Technische Information **Proline Promass X 300**

Coriolis-Durchflussmessgerät

Vierrohr-Messgerät für maximale Durchflussraten mit kompaktem, zugangsoptimiertem Messumformer

Anwendungsbereich

- Messprinzip arbeitet unabhängig von physikalischen Messstoffeigenschaften wie Viskosität und Dichte
- Für höchste Durchflüsse und überragende Leistung in On-/Offshore-Anwendungen der Öl- und Gasindustrie

Geräteeigenschaften

- Nennweite: DN 300...400 (12...16")
- Vierrohrsystem mit geringem Druckabfall
- Außenmaterial vollständig aus 1.4435 (316L)
- Kompaktes Zweikammergehäuse mit bis zu 3 Ein-/Ausgängen
- Beleuchtete Anzeige mit Touch Control, WLAN-Zugriff
- Abgesetzte Anzeige erhältlich

Ihre Vorteile

- Profitabel hochpräzise Messung riesiger Mengen mit nur einer einzigen Einbaustelle
- Weniger Prozessmessstellen multivariable Messung (Durchfluss, Dichte, Temperatur)
- Platzsparende Montage keine Ein-/Auslaufstrecken
- Voller Zugriff auf Prozess- und Diagnoseinformationen zahlreiche, frei kombinierbare I/Os und Ethernet
- Reduzierte Komplexität und Varianz frei konfigurierbare I/O-Funktionalität
- Integrierte Verifizierung Heartbeat Technology

Inhaltsverzeichnis

Symbole		Umgebungstemperaturbereich	
Arbeitsweise und Systemaufbau	5	Klimaklasse	58
Messprinzip		Relative Luftfeuchte	58
Messeinrichtung		Betriebshöhe	58
Gerätearchitektur	7	Schutzart	58
Verlässlichkeit		Vibrations- und Schockfestigkeit	58
v Chaoshchach	,	Mechanische Belastung	58
 :	10	Elektromagnetische Verträglichkeit (EMV)	59
3 · · · · · · · · · · · · · · · · · · ·			
Messgröße		Prozess	59
Messbereich			59
Messdynamik		Druck-Temperatur-Kurven	59
Eingangssignal	11		60
		Berstscheibe	
Ausgang	13	Durchflussgrenze	6.
Aus- und Eingangsvarianten		Druckverlust	61
Ausgangssignal		Systemdruck	
Ausfallsignal	21	Wärmeisolation	
Bürde	23	Beheizung	
Ex-Anschlusswerte	24	Vibrationen	62
Schleichmengenunterdrückung	25		
Galvanische Trennung	26 26	Eichbetrieb	63
Energieversorgung	32	Konstruktiver Aufbau	
Klemmenbelegung		Abmessungen in SI-Einheiten	
Verfügbare Gerätestecker		Abmessungen in US-Einheiten	
Versorgungsspannung	34	Gewicht	
Leistungsaufnahme	34	Werkstoffe	
Stromaufnahme	34	Prozessanschlüsse	
Versorgungsausfall	34	Oberflächenrauhigkeit	75
Überstromschutzeinrichtung	34		
Elektrischer Anschluss	35	Anzeige und Bedienoberfläche	76
Potenzialausgleich	45	Bedienkonzept	76
Klemmen	45	Sprachen	76
Kabeleinführungen	45	Vor-Ort-Bedienung	76
Pinbelegung Gerätestecker	45		77
Kabelspezifikation	47		83
Überspannungsschutz	50	Netzwerk Integration	
		Unterstützte Bedientools	
Leistungsmerkmale	50	HistoROM Datenmanagement	87
Referenzbedingungen	50		
Maximale Messabweichung	50	Zertifikate und Zulassungen	88
Wiederholbarkeit	52		88
Reaktionszeit	52		88
Einfluss Umgebungstemperatur	52	RCM-Kennzeichnung	88
Einfluss Messstofftemperatur	52	Ex-Zulassung	89
Einfluss Messstoffdruck	53	Zertifizierung HART	90
Berechnungsgrundlagen	53	Zertifizierung FOUNDATION Fieldbus	90
		Zertifizierung PROFIBUS	90
Montage	54	Zertifizierung EtherNet/IP	90
Montageort	54		90
Einbaulage		3	90
Ein- und Auslaufstrecken			90
Spezielle Montagehinweise			92
		Messgerätezulassung	91

2

Weitere Zertifizierungen	
Bestellinformationen	92
Anwendungspakete Erweiterte Dichte	93 93 93
Zubehör	94 94 95
Ergänzende Dokumentation	96
Eingetragene Marken	98

Hinweise zum Dokument

Symbole Elektrische Symbole

Symbol	Bedeutung
===	Gleichstrom
~	Wechselstrom
$\overline{\sim}$	Gleich- und Wechselstrom
≐	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Anschluss Potenzialausgleich (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Anschluss Potenzialausgleich wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

Kommunikationsspezifische Symbole

Symbol	Bedeutung
?	Wireless Local Area Network (WLAN) Kommunikation über ein drahtloses, lokales Netzwerk.
•	LED Leuchtdiode ist aus.
-\$-	LED Leuchtdiode ist an.
	LED Leuchtdiode blinkt.

Symbole für Informationstypen

Symbol	Bedeutung
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
X	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
(A)	Verweis auf Dokumentation
A	Verweis auf Seite
	Verweis auf Abbildung
	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung
1, 2, 3,	Positionsnummern
1., 2., 3.,	Handlungsschritte
A, B, C,	Ansichten
A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich
×	Sicherer Bereich (nicht explosionsgefährdeter Bereich)
≋➡	Durchflussrichtung

Arbeitsweise und Systemaufbau

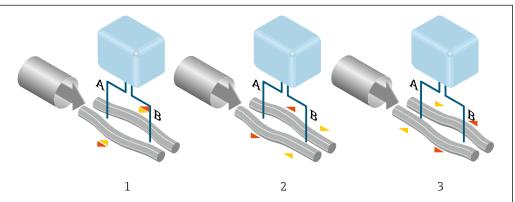
Messprinzip

Das Messprinzip basiert auf der kontrollierten Erzeugung von Corioliskräften. Diese Kräfte treten in einem System immer dann auf, wenn sich gleichzeitig translatorische (geradlinige) und rotatorische (drehende) Bewegungen überlagern.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 $F_c = Corioliskraft$

 Δm = bewegte Masse


 $\omega = Drehgeschwindigkeit$

v = Radialgeschwindigkeit im rotierenden bzw. schwingenden System

Die Größe der Corioliskraft hängt von der bewegten Masse Δm , deren Geschwindigkeit v im System und somit vom Massefluss ab. Anstelle einer konstanten Drehgeschwindigkeit ω tritt beim Messaufnehmer eine Oszillation auf.

Beim Messaufnehmer werden dabei zwei mal zwei parallele, vom Messstoff durchströmte Messrohre, in Gegenphase zur Schwingung gebracht und bilden eine Art "Stimmgabel". Die an den Messrohren erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):

- Bei Nulldurchfluss (Stillstand des Messstoffs) schwingen beide Rohre in Phase (1).
- Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt (3).

A0028850

Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynamischer Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Die Systembalance wird

durch die gegenphasige Schwingung der beiden Messrohre erreicht. Das Messprinzip arbeitet grundsätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.

Dichtemessung

Das Messrohr wird immer in seiner Resonanzfrequenz angeregt. Sobald sich die Masse und damit die Dichte des schwingenden Systems (Messrohr und Messstoff) ändert, regelt sich die Erregerfrequenz automatisch wieder nach. Die Resonanzfrequenz ist somit eine Funktion der Messstoffdichte. Aufgrund dieser Abhängigkeit lässt sich mit Hilfe des Mikroprozessors ein Dichtesignal gewinnen.

Volumenmessung

Daraus lässt sich mit Hilfe des gemessenen Masseflusses auch der Volumenfluss berechnen.

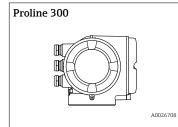
Temperaturmessung

Zur rechnerischen Kompensation von Temperatureffekten wird die Temperatur am Messrohr erfasst. Dieses Signal entspricht der Prozesstemperatur und steht auch als Ausgangssignal zur Verfügung.

Gas Fraction Handler (GFH)

Der Gas Fraction Handler ist eine Funktion der Promass-Software, die die Messstabilität und Wiederholbarkeit verbessert. Die Funktion prüft kontinuierlich, ob im Einphasen-Durchfluss Störungen vorliegen, d. h. Gasblasen in Flüssigkeiten oder Tropfen in Gasen. Bei Vorhandensein der zweiten Phase werden Durchfluss und Dichte zunehmend instabil. Die Gas Fraction Handler-Funktion verbessert die Messstabilität im Hinblick auf das Ausmaß der Störungen ohne Einfluss unter Einphasen-Strömungsbedingungen.

Der Gas Fraction Handler ist nur bei Geräteausführungen mit HART, Modbus RS485, PROFINET und PROFINET mit Ethernet- APL verfügbar.

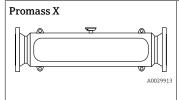

Messeinrichtung

Das Gerät besteht aus Messumformer und Messaufnehmer.

Das Gerät ist als Kompaktausführung verfügbar:

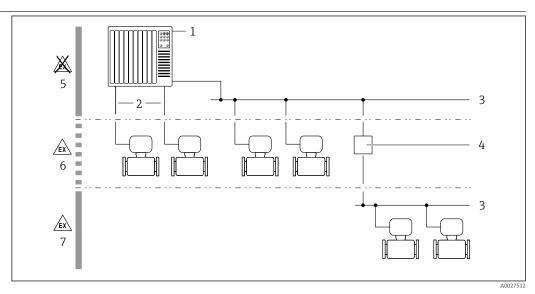
Messumformer und Messaufnehmer bilden eine mechanische Einheit.

Messumformer


Gehäuseausführungen und Werkstoffe:

- Messumformergehäuse
- Alu, beschichtet: Aluminium, AlSi10Mg, beschichtet
- Guss, rostfrei: Guss, rostfreier Stahl, 1.4409 (CF3M) ähnlich zu 316L
- Fensterwerkstoff bei Messumformergehäuse aus:
 - Alu, beschichtet: Glas
 - Guss, rostfrei: Glas

Konfiguration:


- Bedienung von außen via 4-zeiliger, beleuchteter, grafischer Vor-Ort-Anzeige (LCD) mit Touch-Control und geführten Menüs ("Make-itrun"-Wizards) für anwendungsspezifische Inbetriebnahme.
- Via Serviceschnittstelle oder WLAN-Schnittstelle:
 - Bedientools (z.B. FieldCare, DeviceCare)
 - Webserver (Zugriff via Webbrowser z.B. Microsoft Internet Explorer, Microsoft Edge)

Messaufnehmer

- Kompaktes, gebogenes Vierrohrsystem zur Erfassung größter Durchflussmengen, offshore-tauglich und hochgenau
- Gleichzeitige Messung von Durchfluss, Volumenfluss, Dichte und Temperatur (multivariable)
- Nennweitenbereich: DN 300...400 (12...16")
- Werkstoffe:
 - Messaufnehmer: Rostfreier Stahl, 1.4404 (316L)
 - Messrohre: Rostfreier Stahl, 1.4404 (316/316L)
 - Prozessanschlüsse: Rostfreier Stahl, 1.4404 (F316/F316L)

Gerätearchitektur

■ 1 Möglichkeiten für die Messgeräteinbindung in ein System

- 1 Automatisierungssystem (z.B. SPS)
- 2 Anschlusskabel (0/4...20 mA HART etc.)
- 3 Feldbus
- 4 Koppler
- 5 Nicht explosionsgefährdeter Bereich
- 6 Explosionsgefährdeter Bereich: Zone 2; Class I, Division 2
- 7 Explosionsgefährdeter Bereich: Zone 1; Class I, Division 1

Verlässlichkeit

IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät einige spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Die folgende Auflistung ist eine Übersicht der wichtigsten Funktionen:

Funktion/Schnittstelle	Werkseinstellung	Empfehlung
Schreibschutz via Hardware-Verriegelungs- schalter → 🖺 8	Nicht aktiviert	Individuell nach Risikoabschätzung
Freigabecode (gilt auch für Webserver Login oder FieldCare- Verbindung) → 🖺 8	Nicht aktiviert (0000)	Bei der Inbetriebnahme einen individuel- len Freigabecode vergeben
WLAN (Bestelloption in Anzeigemodul)	Aktiviert	Individuell nach Risikoabschätzung
WLAN Security Modus	Aktiviert (WPA2- PSK)	Nicht verändern
WLAN-Passphrase (Passwort) → 🖺 8	Seriennummer	Bei der Inbetriebnahme einen individuel- len WLAN-Passphrase vergeben
WLAN-Modus	Access Point	Individuell nach Risikoabschätzung
Webserver → 🖺 8	Aktiviert	Individuell nach Risikoabschätzung
Serviceschnittstelle CDI-RJ45 → 🗎 9	_	Individuell nach Risikoabschätzung

Zugriff via Hardwareschreibschutz schützen

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann über einen Verriegelungsschalter (DIP-Schalter auf dem Hauptelektronikmodul) deaktiviert werden. Bei aktiviertem Hardwareschreibschutz ist nur Lesezugriff auf die Parameter möglich.

