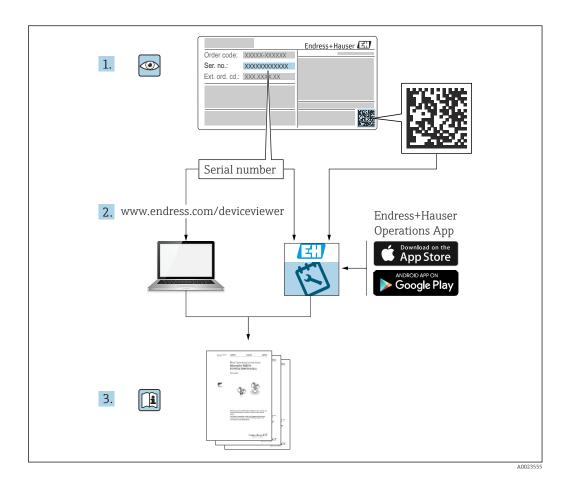
Products Solutions

Services

Действительно начиная с версии 01.00.zz (Фирменное ПО прибора)

Инструкция по эксплуатации **Liquiphant FTL51B**

Вибрационный принцип измерения HART


Датчик предельного уровня для жидкостей

Содержание

1	Об эт	ом документе	6	5.2	Монтаж прибора	
1.1	Назнач	нение документа	6		5.2.1 Требуемый инструмент 5.2.2 Монтаж	
1.2		ые обозначения		5.3		
	1.2.1	Символы техники безопасности	6	5.5 5.4	Скользящие муфты	
	1.2.2 1.2.3	Электротехнические символы Символы для обозначения	6	5.4	Проверка после монтажа	19
	1.2.7	инструментов	6	6	Электрическое подключение	19
	1.2.4	Специальные символы связи		6.1	Требуемый инструмент	19
	1.2.5	Описание информационных		6.2	Требования, предъявляемые к	
		СИМВОЛОВ			подключению	
	1.2.6	Символы на рисунках	7		6.2.1 Крышка с крепежным винтом	
	1.2.7	Зарегистрированные товарные	_		6.2.2 Выравнивание потенциалов	
		знаки	7	6.3	Подключение прибора	
					6.3.1 Сетевое напряжение	
2	Осно	вные указания по технике			6.3.2 Клеммы	21
	безот	асности	7		6.3.3 Технические характеристики	0.1
O 1			-		кабеля	
2.1		вания к персоналу			6.3.4 4 go 20 mA HART	
2.2		исто по			6.3.5 Защита от перенапряжения	
ງ ງ	2.2.1	Использование не по назначению			6.3.6 Подключение проводки	
2.3 2.4		ка безопасности на рабочем месте	8		6.3.7 Назначение клемм	
2.4		уатационная безопасность	8		• • •	
2.5		сность изделия	פ ו	6.4	6.3.9 Имеющиеся разъемы Обеспечение требуемой степени защиты	
2.0		иональная оезопасность, эт. энально)	9	0.4	6.4.1 Степень защиты	
2.7		опасность		6.5	Проверка после подключения	
2.8		рпасность прибора	9	0.5	проверка после подключения	20
2.0	11 0050	machoelb hphoopa		7	Опции управления	26
3	Опис	ание изделия	9	7 .1	Обзор опций управления	
3.1			10	7.1 7.2	Электронная вставка FEL60H	
J.1	MOHCIL	укция изделия	10	7.2	Выполнение функционального теста с	۷,
,	т			1.5	помощью кнопки управления на	
4	прие	мка и идентификация			электронной вставке	2.8
	издел	Рип	10	7.4	Структура и функции меню управления	
4.1	Прием	ка	10	. , -	7.4.1 Уровни доступа и соответствующая	
4.2	-		11		авторизация	29
1.2	4.2.1	1 ' ''	11	7.5	Доступ к меню управления с локального	
	4.2.2	Адрес изготовителя			дисплея	29
4.3		ние и транспортировка			7.5.1 Дисплей прибора (опционально)	29
	4.3.1		11		7.5.2 Управление через беспроводную	
	4.3.2	Транспортировка прибора	11		технологию Bluetooth®	
					(опционально)	30
5	Монт	аж	12	7.6	Доступ к меню управления с помощью	
		вания к монтажу			управляющей программы	32
5.1	5.1.1	Учитывайте точку переключения	12	7.7	Управление данными с помощью модуля	
	J.1.1	прибора	12		HistoROM	32
	5.1.2	Учет вязкости				
	5.1.3	Защита от образования	٠ -	8	Системная интеграция	32
	J.1.J	налипаний	14	8.1	Обзор файлов описания прибора	32
	5.1.4	Предусмотрите свободное		8.2	Измеряемые переменные, передача	-
			14		которых возможна по протоколу HART	32
	5.1.5	Обеспечение опоры прибора			8.2.1 Переменные прибора и	
	5.1.6	Сварной переходник с отверстием			измеренные значения	33
	-	для утечек	15		8.2.2 Системные единицы измерения	
					-	

9	Ввод	в эксплуатацию	34		11.1.2 Ошибка. Управление с помощью	
9.1	Подгот	говка	34		приложения SmartBlue через	1. 1.
	9.1.1	Состояние на момент поставки	34		1 1	44
9.2		ж и функциональная проверка	34		1 1	45
9.3		вление соединения с ПО FieldCare и			11.1.4 Поведение токового выхода в	, _
		Care	35		,	45
	9.3.1	Через протокол HART	35	11.2	Диагностическая информация,	
	9.3.2	ПО FieldCare/DeviceCare через			± '''	46
	7.7.4		35		11.2.1 Диагностическое сообщение	46
) /	I In arms	сервисный интерфейс (CDI)	ر ر	11.3	Отражение диагностического события в	
9.4		ойка адреса прибора программным	2.5		управляющей программе	47
٦. F		OM		11.4	Адаптация диагностической информации .	47
9.5		ойка языка управления	36	11.5	Диагностические сообщения в листе	
	9.5.1	Локальный дисплей			ожидания	48
	9.5.2	FieldCare	36	11.6	Диагностический список	
	9.5.3	DeviceCare			Журнал событий	
9.6		рйка прибора	37		11.7.1 Архив событий	
	9.6.1	Ввод в эксплуатацию с помощью			11.7.2 Фильтрация журнала событий	
		DIP-переключателя и кнопок			11.7.3 Обзор информационных событий	
		управления на электронной		11.8	Сброс параметров прибора	
		вставке	37	11.0	11.8.1 Сброс параметров прибора с	20
	9.6.2	Сброс пароля или параметров			помощью управляющей	
		прибора с помощью кнопок			. 3 1	52
		управления	37			Σ۷
	9.6.3	Ввод в эксплуатацию с помощью			11.8.2 Сброс параметров прибора с	
		мастер "Ввод в работу"	38		помощью кнопок управления на	ر ع
	9.6.4	Сохранение частоты колебаний		110	электронной вставке	
9.7		ирование	38		Сведения о приборе	
9.8		а параметров настройки от		11.10	Изменения программного обеспечения	
		кционированного доступа	39		11.10.1 Версия 01.00.zz	53
	9.8.1	Блокирование и разблокирование				
	7.0.1	аппаратной части	39	12	Техническое обслуживание	53
	9.8.2	Блокирование и разблокирование		12.1	Мероприятия по техническому	
	7.0.2	работы дисплея	39	12.1	обслуживанию	52
	9.8.3	Настройка параметров –			12.1.1 Очистка	
	7.0.5	блокирование или активация	39		12.1.1 OUNCIRA	رر
		олокирование или активация	22	10	D	- <i>1</i> -
10	Экспі	гуатация	40		Ремонт	
			10	13.1	Общие указания	
10.1		вание сведений о состоянии			13.1.1 Принцип ремонта	54
		оовки прибора			10 1 0 D	
10.2	I Imarra				13.1.2 Ремонт приборов во	
		е измеренных значений	40		взрывозащищенном исполнении	54
10.3		е измеренных значенийация прибора к условиям	40	13.2	взрывозащищенном исполнении	54 54
10.3	Адапта		40		взрывозащищенном исполнении	54
10.3	Адапта технол	ация прибора к условиям	40		взрывозащищенном исполнении Запасные части	54 55
10.3	Адапта технол 10.3.1	ация прибора к условиям погического процесса	40 40	13.3	взрывозащищенном исполнении	54 55 55
10.3 10.4	Адапта технол 10.3.1 10.3.2	ация прибора к условиям когического процесса	40 40 41	13.3 13.4	взрывозащищенном исполнении	54 55 55 55
	Адапта технол 10.3.1 10.3.2 Технол	ация прибора к условиям когического процесса Определение предельного уровня	40 40 41 42	13.3 13.4	взрывозащищенном исполнении	54 55 55 55
	Адапта технол 10.3.1 10.3.2 Технол 10.4.1	ация прибора к условиям погического процесса	40 40 41 42 42	13.3 13.4 13.5	взрывозащищенном исполнении	54 55 55 55 55
10.4	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2	ация прибора к условиям погического процесса	40 40 41 42 42	13.3 13.4 13.5 14	взрывозащищенном исполнении	54 55 55 55 55
	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц	ация прибора к условиям когического процесса	40 40 41 42 42 42	13.3 13.4 13.5 14	взрывозащищенном исполнении	54 55 55 55 55
10.4	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц	ация прибора к условиям погического процесса	40 40 41 42 42	13.3 13.4 13.5 14	взрывозащищенном исполнении	54 55 55 55 55
10.4 10.5	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI	ация прибора к условиям погического процесса	40 40 41 42 42 42	13.3 13.4 13.5 14 14.1	взрывозащищенном исполнении	54 55 55 55 55
10.4	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI	ация прибора к условиям погического процесса	40 40 41 42 42 42 42	13.3 13.4 13.5 14 14.1	взрывозащищенном исполнении	54 55 55 55 55 55
10.4 10.5	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI	ация прибора к условиям погического процесса	40 40 41 42 42 42 42	13.3 13.4 13.5 14 14.1 14.2	взрывозащищенном исполнении	54 55 55 55 55 55
10.4 10.5 11	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI	ация прибора к условиям когического процесса	40 40 41 42 42 42 42	13.3 13.4 13.5 14 14.1 14.2 14.3	взрывозащищенном исполнении	54 55 55 55 55 55
10.4 10.5	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI Диаги неиси Устран	ация прибора к условиям погического процесса	40 40 41 42 42 42 42	13.3 13.4 13.5 14 14.1 14.2 14.3 14.4	взрывозащищенном исполнении	54 55 55 55 55 55 55
10.4 10.5 11	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI Диаги Неиси Устран характ	ация прибора к условиям погического процесса	40 40 41 42 42 42 42 42 43	13.3 13.4 13.5 14 14.1 14.2 14.3 14.4 14.5	взрывозащищенном исполнении	54 55 55 55 55 55 55 55
10.4 10.5 11	Адапта технол 10.3.1 10.3.2 Технол 10.4.1 10.4.2 Функц SIL/WI Диаги Неиси Устран характ	ация прибора к условиям погического процесса	40 40 41 42 42 42 42 42 43	13.3 13.4 13.5 14 14.1 14.2 14.3 14.4 14.5	взрывозащищенном исполнении	54 55 55 55 55 55 55 55

14.7	условиях высокого давления	58
15	Технические характеристики	60
15.1	Вход	60
	15.1.1 Измеряемая величина	60
	15.1.2 Диапазон измерения	60
15.2	Выход	60
	15.2.1 Выходной сигнал	60
	15.2.2 Сигнал при сбое	60
	15.2.3 4 до 20 мА пассивн., HART	61
	15.2.4 Демпфирование	61
	15.2.5 Релейный выход	61
	15.2.6 Данные по взрывозащищенному	
	подключению	62
	15.2.7 Данные протокола	62
	15.2.8 Данные беспроводной передачи	
	HART	63
	15.2.9 Heartbeat Technology	63
15.3	Условия окружающей среды	63
	15.3.1 Диапазон температуры	
	окружающей среды	63
	15.3.2 Температура хранения	64
	15.3.3 Влажность	64
	15.3.4 Рабочая высота	65
	15.3.5 Климатический класс	65
	15.3.6 Степень защиты	65
	15.3.7 Вибростойкость	65
	15.3.8 Ударопрочность	65
	15.3.9 Механическая нагрузка	65
	15.3.10 Степень загрязнения	66
	15.3.11 Электромагнитная совместимость	
	(ЭMC)	66
15.4	Параметры технологического процесса	66
	15.4.1 Диапазон рабочей температуры	66
	15.4.2 Термический удар	66
	15.4.3 Рабочий диапазон	66
	15.4.4 Предел избыточного давления	67
	15.4.5 Плотность технологической среды	67
	15.4.6 Вязкость	
	15.4.7 Герметичность под давлением	
	15.4.8 Содержание твердых веществ	68
15.5	Дополнительные технические	
	характеристики	68
Алфа	авитный указатель	69

1 Об этом документе

1.1 Назначение документа

Настоящее руководство по эксплуатации содержит информацию, необходимую на различных стадиях срока службы прибора: начиная с идентификации изделия, приемки и хранения, монтажа, подключения, ввода в эксплуатацию, эксплуатации и завершая устранением неисправностей, техническим обслуживанием и утилизацией.

1.2 Условные обозначения

1.2.1 Символы техники безопасности

Α ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

1.2.2 Электротехнические символы

<u> </u>
 ∃аземление

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

1.2.3 Символы для обозначения инструментов

🌓 🥢 Отвертка с плоским наконечником

🔾 🥒 Шестигранный ключ

У Рожковый гаечный ключ

1.2.4 Специальные символы связи

Bluetooth

Беспроводная передача данных между приборами на короткое расстояние.

1.2.5 Описание информационных символов

✓ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Запрещено

Означает запрещенные процедуры, процессы или действия.

Рекомендация

Указывает на дополнительную информацию.

- 📵 Ссылка на документацию
- 🖺 Ссылка на другой раздел
- 1., 2., 3. Серия шагов

1.2.6 Символы на рисунках

А, В, С... Вид

1, 2, 3 ... Номера пунктов

🛦 Взрывоопасная зона

🔉 Безопасная зона (невзрывоопасная зона)

1.2.7 Зарегистрированные товарные знаки

HART®

Зарегистрированный товарный знак FieldComm Group, Остин, Техас, США.

Bluetooth®

Тестовый символ и логотипы $Bluetooth^{@}$ являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

Apple[®]

Apple, логотип Apple, iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Android, Google Play и логотип Google Play – товарные знаки Google Inc.

2 Основные указания по технике безопасности

2.1 Требования к персоналу

Персонал должен соответствовать следующим требованиям для выполнения возложенной задачи, напри мер, ввода в эксплуатацию или технического обслуживания.

- ► Прошедшие обучение квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ▶ Изучить инструкции данного руководства и сопроводительной документации.
- Следовать инструкциям и соблюдать условия.

2.2 Назначение

- Используйте прибор только для жидкостей.
- Использование не по назначению сопряжено с опасностью.
- При эксплуатации следите за тем, чтобы в измерительном приборе не было дефектов.
- Используйте прибор только для тех сред, к воздействию которых смачиваемые части прибора достаточно устойчивы.
- Не допускайте нарушения верхних и нижних предельных значений для прибора.
 - 🗎 Подробные сведения см. в разделе «Технические характеристики».
 - 📵 См. техническую документацию.

2.2.1 Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Остаточные риски

В результате теплообмена в ходе технологического процесса температура корпуса электроники и модулей, содержащихся в датчике, может подниматься до $80 \, ^{\circ}$ C (176 $^{\circ}$ F).

Опасность ожогов при соприкосновении с поверхностями!

