
<td>-20 to $+150 , ^\circ C , (-4$ to $+302 , ^\circ F)$</td>
<td>-1 to 20 bar (-14.5 to 290 psi)</td>
</tr>
<tr>
<td>FFKM Kalrez</td>
<td>-20 to $+200 , ^\circ C , (-4$ to $+392 , ^\circ F)$</td>
<td>-1 to 20 bar (-14.5 to 290 psi)</td>
</tr>
</tbody>
</table>

The pressure range may be further restricted in the event of a CRN approval.
Antenna, cladded flush mount, PTFE, 50 mm (2 in)

Process connection Tri-Clamp DN51 (2”) ISO2852

<table>
<thead>
<tr>
<th>Seal</th>
<th>T_p</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE cladded</td>
<td>-40 to +150 °C (-40 to +302 °F)</td>
<td>-1 to 16 bar (-14.5 to 232 psi)</td>
</tr>
<tr>
<td>PTFE cladded</td>
<td>-40 to +200 °C (-40 to +392 °F)</td>
<td>-1 to 16 bar (-14.5 to 232 psi)</td>
</tr>
</tbody>
</table>

Process connection Tri-Clamp DN70-76.1 (3”) ISO2852

<table>
<thead>
<tr>
<th>Seal</th>
<th>T_p</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE cladded</td>
<td>-40 to +150 °C (-40 to +302 °F)</td>
<td>-1 to 14 bar (-14.5 to 203 psi)</td>
</tr>
<tr>
<td>PTFE cladded</td>
<td>-40 to +200 °C (-40 to +392 °F)</td>
<td>-1 to 14 bar (-14.5 to 203 psi)</td>
</tr>
</tbody>
</table>

Process connection slotted nut DIN11851 DN50 PN25

<table>
<thead>
<tr>
<th>Seal</th>
<th>T_p</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE cladded</td>
<td>-40 to +150 °C (-40 to +302 °F)</td>
<td>-1 to 25 bar (-14.5 to 362.6 psi)</td>
</tr>
<tr>
<td>PTFE cladded</td>
<td>-40 to +200 °C (-40 to +392 °F)</td>
<td>-1 to 25 bar (-14.5 to 362.6 psi)</td>
</tr>
</tbody>
</table>

The pressure range may be further restricted in the event of a CRN approval.

Antenna, cladded flush mount, PTFE, 80 mm (3 in)

Process connection Tri-Clamp DN101.6 (4”) ISO2852

<table>
<thead>
<tr>
<th>Seal</th>
<th>T_p</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE cladded</td>
<td>-40 to +150 °C (-40 to +302 °F)</td>
<td>-1 to 14 bar (-14.5 to 203 psi)</td>
</tr>
<tr>
<td>PTFE cladded</td>
<td>-40 to +200 °C (-40 to +392 °F)</td>
<td>-1 to 14 bar (-14.5 to 203 psi)</td>
</tr>
</tbody>
</table>
Process connection slotted nut DIN11851 DN80 PN25

<table>
<thead>
<tr>
<th>Seal</th>
<th>(T_p)</th>
<th>Process pressure range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE cladded</td>
<td>-40 to +150 °C (−40 to +302 °F)</td>
<td>−1 to 25 bar (−14.5 to 362.6 psi)</td>
</tr>
<tr>
<td>PTFE cladded</td>
<td>-40 to +200 °C (−40 to +392 °F)</td>
<td>−1 to 25 bar (−14.5 to 362.6 psi)</td>
</tr>
</tbody>
</table>

The pressure range may be further restricted in the event of a CRN approval.

Dielectric constant

For liquids

\[\varepsilon_r \geq 1.2 \]

Contact Endress+Hauser for applications with lower dielectric constants than indicated.

Mechanical construction

Dimensions

The dimensions of the individual components must be added together for the total dimensions.