Der Hardwareschreibschutz ist im Auslieferungszustand deaktiviert.

Zugriff via Passwort schützen

Um den Schreibzugriff auf die Parameter des Geräts oder den Zugriff auf das Gerät via der WLAN-Schnittstelle zu schützen, stehen unterschiedliche Passwörter zur Verfügung.

Anwenderspezifischer Freigabecode

Den Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) schützen. Das Zugriffsrecht wird durch die Verwendung eines anwenderspezifischen Freigabecodes klar geregelt.

WLAN-Passphrase

Der Netzwerkschlüssel schützt eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle.

Infrastruktur Modus

Bei Betrieb im Infrastruktur Modus entspricht der WLAN-Passphrase dem betreiberseitig konfigurierten WLAN-Passphrase.

Anwenderspezifischer Freigabecode

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann durch den veränderbaren, anwenderspezifischen Freigabecode geschützt werden.

WLAN-Passphrase: Betrieb als WLAN Access Point

Eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle wird durch den Netzwerkschlüssel geschützt. Die WLAN-Authentifizierung des Netzwerkschlüssels ist konform dem Standard IEEE 802.11.

Der Netzwerkschlüssel ist im Auslieferungszustand geräteabhängig vordefiniert. Er kann über das Untermenü **WLAN-Einstellungen** im Parameter **WLAN-Passphrase** angepasst werden.

Infrastruktur Modus

Eine Verbindung zwischen Gerät und dem WLAN Access Point ist anlagenseitig über SSID und Passphrase geschützt. Für einen Zugriff an den zuständigen Systemadministrator wenden.

Allgemeine Hinweise für die Verwendung der Passwörter

- Der bei Auslieferung gültige Freigabecode und Netzwerkschlüssel aus Sicherheitsgründen bei der Inbetriebnahme ändern.
- Bei der Definition und Verwaltung des Freigabecodes und Netzwerkschlüssels sind die allgemein üblichen Regeln für die Generierung eines sicheren Passworts zu berücksichtigen.
- Die Verwaltung und der sorgfältige Umgang mit dem Freigabecode und Netzwerkschlüssel obliegt dem Benutzer.

Zugriff via Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser bedient und konfiguriert werden. Die Verbindung erfolgt via Serviceschnittstelle (CDI-RJ45) oder WLAN-Schnittstelle. Bei Geräteausführungen mit den Kommunikationsarten EtherNet/IP und PROFINET kann die Verbindung auch über den Anschluss für die Signalübertragung für EtherNet/IP, PROFINET (RJ45 Stecker) oder PROFINET mit Ethernet-APL (Zweileiter) aufgebaut werden.

Der Webserver ist im Auslieferungszustand aktiviert. Über den Parameter **Webserver Funktionalität** kann der Webserver bei Bedarf (z. B. nach der Inbetriebnahme) deaktiviert werden.

Die Geräte- und Status-Informationen können auf der Login-Seite ausgeblendet werden. Dadurch wird ein unberechtigtes Auslesen der Informationen unterbunden.

[]i

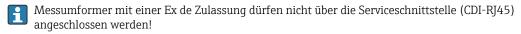
Detaillierte Informationen zu den Parametern des Geräts:

Zugriff via OPC-UA

i

Mit dem Anwendungspaket "OPC-UA-Server" kann das Gerät mit OPC-UA Clients kommunizieren.

Der im Gerät integrierte OPC-UA-Server ist über die optional bestellbare WLAN-Schnittstelle via WLAN Access Point oder die Serviceschnittstelle (CDI- RJ45) via Ethernet-Netzwerk verfügbar. Zugriffsrechte und Autorisierung gemäß separater Konfiguration.


Folgende Security Modes werden gemäß OPC-UA Spezifikation (IEC 62541) unterstützt:

- Ohne
- Basic128Rsa15 signiert
- Basic128Rsa15 signiert und verschlüsselt

Zugriff via Serviceschnittstelle (CDI-RJ45)

Das Gerät kann über die Serviceschnittstelle (CDI-RJ45) mit einem Netzwerk verbunden werden. Aufgrund gerätespezifischer Funktionen ist ein sicherer Betrieb des Geräts in einem Netzwerk gewährleistet.

Es wird empfohlen die einschlägigen Industrienormen und Richtlinien anzuwenden, die von nationalen und internationalen Sicherheitsausschüssen verfasst wurden wie zum Beispiel IEC/ISA62443 oder IEEE. Hierzu zählen organisatorische Sicherheitsmaßnahmen wie die Vergabe von Zutrittsberechtigungen und auch technische Maßnahmen wie zum Beispiel eine Netzwerksegmentierung.

Bestellmerkmal "Zulassung Messumformer + Sensor", Optionen (Ex de): BA, BB, C1, C2, GA, GB, MA, MB, NA, NB BB, C2, GB, MB, NB

Das Gerät kann in eine Ringtopologie eingebunden werden. Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und dem Anschluss an die Serviceschnittstelle (CDI-RJ45) → ■ 83.

Eingang

Messgröße

Direkte Messgrößen

- Massefluss
- Dichte
- Temperatur

Berechnete Messgrößen

- Volumenfluss
- Normvolumenfluss
- Normdichte

Messbereich

Messbereich für Flüssigkeiten

DN		Messbereich-Endwerte $\dot{m}_{min(F)}\dot{m}_{max(F)}$	
[mm]	[in]	[t/h]	[tn. sh./h]
300	12	0 4 100	0 4 520
350	14	0 4 100	0 4 520
400	16	0 4 100	0 4 520

Messbereich für Gase

Der Endwert ist abhängig von der Dichte und der Schallgeschwindigkeit des verwendeten Gases. Der Endwert kann mit folgenden Formeln berechnet werden:

$$\begin{split} \dot{m}_{max(G)} = & \mbox{Minimum von} & (\dot{m}_{max(F)} \cdot \rho_G : x \) \ \mbox{und} \\ & (\rho_G \cdot (c_G/2) \cdot d_i^{\ 2} \cdot (\pi/4) \cdot 3600 \cdot n) \end{split}$$

m _{max(G)}	Maximaler Endwert für Gas [kg/h]	
m _{max(F)}	Maximaler Endwert für Flüssigkeit [kg/h]	
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{\max(G)}$ kann nie größer werden als $\dot{m}_{\max(F)}$	
ρ_{G}	Gasdichte in [kg/m³] bei Prozessbedingungen	
х	Begrenzungskonstante für max. Gasdurchfluss [kg/m³]	
\mathbf{c}_{G}	Schallgeschwindigkeit (Gas) [m/s]	
d _i	Messrohrinnendurchmesser [m]	
π	Kreiszahl Pi	
n = 4	Anzahl der Messrohre	

DN		x
[mm]	[in]	[kg/m³]
300	12	200
350	14	200
400	16	200

Zur Berechnung des Messbereichs: Produktauswahlhilfe Applicator → 🖺 95

Bei Berechnung des Endwerts über die beiden Formeln:

1. Den Endwert mit beiden Formeln berechnen.

2. Der kleinere Wert ist zu verwenden.

Empfohlener Messbereich

Durchflussgrenze $\rightarrow \triangleq 61$

Messdynamik

Über 1000:1.

Durchflüsse oberhalb des eingestellten Endwerts übersteuern die Elektronik nicht, so dass die aufsummierte Durchflussmenge korrekt erfasst wird.

Eingangssignal

Aus- und Eingangsvarianten

→ 🖺 13

Eingelesene Messwerte

Um die Messgenauigkeit bestimmter Messgrößen zu erhöhen oder für Gase den Normvolumenfluss zu berechnen, kann das Automatisierungssystem kontinuierlich verschiedene Messwerte in das Messgerät schreiben:

- Betriebsdruck zur Steigerung der Messgenauigkeit (Endress+Hauser empfiehlt die Verwendung eines Druckmessgeräts für Absolutdruck, z.B. Cerabar M oder Cerabar S)
- Messstofftemperatur zur Steigerung der Messgenauigkeit (z.B. iTEMP)
- Referenzdichte zur Berechnung des Normvolumenflusses für Gase
- Bei Endress+Hauser sind verschiedene Druck- und Temperaturmessgeräte bestellbar: Kapitel "Zubehör" → 🖺 96

Das Einlesen externer Messwerte wird zur Berechnung des Normvolumenfluss empfohlen.

HART-Protokoll

Das Schreiben der Messwerte vom Automatisierungssystem zum Messgerät erfolgt über das HART-Protokoll. Das Druckmessgerät muss folgende protokollspezifische Funktionen unterstützen:

- HART-Protokoll
- Burst-Modus

Stromeingang

Digitale Kommunikation

Das Schreiben der Messwerte durch das Automatisierungssystem kann erfolgen über:

- FOUNDATION Fieldbus
- PROFIBUS DP
- PROFIBUS PA
- Modbus RS485
- EtherNet/IP
- PROFINET
- PROFINET mit Ethernet-APL

Stromeingang 0/4...20 mA

Stromeingang	0/420 mA (aktiv/passiv)
Strombereich	420 mA (aktiv)0/420 mA (passiv)
Auflösung	1 μΑ
Spannungsabfall	Typisch: 0,6 2 V bei 3,6 22 mA (passiv)
Maximale Eingangsspan- nung	≤ 30 V (passiv)
Leerlaufspannung	≤ 28,8 V (aktiv)
Mögliche Eingangsgrößen	DruckTemperaturDichte

Statuseingang

Maximale Eingangswerte	■ DC $-3 \dots 30 \text{ V}$ ■ Wenn Statuseingang aktiv (ON): $R_i > 3 \text{ k}\Omega$	
Ansprechzeit	Einstellbar: 5 200 ms	
Eingangssignalpegel	 Low-Signal (tief): DC -3 +5 V High-Signal (hoch): DC 12 30 V 	
Zuordenbare Funktionen	 Aus Die einzelnen Summenzähler separat zurücksetzen Alle Summenzähler zurücksetzen Messwertunterdrückung 	

Ausgang

Aus- und Eingangsvarianten

Abhängig von der für den Aus-/Eingang 1 gewählten Option stehen für die weiteren Aus- und Eingänge unterschiedliche Optionen zur Verfügung. Pro Aus-/Eingang 1 ...3 kann jeweils nur eine Option ausgewählt werden. Die folgenden Tabellen sind vertikal (\downarrow) zu lesen.