▶ При необходимости следует обеспечить защиту от прикосновения, чтобы предотвратить ожоги.

В отношении требований, касающихся функциональной безопасности в соответствии со стандартом МЭК 61508, необходимо соблюдать положения соответствующей документация SIL.

2.3 Техника безопасности на рабочем месте

При работе с прибором

► В соответствии с федеральным/национальным законодательством персонал должен использовать средства индивидуальной защиты.

2.4 Эксплуатационная безопасность

Опасность несчастного случая!

- ► Эксплуатируйте только такой прибор, который находится в надлежащем техническом состоянии, без ошибок и неисправностей.
- ▶ Ответственность за обеспечение работы прибора без помех несет оператор.

Модификации прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность.

► Если, несмотря на это, все же требуется внесение изменений в конструкцию прибора, обратитесь в компанию Endress+Hauser.

Ремонт

Условия длительного обеспечения эксплуатационной безопасности и надежности

- ▶ Выполняйте ремонт прибора только в том случае, если это явно разрешено.
- ► Соблюдайте федеральное/национальное законодательство в отношении ремонта электрических приборов.
- ► Используйте только оригинальные запасные части и комплектующие производства компании Endress+Hauser.

Взрывоопасная зона

Во избежание травмирования сотрудников предприятия при использовании прибора во взрывоопасной зоне (например, со взрывозащитой), необходимо соблюдать следующие правила.

- Определите по заводской табличке, пригоден ли заказанный прибор для использования во взрывоопасной зоне.
- Учитывайте характеристики, приведенные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства.

2.5 Безопасность изделия

Описываемый прибор разработан в соответствии с современными требованиями к безопасной работе, был испытан и поставляется с завода в безопасном для эксплуатации состоянии.

Прибор соответствует применимым стандартам и нормам. Кроме того, прибор отвечает требованиям нормативных документов ЕС, перечисленных в Декларации соответствия ЕС в отношении приборов. Компания Endress+Hauser подтверждает это, нанося маркировку СЕ на прибор.

2.6 Функциональная безопасность, SIL (опционально)

В отношении приборов, которые используются для обеспечения функциональной безопасности, необходимо строгое соблюдение требований руководства по функциональной безопасности.

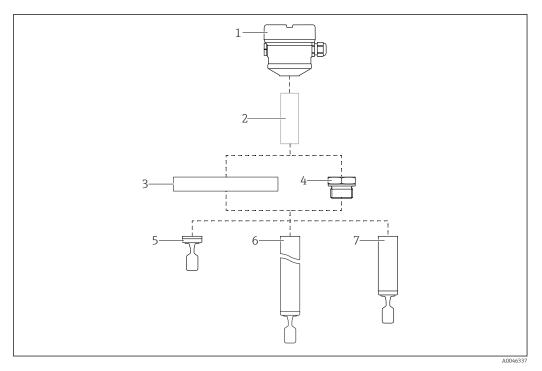
2.7 ІТ-безопасность

Гарантия на прибор действует только в том случае, если его установка и использование производятся согласно инструкциям, изложенным в руководстве по эксплуатации. В прибор встроены защитные механизмы, предотвращающие случайное изменение настроек пользователями.

Обеспечьте дополнительную защиту прибора и передачи данных с прибора/на прибор

▶ Меры IT-безопасности, определенные в собственной политике безопасности владельца/оператора установки, должны осуществляться самим владельцем/ оператором установки.

2.8 IT-безопасность прибора


В приборе реализованы специальные функции для поддержки защитных мер, принимаемых оператором. Эти функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность. Обзор наиболее важных функций приведен в следующем разделе.

- Защита от записи посредством аппаратного переключателя
- Код доступа (действует для управления посредством дисплея, интерфейса Bluetooth или ПО FieldCare, DeviceCare, AMS, PDM)

3 Описание изделия

Датчик предельного уровня для любых жидкостей, для определения минимального или максимального уровня в баках, резервуарах и трубопроводах.

3.1 Конструкция изделия

🖪 1 Конструкция изделия

- 1 Корпус с электронной вставкой и крышкой
- 2 Температурная проставка, герметичное уплотнение (опционально)
- 3 Технологическое соединение с фланцем
- 4 Технологическое соединение с резьбой
- 5 Компактное исполнение зонда с вибрационной вилкой
- 6 Зонд на удлинительной трубке с вибрационной вилкой
- 7 Зонд на короткой трубке с вибрационной вилкой

4 Приемка и идентификация изделия

4.1 Приемка

При приемке прибора проверьте следующее.

- \square Совпадает ли код заказа в транспортной накладной с кодом заказа на наклейке прибора?
- □ Не поврежден ли прибор?
- □ Совпадают ли данные, указанные на заводской табличке прибора, с данными заказа в транспортной накладной?
- □ Если это необходимо (см. данные на заводской табличке), предоставлены ли указания по технике безопасности, например XA?
- Если хотя бы одно из этих условий не выполнено, обратитесь в офис продаж компании-изготовителя.

4.2 Идентификация изделия

Существуют следующие варианты идентификации прибора:

- Данные, указанные на заводской табличке
- Расширенный код для заказа с разбивкой по характеристикам прибора, указанный в накладной
- Ввод серийного номера с заводской таблички в программу W@M Device Viewer www.endress.com/deviceviewer. Будет представлена полная информация об измерительном приборе вместе со списком прилагающейся технической документации.
- Ввод серийного номера с заводской таблички в приложение Endress+Hauser Operations или сканирование двухмерного штрих-кода с заводской таблички с помощью приложения Endress+Hauser Operations

4.2.1 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору. Состав этой информации указан ниже.

- Данные изготовителя
- Код заказа, расширенный код заказа, серийный номер
- Технические характеристики, степень защиты
- Версии программного обеспечения и аппаратной части
- Информация, связанная с сертификатами, ссылка на указания по технике безопасности (XA)
- Двухмерный штрих-код (информация о приборе)

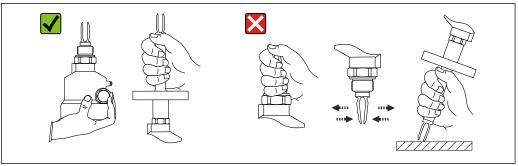
4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

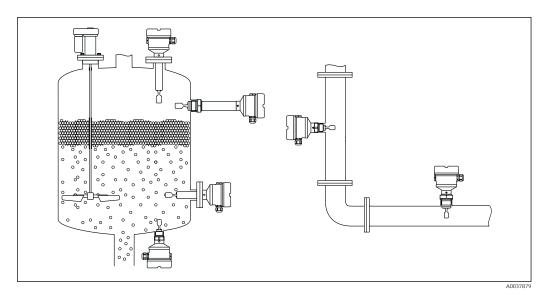

Используйте оригинальную упаковку.

Температура хранения

```
-40 до +80 °C (-40 до +176 °F)
Опционально: -50 °C (-58 °F), -60 °C (-76 °F)
```

4.3.2 Транспортировка прибора

- Транспортируйте прибор к месту измерения в оригинальной упаковке.
- Держите прибор за корпус, температурную проставку, фланец или удлинительную трубу.
- Не сгибайте, не укорачивайте и не удлиняйте вибрационную вилку.


🗷 2 Удерживание прибора во время транспортировки

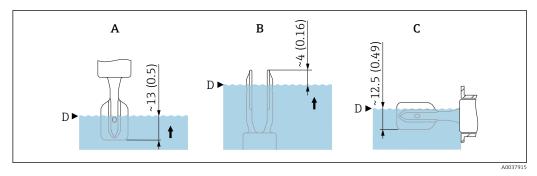
A0034846

5 Монтаж

Руководство по монтажу

- Для прибора с трубкой длиной прибл. до 500 мм (19,7 дюйм) допустима любая ориентация
- Для прибора с длинной трубкой вертикальная ориентация, сверху
- Минимально допустимое расстояние между вибрационной вилкой и стенкой резервуара или трубы: 10 мм (0,39 дюйм)

🗷 3 Примеры монтажа в резервуаре, баке или трубопроводе


5.1 Требования к монтажу

5.1.1 Учитывайте точку переключения прибора

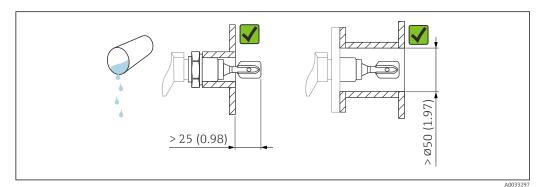
Ниже приведены стандартные точки переключения в зависимости от ориентации датчика предельного уровня.

Вода +23 °C (+73 °F)

Минимальное расстояние между вибрационной вилкой и стенкой резервуара или трубы: 10 мм (0,39 дюйм)

- 🗉 4 Стандартные точки переключения. Единица измерения мм (дюйм)
- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку
- D Точка переключения

5.1.2 Учет вязкости

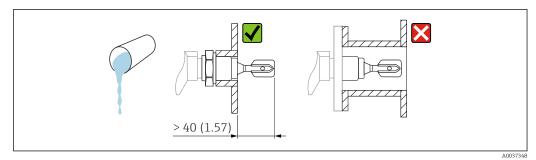

🚹 Значения вязкости

■ Низкая вязкость: < 2 000 мПа·с

Высокая вязкость: > 2 000 до 10 000 мПа·с

Низкая вязкость

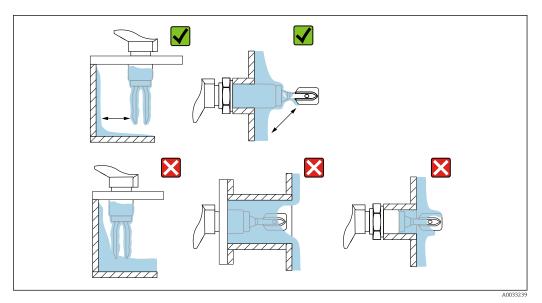
Низкая вязкость, например вода: <2 000 мПа·с. Возможна установка вибрационной вилки в монтажном патрубке.


🗉 5 Пример монтажа для жидкостей с низкой вязкостью. Единица измерения мм (дюйм)

Высокая вязкость

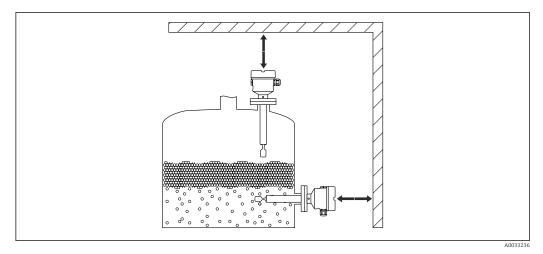
УВЕДОМЛЕНИЕ

Жидкости с высокой вязкостью могут провоцировать задержку переключения.


- Убедитесь в том, что жидкость может легко стекать с вибрационной вилки.
- ▶ Зачистите поверхность патрубка.
- Высокая вязкость, например вязкие масла: ≤ 10 000 мПа·с.
 Вибрационная вилка не должна устанавливаться в монтажном патрубке!

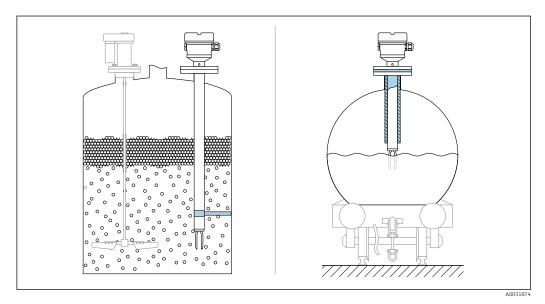
🖩 6 Пример монтажа для жидкостей с высокой вязкостью. Единица измерения мм (дюйм)

5.1.3 Защита от образования налипаний


- Используйте короткие монтажные патрубки, чтобы обеспечить свободное размещение вибрационной вилки в резервуаре.
- Предусмотрите достаточное расстояние между ожидаемыми налипаниями на стенке резервуара и вибрационной вилкой.

🗷 7 Примеры монтажа в технологической среде с высокой вязкостью

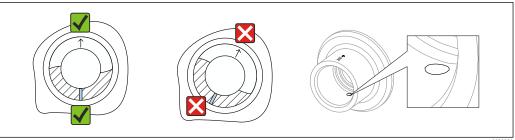
5.1.4 Предусмотрите свободное пространство


Оставьте достаточное место снаружи резервуара для монтажа, подсоединения и настройки с использованием электронной вставки.

🗷 8 Предусмотрите свободное пространство

5.1.5 Обеспечение опоры прибора

При наличии интенсивной динамической нагрузки необходимо обеспечить опору прибора. Максимально допустимая боковая нагрузка на трубные удлинители и датчики: 75 Нм (55 фунт сила фут).



🗷 9 Примеры обеспечения опоры при динамической нагрузке

Морской сертификат: для удлинительных трубок или датчиков длиной более 1600 мм (63 дюйм) опоры необходимо обеспечить по крайней мере через каждые 1600 мм (63 дюйм).

5.1.6 Сварной переходник с отверстием для утечек

Приварите переходник таким образом, чтобы отверстие для утечек было направлено вниз. Это позволит быстро обнаруживать любую утечку.

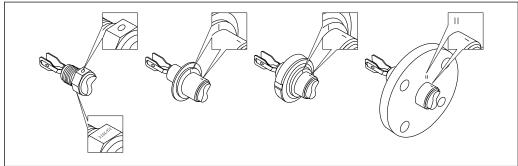
🗷 10 Сварной переходник с отверстием для утечек

A003923

5.2 Монтаж прибора

5.2.1 Требуемый инструмент

- Рожковый гаечный ключ для монтажа датчика
- Шестигранный ключ для работы со стопорным винтом корпуса

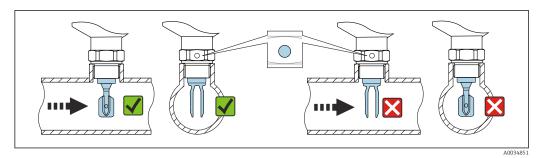

5.2.2 Монтаж

Выравнивание вибрационной вилки с помощью маркировки

Вибрационную вилку можно выровнять с помощью маркировки таким образом, чтобы технологическая среда легко огибала вилку, не оставляя налипаний.

Маркировка на технологическом соединении:

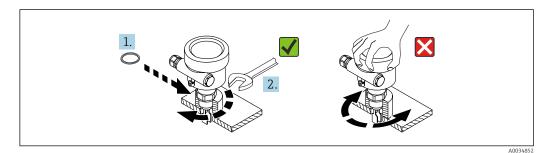
Спецификация материала, обозначение резьбы, окружность, линия или двойная линия



A003912

Положение вибрационной вилки при горизонтальном монтаже в резервуаре с помощью маркировки

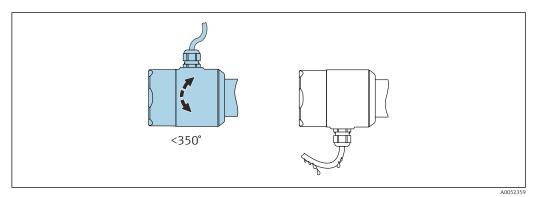
Монтаж прибора в трубопроводе


- Скорость потока до 5 м/с при вязкости 1 мПа·с и плотности 1 g/cm³ (62,4 lb/ft³) (SGU).
 - При других условиях технологической среды следует проверить правильность работы.
- У потока среды не будет существенных преград, если вибрационная вилка будет правильно сориентирована, а отметка будет направлена в направлении потока.
- Маркировка видна, когда прибор установлен

🖪 12 — Монтаж в трубопроводе (следует учитывать положение вилки и маркировку)

Прикручивание прибора

- Поворачивайте прибор только за шестигранную часть, 15 до 30 Нм (11 до 22 фунт сила фут)
- Не вращайте за корпус!