Single compartment housing, plastic

Dimensions of single compartment housing, plastic (PBT). Unit of measurement mm (in)

1. Height with cover comprising plastic sight glass
2. Cover without sight glass
Single compartment housing, aluminum

Dimensions of single compartment housing, aluminum. Unit of measurement mm (in)

1 Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex)
2 Height with cover comprising plastic sight glass
3 Cover without sight glass
Single compartment housing, 316L hygiene

1 Height with cover comprising glass sight glass (dust Ex)
2 Height with cover comprising plastic sight glass
3 Cover without sight glass
43 Dimensions of dual compartment housing, aluminum. Unit of measurement mm (in)

1 Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex)
2 Height with cover comprising plastic sight glass
3 Cover without sight glass
Dual compartment housing, L-shaped, aluminum or 316 L

1. Height with cover comprising glass sight glass (devices for Ex d/XP, dust Ex)
2. Height with cover comprising plastic sight glass
3. Cover without sight glass
Integrated antenna, PEEK, 20 mm / M24×1.5

Dimensions of integrated antenna, PEEK, 20 mm / M24×1.5. Unit of measurement mm (in)

- **A** Process temperature version ≤150 °C (302 °F)
- **B** Process temperature version ≤200 °C (392 °F)
- **R** Reference point of measurement
- **1** Bottom edge of housing

- **L1** 127 mm (5.00 in); version with Ex d or XP approval +5 mm (+0.20 in)
- **L2** 139 mm (5.47 in); version with Ex d or XP approval +5 mm (+0.20 in)
Antenna, cladded flush mount, PTFE, 50 mm (2 in), slotted nut DIN11851

Dimensions of antenna, cladded flush mount, PTFE, 50 mm (2 in), slotted nut DIN11851. Unit of measurement mm (in)

A Process temperature version ≤150 °C (302 °F)
B Process temperature version ≤200 °C (392 °F)
R Reference point of measurement
1 Bottom edge of housing
L1 118 mm (4.65 in); version with Ex d or XP approval +5 mm (+0.20 in)
L2 130 mm (5.12 in); version with Ex d or XP approval +5 mm (+0.20 in)
Antenna, cladded flush mount, PTFE, 80 mm (3 in), slotted nut DIN11851

![Diagram of antenna dimensions]

47 Dimensions of antenna, cladded flush mount, PTFE, 80 mm (3 in), slotted nut DIN11851. Unit of measurement mm (in)

A Process temperature version ≤150 °C (302 °F)
B Process temperature version ≤200 °C (392 °F)
R Reference point of measurement
1 Bottom edge of housing
L1 159 mm (6.26 in); version with Ex d or XP approval +5 mm (+0.20 in)
L2 171 mm (6.73 in); version with Ex d or XP approval +5 mm (+0.20 in)
Antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN40-51 (2") ISO2852

Dimensions of antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN51 (2") ISO2852.

Unit of measurement mm (in)

- **A**: Process temperature version ≤150 °C (302 °F)
- **B**: Process temperature version ≤200 °C (392 °F)
- **R**: Reference point of measurement
- **1**: Bottom edge of housing
- **L1**: 116 mm (4.57 in); version with Ex d or XP approval +5 mm (+0.20 in)
- **L2**: 128 mm (5.04 in); version with Ex d or XP approval +5 mm (+0.20 in)

Process connection suitable for DN51 nominal diameter and pipe inner diameter 48.6 mm (1.91 in)
Antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN70-76.1 (3") ISO2852

49 Dimensions of antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp DN70-76.1 (3") ISO2852. Unit of measurement mm (in)

A Process temperature version ≤150 °C (302 °F)
B Process temperature version ≤200 °C (392 °F)
R Reference point of measurement
1 Bottom edge of housing
L1 116 mm (4.57 in); version with Ex d or XP approval +5 mm (+0.20 in)
L2 128 mm (5.04 in); version with Ex d or XP approval +5 mm (+0.20 in)

Process connection suitable for
- DN70 nominal diameter with pipe inner diameter 66.8 mm (2.63 in)
- DN76.1 nominal diameter with pipe inner diameter 72.9 mm (2.87 in)
Antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp DN101.6 (4") ISO2852

Dimensions of antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp DN101.6 (4") ISO2852.