Beispiel: Wenn für Aus-/Eingang 1 die Option BA "4–20 mA HART" gewählt wurde, steht für den Ausgang 2 eine der Optionen A, B, D, E, F, H, I oder J und für den Ausgang 3 eine der Optionen A, B, D, E, F, H, I oder J zur Verfügung.

Aus-/Eingang 1 und Optionen für Aus-/Eingang 2

Optionen für Aus-/Eingang 3 → 🖺 14

Bestellmerkmal "Ausgang; Eingang 1" (020) →		Mögliche Optionen											
Stromausgang 420 mA HART	BA												
Stromausgang 420 mA HART Ex i passiv	1	CA											
Stromausgang 420 mA HART Ex i aktiv		4	СС										
FOUNDATION Fieldbus			4	SA									
FOUNDATION Fieldbus Ex i				4	TA								
PROFIBUS DP					4	LA							
PROFIBUS PA						4	GA						
PROFIBUS PA Ex i							4	НА					
Modbus RS485								4	MA				
EtherNet/IP 2-Port Switch integriert									1	NA			
PROFINET 2-Port Switch integriert										\downarrow	RA		
PROFINET mit Ethernet-APL											→	RB	
PROFINET mit Ethernet-APL Ex i												\	RC
Bestellmerkmal "Ausgang; Eingang 2" (021) →		4	4	4	\	4	\	4	4	\	\rightarrow	\	\
Nicht belegt	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Stromausgang 420 mA	В			В		В	В		В	В	В	В	
Stromausgang 420 mA Ex i passiv		С	С		С			С					С
Frei konfigurierbarer Ein-/Ausgang ¹⁾	D			D		D	D		D	D	D	D	
Impuls-/Frequenz-/Schaltausgang	Е			Е		Е	Е		Е	Е	E	E	
Doppelimpulsausgang ²⁾	F								F				
Impuls-/Frequenz-/Schaltausgang Ex i passiv		G	G		G			G					G
Relaisausgang	Н			Н		Н	Н		Н	Н	Н	Н	
Stromeingang 0/420 mA	I			I		I	I		I	I	I	I	
Statuseingang	J			J		J	J		J	J	J	J	

- 1) Einem frei konfigurierbaren Ein-/Ausgang \rightarrow $\stackrel{ ext{le}}{=}$ 21 kann ein spezifischer Ein- oder Ausgang zugeordnet werden.
- Bei Auswahl Doppelimpulsausgang (F) für den Aus-/Eingang 2 (021) steht für den Aus-/Eingang 3 (022) auch nur noch die Auswahl Doppelimpulsausgang (F) zur Verfügung.

Aus-/Eingang 1 und Optionen für Aus-/Eingang 3

Optionen für Aus-/Eingang 2 → 🗎 13

Bestellmerkmal "Ausgang; Eingang 1" (020) →	Mögliche Optionen												
Stromausgang 420 mA HART	ВА												
Stromausgang 420 mA HART Ex i passiv	\	CA											
Stromausgang 420 mA HART Ex i aktiv		4	СС										
FOUNDATION Fieldbus			4	SA									
FOUNDATION Fieldbus Ex i				\	TA								
PROFIBUS DP					4	LA							
PROFIBUS PA						1	GA						
PROFIBUS PA Ex i							1	НА					
Modbus RS485								4	MA				
EtherNet/IP 2-Port Switch integriert									\	NA			
PROFINET 2-Port Switch integriert										\rightarrow	RA		
PROFINET mit Ethernet-APL/SPE, 10Mbit/s, 2-Draht											4	RB	
PROFINET mit Ethernet-APL Ex i, 10Mbit/s, 2-Draht												4	RC
Bestellmerkmal "Ausgang; Eingang 3" (022) →		4	4	\	4	1	1	4	\	→	\	4	4
Nicht belegt	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Stromausgang 420 mA	В					В			В	В	В	В	
Stromausgang 420 mA Ex i passiv		С	С										
Frei konfigurierbarer Ein-/Ausgang	D					D			D	D	D	D	
Impuls-/Frequenz-/Schaltausgang	Е					Е			Е	Е	Е	Е	
Doppelimpulsausgang (Slave) 1)									F				
Impuls-/Frequenz-/Schaltausgang Ex i passiv		G	G										
Relaisausgang	Н					Н			Н	Н	Н	Н	
Stromeingang 0/420 mA	I					I			I	I	I	I	
Statuseingang	J					J			J	J	J	J	

¹⁾ Bei Auswahl Doppelimpulsausgang (F) für den Aus-/Eingang 2 (021) steht für den Aus-/Eingang 3 (022) auch nur noch die Auswahl Doppelimpulsausgang (F) zur Verfügung.

14

Ausgangssignal

Stromausgang 4...20 mA HART

Bestellmerkmal	"Ausgang; Eingang 1" (20): Option BA: Stromausgang 4 20 mA HART
Signalmodus	Wahlweise einstellbar: Aktiv Passiv
Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA 020 mA (nur bei Signalmodus aktiv) Fester Stromwert
Leerlaufspannung	DC 28,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	250 700 Ω
Auflösung	0,38 μΑ
Dämpfung	Einstellbar: 0 999,9 s
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Stromausgang 4...20 mA HART Ex i

Bestellmerkmal	"Ausgang; Eingang 1" (20) wählbar: Option CA: Stromausgang 4 20 mA HART Ex i passiv Option CC: Stromausgang 4 20 mA HART Ex i aktiv
Signalmodus	Abhängig von der gewählten Bestellvariante.
Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA 020 mA (nur bei Signalmodus aktiv) Fester Stromwert
Leerlaufspannung	DC 21,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	 250 400 Ω (aktiv) 250 700 Ω (passiv)
Auflösung	0,38 μΑ

Dämpfung	Einstellbar: 0 999,9 s
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erwei-
	tert sich die Auswahl.

FOUNDATION Fieldbus

FOUNDATION Fieldbus	H1, IEC 61158-2, galvanisch getrennt
Datenübertragung	31,25 kbit/s
Stromaufnahme	10 mA
Zulässige Speisespannung	9 32 V
Busanschluss	Mit integriertem Verpolungsschutz

PROFIBUS DP

Signalkodierung	NRZ-Code
Datenübertragung	9,6 kBaud12 MBaud
Abschlusswiderstand	Integriert, über DIP-Schalter aktivierbar

PROFIBUS PA

PROFIBUS PA	Gemäß EN 50170 Volume 2, IEC 61158-2 (MBP), galvanisch getrennt
Datenübertragung	31,25 kbit/s
Stromaufnahme	10 mA
Zulässige Speisespannung	9 32 V
Busanschluss	Mit integriertem Verpolungsschutz

Modbus RS485

Physikalische Schnittstelle	RS485 gemäß Standard EIA/TIA-485
Abschlusswiderstand	Integriert, über DIP-Schalter aktivierbar

EtherNet/IP

Standards	Gemäß IEEE 802.3
-----------	------------------

PROFINET

Standards	Gemäß IEEE 802.3

PROFINET mit Ethernet-APL

Geräteverwendung	Geräteanschluss an einen APL-Field-Switch Das Gerät darf nur gemäß der folgenden APL-Port-Klassifizierungen betrieben werden: ■ Bei Einsatz im explosionsgefährdeten Bereich: SLAA oder SLAC ¹) ■ Bei Einsatz im nicht explosionsgefährdeten Bereich: SLAX Anschlusswerte APL-Field-Switch (entspricht z. B. APL-Port-Klassifizierung SPCC oder SPAA): ■ Maximale Eingangsspannung: 15 V _{DC} ■ Minimale Ausgangswerte: 0,54 W
	Geräteanschluss an einen SPE-Switch ■ In nicht-explosionsgefährdeten Bereichen kann das Gerät mit einen geeigneten SPE-Switch eingesetzt werden: Das Gerät kann an einen SPE-Switch mit einer maximalen Spannung von 30 V _{DC} und einer minimalen Ausgangsleistung von 1,85 W angeschlossen werden. ■ Der SPE-Switch muss den Standard 10BASE-T1L und die PoDL-Leistungsklassen 10, 11 oder 12 unterstützen sowie über eine Funktion zur Deaktivierung der Leistungsklassenerkennung verfügen.
PROFINET	Gemäß IEC 61158 and IEC 61784
Ethernet-APL	Gemäß IEEE 802.3cg, APL-Port-Profil Spezifikation v1.0, galvanisch getrennt
Datenübertragung	10 Mbit/s
Stromaufnahme	Messumformer ■ Max. 400 mA(24 V) ■ Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)
Zulässige Speisespannung	9 30 V
Netzwerkanschluss	Mit integriertem Verpolungsschutz

 $1) \qquad \text{Weitere Informationen zum Einsatz des Geräts im explosionsgefährdeten Bereich: Ex-Sicherheitshinweise}$

Stromausgang 4...20 mA

Bestellmerkmal	"Ausgang; Eingang 2" (21), "Ausgang; Eingang 3" (022): Option B: Stromausgang 4 20 mA
Signalmodus	Wahlweise einstellbar: Aktiv Passiv
Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA 020 mA (nur bei Signalmodus aktiv) Fester Stromwert
Maximale Ausgangswerte	22,5 mA
Leerlaufspannung	DC 28,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	0 700 Ω
Auflösung	0,38 μΑ

Dämpfung	Einstellbar: 0 999,9 s
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0
	Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Stromausgang 4...20 mA Ex i passiv

Bestellmerkmal	"Ausgang; Eingang 2" (21), "Ausgang; Eingang 3" (022): Option C: Stromausgang 4 20 mA Ex i passiv
Signalmodus	Passiv
Strombereich	Wahlweise einstellbar: 420 mA NAMUR 420 mA US 420 mA Fester Stromwert
Maximale Ausgangswerte	22,5 mA
Maximale Eingangsspan- nung	DC 30 V
Bürde	0 700 Ω
Auflösung	0,38 μΑ
Dämpfung	Einstellbar: 0 999 s
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Impuls-/Frequenz-/Schaltausgang

Funktion	Als Impuls-, Frequenz- oder Schaltausgang wahlweise einstellbar
Ausführung	Open-Collector Wahlweise einstellbar: Aktiv Passiv Passiv NAMUR Ex-i, passiv
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)

Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Impulsausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Impulsbreite	Einstellbar: 0,05 2 000 ms
Maximale Impulsrate	10 000 Impulse/s
Impulswertigkeit	Einstellbar
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erwei-
-	tert sich die Auswahl.
Frequenzausgang	DC 201/ 250 A /)
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Ausgangsfrequenz	Einstellbar: Endfrequenz 2 10000 Hz (f $_{max}$ = 12500 Hz)
Dämpfung	Einstellbar: 0 999,9 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.
Schaltausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Schaltverhalten	Binär, leitend oder nicht leitend
Schaltverzögerung	Einstellbar: 0 100 s

Anzahl Schaltzyklen	Unbegrenzt
Anzahl Schaltzyklen Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Summenzähler 13 Überwachung Durchflussrichtung Status Überwachung teilgefülltes Rohr Schleichmengenunterdrückung
	Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Doppelimpulsausgang

Funktion	Doppelimpuls
Ausführung	Open-Collector Wahlweise einstellbar: Aktiv Passiv Passiv NAMUR
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Ausgangsfrequenz	Einstellbar: 0 1 000 Hz
Dämpfung	Einstellbar: 0 999 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Relaisausgang

Funktion	Schaltausgang
Ausführung	Relaisausgang, galvanisch getrennt
Schaltverhalten	Wahlweise einstellbar: NO (normaly open), Werkseinstellung NC (normaly closed)

Maximale Schaltleistung (passiv)	■ DC 30 V, 0,1 A ■ AC 30 V, 0,5 A
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Summenzähler 13 Überwachung Durchflussrichtung Status Überwachung teilgefülltes Rohr Schleichmengenunterdrückung Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Frei konfigurierbarer Ein-/Ausgang

Einem frei konfigurierbaren Ein-/Ausgang (Konfigurierbares I/O) wird bei der Inbetriebnahme des Geräts **ein** spezifischer Ein- oder Ausgang zugeordnet.