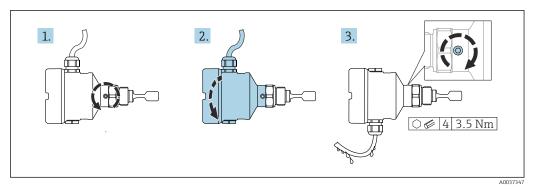

🖪 13 Прикручивание прибора

Выравнивание кабельного ввода

Любой корпус можно выравнивать.

Корпус без стопорного винта

Корпус прибора можно поворачивать на угол до 350°.



🛮 14 Корпус без стопорного винта с ниспадающей каплеуловительной кабельной петлей

Корпус со стопорным винтом

🤁 Корпуса со стопорным винтом:

- Чтобы повернуть корпус и выровнять кабель, можно использовать стопорный винт.
- При поставке прибора стопорный винт не затянут.

🗷 15 👚 Корпус с наружным стопорным винтом и ниспадающей каплеуловительной кабельной петлей

- 1. Ослабьте наружный стопорный винт (максимум на 1,5 оборота).
- 2. Поверните корпус, выровняйте положение кабельного ввода.
 - → Не допускайте попадания влаги в корпус, сделайте петлю, чтобы влага могла стекать.
- 3. Прикрутите стопорный винт.

Поворот корпуса

Корпус можно развернуть на угол до 380°, ослабив стопорный винт.

УВЕДОМЛЕНИЕ

Корпус невозможно отвернуть полностью.

- ▶ Ослабьте наружный стопорный винт не более чем на 1,5 оборота. Если винт вывернуть слишком далеко или полностью (за пределы точки входа резьбы), мелкие детали (контрдиск) могут ослабнуть и выпасть.
- ▶ Затяните крепежный винт (с шестигранным гнездом 4 мм (0,16 дюйм)) моментом не более 3,5 Нм (2,58 фунт сила фут)±0,3 Нм (±0,22 фунт сила фут).

Закрытие крышек корпуса

УВЕДОМЛЕНИЕ

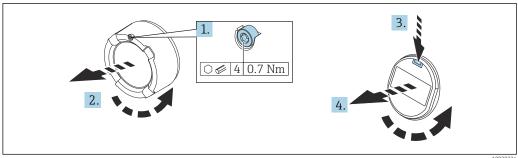
Повреждение резьбы и крышки корпуса вследствие загрязнения!

- ▶ Удаляйте загрязнения (например, песок) с резьбы крышек и корпуса.
- **Е**сли при закрытии крышки все же ощущается сопротивление, повторно проверьте резьбу на наличие загрязнений.

🚹 Резьба корпуса

На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:


Поворот дисплея

№ ОСТОРОЖНО

Электропитание включено!

Опасность поражения электрическим током и/или взрыва!

▶ Прежде чем вскрыть прибор, отключите сетевое напряжение.

- 1. Если имеется: ослабьте винт фиксатора крышки отсека электроники с помощью шестигранного ключа.
- 2. Отверните крышку корпуса и обследуйте уплотнение крышки.
- 3. Отожмите блокировочный механизм и снимите дисплей.
- 4. Поверните дисплей в необходимое положение: не более 4 × 90° в каждом направлении. Разместите дисплей в необходимом положении и вдавите до щелчка. Плотно заверните крышку на корпус. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут) ± 0.2 Нм (± 0.15 фунт сила фут).
- Если прибор оснащен корпусом с двумя отсеками, то дисплей можно установить как в отсеке для электроники, так и в клеммном отсеке.

5.3 Скользящие муфты

🖺 Подробные сведения см. в разделе «Аксессуары».

5.4 Проверка после монтажа

- □ Не поврежден ли прибор (внешний осмотр)?
- □ Соответствует ли измерительный прибор требованиям точки измерения?

Примеры

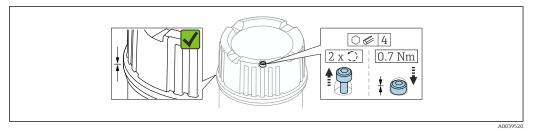
- Рабочая температура
- Рабочее давление
- Температура окружающей среды
- Диапазон измерения
- 🗆 Правильно ли выполнена маркировка и идентификация точки измерения (внешний осмотр)?
- 🗆 В достаточной ли мере прибор защищен от влаги и прямых солнечных лучей?
- □ Надежно ли закреплен датчик?

Электрическое подключение 6

6.1 Требуемый инструмент

- Отвертка для электрического подключения
- Шестигранный ключ для стопорного винта крышки

6.2 Требования, предъявляемые к подключению

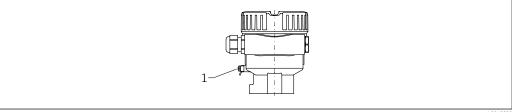

6.2.1 Крышка с крепежным винтом

В приборах, предназначенных для использования во взрывоопасных зонах с определенной степенью взрывозащиты, крышка фиксируется крепежным винтом.

УВЕДОМЛЕНИЕ

Если стопорный винт расположен ненадлежащим образом, надежная герметизация крышки не будет обеспечена.

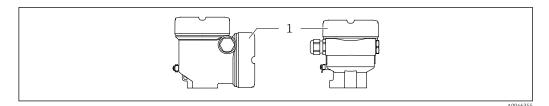
- Откройте крышку: ослабьте стопорный винт крышки не более чем на 2 оборота, чтобы винт не выпал. Установите крышку и проверьте уплотнение крышки.
- Закройте крышку: плотно заверните крышку на корпус и убедитесь в том, что стопорный винт расположен должным образом. Между крышкой и корпусом не должно быть зазора.


🗷 16 Крышка с крепежным винтом

6.2.2 Выравнивание потенциалов

▲ ОСТОРОЖНО

Опасность взрыва!


► Указания по технике безопасности при использовании прибора во взрывоопасных зонах приведены в отдельной документации.

A0045830

- 1 Клемма заземления для подключения линии выравнивания потенциалов
- При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления преобразователя до подключения прибора.
- Пля обеспечения оптимальной электромагнитной совместимости выполните следующие условия:
 - Длина линии выравнивания потенциалов должна быть минимально возможной
 - Соблюдайте поперечное сечение не менее 2,5 мм² (14 AWG)

6.3 Подключение прибора

Крышка клеммного отсека

🞴 Резьба корпуса

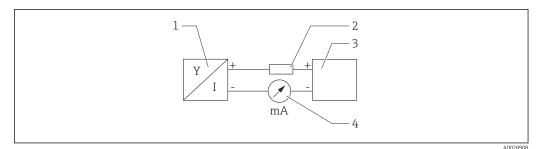
На резьбу отсека для электроники и клеммного отсека может быть нанесено антифрикционное покрытие.

Следующее указание относится ко всем материалам корпуса:

№ Не смазывайте резьбу корпуса.

6.3.1 Сетевое напряжение

- U = 10,5 до 35 В пост. тока (Ex d, Ex e, для невзрывоопасных зон)
- U = 10,5 до 30 В пост. тока (Ex i)
- Номинальный ток: 4 до 20 мА HART
- Блок питания должен быть испытан на соответствие требованиям безопасности (например, PELV, SELV, класс 2) и соответствовать спецификациям протокола.
 - Соблюдайте следующие требования в соответствии со стандартом МЭК/EN61010-1: предусмотрите подходящий для прибора автоматический выключатель.


6.3.2 Клеммы

- Сетевое напряжение и внутренняя клемма заземления: 0,5 до 2,5 мм² (20 до 14 AWG)
- Наружная клемма заземления: 0,5 до 4 мм² (20 до 12 AWG)

6.3.3 Технические характеристики кабеля

- Наружный диаметр кабеля зависит от используемого кабельного ввода
- Наружный диаметр кабеля
 - Пластмасса: Ø5 до 10 мм (0,2 до 0,38 дюйм)
 - Никелированная латунь: Ø7 до 10,5 мм (0,28 до 0,41 дюйм)
 - Нержавеющая сталь: Ø7 до 12 мм (0,28 до 0,47 дюйм)

6.3.4 4 до 20 мА HART

🖪 17 — Блок-схема подключения HART

- 1 Прибор с интерфейсом связи HART
- 2 Резистор связи НАRT
- 3 Источник питания
- 4 Мультиметр или амперметр

Резистор связи HART 250 Ом в сигнальной линии необходим на случай источника питания с полным сопротивлением.

Учтите падение напряжения:

не более 6 В для резистора связи 250 Ом

6.3.5 Защита от перенапряжения

Приборы без дополнительной защиты от перенапряжения

Изделия, изготавливаемые компанией Endress+Hauser, отвечают требованиям производственного стандарта MЭK/DIN EN 61326-1 (таблица 2 «Промышленное оборудование»).

В зависимости от типа порта (порт питания постоянного тока, порт ввода/вывода) согласно стандарту МЭК/DIN EN 61326-1 проводятся испытания на переходное перенапряжение (скачки) разных уровней (МЭК/DIN EN 61000-4-5): уровень испытания портов питания постоянного тока и портов ввода/вывода составляет 1000 В (между линией и заземлением).

Приборы с дополнительной защитой от перенапряжения

- Напряжение пробоя: не менее 400 В пост. тока.
- Испытание проводится согласно стандарту МЭК/DIN EN 60079-14, подпункт 12.3 (МЭК/DIN EN 60060-1, глава 7).
- Номинальный ток разряда: 10 кА.

Категория перенапряжения

Категория перенапряжения II

Степень загрязнения

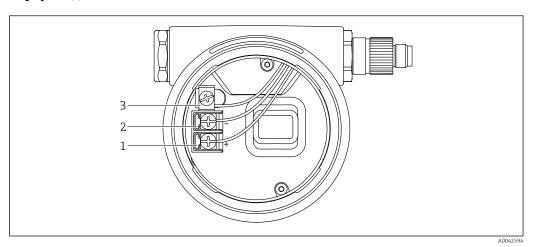
Степень загрязнения 2

6.3.6 Подключение проводки

▲ ОСТОРОЖНО

Возможно наличие сетевого напряжения!

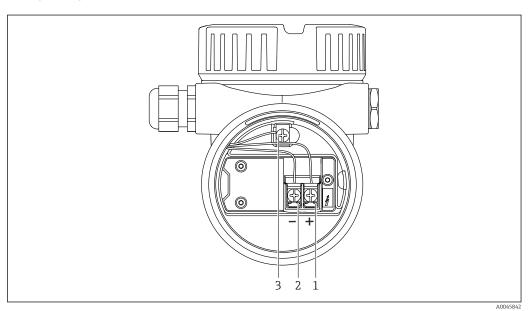
Опасность поражения электрическим током и/или взрыва!


- ► Если прибор используется во взрывоопасной зоне, необходимо обеспечить его соответствие национальным стандартам и требованиям, приведенным в документации по технике безопасности (ХА). Необходимо использовать штатные кабельные уплотнения.
- Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- ► При необходимости линия выравнивания потенциалов может быть подключена к внешней клемме заземления преобразователя до подключения прибора.
- Согласно стандарту МЭК/EN 61010 прибор должен быть оснащен автоматическим выключателем.
- ► Кабели должны быть надлежащим образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте прибор только с закрытыми крышками.

Подключите прибор в следующем порядке.

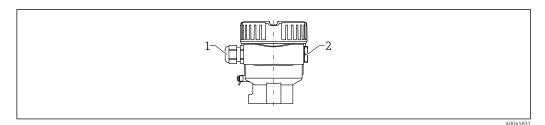
- 1. Высвободите фиксатор крышки (при наличии).
- 2. Отверните крышку.
- 3. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы. Используйте инструмент, пригодный для работы с кабельными уплотнениями M20 (размер под ключ AF24/25 (8 Нм (5,9 фунт сила фут))).
- 4. Подключите кабель.
- 5. Затяните кабельные уплотнения или кабельные вводы, чтобы загерметизировать их. Закрепите ввод в корпус контргайкой.
- 6. Плотно заверните крышку присоединительного отсека.
- 7. Если имеется: затяните фиксатор крышки шестигранным ключом 0,7 Нм (0,52 фунт сила фут)±0,2 Нм (0,15 фунт сила фут).

6.3.7 Назначение клемм


Корпус с одним отсеком

🗷 18 Соединительные клеммы и клемма заземления в клеммном отсеке

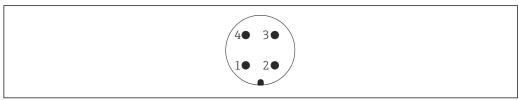
- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления


Корпус с двумя отсеками, L-образной формы

🗷 19 Соединительные клеммы и клемма заземления в клеммном отсеке

- 1 Плюсовая клемма
- 2 Минусовая клемма
- 3 Внутренняя клемма заземления

6.3.8 Кабельные вводы


- 1 Кабельный ввод
- 2 Заглушка

Тип кабельного ввода зависит от заказанного исполнения прибора.

6.3.9 Имеющиеся разъемы

🚹 Если прибор оснащен разъемом, то вскрывать корпус для подключения не нужно.

Разъем М12

A00111

- 20 Назначение контактов разъема M12
- 1 Сигнал +
- 2 Не используется
- 3 Сигнал -
- 4 Заземление

🖺 Подробные сведения см. в разделе "Аксессуары".

6.4 Обеспечение требуемой степени защиты

6.4.1 Степень защиты

Испытание согласно стандартам IEC 60529 и NEMA 250

Условие испытания согласно IP68: 1,83 м H₂O для 24 ч

Корпус

См. кабельные вводы

Кабельные вводы

- Резьбовое соединение M20, пластмасса, IP66/68, NEMA, тип 4X/6P
- Резьбовое соединение M20, никелированная латунь, IP66/68, NEMA, тип 4X/6P
- Резьбовое соединение M20, сталь 316L, IP66/68, NEMA, тип 4X/6P
- Резьба М20, IP66/68, NEMA, тип 4X/6Р
- Резьба G ½, NPT ½, IP66/68, NEMA, тип 4XXX

Степень защиты для разъема М12

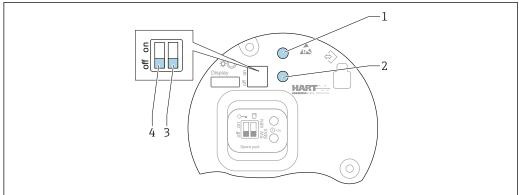
- Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X
- Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- Если в качестве электрического подключения выбран вариант «разъем M12», то для корпусов всех типов действительна степень защиты **IP66/67 NEMA, тип 4X**.

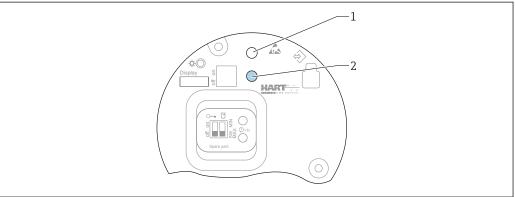
6.5 Проверка после подключения


🗆 Прибор и кабели не повреждены (визуальный контроль)?
□ Используемые кабели соответствуют предъявляемым требованиям?
□ Кабели уложены должным образом (без натяжения)?
□ Кабельные уплотнения смонтированы и плотно затянуты?
□ Напряжение питания соответствует техническим характеристикам, указанным на заводской табличке?
□ Нет обратной полярности, соблюдено ли назначение клемм?
🗆 Все крышки корпуса установлены и плотно затянуты?
🗆 Опционально: крышки затянуты с использованием стопорного винта?