Unit of measurement mm (in)

A Process temperature version ≤150 °C (302 °F)
B Process temperature version ≤200 °C (392 °F)
R Reference point of measurement
1 Bottom edge of housing
L1 155 mm (6.10 in); version with Ex d or XP approval +5 mm (+0.20 in)
L2 167 mm (6.57 in); version with Ex d or XP approval +5 mm (+0.20 in)

Process connection suitable for
DN101.6 nominal diameter with pipe inner diameter 97.6 mm (3.84 in)

Weight

The weights of the individual components must be added together for the total weight.

Housing

Weight including electronics and display.

Single compartment housing
- Plastic: 0.5 kg (1.10 lb)
- Aluminum: 1.2 kg (2.65 lb)
- 316L hygiene: 1.2 kg (2.65 lb)

Dual compartment housing
- Aluminum: 1.4 kg (3.09 lb)

Dual compartment housing, L-form
- Aluminum: 1.7 kg (3.75 lb)
- Stainless steel: 4.5 kg (9.9 lb)

Antenna and process connection adapter

The flange weight (316/316L) depends on the selected standard and sealing surface.
Details -> TI00426F or in the relevant standard

The heaviest version is indicated for the antenna weights

Integrated antenna, PEEK, 20 mm (0.75 in)
1.2 kg (2.65 lb)

Antenna, cladded flush mount, PTFE, 50 mm (2 in)
2.2 kg (4.85 lb) for process connection slotted nut DIN11851
Antenna, cladded flush mount, PTFE, 80 mm (3 in)
3.4 kg (7.50 lb) for process connection slotted nut DIN11851

Materials

Plastic housing
- Housing: PBT/PC
- Dummy cover: PBT/PC
- Cover with sight glass: PBT/PC and PC
- Cover seal: EPDM
- Potential equalization: 316L
- Seal under potential equalization: EPDM
- Plug: PBT-GF30-FR
- M20 cable gland: PA
- Seal on plug and cable gland: EPDM
- Threaded adapter as replacement for cable glands: PA66-GF30
- Nameplate: plastic foil
- TAG plate: plastic foil, metal or provided by customer

Aluminum housing, coated
- Housing: EN AC-43400 aluminum
- Housing coating, cover: Polyester
- Dummy cover: EN AC-43400 aluminum
- EN AC-43400 aluminum cover with Lexan 943A PC sight glass
 EN AC-43400 aluminum cover with borosilicate sight glass; can be ordered as an accessory optionally
- For Ex d, dust Ex applications, the sight glass is always made from borosilicate.
- Cover seal materials: HNBR
- Cover seal materials: FVMQ (only for low temperature version)
- Nameplate: plastic foil
- TAG plate: plastic foil, stainless steel or provided by customer
- M20 cable glands: select material (stainless steel, nickel-plated brass, polyamide)

Stainless steel housing, 316L
- Housing: stainless steel 316L (1.4409)
- Dummy cover: stainless steel 316L (1.4409)
- 316L (1.4409) stainless steel cover with borosilicate window
- Cover seal materials: FVMQ (only for low temperature version)
- Cover seal materials: HNBR
- Nameplate: stainless steel housing, labeled directly
- TAG plate: plastic foil, stainless steel or provided by customer
- M20 cable glands: select material (stainless steel, nickel-plated brass, polyamide)

Stainless steel housing, 316L hygiene
- Housing: stainless steel 316L (1.4404)
- Dummy cover: stainless steel 316L (1.4404)
- 316L (1.4404) stainless steel cover with PC Lexan 943A window
 316L (1.4404) stainless steel cover with borosilicate window; can be optionally ordered as an enclosed accessory
 For Dust-Ex applications, the window is always made from borosilicate.
- Cover seal materials: EPDM
- Nameplate: stainless steel housing, labeled directly
- TAG plate: plastic foil, stainless steel or provided by customer
- M20 cable glands: select material (stainless steel, nickel-plated brass, polyamide)
Materials in contact with the medium

Integrated antenna, PEEK, 20 mm / M24×1.5

![Diagram of integrated antenna](image)

51 Material; integrated antenna, PEEK, 20 mm / M24×1.5
1 Antenna: PEEK, seal material can be selected (order option)
2 Process connection: 316L / 1.4404
3 Housing adapter: 316L / 1.4404

Antenna, cladded flush mount, 50 mm (2 in), slotted nut DIN11851

![Diagram of antenna](image)