Für die Zuordnung stehen folgende Ein- und Ausgänge zur Verfügung:

- Stromausgang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- Impuls-/Frequenz-/Schaltausgang
- Stromeingang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- Statuseingang

Die technischen Werte entsprechen denen in diesem Kapitel beschriebenen Ein- und Ausgängen.

Ausfallsignal

Ausfallinformationen werden abhängig von der Schnittstelle wie folgt dargestellt.

Stromausgang HART

Gerätediagnose	Gerätezustand auslesbar via HART-Kommando 48
----------------	--

PROFIBUS PA

Status- und Alarm- meldungen	Diagnose gemäß PROFIBUS PA Profil 3.02
Fehlerstrom FDE (Fault Disconnection Electronic)	0 mA

PROFIBUS DP

Status- und Alarm-	Diagnose gemäß PROFIBUS PA Profil 3.02
meldungen	

EtherNet/IP

Gerätediagnose	Gerätezustand auslesbar im Input Assembly
----------------	---

PROFINET

Gerätediagnose	Gemäß "Application Layer protocol for decentralized periphery", Version 2.3
----------------	---

PROFINET mit Ethernet-APL

Gerätediagnose	Diagnose gemäß PROFINET PA Profil 4	
----------------	-------------------------------------	--

FOUNDATION Fieldbus

Status- und Alarm- meldungen	Diagnose gemäß FF-891
Fehlerstrom FDE (Fault Disconnection Electronic)	0 mA

Modbus RS485

Fehlerverhalten	Wählbar:
	 NaN-Wert anstelle des aktuellen Wertes
	■ Letzter gültiger Wert

Stromausgang 0/4...20 mA

4...20 mA

Fehlerverhalten	Wählbar: 4 20 mA gemäß NAMUR-Empfehlung NE 43 4 20 mA gemäß US Min. Wert: 3,59 mA Max. Wert: 22,5 mA Definierbarer Wert zwischen: 3,59 22,5 mA Aktueller Wert Letzter gültiger Wert
-----------------	--

0...20 mA

Fehlerverhalten	Wählbar:
	■ Maximaler Alarm: 22 mA
	■ Definierbarer Wert zwischen: 0 20,5 mA

Impuls-/Frequenz-/Schaltausgang

Impulsausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ Keine Impulse
Frequenzausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ 0 Hz ■ Definierbarer Wert zwischen: 2 12 500 Hz
Schaltausgang	
Fehlerverhalten	Wählbar: Aktueller Status Offen Geschlossen

22

Relaisausgang

Fehlerverhalten	Wählbar:
	■ Aktueller Status
	■ Offen
	■ Geschlossen

Vor-Ort-Anzeige

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
Hintergrundbeleuchtung	Rote Beleuchtung signalisiert Gerätefehler.

Statussignal gemäß NAMUR-Empfehlung NE 107

Schnittstelle/Protokoll

- Via digitale Kommunikation:
 - HART-Protokoll
 - FOUNDATION Fieldbus
 - PROFIBUS PA
 - PROFIBUS DP
 - Modbus RS485
 - EtherNet/IP
 - PROFINET
 - PROFINET mit Ethernet-APL
- Via Serviceschnittstelle
 - Serviceschnittstelle CDI-RJ45
 - WLAN-Schnittstelle

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
-----------------	---

Weitere Informationen zur Fernbedienung $\rightarrow~\cong~77$

Webbrowser

Leuchtdioden (LED)

Statusinformationen	Statusanzeige durch verschiedene Leuchtdioden
	Je nach Geräteausführung werden folgende Informationen angezeigt: Versorgungsspannung aktiv Datenübertragung aktiv Gerätealarm/-störung vorhanden EtherNet/IP-Netzwerk verfügbar EtherNet/IP-Verbindung hergestellt PROFINET-Netzwerk verfügbar PROFINET-Verbindung hergestellt PROFINET-Verbindung hergestellt PROFINET Blinking-Feature

Bürde

Ausgangssignal $\rightarrow \blacksquare 15$

Ex-Anschlusswerte

Sicherheitstechnische Werte

Bestellmerkmal "Ausgang; Eingang 1"	Ausgangstyp	Sicherheitstechnische Werte "Ausgang; Eingang 1"	
		26 (+)	27 (-)
Option BA	Stromausgang 4 20 mA HART	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option GA	PROFIBUS PA	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option LA	PROFIBUS DP	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option MA	Modbus RS485	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option SA	FOUNDATION Fieldbus	$U_{N} = 32 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option NA	EtherNet/IP	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option RA	PROFINET	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option RB	PROFINET mit Ethernet- APL	APL port profile SLAX SPE PoDL classes 10, 11, 12 U_N = 30 V_{DC} U_M = 250 V_{AC}	

Bestellmerkmal	Ausgangstyp	Sicherheitstechnische Werte		2	
"Ausgang; Eingang 2"; "Ausgang; Eingang 3"		Ausgang;	Eingang 2	Ausgang;	Eingang 3
3 3, 3		24 (+)	25 (-)	22 (+)	23 (-)
Option B	Stromausgang 4 20 mA	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$:		
Option D	Frei konfigurierbarer Ein-/Ausgang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$:		
Option E	Impuls-/Frequenz-/ Schaltausgang	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$:		
Option F	Doppelimpulsausgang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$:		
Option H	Relaisausgang	$U_{N} = 30 V_{DC}$ $I_{N} = 100 \text{ mA}_{DC}$ $U_{M} = 250 V_{AC}$			
Option I	Stromeingang 4 20 mA	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$:		
Option J	Statuseingang	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$:		

Eigensichere Werte

Bestellmerkmal "Ausgang; Eingang 1"	Ausgangstyp	Eigensichere Werte "Ausgang; Eingang 1"		
		26 (+)	27 (-)	
Option CA	Stromausgang 420 mA HART Ex i passiv	$\begin{split} &U_{i} = 30 \text{ V} \\ &I_{i} = 100 \text{ mA} \\ &P_{i} = 1,25 \text{ W} \\ &L_{i} = 0 \mu\text{H} \\ &C_{i} = 6 \text{ nF} \end{split}$		
Option CC	Stromausgang 420 mA HART Ex i aktiv	Ex ia $^{1)}$ $U_0 = 21.8 \text{ V}$ $l_0 = 90 \text{ mA}$ $P_0 = 491 \text{ mW}$ $L_0 = 4.1 \text{ mH (IIC)/15 mH (IIB)}$ $C_0 = 160 \text{ nF (IIC)/}$ $1 160 \text{ nF (IIB)}$	Ex ic 2) $U_{0} = 21.8 \text{ V}$ $l_{0} = 90 \text{ mA}$ $P_{0} = 491 \text{ mW}$ $L_{0} = 9 \text{ mH (IIC)/39 mH (IIB)}$ $C_{0} = 600 \text{ nF (IIC)/}$ 4000 nF (IIB)	
		$U_{i} = 30 \text{ V}$ $l_{i} = 10 \text{ mA}$ $P_{i} = 0.3 \text{ W}$ $L_{i} = 5 \mu\text{H}$ $C_{i} = 6 \text{ nF}$		
Option HA	PROFIBUS PA Ex i (FISCO Field Device)	$Ex ia^{1} \\ U_i = 30 \text{ V} \\ l_i = 570 \text{ mA} \\ P_i = 8,5 \text{ W} \\ L_i = 10 \mu\text{H} \\ C_i = 5 \text{ nF}$	Ex ic $^{2)}$ $U_i = 32 \text{ V}$ $l_i = 570 \text{ mA}$ $P_i = 8,5 \text{ W}$ $L_i = 10 \mu\text{H}$ $C_i = 5 \text{ nF}$	
Option TA	FOUNDATION Fieldbus Ex i	$Ex ia^{1}$ $U_{i} = 30 \text{ V}$ $l_{i} = 570 \text{ mA}$ $P_{i} = 8,5 \text{ W}$ $L_{i} = 10 \mu\text{H}$ $C_{i} = 5 \text{ nF}$	Ex ic 2) $U_{i} = 32 \text{ V}$ $l_{i} = 570 \text{ mA}$ $P_{i} = 8,5 \text{ W}$ $L_{i} = 10 \mu\text{H}$ $C_{i} = 5 \text{ nF}$	
Option RC	PROFINET mit Ethernet- APL Ex i	Ex ia ¹⁾ 2-WISE power load APL- Port Profil SLAA	Ex ic ²⁾ 2-WISE power load APL-Port Profil SLAC	

- Nur für Messumformer Proline 500 Zone 1; Class I, Division 1 verfügbar. Nur für Messumformer Zone 2; Class I, Division 2 verfügbar. 1)
- 2)

Bestellmerkmal	Ausgangstyp	Eigensichere Werte oder NIFW Werte			Verte
"Ausgang; Eingang 2"; "Ausgang; Eingang 3"		Ausgang;	Ausgang; Eingang 2 Ausgang; Eingang		Eingang 3
		24 (+)	25 (-)	22 (+)	23 (-)
Option C	Stromausgang 420 mA Ex i passiv	$U_{i} = 30 \text{ V}$ $l_{i} = 100 \text{ mA}$ $P_{i} = 1,25 \text{ W}$ $L_{i} = 0$ $C_{i} = 0$			
Option G	Impuls-/Frequenz-/ Schaltausgang Ex i passiv	$\label{eq:Ui} \begin{aligned} &U_i = 30 \text{ V} \\ &l_i = 100 \text{ mA} \\ &P_i = 1,25 \text{ W} \\ &L_i = 0 \\ &C_i = 0 \end{aligned}$			

Schleichmengenunterdrückung

Die Schaltpunkte für die Schleichmengenunterdrückung sind frei wählbar.

Galvanische Trennung

Die Ausgänge sind galvanisch getrennt:

von der Spannungsversorgung

zueinander

- gegen Anschluss Potentialausgleich (PE)

Protokollspezifische Daten

HART

Hersteller-ID	0x11
Gerätetypkennung	0x3B
HART-Protokoll Revision	7
Gerätebeschreibungsdateien (DTM, DD)	Informationen und Dateien unter: www.endress.com
Bürde HART	Min. 250 Ω
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. • Messgrößen via HART-Protokoll • Burst Mode Funktionalität

FOUNDATION Fieldbus

Hersteller-ID	0x452B48 (hex)
Ident number	0x103B (hex)
Geräterevision	1
DD-Revision	Informationen und Dateien unter:
CFF-Revision	www.endress.comwww.fieldcommgroup.org
Interoperability Test Kit (ITK)	Revisionsstand 6.2.0
ITK Test Campaign Number	Informationen: www.endress.com www.fieldcommgroup.org
Link-Master-fähig (LAS)	Ja
Wählbar zwischen "Link Master" und "Basic Device"	Ja Werkseinstellung: Basic Device
Knotenadresse	Werkseinstellung: 247 (0xF7)
Unterstützte Funktionen	Folgende Methoden werden unterstützt: Restart ENP Restart Diagnostic Set to OOS Set to AUTO Read trend data Read event logbook
Virtual Communication Relation	onships (VCRs)
Anzahl VCRs	44
Anzahl Link-Objekte in VFD	50
Permanente Einträge	1
Client VCRs	0
Server VCRs	10
Source VCRs	43
Sink VCRs	0
Subscriber VCRs	43
Publisher VCRs	43

Device Link Capabilities		
Slot-Zeit	4	
Min. Verzögerung zwischen PDU	8	
Max. Antwortverzögerung	16	
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🖺 97. Zyklische Datenübertragung Beschreibung der Module Ausführungszeiten Methoden	