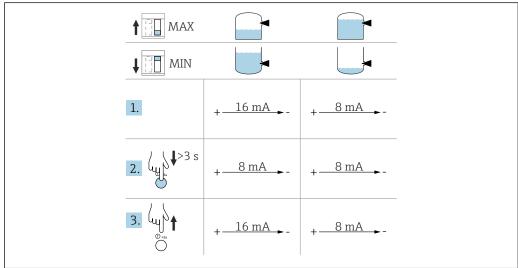
7 Опции управления

7.1 Обзор опций управления

- Управление с помощью кнопок управления и DIP-переключателей на электронной вставке
- Управление с помощью сенсорных кнопок управления на дисплее прибора (опционально)
- Управление через беспроводную технологию Bluetooth® (при наличии опционального дисплея прибора с модулем Bluetooth) посредством приложения SmartBlue, коммуникатора FieldXpert или ПО DeviceCare
- Управление с помощью управляющей программы (Endress+Hauser FieldCare/ DeviceCare, портативный терминал, AMS, PDM и т. п.)


7.2 Электронная вставка FEL60H

A0046129


- 21 Кнопки управления и DIP-переключатель на электронной вставке FEL60H
- 1 Кнопка управления для сброса пароля (используемого для входа в систему через интерфейс Bluetooth, а также для уровня доступа Техническое обслуживание)
- 1+2 Кнопки управления для сброса параметров прибора (в состояние на момент поставки)
- 2 Кнопка управления для запуска функции мастер "Функциональный тест"(> 3 с)
- 3 DIP-переключатель для функции обеспечения безопасности. Эта функция определяется программным обеспечением (при положении переключателя SW по умолчанию установлен вариант MAX, т. е. контроль максимального уровня) или аппаратно, для контроля минимального уровня (MIN). При нахождении переключателя в положении SW настройка MIN или MAX определяется программным обеспечением. Значение по умолчанию MAX. Если переключатель находится в положении MIN, то осуществляется контроль минимального уровня, независимо от настройки программного обеспечения.
- 4 DIP-переключатель для блокирования и разблокирования прибора
- Токовая защита при минимальном/максимальном уровне жидкости может быть включена с помощью электронной вставки.
- MAX = безопасность для максимального уровня: выход переключается в режим управляющего воздействия, если вибрационная вилка покрыта жидкостью.
 Функция используется, например, для защиты от перелива.
- MIN = безопасность для минимального уровня: выход переключается в режим управляющего воздействия, если вибрационная вилка не покрыта жидкостью.
 Функция используется, например, для защиты насосов от работы всухую.
- Настройка, выполняемая DIP-переключателями на электронной вставке, приоритетна по сравнению с настройкой, выполняемой другими средствами управления (например, ПО FieldCare/DeviceCare).

7.3 Выполнение функционального теста с помощью кнопки управления на электронной вставке

A004657

- 🖻 22 Кнопки управления на электронной вставке FEL60H
- 1 Кнопка управления для сброса пароля
- 2 Кнопка управления для запуска функционального теста (> 3 с)
- При проведении функционального теста в защитной системе с измерительными приборами по правилам SIL или WHG необходимо соблюдать инструкции, приведенные в руководстве по обеспечению безопасности.

A004650

- 1. Следите за тем, чтобы не происходили нежелательные операции переключения!
 - Функциональный тест необходимо проводить в отношении исправного прибора: защитный режим МАХ при датчике, не покрытом средой, и защитный режим МІN при датчике, покрытом средой.
- 2. На электронной вставке нажмите кнопку управления, предназначенную для запуска функционального теста, и удерживайте ее не менее 3 с.
 - □ Выполняется функциональная проверка прибора.
 Выходной сигнал меняется с исправного состояния на состояние управляющего запроса.
- 3. Отпустите кнопку управления.
 - ► Если внутренний тест пройден, прибор возвращается в нормальный режим работы.

Длительность функциональной проверки: не менее 10 с или (если кнопка удерживается нажатой дольше 10 с) до отпускания кнопки.

Если корпус нельзя вскрывать во время эксплуатации согласно требованиям взрывозащиты, например Ex d /XP, то функциональный тест можно запустить через один из интерфейсов связи (HART, CDI, Bluetooth) посредством соответствующей управляющей программы (FieldCare, DeviceCare, SmartBlue, AMS, PDM и т. п.).

7.4 Структура и функции меню управления

Различия между структурами меню управления локального дисплея и управляющих программ Endress+Hauser FieldCare или DeviceCare можно суммировать следующим образом.

Локальный дисплей пригоден для настройки в простых условиях применения.

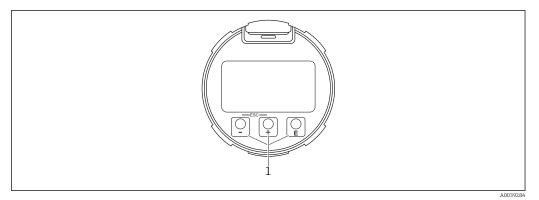
Управляющие программы (FieldCare, DeviceCare, SmartBlue, AMS, PDM и пр.) можно использовать для настройки параметров в самых разнообразных обстоятельствах.

Мастер настройки помогает пользователю ввести прибор в эксплуатацию в различных условиях применения. Пользователь получает рекомендации на различных этапах настройки.

7.4.1 Уровни доступа и соответствующая авторизация

Если для прибора задан определенный код доступа, то для пользователей двух уровней доступа, **Оператор** и **Техническое обслуживание** (на момент поставки прибора), предусмотрены разные варианты доступа к параметрам для записи. Этот код доступа защищает настройку прибора от несанкционированного доступа.

При вводе недействительного кода доступа пользователь получает права доступа, соответствующие уровню **Оператор**.


7.5 Доступ к меню управления с локального дисплея

7.5.1 Дисплей прибора (опционально)

Воздействовать на оптические кнопки управления можно сквозь крышку. Вскрывать прибор для этого не требуется.

Функции

- Отображение измеренных значений, а также сообщений о неисправностях и уведомительных сообщений
- При обнаружении ошибки цвет подсветки дисплея меняется с зеленого на красный.
- Чтобы упростить управление, дисплей прибора можно снять.
- Подсветка включается или выключается в зависимости от сетевого напряжения и потребляемого тока.
- По заказу дисплей прибора может быть оснащен беспроводным интерфейсом Bluetooth®.

🗷 23 Графический дисплей с оптическими кнопками управления (1)

- Кнопка ±
 - Переход вниз в списке выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка 🖃
 - Переход вверх в списке выбора
 - Редактирование числовых значений или символов в пределах функции
- Кнопка
 - Переход от основного окна к главному меню
 - Подтверждение ввода
 - Переход к следующему пункту
 - Выбор пункта меню и активация режима редактирования
 - Блокирование/разблокирование работы дисплея
 - Нажмите и удерживайте кнопку ©, чтобы просмотреть краткое описание выбранного параметра (если оно есть)
- - Выход из режима редактирования параметра без сохранения измененного значения
 - Меню на уровне выбора: при одновременном нажатии кнопок происходит переход на один уровень выше в структуре меню.
 - Чтобы вернуться на более высокий уровень меню, нажмите кнопки одновременно и удерживайте их.

7.5.2 Управление через беспроводную технологию Bluetooth® (опционально)

Предварительное условие

- Прибор с дисплеем, оснащенным модулем Bluetooth
- Смартфон или планшет с приложением SmartBlue, разработанным компанией Endress+Hauser, или ПК с установленным ПО DeviceCare версии 1.07.05 или более совершенной версии; или коммуникатор FieldXpert SMT70

Радиус действия подключения—до 25 м (82 фут). Радиус действия варьируется в зависимости от условий окружающей среды, например конфигурации строительных конструкций, стен и потолков.

Кнопки управления на дисплее блокируются при подключении к прибору через интерфейс Bluetooth.

Мигающий символ Bluetooth указывает на то, что подключение по технологии Bluetooth доступно.

🚹 Обратите внимание на следующее.

Если дисплей с модулем Bluetooth снят с одного прибора и установлен на другой прибор:

- все данные для входа в систему сохраняются на дисплее с модулем Bluetooth, но не в приборе;
- пароль, измененный пользователем, также сохраняется в дисплее с модулем Bluetooth.

Управление с помощью приложения SmartBlue

Управлять прибором и настраивать его можно с помощью приложения SmartBlue.

- Для этого необходимо загрузить на мобильное устройство приложение SmartBlue.
- Информация о совместимости приложения SmartBlue с мобильными устройствами приведена в Apple App Store (устройства на базе IOS) или Google Play Store (устройства на базе Android).
- Неправильная эксплуатация не допущенными к ней лицами предотвращается благодаря шифрованию связи и парольной защите шифрования.
- Функция Bluetooth® может быть отключена после первоначальной настройки прибора.

A0033202

🖻 24 QR-код для бесплатного приложения Endress+Hauser SmartBlue

Загрузка и установка:

- 1. Отсканируйте QR-код или введите строку **SmartBlue** в поле поиска в Apple App Store (iOS) или Google Play Store (Android).
- 2. Установите и запустите приложение SmartBlue.
- 3. Для устройств на базе Android: включите функцию отслеживания местоположения (GPS) (не требуется для устройств на базе iOS).
- 4. Выберите устройство, готовое к приему, из отображаемого списка устройств.

Войдите в систему:

- 1. Введите имя пользователя: admin
- 2. Введите исходный пароль: серийный номер прибора
- 🤁 Смените пароль после первого входа.
- [Забыли пароль? Обратитесь в сервисный центр Endress+Hauser.

7.6 Доступ к меню управления с помощью управляющей программы

Доступ посредством управляющей программы возможен следующими методами.

- Через интерфейс связи HART, например посредством адаптера Commubox FXA195
- Через прибор, разработанный компанией Endress+Hauser, Commubox FXA291
 При помощи адаптера Commubox FXA291 можно установить подключение через интерфейс CDI между прибором и ПК/ноутбуком с ОС Windows и USB-портом

7.7 Управление данными с помощью модуля HistoROM

При замене электронной вставки передача сохраненных данных осуществляется путем подключения модуля HistoROM.

Серийный номер прибора сохраняется в модуле HistoROM. Серийный номер электроники сохраняется в модуле электроники.

8 Системная интеграция

8.1 Обзор файлов описания прибора

- Идентификатор изготовителя: 17 (0x11)
- Код типа прибора: 0x11C4
- Версия прибора: 1
- Спецификация HART: 7
- Версия файла DD: 1
- Информация о файлах описания прибора (DTM, DD) и сами файлы можно найти на веб-сайте:
 - www.endress.com
 - www.fieldcommgroup.org
- Нагрузка HART: не менее 250 Ом

8.2 Измеряемые переменные, передача которых возможна по протоколу HART

На заводе-изготовителе с переменными прибора сопоставляются следующие измеряемые значения.

Переменная прибора	Измеряемое значение
Параметр Первичная переменная (PV) (первичная переменная) $^{1)}$	Определение предельного уровня ²⁾
Параметр Вторичная переменная (SV) (вторичная переменная)	Частота датчика ³⁾

Переменная прибора	Измеряемое значение
Параметр Третичное значение измерения (TV) (третичная переменная)	Состояние вилки ⁴⁾
Параметр Четвертая переменная (QV) (четвертая переменная)	Температура датчика

- 1) Параметр **Первичная переменная (PV)** всегда выводится через токовый выход.
- Определение предельного уровня это исходное состояние, которое зависит от состояния вибрационной вилки (покрыта/не покрыта средой) и функции обеспечения безопасности (МІN/ MAX)
- 3) Частота датчика это частота колебаний вилки
- 4) Состояние вилки это состояние вилки (Вилка покрыта/Вилка не покрыта)
- Сопоставление измеряемых значений с переменными прибора можно изменить в следующем подменю.

Навигация: Применение \rightarrow Выход HART \rightarrow Выход HART

В контуре HART Multidrop только один прибор может использовать аналоговое значение тока для передачи сигнала. Для всех остальных приборов в пункте параметр Режим тока контура следует выбрать вариант опция Деактивировать.

Навигация: Применение ightarrow Выход HART ightarrow Конфигурация ightarrow Режим тока контура ightarrow опция **Деактивировать**

8.2.1 Переменные прибора и измеренные значения

На заводе-изготовителе переменным приборам присваиваются следующие коды.

Переменная прибора	Код переменной прибора
Определение предельного уровня	0
Частота датчика	1
Состояние вилки	2
Температура датчика	3
Ток на клеммах	5
Напряжение на клеммах	6

Переменные прибора могут быть поставлены в очередь ведущим устройством HART® с помощью команды HART® 9 или 33.

8.2.2 Системные единицы измерения

Частота колебаний указана в герцах. Отображение температуры возможно в $^{\circ}$ С, $^{\circ}$ F или К.

9 Ввод в эксплуатацию

9.1 Подготовка

▲ ОСТОРОЖНО

Настройки токового выхода важны для обеспечения безопасности!

Ошибочные настройки могут привести к переливу продукта или работе насоса всухую.

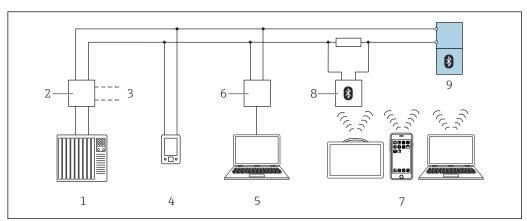
- ▶ Настройка токового выхода зависит от настройки параметра параметр Назначить PV.
- После изменения настройки токового выхода проверьте настройки диапазона (Нижнее выходное значение диапазона (НЗД) и Верхнее выходное значение диапазона (ВЗД)) и при необходимости скорректируйте их!

9.1.1 Состояние на момент поставки

Если не были заказаны индивидуальные настройки:

- параметр Назначить РV Определение предельного уровня (режим 8/16 мА)
- Отказоустойчивый режим МАХ
- Настроено условие выдачи аварийного сигнала не менее 3,6 мА
- DIP-переключатель для блокирования в положении OFF
- Интерфейс Bluetooth активирован
- Диапазон плотности > 0,7 g/cm³ (43,7 lb/ft³)
- Время переключения 0,5 с, если вибрационная вилка покрыта средой, и 1,0 с, если вилка не покрыта средой
- Пакетный режим HART отключен

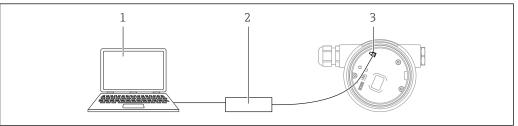
9.2 Монтаж и функциональная проверка


Перед вводом измерительной точки в эксплуатацию убедитесь в том, что были выполнены проверки после монтажа и подключения.

🖺 Проверка после монтажа

🖺 Проверка после подключения

Установление соединения с ПО FieldCare и 9.3 **DeviceCare**


9.3.1 Через протокол HART

Варианты дистанционного управления по протоколу HART

- ПЛК (программируемый логический контроллер)
- Блок питания преобразователя, например RN221N (с резистором связи)
- Подключение к Commubox FXA195 и Device Communicator AMS $Trex^{TM}$
- Device Communicator AMS TrexTM
- Компьютер с управляющей программой (например, DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- Commubox FXA195 (USB)
- Field Xpert SMT70/SMT77, смартфон или компьютер с управляющей программой (например, DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- Bluetooth-модем с соединительным кабелем (например, VIATOR)
- Преобразователь

9.3.2 ПО FieldCare/DeviceCare через сервисный интерфейс (CDI)

- Компьютер с управляющей программой FieldCare/DeviceCare
- Commubox FXA291
- Сервисный интерфейс (CDI) прибора (единый интерфейс доступа к данным Endress+Hauser)

Для обновления (прошивки) встроенного ПО прибора необходим ток силой не менее 22 мА.