52 Material; antenna, cladded flush mount, 50 mm (2 in), slotted nut DIN11851
1 Antenna: PTFE, seal material PTFE cladding
2 DIN11851 slotted nut: 304L / 1.4307
3 Antenna adapter: 316L / 1.4404
4 Housing adapter: 316L / 1.4404
Antenna, cladded flush mount, 80 mm (3 in), slotted nut DIN11851

1. Antenna: PTFE, seal material PTFE cladding
2. DIN11851 slotted nut: 304L / 1.4307
3. Antenna adapter: 316L / 1.4404
4. Housing adapter: 316L / 1.4404

Antenna, cladded flush mount, PTFE, 50 mm (2 in), with Tri-Clamp ISO2852

1. Antenna: PTFE, seal material PTFE cladding
2. Antenna adapter: 316L / 1.4404
3. Housing adapter: 316L / 1.4404
Antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp ISO2852

Material; antenna, cladded flush mount, PTFE, 80 mm (3 in), with Tri-Clamp ISO2852

1. Antenna: PTFE, seal material PTFE cladding
2. Antenna adapter: 316L / 1.4404
3. Housing adapter: 316L / 1.4404

Operability

Operating concept
- Operator-oriented menu structure for user-specific tasks
 - Guidance
 - Diagnostics
 - Application
 - System

Fast and safe commissioning
- Interactive wizard with graphical user interface for guided commissioning in FieldCare, DeviceCare or DTM, AMS and PDM-based third-party tools or SmartBlue
- Menu guidance with short explanations of the individual parameter functions
- Standardized operation at the device and in the operating tools

Integrated HistoROM data memory
- Adoption of data configuration when electronics modules are replaced
- Up to 100 event messages recorded in the device

Efficient diagnostic behavior increases measurement availability
- Remedial measures are integrated in plain text
- Diverse simulation options

Bluetooth (optionally integrated in local display)
- Quick and easy setup with SmartBlue app or PC with DeviceCare, version 1.07.05 and higher, or FieldXpert SMT70
- No additional tools or adapters required
- Encrypted single point-to-point data transmission (tested by Fraunhofer Institute) and password-protected communication via Bluetooth® wireless technology

Languages
- Operating languages
 - English option (English option is set at the factory if no other language is ordered)
 - Deutsch
 - Français
 - Español
 - Italiano
 - Nederlands
 - Portuguesa
 - Polski
 - русский язык (Russian)
Local operation

Operating keys and DIP switches on the HART electronic insert

1 Operating key for reset password (for Bluetooth login and Maintenance user role)
2+2 Operating keys for device reset (as-delivered state)
3 Operating key II (only for factory reset)
4 DIP switch for locking and unlocking the device

The setting of the DIP switches on the electronic insert has priority over the settings made via other operation methods (e.g. FieldCare/DeviceCare).

Local display

Device display (optional)

Functions:
- Display of measured values and fault and notice messages
- Background lighting, which switches from green to red in the event of an error
- The device display can be removed for easier operation
Remote operation
Via HART protocol
Via service interface (CDI)
Operation via Bluetooth® wireless technology (optional)
Prerequisite
- Measuring device with display including Bluetooth
- Smartphone or tablet with Endress+Hauser SmartBlue app or PC with DeviceCare from version 1.07.05 or FieldXpert SMT70
The connection has a range of up to 25 m (82 ft). The range can vary depending on environmental conditions such as attachments, walls or ceilings.
:i: The operating keys on the display are locked as soon as the device is connected via Bluetooth.

System integration
HART
Version 7

Supported operating tools
Smartphone or tablet with Endress+Hauser SmartBlue app, DeviceCare from version 1.07.05, FieldCare, DTM, AMS and PDM

Certificates and approvals
Current certificates and approvals for the product are available at www.endress.com on the relevant product page:
1. Select the product using the filters and search field.
2. Open the product page.
3. Select Downloads.

CE mark
The measuring system meets the legal requirements of the applicable EU directives. These are listed in the corresponding EU Declaration of Conformity together with the standards applied.
The manufacturer confirms successful testing of the device by affixing to it the CE mark.