PROFIBUS DP

Hersteller-ID	0x11
Ident number	0x156F
Profil Version	3.02
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: • https://www.endress.com/download Auf der Produktseite des Geräts: PRODUCTS → Product Finder → Links • https://www.profibus.com
Unterstützte Funktionen	 Identification & Maintenance Einfachste Geräteidentifizierung seitens des Leitsystems und des Typenschildes PROFIBUS Up-/Download Bis zu 10 Mal schnelleres Parameterschreiben und -lesen durch PROFIBUS Up-/ Download Condensed Status Einfachste und selbsterklärende Diagnoseinformationen durch Kategorisierung auftretender Diagnosemeldungen
Konfiguration der Gerätead- resse	 DIP-Schalter auf dem I/O-Elektronikmodul via Bedientools (z.B. FieldCare)
Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grundsätzlich die Kompatibilität der zyklischen Daten zu den Vorgängermodellen. Eine Anpassung der Projektierung des PROFIBUS Netzwerks mit der Promass 300 GSD-Datei ist nicht notwendig. Vorgängermodell: Promass 83 PROFIBUS DP ■ ID-Nr.: 1529 (Hex) ■ Extended GSD Datei: EH3x1529.gsd ■ Standard GSD Datei: EH3_1529.gsd Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung → 97.
Systemintegration	Informationen zur Systemintegration: Betriebanleitung → 🖺 97. Zyklische Datenübertragung Blockmodell Beschreibung der Module

PROFIBUS PA

Hersteller-ID	0x11
Ident number	0x156D
Profil Version	3.02
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: ■ https://www.endress.com/download Auf der Produktseite des Geräts: PRODUCTS → Product Finder → Links ■ https://www.profibus.com

Unterstützte Funktionen	 Identification & Maintenance Einfachste Geräteidentifizierung seitens des Leitsystems und des Typenschildes PROFIBUS Up-/Download Bis zu 10 Mal schnelleres Parameterschreiben und -lesen durch PROFIBUS Up-/Download Condensed Status Einfachste und selbsterklärende Diagnoseinformationen durch Kategorisierung auftretender Diagnosemeldungen
Konfiguration der Geräteadresse	 DIP-Schalter auf dem I/O-Elektronikmodul Vor-Ort-Anzeige Via Bedientools (z.B. FieldCare)
Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grundsätzlich die Kompatibilität der zyklischen Daten zu den Vorgängermodellen. Eine Anpassung der Projektierung des PROFIBUS Netzwerks mit der Promass 300 GSD-Datei ist nicht notwendig. Vorgängermodelle: Promass 80 PROFIBUS PA ID-Nr.: 1528 (Hex) Extended GSD Datei: EH3x1528.gsd Standard GSD Datei: EH3_1528.gsd Promass 83 PROFIBUS PA ID-Nr.: 152A (Hex) Extended GSD Datei: EH3_1528.gsd Promass 83 PROFIBUS PA Extended GSD Datei: EH3x152A.gsd Extended GSD Datei: EH3x152A.gsd Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung → 97.
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. ■ Zyklische Datenübertragung ■ Blockmodell ■ Beschreibung der Module

Modbus RS485

Protokoll	Modbus Applications Protocol Specification V1.1
FIOLORUII	iviouous Applications Protocol specification v 1.1
Antwortzeiten	 Direkter Datenzugriff: Typisch 25 50 ms Auto-Scan-Puffer (Datenbereich): Typisch 3 5 ms
Gerätetyp	Slave
Slave-Adressbereich	1 247
Broadcast-Adressbereich	0
Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Modus Datenübertragung	ASCII RTU

Datenzugriff	Auf jeden Geräteparameter kann via Modbus RS485 zugegriffen werden. Zu den Modbus-Registerinformationen
Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grundsätzlich die Kompatibilität der Modbus-Register für die Prozessgrößen und Diagnoseinformationen zum Vorgängermodell Promass 83. Eine Anpassung der Projektierung im Automatisierungssystem ist nicht notwendig. ■ Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung → ■ 97.
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. • Modbus RS485-Informationen • Funktionscodes • Register-Informationen • Antwortzeit • Modbus-Data-Map

EtherNet/IP

Protokoll	 The CIP Networks Library Volume 1: Common Industrial Protocol The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP 					
Kommunikationstyp	■ 10Base-T ■ 100Base-TX					
Geräteprofil	Generisches Gerät (Product type: 0x2B)					
Hersteller-ID	0x000049E					
Gerätetypkennung	0x103B					
Baudraten	Automatische 10/100 Mbit mit Halbduplex- und Vollduplex-Erkennung					
Polarität	Auto-Polarität für die automatische Korrektur von gekreuzten TxD- und RxD-Paaren					
Unterstützte CIP-Verbindungen	Max. 3 Verbindungen					
Explizite Verbindungen	Max. 6 Verbindungen					
I/O-Verbindungen	Max. 6 Verbindungen (Scanner)					
Konfigurationsmöglichkeiten für Messgerät	 DIP-Schalter auf dem Elektronikmodul für IP-Adressierung Herstellerspezifische Software (FieldCare) Add-On-Profile Level 3 für Rockwell Automation Leitsysteme Webbrowser Electronic Data Sheet (EDS) im Messgerät integriert 					
Konfiguration der EtherNet- Schnittstelle	 Geschwindigkeit: 10 MBit, 100 MBit, Auto (Werkseinstellung) Duplex: Halbduplex, Vollduplex, Auto (Werkseinstellung) 					
Konfiguration der Gerätead- resse	 DIP-Schalter auf dem Elektronikmodul für IP-Adressierung (letztes Oktett) DHCP Herstellerspezifische Software (FieldCare) Add-On-Profile Level 3 für Rockwell Automation Leitsysteme Webbrowser EtherNet/IP-Tools, z.B. RSLinx (Rockwell Automation) 					
Device Level Ring (DLR)	Ja					
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. ■ Zyklische Datenübertragung ■ Blockmodell ■ Ein- und Ausgangsgruppen					

PROFINET

Protokoll	Application layer protocol for decentral device periphery and distributed automation, Version 2.3
Kommunikationstyp	100 MBit/s
Konformitätsklasse	Conformance Class B
Netzlastklasse	Netload Class 2 0 Mbit/s
Baudraten	Automatische 100 Mbit/s mit Vollduplex-Erkennung
Zykluszeiten	Ab 8 ms
Polarität	Auto-Polarität für die automatische Korrektur von gekreuzten TxD- und RxD- Paaren
Media Redundancy Protocol (MRP)	Ja
Support Systemredundanz	Systemredundanz S2 (2 AR mit 1 NAP)
Geräteprofil	Application interface identifier 0xF600 Generisches Gerät
Hersteller-ID	0x11
Gerätetypkennung	0x843B
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: ■ www.endress.com Auf der Produktseite des Geräts: Dokumente/Software → Gerätetreiber ■ www.profibus.com
Unterstützte Verbindungen	 2 x AR (IO Controller AR) 1 x AR (IO-Supervisor Device AR connection allowed) 1 x Input CR (Communication Relation) 1 x Output CR (Communication Relation) 1 x Alarm CR (Communication Relation)
Konfigurationsmöglichkeiten für Messgerät	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) Asset Management Software (FieldCare, DeviceCare, Field Xpert) Integrierter Webserver via Webbrowser und IP-Adresse Gerätestammdatei (GSD), ist über den integrierten Webserver des Messgeräts auslesbar. Vor-Ortbedienung
Konfiguration des Gerätenamens	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) DCP Protokoll Asset Management Software (FieldCare, DeviceCare, Field Xpert) Integrierter Webserver
Unterstützte Funktionen	 Identification & Maintenance einfache Geräteidentifizierung über: Leitsystem Typenschild Messwertstatus Die Prozessgrössen werden mit einem Messwertstatus kommuniziert Blinking-Feature über die Vor-Ort Anzeige für vereinfachte Geräteidentifizierung und -zuordnung Gerätebedienung über Asset Management Software (z.B. FieldCare, Device-Care, SIMATIC PDM)
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. ■ Zyklische Datenübertragung ■ Übersicht und Beschreibung der Module ■ Kodierung des Status ■ Startup-Parametrierung ■ Werkeinstellung

PROFINET mit Ethernet-APL

Protokoll	Application layer protocol for decentral device periphery and distributed automation, Version 2.43						
Kommunikationstyp	Ethernet Advanced Physical Layer 10BASE-T1L						
Konformitätsklasse	Conformance Class B (PA)						
Netzlastklasse	PROFINET Netload Robustness Class 2 10 Mbit/s						
Baudraten	10 Mbit/s Vollduplex						
Zykluszeiten	64 ms						
Polarität	Automatische Korrektur von gekreuzten "APL-Signal +" und "APL-Signal -" Signalleitungen						
Media Redundancy Protocol (MRP)	Nicht möglich (Punkt-zu-Punkt Verbindung zum APL-Field-Switch)						
Support Systemredundanz	Systemredundanz S2 (2 AR mit 1 NAP)						
Geräteprofil	PROFINET PA Profil 4 (Application interface identifier API: 0x9700)						
Hersteller-ID	17						
Gerätetypkennung	0xA43B						
Gerätebeschreibungsdateien (GSD, DTM, FDI)	Informationen und Dateien unter: ■ www.endress.com → Download-Area ■ www.profibus.com						
Unterstützte Verbindungen	 2x AR (IO Controller AR) 2x AR (IO Supervisor Device AR connection allowed) 						
Konfigurationsmöglichkeiten für Messgerät	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) Asset Management Software (FieldCare, DeviceCare, Field Xpert) Integrierter Webserver via Webbrowser und IP-Adresse Gerätestammdatei (GSD), ist über den integrierten Webserver des Messgeräts auslesbar. Vor-Ortbedienung 						
Konfiguration des Gerätenamens	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) DCP Protokoll Asset Management Software (FieldCare, DeviceCare, Field Xpert) Integrierter Webserver 						
Unterstützte Funktionen	 Identification & Maintenance einfache Geräteidentifizierung über: Leitsystem Typenschild Messwertstatus Die Prozessgrössen werden mit einem Messwertstatus kommuniziert Blinking-Feature über die Vor-Ort Anzeige für vereinfachte Geräteidentifizierung und -zuordnung Gerätebedienung über Asset Management Software (z.B. FieldCare, Device-Care, SIMATIC PDM mit FDI-Package) 						
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 97. ■ Zyklische Datenübertragung ■ Übersicht und Beschreibung der Module ■ Kodierung des Status ■ Werkseinstellung						

Energieversorgung

Klemmenbelegung

Messum former: Versorgungsspannung, Ein-/Ausgänge

HART

Versorgungsspannung		Ein-/Au	isgang 1	Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemme	nbelegung ist	von der jeweili → 🖺	9	riante des Gerä	its abhängig

FOUNDATION Fieldbus

Versorgungsspannung		Ein-/Au	isgang 1	Ein-/Au	sgang 2	Ein-/Au	sgang 3
1 (+)	2 (-)	26 (A)	27 (B)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemme	nbelegung ist	von der jeweili → 🖺	5	riante des Gerä	its abhängig

PROFIBUS DP

Versorgungsspannung		Ein-/Au	isgang 1	Ein-/Au	sgang 2	Ein-/Au	sgang 3
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemme	nbelegung ist	von der jeweili → 🖺	9	riante des Gerä	its abhängig

PROFIBUS PA

Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemme	nbelegung ist	von der jeweil → 🖺	5	riante des Gerä	its abhängig

Modbus RS485

Versorgun	Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	
		Die Klemme	enbelegung ist	von der jeweili → 🖺	3	riante des Gerä	its abhängig	

PROFINET

Versorgungsspannung		Ein-/Ausgang 1	Ein-/Au	sgang 2	Ein-/Au	sgang 3
1 (+)	2 (-)	PROFINET (RJ45 Stecker)		25 (–) ibelegung ist v te des Geräts a	, ,	' I

PROFINET mit Ethernet-APL

Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemme	nbelegung ist	von der jeweili → 🖺	5	riante des Gerä	its abhängig

EtherNet/IP

Versorgungsspannung		Ein-/Ausgang 1	Ein-/Au	ısgang 2	Ein-/Au	isgang 3
1 (+)	2 (-)	EtherNet/IP (RJ45 Stecker)			22 (+) on der jeweilig abhängig → 🖺	

Rlemmenbelegung des abgesetzten Anzeige- und Bedienmoduls → 🗎 36.