9.4 Настройка адреса прибора программным методом

См. параметр **Адрес HART**.

Навигация: Применение → Выход HART → Конфигурация → Адрес HART

9.5 Настройка языка управления

9.5.1 Локальный дисплей

Настройка языка управления

- 🙌 Прежде чем настраивать язык управления, следует разблокировать дисплей.
- 1. Нажмите кнопку 🗉 и удерживайте ее не менее 2 с.
 - ▶ Отображается диалоговое окно.
- 2. Разблокируйте работу дисплея.
- 3. Выберите параметр **Language** в главном меню.
- 4. Нажмите кнопку Е.
- Выберите необходимый язык кнопкой ± или □.
- 6. Нажмите кнопку 🗉.

9.5.2 FieldCare

- 1. В меню Extras выберите пункт Options.
- 2. Установите предпочтительный язык в ПО FieldCare (раздел Language).

Настройка языка для локального дисплея с помощью ПО FieldCare

Навигация: Система \rightarrow Дисплей \rightarrow Language

▶ Установите необходимый язык в параметр Language.

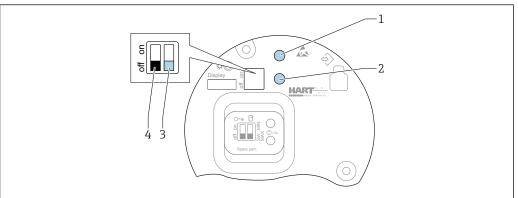
9.5.3 DeviceCare

Выберите значок в меню.

Выберите пункт Settings, затем выберите необходимый язык.

A004640

Настройка языка для локального дисплея с помощью ПО DeviceCare


Навигация: Система \rightarrow Дисплей \rightarrow Language

▶ Установите необходимый язык в параметр Language.

36

9.6 Настройка прибора

9.6.1 Ввод в эксплуатацию с помощью DIP-переключателя и кнопок управления на электронной вставке

A0046573

🗉 26 Кнопки управления и DIP-переключатель на электронной вставке FEL60H

- 1 Кнопка управления для сброса пароля (используемого для входа в систему через интерфейс Bluetooth, а также для уровня доступа Техническое обслуживание)
- 1+2 Кнопки управления для сброса параметров прибора (в состояние на момент поставки)
- 2 Кнопка управления для запуска функции Функциональный тест (> 3 с)
- 3 DIP-переключатель для настройки защитной функции. Происходит программное определение (положение SW, вариант по умолчанию – MAX) или фиксированное аппаратное определение (выбор варианта MIN)
- 4 DIP-переключатель для блокирования и разблокирования прибора

Установка защитного режима MIN или MAX с помощью DIP-переключателя

- Если переключатель переведен в положение SW, то выбор защитного режима MIN или MAX осуществляется программно (вариант по умолчанию = MAX).
- Если переключатель находится в положении MIN, то осуществляется контроль минимального уровня, независимо от настройки программного обеспечения.

9.6.2 Сброс пароля или параметров прибора с помощью кнопок управления

Переустановка пароля

- 1. Нажмите и отпустите кнопку управления I 3 раза в течение 4 секунд.
 - 🕒 Зеленый светодиод мигнет два раза подряд с короткими интервалами.
- 2. Снова нажмите кнопку управления I для подтверждения, затем отпустите кнопку.
 - Пароль сброшен.Мигание светодиода прекращается.
- Если время подтверждения превышает 15 с, то прибор выходит из режима «сброс пароля», а мигание светодиода прекращается. Пароль не сбрасывается. При необходимости повторите процедуру.

Сброс параметров прибора (к параметрам, соответствующим состоянию заказа)

- ▶ Нажмите обе кнопки управления и удерживайте их не менее 12 с.
 - □ Параметры прибора сбрасываются (в состояние на момент поставки).

9.6.3 Ввод в эксплуатацию с помощью мастер "Ввод в работу"

В ПО FieldCare, DeviceCare ¹⁾, SmartBlue и на дисплее предусмотрен мастер **Ввод в работу**, который сопровождает действия пользователя на начальных этапах ввода в эксплуатацию.

- 1. Подключите прибор к управляющей программе.
- 2. Откройте раздел прибора в управляющей программе.
 - ▶ Отображается приборная панель (исходная страница) прибора.
- 3. Откройте мастер: меню **Руководство** → мастер **Ввод в работу**
- 4. Введите приемлемое значение или выберите необходимый вариант для каждого параметра. Эти значения будут записаны непосредственно в память прибора.
- 5. Нажмите кнопку Next, чтобы перейти к следующей странице.
- 6. После заполнения всех страниц нажмите кнопку End: мастер **Ввод в работу** будет закрыт.
- Если работа мастер **Ввод в работу** прекращена до настройки всех необходимых параметров, то прибор может перейти в неопределенное состояние. В такой ситуации произойдет возврат прибора к заводским настройкам по умолчанию.

9.6.4 Сохранение частоты колебаний

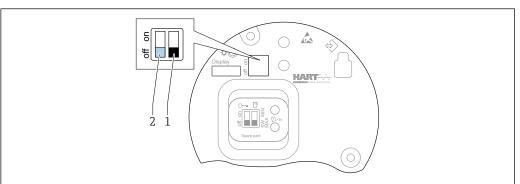
Чтобы текущую частоту колебаний можно было позже сравнить с состоянием на момент ввода в эксплуатацию, в памяти прибора можно сохранить два значения частоты (при покрытой/не покрытой средой вибрационной вилке).

Значения частоты можно сохранить только при соответствующем состоянии вилки. Например, если вилка покрыта средой, то можно сохранить только частоту для покрытой вилки (параметр Сохраненная частота покрытой вилки).

Значение сохраняется с помощью мастер Ввод в работу или следующим методом.

Навигация: Применение → Сенсор → Сохраненная частота

9.7 Моделирование


В подменю **Моделирование** можно выполнить моделирование с вариантами состояния Состояние вилки (покрыта/не покрыта средой), Частота датчика, Токовый выход и Моделир. диагностическое событие.

Навигация: Диагностика → Моделирование → Моделирование

¹⁾ ПО DeviceCare можно загрузить по адресу www.software-products.endress.com. Чтобы загрузить продукт, необходимо зарегистрироваться на портале ПО компании Endress+Hauser.

9.8 Защита параметров настройки от несанкционированного доступа

9.8.1 Блокирование и разблокирование аппаратной части

A004656

🛮 27 Функции DIP-переключателей на электронной вставке FEL60H

- DIP-переключатель для настройки защитной функции. Происходит программное определение (положение SW, вариант по умолчанию — MAX) или фиксированное аппаратное определение (выбор варианта MIN)
- 2 DIP-переключатель для аппаратного блокирования и разблокирования прибора

DIP-переключатель (2) на электронной вставке используется для выполнения операций блокирования и разблокирования.

- Если управление заблокировано DIP-переключателем, то разблокировать управление можно только DIP-переключателем.
- Если управление заблокировано в меню управления, то разблокировать управление можно только в меню управления.
- Если управление заблокировано DIP-переключателем, то на локальном дисплее отображается значок замка (🗈).

9.8.2 Блокирование и разблокирование работы дисплея

Блокирование или разблокирование работы дисплея

- 1. Нажмите кнопку 🗉 и удерживайте ее не менее 2 с.
 - ┕ Отображается диалоговое окно.
- 2. Заблокируйте или разблокируйте работу дисплея.

Управление с помощью дисплея автоматически блокируется (за исключением работы в мастере SIL) по истечении определенного времени:

- через 1 минуту, если при активной основной странице не нажата ни одна кнопка;
- через 10 минут, если при активном меню управления не нажата ни одна кнопка.

9.8.3 Настройка параметров – блокирование или активация

Если управление прибором заблокировано DIP-переключателем, то разблокировать его можно только DIP-переключателем.

Программное управление – с помощью пароля в ПО FieldCare, DeviceCare, приложении SmartBlue

Состояние на момент поставки

При поставке прибора заказчику в системе прибора действует уровень доступа **Техническое обслуживание**.

Настройка параметров (уровень доступа Техническое обслуживание)

Уровень доступа **Техническое обслуживание** позволяет полностью настроить прибор.

Блокирование доступа

После настройки уровня доступа **Техническое обслуживание** можно заблокировать доступ с помощью пароля. При блокировании уровень доступа **Техническое обслуживание** меняется на уровень доступа **Оператор**.

Настройка параметров (уровень доступа Оператор)

Настройка параметров прибора для уровня доступа Оператор заблокирована.

Разблокирование доступа

Доступ к настройке параметров можно разблокировать вводом пароля. После этого устанавливается уровень доступа **Техническое обслуживание**.

Навигация для назначения пароля и изменения уровня доступа: Система → Администрирование пользователей

Удалить пароль

При необходимости пароль можно удалить в Администрирование пользователей.

Навигация: Система ightarrow Администрирование пользователей ightarrow Удалить пароль ightarrow Старт

10 Эксплуатация

10.1 Считывание сведений о состоянии блокировки прибора

Отображение активной защиты от записи в параметр Статус блокировки.

- Локальный дисплей
 - На основной странице отображается символ 🗈.
- Управляющая программа (FieldCare/DeviceCare)
 Навигация: Система → Управление прибором → Статус блокировки

10.2 Чтение измеренных значений

Любые измеряемые значения можно считывать с помощью подменю **Измеренное значение**.

Навигация: меню Применение → подменю Измеренные значения

10.3 Адаптация прибора к условиям технологического процесса

Для этой цели предусмотрены следующие меню.

- Базовые настройки в меню Руководство
- Расширенные настройки в следующих разделах.
 - Меню Диагностика
 - Меню Применение
 - Меню Система

10.3.1 Определение предельного уровня

Эксплуатация прибора в качестве датчика предельного уровня, в режиме 8/16 мА.

Выходной сигнал предельного уровня

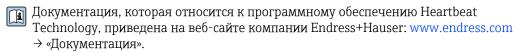
- 8 мА (состояние управляющего воздействия: вилка не покрыта жидкостью в режиме МІN или вилка покрыта жидкостью в режиме МАХ)
- 16 мА (нормальное состояние: вилка покрыта жидкостью в режиме MIN или вилка не покрыта жидкостью в режиме MAX)
- 1. Навигация: Применение → Сенсор → Конфигурация датчика
- 2. Выберите для параметра Режим работы опцию Определение предельного уровня.
- 3. Выберите для параметра Функция безопасности опцию MIN (защита от работы всухую) или MAX (защита от перелива), согласно условиям применения.
- 4. Установите для параметр **Настройка плотности** значение, соответствующее условиям применения (> 0.4 г/cm^3 , > 0.5 г/cm^3 , > 0.7 г/cm^3).
- 5. Опционально: выполните настройку параметр Задержка переключения:не покрыта-покрыта и параметр Задержка переключения:покрыта-не покрыта.

10.3.2 Частота датчика

Непрерывная работа в режиме 4 до 20 мА. Сила тока в контуре пропорциональна частоте колебаний вилки.

- 1. Навигация: Применение → Сенсор → Конфигурация датчика
- 2. Выберите для параметра параметр Режим работы опция Частота датчика.
- 3. Установите для параметр **Настройка плотности** значение, соответствующее условиям применения (> 0.4 г/cm^3 , > 0.5 г/cm^3 , > 0.7 г/cm^3).
 - → Эта настройка используется для того, чтобы значение параметр Состояние вилки (вилка покрыта/не покрыта жидкостью) постоянно отображалось должным образом.
- 4. Навигация: Руководство → Ввод в работу
- 5. Установите для параметр **Нижнее выходное значение диапазона** частоту, которая должна соответствовать выходному току 4 мА.
- 6. Установите для параметр **Верхнее выходное значение диапазона** частоту, которая должна соответствовать выходному току 20 мА.

10.4 Технология Heartbeat (опционально)


10.4.1 Heartbeat Verification

Модуль Heartbeat Verification содержит мастер **Heartbeat Verification**, который следит за текущим состоянием прибора и формирует отчет о проверке Heartbeat Technology.

- Мастер можно использовать посредством управляющей программы (приложения SmartBlue, DTM, дисплея $^{2)}$).
- Мастер сопровождает пользователя в процессе формирования отчета о проверке.
- Отображаются следующие данные: счетчик часов работы, индикатор минимальной/максимальной температуры и индикатор минимальной/максимальной частоты.
- Если частота колебаний вилки увеличивается, то выдается предупреждение о возможной коррозии.
- В отчете о проверке программа указывает частоту колебаний в воздухе, зафиксированную на момент поставки прибора. Повышение частоты колебаний указывает на развитие коррозии. Менее высокая частота колебаний может указывать на образование налипаний или покрытие датчика технологической средой. Отклонение частоты колебаний от частоты, зафиксированной на момент поставки, может быть вызвано влиянием рабочей температуры и рабочего давления.

10.4.2 Heartbeat Verification/Monitoring

Подменю **Heartbeat** доступно только при управлении с помощью ПО FieldCare, DeviceCare или приложения SmartBlue. Оно содержит мастеры настройки, которые доступны с пакетами приложений Heartbeat Verification и Heartbeat Monitoring.

10.5 Функциональное тестирование приборов SIL/WHG (опционально) ³⁾

Модуль Proof test содержит мастер **Функциональный тест**, который следует запускать с определенными интервалами при использовании прибора в условиях применения, регламентируемых правилами SIL (стандарт МЭК 61508) или законом WHG (закон Германии о водных ресурсах (Gesetz zur Ordnung des Wasserhaushalts)).

- Мастер можно использовать посредством управляющей программы (приложения SmartBlue, DTM).
- Мастер сопровождает пользователя в процессе формирования отчета о проверке.
- Отчет о проверке можно сохранить в файл PDF.

²⁾ Мастер можно запустить с помощью дисплея, но только для отображения результата, опция Пройдено или опция Не пройдено.

³⁾ Предусмотрено только для приборов с сертификатом SIL или WHG.