RoHS
The measuring system meets the substance restrictions of the Directive on the Restriction of the Use of Certain Hazardous Substances 2011/65/EU (RoHS 2) and the Delegated Directive (EU) 2015/863 (RoHS 3).

RCM marking
The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products bear the RCM marking on the nameplate.

Ex approvals
Additional safety instructions must be followed for use in hazardous areas. Please refer to the separate "Safety Instructions" (XA) document included in the delivery. Reference to the applicable XA can be found on the nameplate.

Explosion-protected smartphones and tablets
If used in hazardous areas, mobile end devices with an Ex approval must be used.
Functional safety

Use for level monitoring (MIN, MAX, range) up to SIL 3 (homogeneous or diverse redundancy), independently evaluated by TÜV Rheinland in accordance with IEC 61508, refer to the “Functional Safety Manual” for information.

Pressure equipment with permitted pressure \(\leq 200 \text{ bar (2900 psi)} \)

Pressure instruments with a process connection that does not have a pressurized housing do not fall within the scope of the Pressure Equipment Directive, irrespective of the maximum allowable pressure.

Reasons:

According to Article 2, point 5 of EU Directive 2014/68/EU, pressure accessories are defined as ‘devices with an operational function and having pressure-bearing housings’.

If a pressure instrument does not have a pressure-bearing housing (no identifiable pressure chamber of its own), there is no pressure accessory present within the meaning of the Directive.

Radio approval

Displays with Bluetooth LE have radio licenses according to CE and FCC. The relevant certification information and labels are provided on display.

EN 302372 radio standard

The devices comply with the TLPR (Tanks Level Probing Radar) radio standard EN 302372 and are permitted for use in closed vessels. Points a to f in Annex E of EN 302372 must be observed for the installation.

FCC

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

[Any] changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Industry Canada

Canada CNR-Gen Section 7.1.3

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) This device may not interfere, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) le utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

[Any] changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

- The installation of the LPR/TLPR device shall be done by trained installers, in strict compliance with the manufacturer’s instructions.
- The use of this device is on a “no-interference, no-protection” basis. That is, the user shall accept operations of high-powered radar in the same frequency band which may interfere with or damage this device. However, devices found to interfere with primary licensing operations will be required to be removed at the user’s expense.
- This device shall be installed and operated in a completely enclosed container to prevent RF emissions, which can otherwise interfere with aeronautical navigation.
- The installer/user of this device shall ensure that it is at least 10 km from the Dominion Astrophysical Radio Observatory (DRAO) near Penticton, British Columbia. The coordinates of the DRAO are latitude 49°19ʹ15ʹʹ N and longitude 119°37ʹ12ʹʹ W. For devices not meeting this 10 km separation (e.g., those in the Okanagan Valley, British Columbia,) the installer/user must coordinate with, and obtain the written concurrence of, the Director of the DRAO before the equipment can be installed or operated. The Director of the DRAO may be contacted at 250-497-2300 (tel.) or 250-497-2355 (fax). (Alternatively, the Manager, Regulatory Standards Industry Canada, may be contacted.)
Other standards and guidelines

- EN 60529
 Degrees of protection provided by enclosures (IP code)
- EN 61010-1
 Safety requirements for electrical equipment for measurement, control and laboratory use
- IEC/EN 61326
 Emission in accordance with Class A requirements A; Electromagnetic compatibility (EMC requirements)
- NAMUR NE 21
 Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment
- NAMUR NE 43
 Standardization of the signal level for the breakdown information of digital transmitters with analog output signal
- NAMUR NE 53
 Software of field devices and signal-processing devices with digital electronics
- NAMUR NE 107
 Status categorization in accordance with NE 107
- NAMUR NE 131
 Requirements for field devices for standard applications
- IEC 61508
 Functional safety of safety-related electric/electronic/programmable electronic systems

Ordering information

Detailed ordering information is available from your nearest sales organization www.addresses.endress.com or in the Product Configurator at www.endress.com:

1. Select the product using the filters and search field.
2. Open the product page.
3. Select Configuration.

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Calibration

Factory calibration certificate

The calibration points are spread evenly over the measuring range (0 to 100 %). The Empty calibration E and Full calibration F must be specified to define the measuring range. If this information is missing, antenna-dependent default values are used instead.