Verfügbare Gerätestecker

Gerätestecker dürfen nicht in explosionsgefährdeten Bereichen eingesetzt werden!

Gerätestecker für Feldbusse:

Bestellmerkmal "Eingang; Ausgang 1"

- Option **SA** "FOUNDATION Fieldbus" \rightarrow 🗎 33
- Option **GA** "PROFIBUS PA" → 🖺 33
- Option **NA** "EtherNet/IP" \rightarrow 🖺 33
- Option **RA** "PROFINET" \rightarrow 🖺 34
- Option **RB** "PROFINET mit Ethernet-APL" → 🖺 34

Gerätestecker für den Anschluss an die Serviceschnittstelle:

Bestellmerkmal "Zubehör montiert"

Option NB, Adapter RJ45 M12 (Serviceschnittstelle) → 🖺 47

Bestellmerkmal "Eingang; Ausgang 1", Option SA "FOUNDATION Fieldbus"

Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 35	
"Elektrischer Anschluss"	2	3
M, 3, 4, 5	Stecker 7/8"	-

Bestellmerkmal "Eingang; Ausgang 1", Option GA "PROFIBUS PA"

Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 35	
"Elektrischer Anschluss"	2	3
L, N, P, U	Stecker M12 × 1	-

Bestellmerkmal "Eingang; Ausgang 1", Option NA "EtherNet/IP"

Bestellmerkmal	Kabeleinführung/	Anschluss → 🖺 35	
"Elektrischer Anschluss"	2	3	
L, N, P, U	Stecker M12 × 1	-	
R ^{1) 2)} , S ^{1) 2)} , T ^{1) 2)} , V ^{1) 2)}	Stecker M12 × 1	Stecker M12 × 1	

Nicht kombinierbar mit einer externen WLAN-Antenne (Bestellmerkmal "Zubehör beigelegt", Option P8), eines RJ45 M12 Adapters für die Serviceschnittstelle (Bestellmerkmal "Zubehör montiert", Option NB) oder des abgesetzten Anzeige- und Bedienmoduls DKX001

2) Geeignet für die Einbindung des Geräts in eine Ringtopologie.

Bestellmerkmal "Eingang; Ausgang 1", Option RA "PROFINET"

Bestellmerkmal	Kabeleinführung/Anschluss → 🗎 35	
"Elektrischer Anschluss"	2	3
L, N, P, U	Stecker M12 × 1	-
R ¹⁾²⁾ , S ¹⁾²⁾ , T ¹⁾²⁾ , V ¹⁾²⁾	Stecker M12 × 1	Stecker M12 × 1

- Nicht kombinierbar mit einer externen WLAN-Antenne (Bestellmerkmal "Zubehör beigelegt", Option P8), eines RJ45 M12 Adapters für die Serviceschnittstelle (Bestellmerkmal "Zubehör montiert", Option NB) oder des abgesetzten Anzeige- und Bedienmoduls DKX001.
- 2) Geeignet für die Einbindung des Geräts in eine Ringtopologie.

Bestellmerkmal "Eingang; Ausgang 1", Option RB "PROFINET mit Ethernet-APL"

Bestellmerkmal	Kabeleinführung/Anschluss → 🗎 35	
"Elektrischer Anschluss"	2	3
L, N, P, U	Stecker M12 × 1	-

Bestellmerkmal "Zubehör montiert", Option NB "Adapter RJ45 M12 (Serviceschnittstelle)"

Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 35	
"Zubehör montiert"	Kabeleinführung 2	Kabeleinführung 3
NB	Stecker M12 × 1	-

Versorgungsspannung

Bestellmerkmal "Energieversorgung"	Klemmenspannung		Frequenzbereich
Option D	DC 24 V	±20%	-
Option E	AC 100 240 V	-15+10%	50/60 Hz
Option I	DC 24 V	±20%	-
Option I	AC 100 240 V	-15+10%	50/60 Hz

Leistungsaufnahme

Messumformer

Max. 10 W (Wirkleistung)

Einschaltstrom Max. 36 A (<5 ms) gemäß NAMUR-Empfehlung NE 21	
---	--

Stromaufnahme

Messumformer

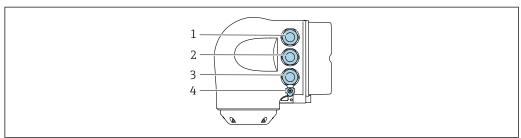
- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

Versorgungsausfall

- Summenzähler bleiben auf dem zuletzt ermittelten Wert stehen.
- Konfiguration bleibt je nach Geräteausführung im Gerätespeicher oder im steckbaren Datenspeicher (HistoROM DAT) erhalten.
- Fehlermeldungen inklusive Stand des Betriebsstundenzählers werden abgespeichert.

Überstromschutzeinrichtung

Das Gerät muss mit einem dedizierten Leitungsschutzschalter (LSS) betrieben werden, da es über keinen eigenen Ein/Aus-Schalter verfügt.


- Der Leitungsschutzschalter muss einfach erreichbar und gekennzeichnet sein.
- Zulässiger Nennstrom des Leitungsschutzschalter: 2 A bis maximal 10 A.

Elektrischer Anschluss

Anschluss Messumformer

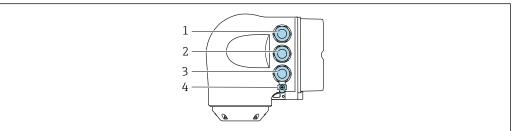
- Klemmenbelegung → 🖺 32

A002678

- 1 Anschluss Versorgungsspannung
- 2 Anschluss Signalübertragung Ein-/Ausgang
- 3 Anschluss Signalübertragung Ein-/Ausgang oder Anschluss für Netzwerk Verbindung über Serviceschnittstelle (CDI-RJ45); Optional: Anschluss externe WLAN-Antenne oder Anschluss abgesetztes Anzeige- und Bedienmodul DKX001
- 4 Anschluss Potenzialausgleich (PE)
- Optional ist ein Adapter für RJ45 auf M12 Stecker erhältlich:
 Bestellmerkmal "Zubehör", Option **NB**: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann dadurch ohne Öffnen des Geräts über einen M12 Stecker erfolgen.

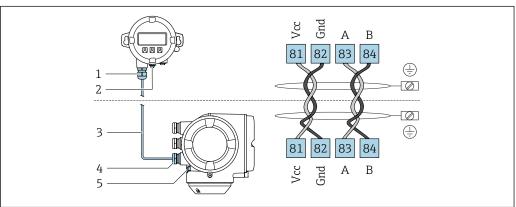
Pi Netzwerk Verbindung über Serviceschnittstelle (CDI-RJ45) → 🖺 83


In einer Ringtopologie anschließen

Geräteausführungen mit den Kommunikationsarten EtherNet/IP und PROFINET können in eine Ringtopologie eingebunden werden. Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und dem Anschluss an die Serviceschnittstelle (CDI-RJ45).

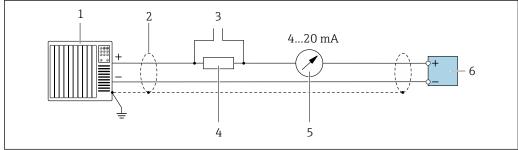
Messumformer in eine Ringtopologie einbinden:

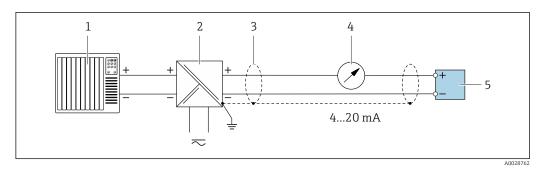
- EtherNet/IP
- PROFINET


A0026781

- 1 Anschluss Versorgungsspannung
- 2 Anschluss Signalübertragung: PROFINET bzw. EtherNet/IP (RJ45 Stecker)
- 3 Anschluss an Serviceschnittstelle (CDI-RJ45)
- 4 Anschluss Potenzialausgleich (PE)
- Verfügt das Gerät über weitere Ein-/Ausgänge, werden diese parallel über die Kabeleinführung für den Anschluss an die Serviceschnittstelle (CDI-RJ45) geführt.

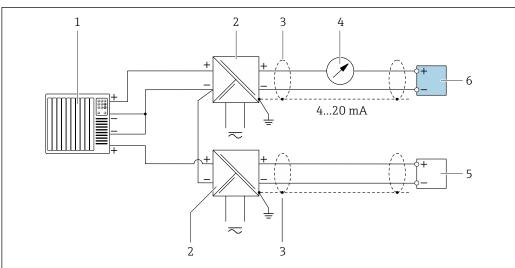
Anschluss abgesetztes Anzeige- und Bedienmodul DKX001


- Bei der direkten Bestellung des abgesetzten Anzeige- und Bedienmoduls DKX001 mit dem Messgerät wird das Messgerät immer mit einem Blinddeckel ausgeliefert. Eine Anzeige oder Bedienung am Messumformer ist in dem Fall nicht vorhanden.
- Bei nachträglicher Bestellung darf das abgesetzte Anzeige- und Bedienmodul DKX001 nicht gleichzeitig mit dem vorhandenen Anzeigemodul des Messgeräts angeschlossen werden. Es darf immer nur eine Anzeige oder Bedienung am Messumformer angeschlossen sein.


- 1 Abgesetztes Anzeige- und Bedienmodul DKX001
- 2 Anschluss Potenzialausgleich (PE)
- 3 Verbindungskabel
- Messgerät
- Anschluss Potenzialausgleich (PE)

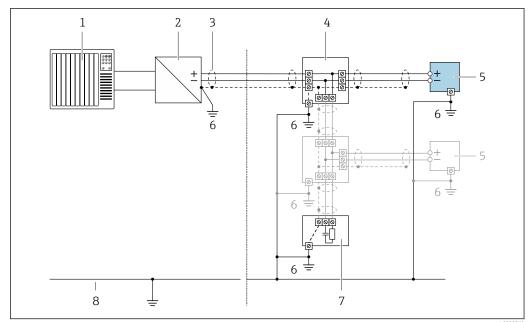
Anschlussbeispiele

Stromausgang 4 ... 20 mA HART



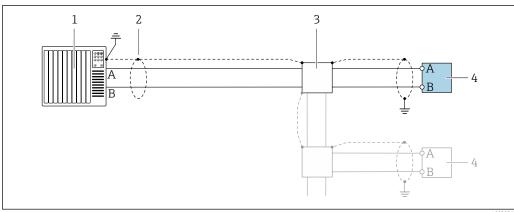
- **₽** 2 Anschlussbeispiel für Stromausgang 4 ... 20 mA HART (aktiv)
- 1 Automatisierungssystem mit Stromeingang (z. B. SPS)
- Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforde-
- 3 Anschluss für HART-Bediengeräte → 🖺 77
- 4
- 5 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 15
- Messumformer

- \blacksquare 3 Anschlussbeispiel für Stromausgang 4 ... 20 mA HART (passiv)
- 1 Automatisierungssystem mit Stromeingang (z. B. SPS)
- 2 Spannungsversorgung
- 3 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten → 🖺 47
- 4 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 15
- 5 Messumformer


HART-Eingang

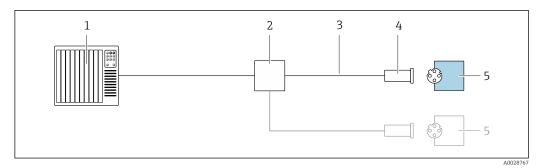
A0028763

- $\blacksquare \ 4 \qquad$ Anschlussbeispiel für HART-Eingang mit gemeinsamen "Minus" (passiv)
- 1 Automatisierungssystem mit HART-Ausgang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 4 Analoges Anzeigeinstrument: Maximale Bürde beachten → $\stackrel{\triangle}{=}$ 15
- 5 Druckmessgerät (z.B. Cerabar M, Cerabar S): Anforderungen beachten
- 6 Messumformer