11 Диагностика и устранение неисправностей

11.1 Устранение неисправностей общего характера

11.1.1 Ошибки общего характера

Прибор не отвечает

- Возможная причина: сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения
- Возможная причина: не соблюдена полярность питания Способ устранения неисправности: измените полярность
- Возможная причина: ненадежный контакт между кабелями и клеммами
 Способ устранения неисправности: проверьте и при необходимости восстановите электрический контакт между кабелями и клеммами
- Возможная причина: слишком велико сопротивление нагрузки
 Способ устранения неисправности: поднимите сетевое напряжение, чтобы обеспечить минимально допустимое напряжение на клеммах

Отсутствует видимое отображение значений на дисплее

- Возможная причина: слишком яркая или слишком темная настройка графического дисплея
 - Способ устранения неисправности: следует увеличить или уменьшить контраст с помощью параметр Контрастность дисплея
- Навигационный путь: Система → Дисплей → Контрастность дисплея
- Возможная причина: неправильное подключение разъема кабеля дисплея Способ устранения неисправности: подключите разъем правильно
- Возможная причина: неисправен дисплей
 Способ устранения неисправности: замените дисплей

Отсутствует подсветка графического дисплея

Возможная причина: недостаточный уровень питания Способ устранения неисправности: поднимите сетевое напряжение

При запуске прибора или подключении дисплея отображается сообщение Communication error

- Возможная причина: влияние электромагнитных помех Способ устранения неисправности: проверьте заземление прибора
- Возможная причина: ошибка подключения или неисправность разъема дисплея Способ устранения неисправности: замените дисплей

Связь через интерфейс HART не работает

- Возможная причина: отсутствует или неправильно установлен резистор связи Способ устранения неисправности: установите резистор связи (250 Ом) должным образом
- Возможная причина: модем HART не подключен должным образом
 Способ устранения неисправности: подключите модем HART должным образом

Не работает связь через интерфейс CDI

Возможная причина: ошибочная настройка COM-порта компьютера Способ устранения неисправности: проверьте параметры COM-порта компьютера и при необходимости исправьте их

Прибор выдает недостоверные результаты измерения

Возможная причина: ошибка параметризации

Способ устранения неисправности: проверьте и исправьте настройку параметров

Отсутствует связь с прибором через приложение SmartBlue

- Возможная причина: отсутствует соединение через интерфейс Bluetooth Способ устранения неисправности: активируйте функцию Bluetooth в смартфоне, планшете и приборе
- Возможная причина: прибор уже соединен с другим смартфоном или планшетом Способ устранения неисправности: отсоедините прибор от другого смартфона или планшета
- Условия окружающей среды (например, наличие стен/резервуаров) создают помехи для передачи данных через интерфейс Bluetooth
 Способ устранения неисправности: необходимо обеспечить соединение на условиях прямой видимости
- Дисплей не оснащен модулем Bluetooth

Невозможно войти в систему через приложение SmartBlue

- Возможная причина: прибор вводится в работу впервые
 Способ устранения неисправности: введите имя пользователя (admin) и пароль (серийный номер прибора)
- Возможная причина: недостаточный уровень питания.
 Способ устранения неисправности: поднимите сетевое напряжение

Невозможно управлять прибором через приложение SmartBlue

- Возможная причина: введен недействительный пароль
 Способ устранения неисправности: введите действительный пароль
- Возможная причина: забыт пароль
 Способ устранения неисправности: с помощью кнопки управления на электронной
 вставке сбросьте пароль или
 обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)
- Возможная причина: отсутствует авторизация для уровня пользователя Оператор Способ устранения неисправности: перейдите на уровень доступа Техническое обслуживание

11.1.2 Ошибка. Управление с помощью приложения SmartBlue через интерфейс Bluetooth®

Прибор не отображается в списке активных устройств

- Возможная причина: отсутствует соединение через интерфейс Bluetooth Способ устранения неисправности: включите интерфейс Bluetooth на полевом приборе и/или на смартфоне/планшете с помощью дисплея или программного обеспечения
- Возможная причина: превышен радиус действия для сигнала Bluetooth Способ устранения: уменьшите расстояние между полевым прибором и смартфоном/планшетом
 - Радиус действия подключения до 25 м (82 фут).
 - Радиус действия при наличии взаимной видимости до 10 м (33 фут).
- Возможная причина: геопозиционирование не активировано в устройстве с ОС Android или не разрешено в приложении SmartBlue Способ устранения неисправности: активируйте геопозиционирование в устройстве Android и дайте соответствующее разрешение для приложения SmartBlue

Прибор числится в оперативном списке, однако подключение установить не удается

- Возможная причина: прибор уже соединен с другим смартфоном/планшетом по технологии Bluetooth
 - Допускается только одно соединение типа «точка-точка» Способ устранения неисправности: отсоедините смартфон/планшет от другого устройства
- Возможная причина: ошибочный ввод имени пользователя и пароля Способ устранения неисправности: стандартное имя пользователя admin, а паролем является серийный номер прибора, указанный на его заводской табличке (только если пароль не был изменен пользователем ранее) Если забыт пароль, то с помощью кнопки управления на электронной вставке сбросьте пароль или обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

Невозможно установить соединение с прибором через приложение SmartBlue Возможная причина: введен недействительный пароль Способ устранения неисправности: укажите действительный пароль, учитывая

Способ устранения неисправности: укажите действительный пароль, учитывая регистр символов

Невозможно установить соединение с прибором через приложение SmartBlue Возможная причина: забыт пароль

Способ устранения неисправности: с помощью кнопки управления на электронной вставке сбросьте пароль или

обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

11.1.3 Дополнительные проверки

Если не удается определить явную причину ошибки (или если причиной неисправности может быть как прибор, так и технологическое оборудование), можно выполнить следующие дополнительные проверки.

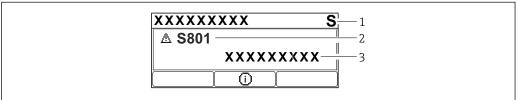
- 1. Сбросьте параметры прибора на заводские настройки.
- 2. Проверьте цифровой предельный уровень или частоту датчика (дисплей, HART и пр.).
- 3. Убедитесь в том, что соответствующий прибор работает должным образом. Если цифровое значение не соответствует ожидаемому предельному уровню или ожидаемой частоте датчика, замените прибор.
- 4. Включите моделирование и проверьте токовый выход. Замените основную электронику, если токовый выход не соответствует смоделированному значению.

11.1.4 Поведение токового выхода в случае ошибки

Реакция токового выхода на обнаружение неисправности настраивается с помощью параметр **Выходной ток неисправности**.

Обзор и краткое описание параметров

Параметр	Описание	Выбор / Ввод данных пользователем
Выходной ток неисправности	Определяет, какой ток выход принимает на себя в случае ошибки. Мин: < 3,6 мА Макс: >21,5 мА	Мин.Макс.
Ток при отказе	Установите значение токового выхода для аварийной сигнализации.	21,5 до 23 мА


11.2 Диагностическая информация, отображаемая на локальном дисплее

11.2.1 Диагностическое сообщение

Отображение измеренного значения и диагностического сообщения в случае неисправности

Неисправности обнаруженные системой самоконтроля прибора, отображаются в виде диагностического сообщения, чередующегося с единицей измерения.

Неисправности, обнаруженные системой самоконтроля прибора, отображаются в виде диагностического сообщения, чередующегося с обозначением единицы измеряемого значения.

Δ004310

- 1 Сигнал статуса
- 2 Символ состояния с диагностическим событием
- 3 Текстовое описание события

Сигнал состояния

F

Отказ (F)

Произошла ошибка прибора. Измеренное значение недействительно.

C

Проверка функций (С)

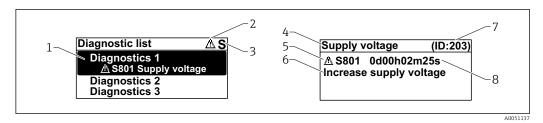
Прибор находится в сервисном режиме (например, во время моделирования).

S

Не соответствует спецификации (S)

Управление прибором:

- За пределами спецификации (например, во время запуска или очистки)
- За пределами параметров настройки, заданных пользователем (например, частота датчика выходит за пределы настроенного диапазона)


М

Требуется техническое обслуживание (М)

Требуется техническое обслуживание. Измеренное значение остается действительным.

Диагностическое событие и текстовое описание события

Неисправность можно выявить при помощи диагностического события. Текст сообщения о событии помогает получить информацию о неисправности. Кроме того, перед описанием диагностического события отображается соответствующий символ состояния.

- Диагностическое сообщение
- 2 Символ уровня события
- 3 Сигнал состояния
- 4 Краткое описание
- 5 Символ уровня события, сигнал состояния, диагностический номер
- 6 Рекомендуемые меры
- 7 Сервисный идентификатор
- 8 Время события

Символ уровня события

😵 Состояние выдачи аварийного сигнала

Измерение прервано. Сигнальные выходы переходят в определенное аварийное состояние. Выдается диагностическое сообщение.

∆ Состояние выдачи предупреждения

Измерение продолжается. Выдается диагностическое сообщение.

Параметр "Диагностика активна"

Кнопка управления 🛨

Открывание сообщения с описанием способа устранения неисправности.

Кнопка управления 🖃

Квитирование предупреждений.

Кнопка управления 🗉

Возврат к меню управления.

11.3 Отражение диагностического события в управляющей программе

Если в приборе произошло диагностическое событие, сигнал состояния отображается в левом верхнем углу, в разделе состояния управляющей программы, вместе с пиктограммой реакции на событие в соответствии с рекомендациями NAMUR NE 107.

- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (M)

Выберите запись сигнала состояния, чтобы просмотреть подробные данные сигнала состояния.

Сообщения о диагностических событиях и мерах по устранению неисправностей можно распечатать с помощью подменю **Перечень сообщений диагностики**.

11.4 Адаптация диагностической информации

Уровень события можно настроить:

Навигация: Диагностика → Настройки диагностики → Конфигурация

11.5 Диагностические сообщения в листе ожидания

На дисплее попеременно отображаются диагностические сообщения, находящиеся в очереди на обработку, и измеряемое значение.

Диагностические сообщения из листа ожидания можно отобразить также с помощью параметр **Диагностика активна**.

Навигация: Диагностика → Диагностика активна

11.6 Диагностический список

Все диагностические сообщения, включенные в лист ожидания, можно отобразить с помощью подменю **Перечень сообщений диагностики**.

Навигация: Диагностика → Перечень сообщений диагностики

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
Диагностика	датчика			
004	Неисправность сенсора	1. Перезапустите прибор 2. Замените электронику 3. Замените прибор	F	Alarm
007	Неисправность сенсора	1. Проверьте вилку 2. Замените прибор	F	Alarm
042	Сенсор поврежден коррозией	1. Проверьте вилку 2. Замените прибор	F	Alarm
049	Сенсор поврежден коррозией	1. Проверьте вилку 2. Замените прибор	M	Warning 1)
061	Неисправность электроники	Заменить главный блок электроники	F	Alarm
062	Сбой соединения датчика	1. Проверьте соединение сенсора с блоком электроники 2. Замените электронику	F	Alarm
081	Ошибка инициализации датчика	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
Диагностика	электроники			
201	Неисправность электроники	1. Перезагрузите устройство 2. Замените электронику	F	Alarm
203	НАRT неисправность прибора	Проверить состояние прибора	S	Warning
204	HART дефект электроники	Проверить состояние прибора	F	Alarm
242	Несовместимая прошивка	Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль	F	Alarm
252	Несовместимый модуль	Проверить, правильный ли блок электроники подключен Заменить модуль электроники	F	Alarm

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
263	Несовместимость электроники	Проверьте настройки прибора Проверьте тип электронного блока	F	Alarm
270	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
272	Неисправность блока основной электроники	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
273	Неисправность основного электрон.модуля	Заменить главный блок электроники	F	Alarm
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm
283	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
287	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	М	Warning
388	Электроника и HistoROM неисправны	Перезапустите устройство Замените электронику и HistoROM Свяжитесь с сервисом	F	Alarm
Диагностика і	конфигурации			
410	Сбой передачи данных	1. Повторите передачу данных 2. Проверьте присоединение	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	С	Warning
420	НАRT Конфигурация прибора заблокирована	Проверьте конфигурацию блокировки устройства	S	Warning
421	НАRT токовая петля зафиксир.	Проверьте режим Multi-drop или текущее моделирование.	S	Warning
431	Требуется выравнивание	Выполнить баланс.	M	Warning
437	Конфигурация несовместима	Обновите прошивку Выполните сброс до заводских настроек	F	Alarm
438	Массив данных отличается	Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства	M	Warning
441	Токовый выход 1 насыщенный	Проверьте технологический процесс Проверьте настройки токового выхода	S	Warning
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
491	Ток.выход моделирование запущено	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
538	Неправильная конфигурация датчика	Проверьте настройки датчика Проверьте настройки прибора	M	Warning
Диагностика	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	F	Alarm
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
805	Ток контура неисправность	1. Проверьте проводку 2. Замените электронику	F	Alarm
806	Диагностика контура	Проверьте напряжение питания Проверьте кабели и клеммы	М	Warning ¹⁾
807	Нет баз.знач низк.напряжение при 20мА	Напряжение питания слишком низкое, увеличьте напряжение питания	М	Warning
825	Температура электроники	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning ¹⁾
826	Температура датчика вне диапазона	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning ¹⁾
842	Рабочее предельное значение	1. Проверьте плотность процесса 2. Проверьте вибровилку	F	Alarm
846	НАRТ неосновная переменная вне диапазона	Проверить состояние прибора	S	Warning
847	НАRT основная переменная вне диапазона	Проверить состояние прибора	S	Warning
848	НАRТ переменная прибора предупреждение	Проверить состояние прибора	S	Warning
900	Предупреждение низкая частота	Проверьте условия процесса Увеличьте давление системы	М	Warning ¹⁾
901	Предупреждение высокая частота	Проверьте условия процесса Увеличьте давление системы	М	Warning ¹⁾

¹⁾ Параметры диагностики могут быть изменены.

11.7 Журнал событий

11.7.1 Архив событий

Подменю **Перечень событий** содержит хронологический обзор сообщений о произошедших событиях $^{4)}$.

Навигация: Диагностика → Журнал событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

Архив событий содержит следующие записи:

- диагностические события;
- информационные события.

Кроме времени наступления события (которое исчисляется в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (длится оно или закончилось).

- Диагностическое событие
 - 🔁: наступление события
 - 🕒: окончание события
- Информационное событие
 - €: наступление события

11.7.2 Фильтрация журнала событий

С помощью фильтров можно определить категорию сообщений о событиях для отображения в разделе подменю **Перечень событий**.

Навигация: Диагностика → Журнал событий

Категории фильтра

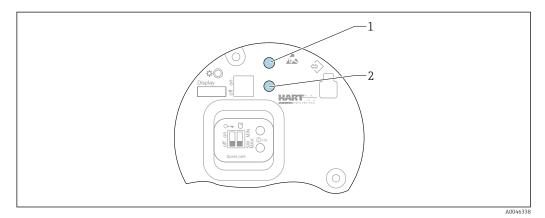
- Bce
- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (M)
- Информация

11.7.3 Обзор информационных событий

Номер данных	Наименование данных
I1000	(Прибор OK)
I1089	Питание включено
I1090	Сброс конфигурации
I1091	Конфигурация изменена
I11074	Проверка прибора активна
I1110	Переключатель защиты от записи изменен
I11104	Диагностика контура
I11284	Переключ. настройки HW MIN активен
I11285	Переключатель настройки ПО активен
I1151	Сброс истории

⁴⁾ При управлении с помощью ПО FieldCare список событий можно просмотреть с помощью функции Event List/HistoROM программы FieldCare.

Номер данных	Наименование данных
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1264	Безопасная последовательность прервана!
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен
I1444	Проверка прибора успешно завершена
I1445	Проверка прибора не выполнена
I1461	Ошибка проверки датчика
I1512	Началась загрузка
I1513	Загрузка завершена
I1514	Загрузка началась
I1515	Загрузка завершена
I1551	Исправлена ошибка назначения
I1552	Не выполнено: поверка гл.электрон.
I1554	Последовательность безопасности начата
I1555	Последовательность безопасн.подтверждена
I1556	Безопасный режим выкл
I1956	Сброс


11.8 Сброс параметров прибора

11.8.1 Сброс параметров прибора с помощью управляющей программы или дисплея

Навигация: Система ightarrow Управление приборомпараметр **Сброс параметров прибора**

📵 Более подробную информацию см. в документе "Описание параметров прибора".

11.8.2 Сброс параметров прибора с помощью кнопок управления на электронной вставке

■ 28 Кнопки управления на электронной вставке FEL60H

1+2 Одновременное нажатие: кнопки управления для сброса параметров прибора (до заводских значений)

Сброс параметров прибора (к параметрам, соответствующим состоянию заказа)

- ▶ Нажмите обе кнопки управления и удерживайте их не менее 12 с.
 - ▶ Параметры прибора сбрасываются (в состояние на момент поставки).

11.9 Сведения о приборе

Все сведения о приборе содержатся в подменю Информация.