Reference point of measurement
Minimum distance between reference point R and 100% mark
Empty calibration
Full calibration
Measuring range restrictions
The following restrictions must be considered when selecting E and F:

- Minimum distance between reference point R and 100% mark
 \(A \geq 400 \text{ mm (16 in)} \)
- Minimum span
 \(F \geq 45 \text{ mm (1.77 in)} \)
- Maximum value for Empty calibration
 \(E \geq 450 \text{ mm (17.72 in) (maximum 50 m (164 ft))} \)

- Calibration takes place under reference conditions.
- The selected values for Empty calibration and Full calibration are only used to create the factory calibration certificate. Afterwards, the values are reset to the default values specific for the antenna. If values other than the default values are required, they must be ordered as a customized empty/full calibration.

 Product Configurator → Optional → Service → Customized empty/full calibration

Service
The following services, among others, can be selected via the Product Configurator.

- Cleaned of oil+grease (wetted)
- PWIS-free (paint-wetting impairment substances)
- ANSI Safety Red coating, coated housing cover
- Set damping
- Set HART Burst Mode PV
- Set max. alarm current
- Bluetooth communication is disabled on delivery
- Customized empty/full calibration
- Product documentation on paper

A printed (hard copy) version of test reports, declarations and inspection certificates can optionally be ordered via the Service feature, Product documentation on paper type. The documents can be selected via the Test, certificate, declaration feature are then provided with the device upon delivery.

Test, certificate, declaration
All test reports, declarations and inspection certificates are provided electronically in the Device Viewer:
Enter the serial number from the nameplate (www.endress.com/deviceviewer)

Identification
Measuring point (TAG)
The device can be ordered with a tag name.

Location of tag name
In the additional specification, select:
- Stainless steel tag plate
- Paper adhesive label
- TAG provided by customer
- RFID TAG
- RFID TAG + stainless steel tag plate
- RFID TAG + paper adhesive label
- RFID TAG + TAG provided by customer
- IEC 61406 stainless steel TAG
- IEC 61406 stainless steel TAG + NFC TAG
- IEC 61406 stainless steel TAG, stainless steel TAG
- IEC 61406 stainless steel TAG + NFC, stainless steel TAG
- IEC 61406 stainless steel TAG, plate provided
- IEC 61406 stainless steel TAG + NFC, plate provided

Definition of the tag name
In the additional specification, specify:
3 lines with a maximum of 18 characters per line
The specified tag name appears on the selected plate and/or on the RFID tag.

Presentation in the SmartBlue app
The first 32 characters of the tag name
The tag name can always be changed specifically for the measuring point via Bluetooth.
Display in electronic nameplate (ENP)
The first 32 characters of the tag name

For further information, please refer to SD01502F, SD02796P

Application packages

Heartbeat Technology
The Heartbeat Verification + Monitoring application package offers diagnostic functionality through continuous self-monitoring, the transmission of additional measured variables to an external Condition Monitoring system and the in-situ verification of devices in the application.

The application package can be ordered together with the device or can be activated subsequently with an activation code. Detailed information on the order code is available via the Endress+Hauser website www.endress.com or from your local Endress+Hauser Sales Center.

Heartbeat Verification
Heartbeat Verification is carried out on request and supplements self-monitoring, which is performed continuously, by carrying out further tests. During verification, the system checks whether the device components comply with the factory specifications. Both the sensor and the electronics modules are included in the tests.

Heartbeat Verification confirms the device function on request within the specified measuring tolerance with a total test coverage TTC (Total Test Coverage) in percent.

Heartbeat Verification meets the requirements for metrological traceability in accordance with ISO 9001 (ISO9001:2015 Section 7.1.5.2).

The result of the verification is either Passed or Failed. The verification data are saved in the device and optionally archived on a PC with the FieldCare asset management software or in the Netilion Library. Based on this data, a verification report is generated automatically to ensure that traceable documentation of the verification results is available.