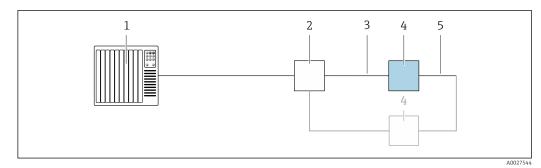

PROFIBUS PA

₽ 5 Anschlussbeispiel für PROFIBUS PA

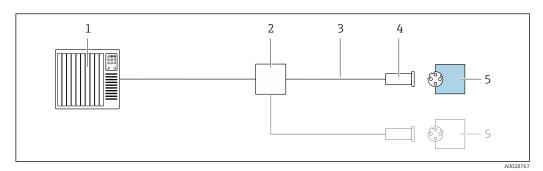
- Automatisierungssystem (z.B. SPS) Segmentkoppler PROFIBUS PA 1
- 3 Kabelschirm einseitig. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 4 T-Verteiler
- 5 Messgerät
- 6 Lokale Erdung
- Busabschluss (Terminator)
- Potentialausgleichsleiter


PROFIBUS DP

- **№** 6 Anschlussbeispiel für PROFIBUS DP, nicht explosionsgefährdeter Bereich und Zone 2/Div. 2
- Automatisierungssystem (z.B. SPS) 1
- 2 Kabelschirm einseitig. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 3 Verteilerbox
- Messumformer

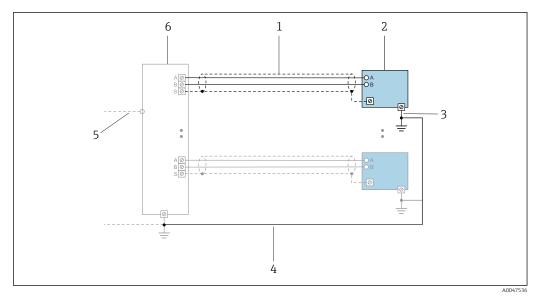

Bei Baudraten > 1,5 MBaud muss eine EMV-Kabeleinführung verwendet werden und der Kabelschirm muss möglichst bis zur Anschlussklemme weiterlaufen.

EtherNet/IP

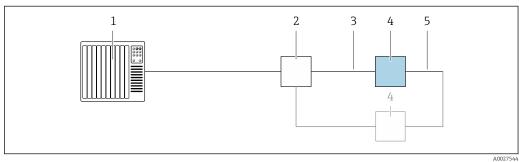

- 7 Anschlussbeispiel für EtherNet/IP
- 1 Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3 Kabelspezifikation beachten
- 4 Gerätestecker
- 5 Messumformer

EtherNet/IP: DLR (Device Level Ring)

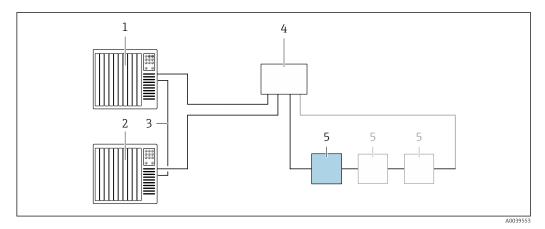
- 1 Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3 Kabelspezifikation beachten \rightarrow \implies 47
- 4 Messumformer
- 5 Verbindungskabel zwischen den beiden Messumformern


PROFINET

■ 8 Anschlussbeispiel f
ür PROFINET

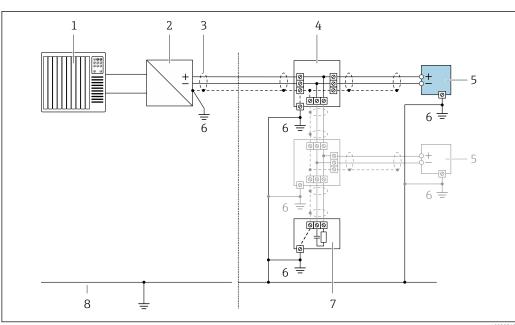

- 1 Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3 Kabelspezifikation beachten
- 4 Gerätestecker
- 5 Messumformer

PROFINET mit Ethernet-APL


- **9** Anschlussbeispiel für PROFINET mit Ethernet-APL
- 1 Kabelschirm
- 2 Messgerät
- Lokale Erdung 3
- Potenzialausgleich Trunk oder TCP
- 5
- Field-Switch

PROFINET: MRP (Media Redundancy Protocol)

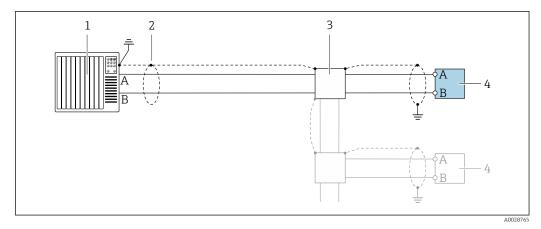
- Automatisierungssystem (z.B. SPS)
- 2
- Ethernet-Switch $Kabelspezifikation\ beachten \rightarrow \implies 47$ 3
- 4 Messumformer
- Verbindungskabel zwischen den beiden Messumformern


PROFINET: Systemredundanz S2

 \blacksquare 10 Anschlussbeispiel Systemredundanz S2

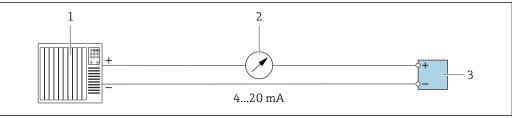
- Automatisierungssystem 1 (z.B. SPS)
- Synchronisation Automatisierungssysteme 2
- Automatisierungssystem 2 (z.B. SPS)
- 4 Industrial Ethernet Managed Switch
- Messumformer

FOUNDATION Fieldbus

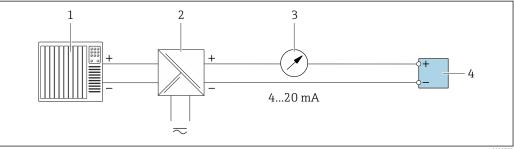

Anschlussbeispiel für FOUNDATION Fieldbus **■** 11

- 1 Automatisierungssystem (z.B. SPS)
- 2 Power Conditioner (FOUNDATION Fieldbus)
- 3 $\textit{Kabelschirm einseitig. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderun-Leitung der EMV-Anforde$ gen; Kabelspezifikation beachten
- T-Verteiler
- Messgerät
- 6 Lokale Erdung
- Busabschluss (Terminator)
- Potentialausgleichsleiter

Endress+Hauser 41

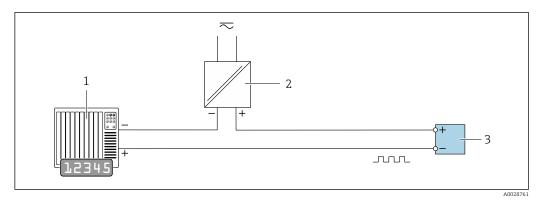

A0028768

Modbus RS485


- 🖻 12 Anschlussbeispiel für Modbus RS485, nicht explosionsgefährdeter Bereich und Zone 2; Class I, Division 2
- 1 Automatisierungssystem (z.B. SPS)
- 2 Kabelschirm einseitig erden. Beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 3 Verteilerbox
- 4 Messumformer

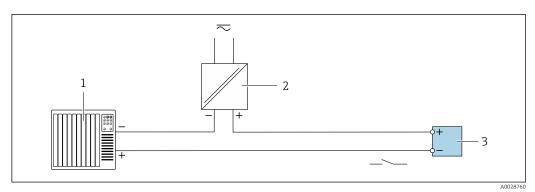
Stromausgang 4-20 mA

A00287


- 13 Anschlussbeispiel für Stromausgang 4-20 mA (aktiv)
- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 15
- 3 Messumformer

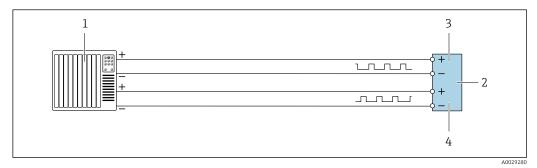
A0028759

- 14 Anschlussbeispiel für Stromausgang 4-20 mA (passiv)
- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 15
- 4 Messumformer

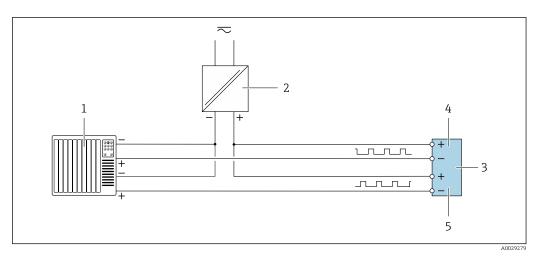

Impuls-/Frequenzausgang

🖪 15 🛮 Anschlussbeispiel für Impuls-/Frequenzausgang (passiv)

- Automatisierungssystem mit Impuls-/Frequenzeingang (z.B. SPS mit einem $10~{\rm k}\Omega$ pull-up oder pull-down Widerstand)
- 2 Spannungsversorgung
- 3 Messumformer: Eingangswerte beachten → 🖺 18

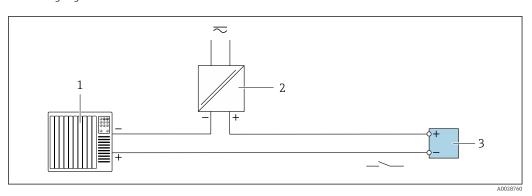

Schaltausgang

■ 16 Anschlussbeispiel für Schaltausgang (passiv)


- Automatisierungssystem mit Schalteingang (z.B. SPS mit einem 10 kΩ pull-up oder pull-down Widerstand)
- Spannungsversorgung
- 3 Messumformer: Eingangswerte beachten → 🖺 18

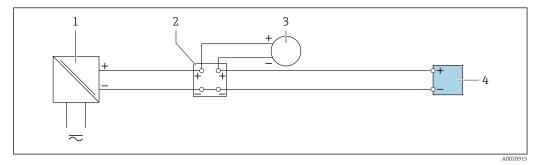
Doppelimpulsausgang

🛮 17 Anschlussbeispiel für Doppelimpulsausgang (aktiv)


- 1 Automatisierungssystem mit Doppelimpulseingang (z.B. SPS)
- 3 Doppelimpulsausgang
- 4 Doppelimpulsausgang (Slave), phasenverschoben

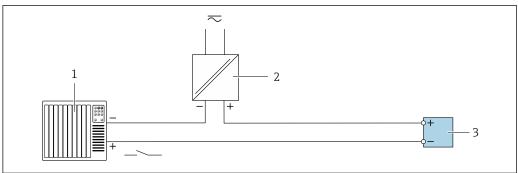
18 Anschlussbeispiel für Doppelimpulsausgang (passiv)

- 1 Automatisierungssystem mit Doppelimpulseingang (z.B. SPS mit einem $10~\mathrm{k}\Omega$ pull-up oder pull-down Widerstand)
- 2 Spannungsversorgung
- *Messumformer: Eingangswerte beachten* → **2**0
- 4 Doppelimpulsausgang
- 5 Doppelimpulsausgang (Slave), phasenverschoben


Relaisausgang

■ 19 Anschlussbeispiel für Relaisausgang (passiv)

- 1 Automatisierungssystem mit Relaiseingang (z.B. SPS)
- 2 Spannungsversorgung
- 3 Messumformer: Eingangswerte beachten $\rightarrow \triangleq 20$


Stromeingang

■ 20 Anschlussbeispiel für 4...20 mA Stromeingang

- 1 Spannungsversorgung
- 2 Klemmenkasten
- 3 Externes Messgerät (zum Einlesen von z.B. Druck oder Temperatur)
- 4 Messumformer

Statuseingang

A0028764

21 Anschlussbeispiel für Statuseingang

- 1 Automatisierungssystem mit Statusausgang (z.B. SPS)
- 2 Spannungsversorgung
- 3 Messumformer

Potenzialausgleich

Anforderungen

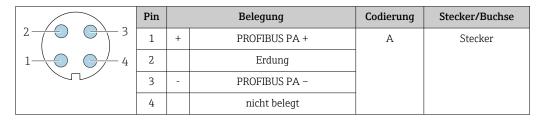
Beim Potenzialausgleich:

- Betriebsinterne Erdungskonzepte beachten
- Einsatzbedingungen wie Material und Erdung der Rohrleitung berücksichtigen
- Messstoff, Messaufnehmer und Messumformer auf dasselbe elektrische Potenzial legen ¹⁾
- Für die Potenzialausgleichsverbindungen ein Erdungskabel mit dem Mindestquerschnitt von 6 mm² (10 AWG) und einem Kabelschuh verwenden

Klemmen

Federkraftklemmen: Für Litzen und Litzen mit Aderendhülsen geeignet. Leiterquerschnitt 0,2 ... 2,5 mm² (24 ... 12 AWG).