Навигация: Система → Информация

Более подробную информацию см. в документе «Описание параметров прибора».

11.10 Изменения программного обеспечения

Версию программного обеспечения для прибора можно явно указать в структуре оформления заказа. Это позволяет обеспечить совместимость версии ПО при интеграции с существующей или планируемой системой.

11.10.1 Версия 01.00.zz

Оригинальная версия ПО

12 Техническое обслуживание

Специальное техническое обслуживание не требуется.

12.1 Мероприятия по техническому обслуживанию

12.1.1 Очистка

Запрещено использовать прибор в абразивных средах. Абразивное изнашивание вибрационной вилки может привести к выходу прибора из строя.

- При появлении такой необходимости очищайте вибрационную вилку.
- Очистка также возможна без демонтажа, напри мер, СІР-очистка и SІРстерилизация.

13 Ремонт

13.1 Общие указания

13.1.1 Принцип ремонта

Концепция ремонта, действующая в компании Endress+Hauser

- Приборы имеют модульную конструкцию
- Заказчики сами могут выполнять ремонт
- **1** Сведения об обслуживании и запасных частях можно получить в региональном торговом представительстве Endress+Hauser.

13.1.2 Ремонт приборов во взрывозащищенном исполнении

▲ ОСТОРОЖНО

Ненадлежащий ремонт может поставить под угрозу электробезопасность! Опасность взрыва!

- ▶ В соответствии с национальным законодательством ремонт приборов с сертификатами взрывозащиты может осуществляться только специализированным персоналом или специалистами сервисного центра производителя.
- ► Требуется соблюдение действующих отраслевых стандартов и национального законодательства в отношении взрывоопасных зон, указаний по технике безопасности и сертификатов.
- ▶ Используйте только фирменные запасные части производителя.
- ► Учитывайте обозначение прибора, указанное на заводской табличке. Для замены могут использоваться только аналогичные детали.
- ▶ Выполняйте ремонт в соответствии с инструкциями.
- ▶ Вносить изменения в конструкцию сертифицированного прибора и модифицировать его до уровня иного сертифицированного исполнения могут только специалисты сервисного центра производителя.

13.2 Запасные части

- Некоторые заменяемые компоненты прибора можно идентифицировать по паспортной табличкой запасной части. На них приводится информация об этих запасных частях.
- Все запасные части прибора вместе с кодами заказа числятся в программе W@M Device Viewer (www.endress.com/deviceviewer) и подлежат заказу. Кроме того, можно загрузить соответствующие руководства по монтажу (при их наличии).
- Серийный номер прибора или двухмерный штрих-код Находится на заводской табличке прибора и запасной части.

13.3 Замена

▲ ВНИМАНИЕ

Если прибор используется в системе обеспечения безопасности, то выполнять загрузку и выгрузку данных для него запрещено.

► После замены всего прибора или электронного модуля параметры можно снова загрузить в прибор через интерфейс связи. Для этого следует предварительно выгрузить данные в компьютер с помощью ПО FieldCare/DeviceCare.

13.3.1 HistoROM

Выполнять калибровку прибора заново после замены дисплея или электроники преобразователя не обязательно.

👔 Запасные части поставляются без модуля HistoROM.

После замены электроники преобразователя снимите модуль HistoROM и подключите его к новому компоненту.

13.4 Возврат

Требования, предъявляемые к безопасному возврату прибора, могут варьироваться в зависимости от типа прибора и национального законодательства.

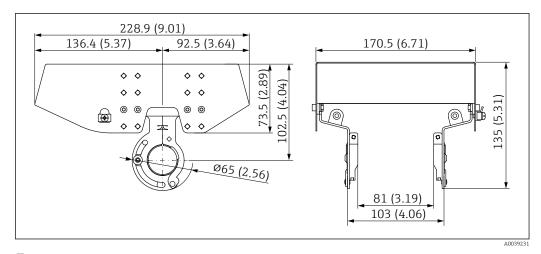
- 1. Подробнее см. на сайте: https://www.endress.com/support/return-material

 □ Выберите регион.
- 2. При возврате прибора упаковывайте его таким образом, чтобы он был надежно защищен от внешних воздействий. Наибольшую степень защиты обеспечивает оригинальная упаковка.

13.5 Утилизация

Если этого требует Директива 2012/19 EC об отходах электрического и электронного оборудования (WEEE),

изделия маркируются указанным символом, с тем чтобы свести к минимуму возможно как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.

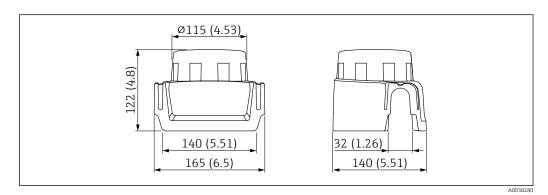

14 Аксессуары

14.1 Device Viewer

Все запасные части для измерительного прибора вместе с кодами заказа числятся на pecypce *Device Viewer* (www.endress.com/deviceviewer).

14.2 Защитный козырек от погодных явлений для корпуса с двумя отсеками

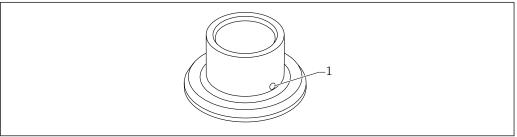
- Материал: нержавеющая сталь 316L
- Код для заказа: 71438303



Защитный козырек от погодных явлений для корпуса с двумя отсеками. Единица измерения мм (дюйм)

14.3 Защитный козырек для однокамерного корпуса из алюминия

• Материал: пластик


■ Код для заказа: 71438291

🖩 30 Защитный козырек для однокамерного корпуса из алюминия. Единица измерения мм (дюйм)

14.4 Сварочный переходник

При монтаже прибора в резервуарах или трубопроводах можно использовать различные приварные переходники из доступного ассортимента. По заказу возможна комплектация переходниками с актом осмотра по форме 3.1 EN10204.

A00235

🗷 31 Сварочный переходник (иллюстративное изображение)

1 Отверстие для слива

Сварочный переходник G 1:

Материалы, внесенные в реестр FDA согласно правилам 21 CFR, части 175-178

- Ø 53, монтаж на трубопроводе
- Ø 60, монтаж заподлицо на резервуаре

Сварочный переходник G 3/4:

Материалы, внесенные в реестр FDA согласно правилам 21 CFR, части 175-178 Ø 55, монтаж заподлицо

Приварите переходник таким образом, чтобы отверстие для утечек было направлено вниз. Это позволит быстро обнаруживать любую утечку.

Подробные сведения об аксессуарах (сварных переходниках, технологических переходниках и фланцах) см. в документе «Техническое описание», ТІОО426F

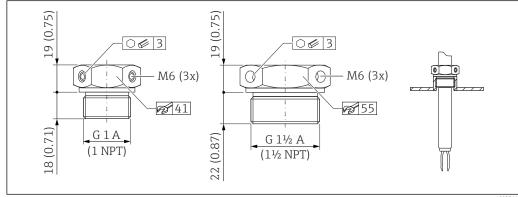
Можно получить в разделе Downloads (документация) на веб-сайте Endress +Hauser (www.endress.com/downloads).

14.5 Разъем М12

📭 Перечисленные разъемы М12 пригодны для использования в диапазоне температуры -25 до +70 °C (-13 до +158 °F).

Разъем M12 (IP69)

- Терминированный с одной стороны
- Угловой
- Кабель с изоляцией из ПВХ длиной 5 м (16 фут) (оранжевый)
- Шлицевая гайка 316L (1.4435)
- Корпус: ПВХ
- Код заказа: 52024216


Разъем M12 (IP67)

- Угловой
- Кабель ПВХ длиной 5 м (16 фут) (серый)
- Шлицевая гайка Cu Sn/Ni
- Корпус: полиуретан
- Код заказа: 52010285

14.6 Скользящие муфты для использования при отсутствии избыточного давления

🞴 Непригодны для использования во взрывоопасной среде.

Точка переключения с бесступенчатой регулировкой.

Скользящие муфты для использования при отсутствии избыточного давления, $p_e =$ 0 бар (0 фунт/кв. дюйм). Единица измерения мм (дюйм)

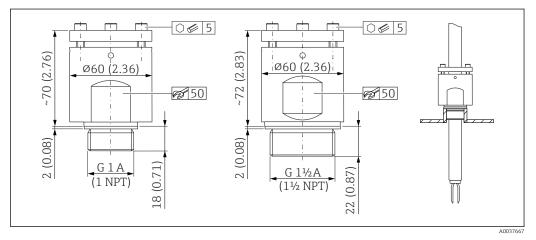
G 1, DIN ISO 228/I

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 0,21 кг (0,46 фунт):
- Код для заказа: 52003978
- Код для заказа: 52011888. Сертификат: с протоколом проверки согласно стандарту EN 10204, сертификат на материал по форме 3.1

NPT 1, ASME B 1.20.1

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 0,21 кг (0,46 фунт):
- Код для заказа: 52003979
- Код для заказа: 52011889. Сертификат: с протоколом проверки согласно стандарту EN 10204, сертификат на материал по форме 3.1

G 11/2, DIN ISO 228/I


- Материал: сталь 1.4435 (AISI 316L)
- Bec: 0,54 кг (1,19 фунт):
- Код для заказа: 52003980
- Код для заказа: 52011890. Сертификат: с протоколом проверки согласно стандарту EN 10204, сертификат на материал по форме 3.1

NPT 11/2, ASME B 1.20.1

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 0,54 кг (1,19 фунт):
- Код для заказа: 52003981
- Код для заказа: 52011891. Сертификат: с протоколом проверки согласно стандарту EN 10204, сертификат на материал по форме 3.1
- 📵 Более подробные сведения и документацию можно получить здесь:
- Конфигуратор изделия на веб-сайте Endress+Hauser www.endress.com
- Торговое представительство Endress+Hauser www.addresses.endress.com

14.7 Скользящие муфты для использования в условиях высокого давления

- 🚹 Подходит для использования во взрывоопасных средах.
- Точка переключения с бесступенчатой регулировкой
- Уплотнительная набивка из графита
- Графитовое уплотнение можно приобрести в качестве запасной части с артикулом 71078875
- ullet Уплотнение для соединений типоразмеров G 1 и G $1\frac{1}{2}$ входит в комплект поставки

 ЗЗ Скользящие муфты для использования в условиях высокого давления. Единица измерения мм (дюйм)

G 1. DIN ISO 228/I

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 1,13 кг (2,49 фунт):
- Код для заказа: 52003663
- Код для заказа: 52011880. Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1

G 1, DIN ISO 228/I

- Материал: сплав С22
- Bec: 1,13 кг (2,49 фунт)
- Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1
- Код для заказа: 71118691

NPT 1, ASME B 1.20.1

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 1,13 кг (2,49 фунт)
- Код для заказа: 52003667
- Код для заказа: 52011881. Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1

NPT 1, ASME B 1.20.1

- Материал: сплав С22
- Вес: 1,13 кг (2,49 фунт)
- Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1
- Код для заказа: 71118694

G 1½, DIN ISO 228/1

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 1,32 кг (2,91 фунт)
- Код для заказа: 52003665
- Код для заказа: 52011882. Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1

G 1½, DIN ISO 228/1

- Материал: сплав С22
- Bec: 1,32 кг (2,91 фунт)
- Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1
- Код для заказа: 71118693

NPT 11/2, ASME B 1.20.1

- Материал: сталь 1.4435 (AISI 316L)
- Bec: 1,32 кг (2,91 фунт)
- Код для заказа: 52003669
- Код для заказа: 52011883. Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1

NPT 11/2, ASME B 1.20.1

- Материал: сплав С22
- Bec: 1,32 кг (2,91 фунт)
- Сертификат: с протоколом проверки согласно стандарту EN 10204 по форме 3.1
- Код для заказа: 71118695
- 📵 Более подробные сведения и документацию можно получить здесь:
- Конфигуратор изделия на веб-сайте компании Endress+Hauser www.endress.com
- Торговое представительство компании Endress+Hauser www.addresses.endress.com

15 Технические характеристики

15.1 Вход

15.1.1 Измеряемая величина

Уровень (предельный уровень), защита в режиме MAX или MIN.

15.1.2 Диапазон измерения

Зависит от места установки и необходимости использования удлинительной трубки, что указывается в заказе.

Максимальная длина датчика 6 м (20 фут).

15.2 Выход

15.2.1 Выходной сигнал

SIO (электронная вставка FEL60H)

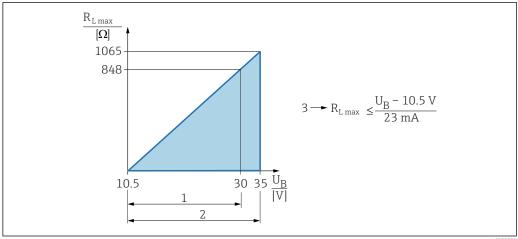
8/16 мА (SIO) с наложенным цифровым протоколом связи HART, 2-проводное подключение

Непрерывная работа (электронная вставка FEL60H)

4 до 20 мА, пропорционально частоте колебаний, с наложенным цифровым протоколом связи HART, 2-проводное подключение

Для непрерывной работы токового выхода можно выбрать один из следующих режимов работы.

- 4,0 до 20,5 мА
- NAMUR NE 43: 3,8 до 20,5 мА (заводская настройка)
- Режим US: 3,9 до 20,8 мА


15.2.2 Сигнал при сбое

Сигнал при сбое в соответствии с рекомендацией NAMUR NE 43.

4 до 20 мА HART

- Максимальный аварийный сигнал: можно настроить в диапазоне от 21,5 до 23 мА
- Минимальный аварийный сигнал: < 3,6 мА (заводская настройка)

15.2.3 4 до 20 мА пассивн., HART

A003923

- Источник питания 10,5 до 30 В пост. тока, Ех і
- 2 Источник питания 10,5 до 35 В пост. тока, для других типов защиты и несертифицированных исполнений прибора
- 3 R_{Lmax} , макс. сопротивление нагрузки
- *U*_B Сетевое напряжение

Управление посредством портативного терминала или ПК с управляющей программой: учитывайте минимально допустимое сопротивление цепи связи (250 Ом).

15.2.4 Демпфирование

Демпфирование влияет на все выходы (выходной сигнал, дисплей) и доступно только в режиме непрерывной работы 4 до 20 мА.

🚹 Демпфирование не влияет на режим SIO.

Активация демпфирования

Через локальный дисплей, Bluetooth, портативный терминал или ПК с управляющей программой, произвольная настройка от 0 до 999 с Заводская настройка: 1 с

15.2.5 Релейный выход

Можно заказать предустановленное время задержки переключения:

- 0,5 с, если вибрационная вилка покрыта средой, и 1,0 с, если вибрационная вилка не покрыта средой (заводская настройка)
- 0,25 с, если вибрационная вилка покрыта средой, и 0,25 с, если вибрационная вилка не покрыта средой
- 1,5 с, если вибрационная вилка покрыта средой, и 1,5 с, если вибрационная вилка не покрыта средой
- 5,0 с, если вибрационная вилка покрыта средой, и 5,0 с, если вибрационная вилка не покрыта средой
- Кроме того, можно индивидуально настроить задержку переключения при обнаружении покрытой вилки и не покрытой вилки в диапазоне от 1 до 60 секунд.

(Управление посредством дисплея, интерфейса Bluetooth или ПО FieldCare, DeviceCare, AMS, PDM)

15.2.6 Данные по взрывозащищенному подключению

См. указания по технике безопасности (XA): все данные по взрывозащите приводятся в отдельной документации и могут быть загружены с сайта компании Endress+Hauser. Документы по взрывозащите в качестве стандартной комплектации прилагаются к приборам, сертифицированным для эксплуатации во взрывоопасных зонах.