Heartbeat Monitoring

Loop diagnostics wizard (→ 61): **Foam detection** wizard (→ 61) and **Build-up detection** wizard (→ 62) are available. In addition, other monitoring parameters can be output for use in predictive maintenance or application optimization.

"**Loop diagnostics" wizard"

Using this wizard, changes in the current-voltage loop characteristics (baseline) can be used to detect unwanted installation anomalies such as creep currents caused by terminal corrosion or a deteriorating power supply that can lead to an incorrect 4-20 mA measured value.

Areas of application
- Detection of changes in the measuring circuit resistance due to anomalies
 Examples: Contact resistance or leakage currents in wiring, terminals or grounding due to corrosion and/or moisture
- Detection of faulty power supply

"**Foam detection" wizard"

This wizard configures the automatic foam detection.

Foam detection can be linked to an output variable or status information e.g. to control a sprinkler used to dissolve the foam. It is also possible to monitor the foam increase in a so called foam index. The foam index can also be linked to an output variable and can be shown on the display.

Preparation:
The Foam monitoring initialization should only be done without or less foam.

Areas of application
- Measurement in liquids
- Reliable detection of foam on the medium
"Build-up detection" wizard
This wizard configures the build-up detection.
Basic idea:
The build-up detection can, for example, be linked to a compressed-air system to clean the antenna. With the build-up monitoring the maintenance cycles can be optimized.
Preparation:
The build-up monitoring initialization should only be done without or less build-up.

Areas of application
- Measurement in liquids and solids
- Reliable detection of buildup on the antenna

Detailed description
Special Documentation SD02953F

Accessories
Weather protection cover 316L
The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.
It is used to protect against direct sunlight, precipitation and ice.
Weather protection cover 316L is suitable for the dual compartment housing made of aluminum or 316L. The delivery includes the holder for direct mounting on the housing.

Material
- Weather protection cover: 316L
- Clamping screw: A4
- Holder: 316L

Order number for accessories:
71438303

Plastic weather protection cover
The weather protection cover can be ordered together with the device via the "Accessory enclosed" product structure.
It is used to protect against direct sunlight, precipitation and ice.
The plastic weather protection cover is suitable for the single compartment housing made of aluminum. The delivery includes the holder for direct mounting on the housing.
Dimensions. Unit of measurement mm (in)

Material
Plastic

Order number for accessories:
71438291

M12 socket, straight

Material:
- Body: PBT; union nut: nickel-plated die-cast zinc; seal: NBR
- Degree of protection (fully locked): IP67
- Pg coupling: Pg7
- Order number: 52006263

M12 socket, angled

Material:
- Body: PBT; union nut: nickel-plated die-cast zinc; seal: NBR
- Degree of protection (fully locked): IP67
- Pg coupling: Pg7
- Order number: 71114212
M12 socket, angled, 5 m (16 ft) cable
- M12 socket material:
 - Body: TPU
 - Union nut: nickel-plated die-cast zinc
- Cable material:
 - PVC
- Cable Li Y YM 4×0.34 mm² (20 AWG)
- Cable colors
 - 1 = BN = brown
 - 2 = WH = white
 - 3 = BU = blue
 - 4 = BK = black
- Order number: 52010285

Remote display FHX50B
The remote display is ordered via the Product Configurator. If the remote display is to be used, the device version Prepared for display FHX50B must be ordered.
Material of single compartment housing, remote display
- Aluminum
- Plastic

Degree of protection:
- IP68 / NEMA 6P
- IP66 / NEMA 4x

Connecting cable:
- Connecting cable (option) up to 30 m (98 ft)
- Customer-supplied standard cable up to 60 m (197 ft)
 Recommendation: EtherLine®-P CAT.5e from LAPP.

Specification of customer-supplied connecting cable
- Push-in CAGE CLAMP®, connection technology, push actuation
 - Conductor cross-section:
 - Solid conductor 0.2 to 0.75 mm² (24 to 18 AWG)
 - Fine-stranded conductor 0.2 to 0.75 mm² (24 to 18 AWG)
 - Fine-stranded conductor; with insulated ferrule 0.25 to 0.34 mm²
 - Fine-stranded conductor; without insulated ferrule 0.25 to 0.34 mm²
 - Stripping length 7 to 9 mm (0.28 to 0.35 in)
 - Outer diameter: 6 to 10 mm (0.24 to 0.4 in)
 - Maximum cable length: 60 m (197 ft)

Ambient temperature:
- –40 to +80 °C (–40 to +176 °F)
 - Option: –50 to +80 °C (–58 to +176 °F)

Gas-tight feedthrough
- Chemically inert glass feedthrough, which prevents gases from entering the electronics housing.
 Can optionally be ordered as "Accessory mounted" via the product structure.

Process adapter M24
- For details, refer to TI00426F/00/EN "Weld-in adapters, process adapters and flanges".

Commubox FXA195 HART
- For intrinsically safe HART communication with FieldCare via the USB interface
 - For details, see "Technical Information" TI00404F

HART Loop Converter HMX50
- Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values.
 - Order number:
 71063562
 - For details, see "Technical Information" TI00429F and Operating Instructions BA00371F

FieldPort SWA50
- Intelligent Bluetooth® and/or WirelessHART adapter for all HART field devices
 - For details, see "Technical Information" TI01468S

Wireless HART adapter SWA70
- The WirelessHART adapter is used for the wireless connection of field devices. It can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks.
 - For details, see Operating Instructions BA00061S

Fieldgate FXA42
- Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or mobile communications (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.
 - For details, see "Technical Information" TI01297S and Operating Instructions BA01778S.
Field Xpert SMT70
Universal, high-performance tablet PC for device configuration in Ex Zone 2 and non-Ex areas
For details, see "Technical Information" TI01342S

DeviceCare SFE100
Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices
Technical Information TI01134S

FieldCare SFE500
FDT-based plant asset management tool
It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.
Technical Information TI00028S

Memograph M
The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on an SD card or USB stick.
Technical Information TI00133R and Operating Instructions BA00247R

RN42
Single-channel active barrier with wide-range power supply for safe electrical isolation of 4 to 20 mA standard signal circuits, HART transparent.
Technical Information TI01584K and Operating Instructions BA02090K

Documentation
For an overview of the scope of the associated Technical Documentation, refer to the following:

- Device Viewer (www.endress.com/deviceviewer): Enter the serial number from the nameplate
- Endress+Hauser Operations app: Enter serial number from nameplate or scan matrix code on nameplate.

Document function
The following documentation may be available depending on the version ordered:

<table>
<thead>
<tr>
<th>Document type</th>
<th>Purpose and content of the document</th>
</tr>
</thead>
</table>
| Technical Information (TI) | Planning aid for your device
The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device. |
| Brief Operating Instructions (KA) | Guide that takes you quickly to the 1st measured value
The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning. |
| Operating Instructions (BA) | Your reference document
The Operating Instructions contain all the information that is required in the various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal. |
| Description of Device Parameters (GP)| Reference for your parameters
The document provides a detailed explanation of each individual parameter. The description is aimed at those who work with the device over the entire life cycle and perform specific configurations. |
Purpose and content of the document

<table>
<thead>
<tr>
<th>Document type</th>
<th>Purpose and content of the document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Instructions (XA)</td>
<td>Depending on the approval, safety instructions for electrical equipment in hazardous areas are also supplied with the device. The Safety Instructions are an integral part of the Operating Instructions. Information on the Safety Instructions (XA) relevant to the device is provided on the nameplate.</td>
</tr>
<tr>
<td>Supplementary device-dependent documentation (SD/FY)</td>
<td>Always comply strictly with the instructions in the relevant supplementary documentation. The supplementary documentation is an integral part of the device documentation.</td>
</tr>
</tbody>
</table>

Registered trademarks

HART®
Registered trademark of the FieldComm Group, Austin, Texas, USA

Bluetooth®
The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use of such marks by Endress+Hauser is under license. Other trademarks and trade names are those of their respective owners.

Apple®
Apple, the Apple logo, iPhone, and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Android®
Android, Google Play and the Google Play logo are trademarks of Google Inc.

KALREZ®, VITON®
Registered trademarks of DuPont Performance Elastomers L.L.C., Wilmington, DE USA

TRI-CLAMP®
Registered trademark of Ladish & Co., Inc., Kenosha, USA