15.2.7 Данные протокола

HART

- Идентификатор изготовителя: 17 (0х11)
- Код типа прибора: 0x11C4
- Версия прибора: 1
- Спецификация HART: 7
- Версия файла DD: 1
- Информация о файлах описания прибора (DTM, DD) и сами файлы можно найти на веб-сайте:
 - www.endress.com
 - www.fieldcommgroup.org
- Нагрузка HART: не менее 250 Ом

Переменные устройства HART (заранее устанавливаются на заводе)

На заводе-изготовителе с переменными прибора сопоставляются следующие измеряемые значения.

Переменная прибора	Измеряемое значение
Параметр Первичная переменная (PV) (первичная переменная) $^{1)}$	Обнаружение предельного уровня ²⁾
Параметр Вторичная переменная (SV) (вторичная переменная)	Частота датчика ³⁾
Параметр Третичное значение измерения (TV) (третичная переменная)	Состояние вилки ⁴⁾
Параметр Четвертая переменная (QV) (четвертая переменная)	Температура датчика

- 1) Переменная PV всегда выводится через токовый выход.
- Обнаружение предельного уровня это исходное состояние, которое зависит от состояния вибрационной вилки (покрыта/не покрыта средой) и функции обеспечения безопасности (MIN/ MAX).
- 3) Частота датчика это частота колебаний вилки
- 4) Состояние вилки это состояние вилки (опция Вилка покрыта/опция Вилка не покрыта)

Выбор переменных устройства HART

- Определение предельного уровня
- Частота датчика
- Состояние вилки
- Температура датчика
- Ток на клеммах

Ток на клеммах – это обратный ток на клеммном блоке. Видимость зависит от опций заказа или настроек прибора

• Напряжение на клеммах

Видимость зависит от опций заказа или настроек прибора

Поддерживаемые функции

- Пакетный режим
- Состояние дополнительного преобразователя
- Блокировка прибора

15.2.8 Данные беспроводной передачи HART

Минимальное пусковое напряжение: 10,5 В

Пусковой ток: > 3,6 мАВремя запуска: < 8 с

• Минимальное рабочее напряжение: 10,5 В

■ Ток в режиме Multidrop: 4 мА

15.2.9 Heartbeat Technology

Модуль Heartbeat Technology

Пакет прикладных программ состоит из трех модулей. Эти три модуля объединяют проверку, оценку и мониторинг функционального состояния прибора и условий технологического процесса.

- Heartbeat Diagnostics
- Heartbeat Verification
- Heartbeat Monitoring

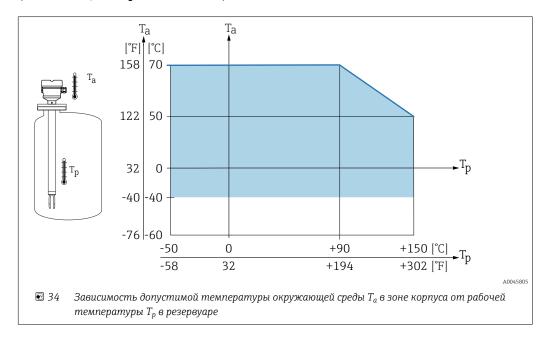
15.3 Условия окружающей среды

15.3.1 Диапазон температуры окружающей среды

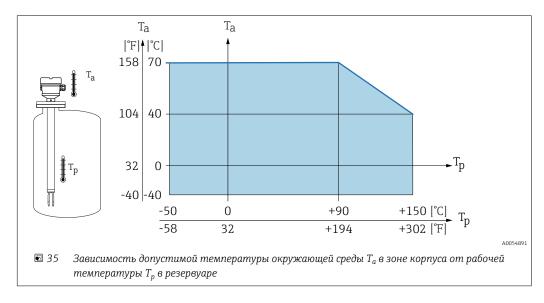
Следующие значения действительны для рабочей температуры +90 °C (+194 °F). При более высокой рабочей температуре допустимая температура окружающей среды снижается (см. диаграмму).

- Прибор без ЖК-дисплея: −40 до +70 °C (−40 до +158 °F)
- Прибор с ЖК-дисплеем: −40 до +70 °C (−40 до +158 °F) с ограничениями оптических свойств, таких как быстродействие и контрастность дисплея Можно использовать без ограничений: −20 до +60 °C (−4 до +140 °F)

Доступны для заказа в качестве опции:


- -50 °C (-58 °F) с ограниченными рабочими характеристиками и сроком службы
- −60 °C (−76 °F) с ограниченными рабочими характеристиками и сроком службы
 При температуре ниже −50 °C (−58 °F) возможно необратимое повреждение прибора

Следующая температура окружающей среды действует во всем диапазоне рабочей температуры для приборов с температурной проставкой: +70 °C (+158 °F).


При эксплуатации на открытых площадках в условиях интенсивного солнечного излучения необходимо соблюдать следующие правила:

- Устанавливайте прибор в затененном месте
- Оберегайте прибор от прямых солнечных лучей, особенно в регионах с теплым климатом
- Используйте защитную крышку, которую можно заказать в качестве принадлежностей

Корпус с одним отсеком (алюминий, с покрытием) и корпус с двумя отсеками (алюминий, с покрытием и 316L)

Корпус с одним отсеком (316L, гигиеническое исполнение)

Взрывоопасная зона

Во взрывоопасной зоне допустимая температура окружающей среды может быть ограничена в зависимости от особенностей зоны и группы газов. Учитывайте информацию, приведенную в документации по взрывозащите (XA).

15.3.2 Температура хранения

-40 до +80 °C (-40 до +176 °F) Опционально -50 °C (-58 °F) или -60 °C (-76 °F)

15.3.3 Влажность

Допускается работа при влажности до 100 %. Не открывайте во взрывоопасной среде.

15.3.4 Рабочая высота

До 5000 м (16404 фут) над уровнем моря.

15.3.5 Климатический класс

В соответствии с МЭК 60068-2-38 испытание Z/AD.

15.3.6 Степень защиты

Испытание согласно стандартам IEC 60529 и NEMA 250

Условие испытания согласно IP68: 1,83 м H₂O для 24 ч

Корпус

См. кабельные вводы

Кабельные вводы

- Резьбовое соединение M20, пластмасса, IP66/68, NEMA, тип 4X/6Р
- Резьбовое соединение M20, никелированная латунь, IP66/68, NEMA, тип 4X/6P
- Резьбовое соединение M20, сталь 316L, IP66/68, NEMA, тип 4X/6Р
- Резьба M20, IP66/68, NEMA, тип 4X/6Р
- Резьба G ½, NPT ½, IP66/68, NEMA, тип 4XXX

Степень защиты для разъема М12

- Если корпус закрыт, а соединительный кабель подключен: IP66/67, NEMA, тип 4X
- Если корпус открыт или соединительный кабель не подключен: IP20, NEMA, тип 1

УВЕДОМЛЕНИЕ

Разъем M12: утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а уплотнение плотно затянуто.
- ► Степень защиты действует только в том случае, если соединительный кабель соответствует классу защиты IP67 NEMA, тип 4X.
- Если в качестве электрического подключения выбран вариант «разъем M12», то для корпусов всех типов действительна степень защиты **IP66/67 NEMA, тип 4X**.

15.3.7 Вибростойкость

Соответствует стандарту МЭК 60068-2-64-2008 а(СКЗ) = 50 m/s^2 , f = 5 до 2000Γ ц, t = 3 оси, 2 ч

Для эксплуатации в условиях более интенсивных колебаний или вибрации рекомендуется выбрать дополнительную опцию В в коде заказа «Применение» (давление 100 бар (1450 фунт/кв. дюйм)).

15.3.8 Ударопрочность

В соответствии с IEC 60068-2-27-2008: 300 м/с² [= 30 $g_{\rm n}$] + 18 мс $g_{\rm n}$: стандартное ускорение свободного падения

15.3.9 Механическая нагрузка

При наличии интенсивной динамической нагрузки необходимо обеспечить опору прибора. Максимально допустимая боковая нагрузка для удлинительных труб и датчиков: 75 Нм (55 фунт сила фут).

🖺 Подробные сведения см. в разделе «Опора прибора».

15.3.10 Степень загрязнения

2-й уровень загрязненности

15.3.11 Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Требования стандарта EN 61326-3 для функции обеспечения безопасности (SIL) выполнены
- Максимальное отклонение при наличии помех: < 0,5 % от диапазона
- 📵 Более подробные сведения см. в декларации соответствия требованиям ЕС.

15.4 Параметры технологического процесса

15.4.1 Диапазон рабочей температуры

-50 до +150 °С (-58 до +302 °F)

Учитывайте взаимозависимость между давлением и температурой, 🖺 см. раздел «Диапазон рабочего давления для датчиков».

15.4.2 Термический удар

≤ 120 K/s

15.4.3 Рабочий диапазон

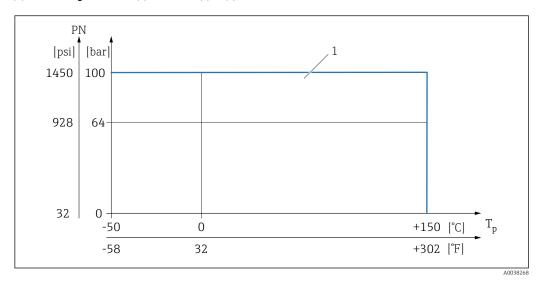
-1 до +64 бар (-14,5 до 928 фунт/кв. дюйм) макс. при 150 °C (302 °F)

Доступны для заказа в качестве опции: 100 бар (1450 фунт/кв. дюйм) макс. при 150 °C (302 °F)

▲ ОСТОРОЖНО

Максимально допустимое давление для прибора определяется наиболее слабым (с точки зрения допустимого давления) из элементов. Это значит, что необходимо учитывать номинальные характеристики не только датчика, но и технологические соединения.

- ► Спецификация давления, 📵: техническое описание, раздел «Механическая конструкция».
- ▶ Эксплуатируйте прибор только в пределах допустимого диапазона!
- ▶ В Директиве для оборудования, работающего под давлением (2014/68/EU), используется аббревиатура PS. Аббревиатура PS соответствует МРД (максимальному рабочему давлению) прибора.


Обратитесь к следующим стандартам, в которых приведены допустимые значения давления для фланцев при повышенной температуре:

- рR EN 1092-1: в отношении свойства температурной стабильности материалы
 1.4435 и 1.4404 идентичны, что соответствует классу 13E0 по стандарту EN
 1092-1, табл. 18. Химический состав этих двух материалов может быть одним и тем
 же.
- ASME B 16.5
- JIS B 2220

В каждом случае действует наименьшее значение, определяемое по графику снижения характеристик прибора и выбранного фланца.

Приборы с сертификатом CRN: макс. 90 бар (1305 фунт/кв. дюйм) для приборов с удлинительной трубкой. Подробную информацию см. на сайте Endress+Hauser: www.endress.com → Downloads (документация).

Диапазон рабочего давления для датчиков

Допустимое номинальное давление при выборе опции 100 бар (1450 фунт/кв. дюйм). Исключения перечислены в разделе «Технологические соединения». Канадский сертификат (CRN): максимально допустимое рабочее давление ограничивается до 90 бар (1305 фунт/кв. дюйм) только в сочетании с сертификатом CRN. Более подробные сведения о максимальных значениях давления приведены в разделе вкладка Downloads (документация): см. страницу изделия на веб-сайте www.endress.com.

15.4.4 Предел избыточного давления

- PN = 64 бар (928 фунт/кв. дюйм): предел избыточного давления = 1,5·PN, максимум 100 бар (1450 фунт/кв. дюйм), с учетом выбранного присоединения к процессу
- Разрывное давление мембраны = 200 бар (2 900 фунт/кв. дюйм)
- PN = 100 бар (1450 фунт/кв. дюйм): предел избыточного давления = 1,5·PN, максимум 150 бар (2 175 фунт/кв. дюйм), с учетом выбранного присоединения к процессу
- Разрывное давление мембраны = 400 бар (5800 фунт/кв. дюйм)

В ходе испытания на давление функционал прибора ограничен.

Механическая целостность гарантируется при давлении, в 1,5 раза превышающем номинальное рабочее давление (PN).

15.4.5 Плотность технологической среды

Жидкости плотностью > 0,7 g/cm³ (43,7 lb/ft³)

Настройка > 0.7 q/cm³ (43.7 lb/ft³); в состоянии на момент поставки заказчику

Жидкости плотностью 0,5 g/cm³ (31,2 lb/ft³)

Настройка $> 0.5 \text{ g/cm}^3$ (31,2 lb/ft 3); можно заказать как уставку или задать самостоятельно

Жидкости плотностью > 0.4 g/cm^3 (25.0 lb/ft³)

- Настройка > 0,4 g/cm³ (25,0 lb/ft³); можно заказать как уставку или задать самостоятельно
- SIL для определенных сред и технологических параметров по запросу
 - Информация о дифференциации/определении плотности среды доступна здесь: Документация Liquiphant Density (FEL60D) с электронным преобразователем FML621 (веб-сайт Endress+Hauser www.endress.com → вкладка Downloads (документация))

15.4.6 Вязкость

≤ 10 000 мПа∙с

15.4.7 Герметичность под давлением

До полного вакуума

 $lap{1}$ Для вакуум-выпарных установок выберите плотность 0,4 g/cm 3 (25,0 lb/ft 3)/.

15.4.8 Содержание твердых веществ

Ø ≤ 5 мм (0,2 дюйм)

15.5 Дополнительные технические характеристики

Актуальная техническая информация: веб-сайт компании Endress+Hauser: www.endress.com → «Документация».

Алфавитный указатель

А Архив событий	1
Б Безопасность изделия	
В Возврат	
Д Декларация соответствия 9 Диагностика 46 Условные обозначения 46 Диагностические события 46 Диагностический список 48 Диагностическое событие 46 В управляющей программе 47 Диагностическое сообщение 46 Документ 46 Назначение 6 Доступ для записи 29 Доступ для чтения 29	5 5 7 5 7
З Заводская табличка	4
И Идентификация прибора	
К Код доступа 29 Ошибка при вводе 29 Крепежный винт 20 Л Локальный дисплей	9
см. В аварийном состоянии см. Диагностическое сообщение	
М Маркировка СЕ (декларация соответствия))
Назначение документа 6 Назначение полномочий доступа к параметрам 29 Доступ для записи 29 Настройки 29	9
Адаптация прибора к условиям технологического процесса)

U
Об этом документе
Условные обозначения: описание
Отображаемые значения
Для заблокированного состояния 40
Π
Переменные HART
Поворот дисплея
Подменю
Список событий
Приемка10
Принцип ремонта
Проверка
Проверка после подключения
Протокол HART
C
Сервисный интерфейс (CDI)
Сигнал состояния
Список событий
Т
Текст сообщения о событии
Техника безопасности на рабочем месте
Технические характеристики
Условия окружающей среды 63
Технология беспроводной связи Bluetooth® 30
Транспортировка
Обращение с прибором
Требования к монтажу
Точка переключения
Требования к персоналу
У
Устранение неисправностей
Утилизация
Δ.
Φ
Файлы описания прибора 32 Фильтрация журнала событий 51
Фильтрация журнала сооытии
Ч
Чтение измеренных значений 40
Э
Эксплуатационная безопасность
Эксплуатация
Элементы управления
Диагностическое сообщение 47
D
DD
F
FV (переменная HART)

Р PV (переменная HART)	32
S SV (переменная HART)	32
T TV (переменная HART)	32
W W@M Device Viewer	54

70

www.addresses.endress.com