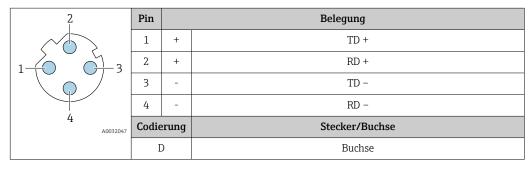
Kabeleinführungen


- Kabelverschraubung: M20 × 1,5 mit Kabel Ø 6 ... 12 mm (0,24 ... 0,47 in)
- Gewinde für Kabeleinführung:
 - NPT ½"
 - G ½"
 - M20

Pinbelegung Gerätestecker

FOUNDATION Fieldbus

	Pin		Belegung	Codierung	Stecker/Buchse
2 / 3	1	+	Signal +	A	Stecker
1 4	2	-	Signal –		
	3		Erdung		
	4		nicht belegt		

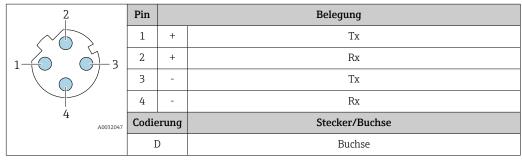

PROFIBUS PA

1)

- Als Stecker wird empfohlen:
 Binder, Serie 713, Teilenr. 99 1430 814 04
 - Phoenix, Teilenr. 1413934 SACC-FS-4QO SH PBPA SCO

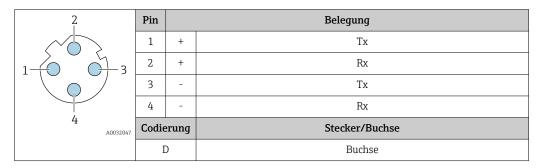
PROFINET

- Als Stecker wird empfohlen:
 Binder, Serie 825, Teilenr. 99 3729 810 04
 - Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q


PROFINET mit Ethernet-APL

3 4	Pin	Belegung	Codierung	Stecker/ Buchse
2 1	1	APL-signal -	A	Buchse
	2	APL-signal +		
	3	$Kabelschirm^1$		
	4	nicht belegt		
	Metallisches Steckerge- häuse	Kabelschirm		
	¹ Wenn Kabelschirm verwendet wird			

- Als Stecker wird empfohlen:
 Binder, Serie 713, Teilenr. 99 1430 814 04
 - Phoenix, Teilenr. 1413934 SACC-FS-4QO SH PBPA SCO


EtherNet/IP

- Als Stecker wird empfohlen:
 Binder, Serie 825, Teilenr. 99 3729 810 04
 - Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q

Serviceschnittstelle

Bestellmerkmal "Zubehör montiert", Option NB: Adapter RJ45 M12 (Serviceschnittstelle)

Als Stecker wird empfohlen:

- Binder, Serie 825, Teilenr. 99 3729 810 04
- Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q

Kabelspezifikation

Zulässiger Temperaturbereich

- Die im jeweiligen Land geltenden Installationsrichtlinien sind zu beachten.
- Die Kabel müssen für die zu erwartenden Minimal- und Maximaltemperaturen geeignet sein.

Energieversorgungskabel (inkl. Leiter für die innere Erdungsklemme)

Normales Installationskabel ausreichend.

Schutzerdungskabel für die äußere Erdungsklemme

Leiterguerschnitt < 2,1 mm² (14 AWG)

Grössere Querschnitte können durch die Verwendung eines Kabelschuhs angeschlossen werden.

Die Erdungsimpedanz muss weniger als 2 Ω betragen.

Signalkabel

Stromausgang 4...20 mA HART

Abgeschirmtes Kabel empfohlen. Erdungskonzept der Anlage beachten.

PROFIBUS PA

Verdrilltes, abgeschirmtes Zweiaderkabel. Empfohlen wird Kabeltyp A.

Für weitere Hinweise zur Planung und Installation von PROFIBUS Netzwerken:

- Betriebsanleitung "PROFIBUS DP/PA: Leitfaden zur Projektierung und Inbetriebnahme" (BA00034S)
- PNO-Richtlinie 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

PROFIBUS DP

IEC 61158 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

Kabeltyp	A	
Wellenwiderstand	135 165 Ω bei einer Messfrequenz von 3 20 MHz	
Kabelkapazität	< 30 pF/m	
Aderquerschnitt	> 0,34 mm ² (22 AWG)	
Kabeltyp	Paarweise verdrillt	
Schleifenwiderstand	≤ 110 Ω/km	

Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.

Für weitere Hinweise zur Planung und Installation von PROFIBUS Netzwerken:

- Betriebsanleitung "PROFIBUS DP/PA: Leitfaden zur Projektierung und Inbetriebnahme" (BA00034S)
- PNO-Richtlinie 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

EtherNet/IP

Standard ANSI/TIA/EIA-568-B.2 Annex spezifiziert als Minimalanforderung für ein Kabel, das für EtherNet/IP eingesetzt wird, CAT 5. Empfohlen werden CAT 5e und CAT 6.

Für weitere Hinweise zur Planung und Installation von EtherNet/IP-Netzwerken: "Media Planning and Installation Manual. EtherNet/IP" der ODVA-Organisation

PROFINET

Standard IEC 61156-6 spezifiziert als Minimalanforderung für ein Kabel, das für PROFINET eingesetzt wird, CAT 5. Empfohlen werden CAT 5e und CAT 6.

Für weitere Hinweise zur Planung und Installation von PROFINET-Netzwerken: "PROFINET Cabling and Interconnection Technology", Guideline for PROFINET

PROFINET mit Ethernet-APL

Der Referenzkabeltyp für APL-Segmente ist das Feldbuskabel Typ A, MAU-Typ 1 und 3 (spezifiziert in IEC 61158-2). Dieses Kabel erfüllt die Anforderungen für eigensichere Anwendungen gemäß IEC TS 60079-47 und kann auch in nicht eigensicheren Anwendungen verwendet werden.

Kabeltyp	A
Kabelkapazität	45 200 nF/km
Schleifenwiderstand	15 150 Ω/km
Kabelinduktivität	0,4 1 mH/km

Weitere Details sind in der Ethernet-APL Engineering Guideline beschrieben (https://www.ethernet-apl.org).

FOUNDATION Fieldbus

Verdrilltes, abgeschirmtes Zweiaderkabel.

Für weitere Hinweise zur Planung und Installation von FOUNDATION Fieldbus Netzwerken:

- Betriebsanleitung "FOUNDATION Fieldbus Overview" (BA00013S)
- FOUNDATION Fieldbus-Richtlinie
- IEC 61158-2 (MBP)

Modbus RS485

Standard EIA/TIA-485 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

Kabeltyp	A	
Wellenwiderstand	135 165 Ω bei einer Messfrequenz von 3 20 MHz	
Kabelkapazität	< 30 pF/m	
Aderquerschnitt	> 0,34 mm ² (22 AWG)	
Kabeltyp	Paarweise verdrillt	
Schleifenwiderstand	≤ 110 Ω/km	

Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.

Stromausgang 0/4...20 mA

- Normales Installationskabel ausreichend.
- \blacksquare Bei Eichbetrieb abgeschirmtes Kabel verwenden: Kupfer-Geflecht verzinnt, optische Abdeckung \geq 85 %

Impuls-/Frequenz-/Schaltausgang

- Normales Installationskabel ausreichend.
- \blacksquare Bei Eichbetrieb abgeschirmtes Kabel verwenden: Kupfer-Geflecht verzinnt, optische Abdeckung \geq 85 %

Doppelimpulsausgang

- Normales Installationskabel ausreichend.
- \blacksquare Bei Eichbetrieb abgeschirmtes Kabel verwenden: Kupfer-Geflecht verzinnt, optische Abdeckung \geq 85 %

Relaisausgang

Normales Installationskabel ausreichend.

Stromeingang 0/4...20 mA

- Normales Installationskabel ausreichend.
- \blacksquare Bei Eichbetrieb abgeschirmtes Kabel verwenden: Kupfer-Geflecht verzinnt, optische Abdeckung \geq 85 %

Statuseingang

- Normales Installationskabel ausreichend.
- \blacksquare Bei Eichbetrieb abgeschirmtes Kabel verwenden: Kupfer-Geflecht verzinnt, optische Abdeckung \geq 85 %

Verbindungskabel Messumformer - Abgesetztes Anzeige- und Bedienmodul DKX001

Standardkabel

Ein Standardkabel ist als Verbindungskabel verwendbar.

Standardkabel	4 Adern (2 Paare); paarverseilt mit gemeinsamen Schirm
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %
Kapazität Ader/Schirm Maximal 1000 nF für Zone 1; Class I, Division 1	
L/R	Maximal 24 μ H/ Ω für Zone 1; Class I, Division 1
Kabellänge	Maximal 300 m (1000 ft), siehe nachfolgende Tabelle

Querschnitt	Kabellänge bei Einsatz im: Nicht explosionsgefährdetem Bereich Explosionsgefährdetem Bereich: Zone 2; Class I, Division 2 Explosionsgefährdetem Bereich: Zone 1; Class I, Division 1	
0,34 mm ² (22 AWG)	80 m (270 ft)	
0,50 mm ² (20 AWG)	120 m (400 ft)	
0,75 mm ² (18 AWG)	180 m (600 ft)	
1,00 mm ² (17 AWG)	240 m (800 ft)	
1,50 mm ² (15 AWG)	300 m (1000 ft)	

Optional lieferbares Verbindungskabel

Standardkabel	$2\times2\times0.34~\text{mm}^2$ (22 AWG) PVC-Kabel $^{1)}$ mit gemeinsamem Schirm (2 Paare, paarverseilt)	
Flammwidrigkeit	Nach DIN EN 60332-1-2	
Ölbeständigkeit	Nach DIN EN 60811-2-1	
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %	
Kapazität Ader/Schirm	rm ≤ 200 pF/m	
L/R	≤ 24 μH/Ω	
Lieferbare Kabellänge	e 10 m (35 ft)	
Dauerbetriebstemperatur	Bei fester Verlegung: -50 +105 °C (-58 +221 °F); bewegt: -25 +105 °C (-13 +221 °F)	

 UV-Strahlung kann zu Beeinträchtigung des Kabelaußenmantels führen. Das Kabel möglichst vor Sonneneinstrahlung schützen.

Überspannungsschutz

Netzspannungsschwankungen	→ 🖺 34	
Überspannungskategorie	Überspannungskategorie II Zwischen Leitung und Erde bis zu 1200 V, während max. 5 s	
Kurzzeitige, temporäre Überspannung		
Langfristige, temporäre Überspannung	Zwischen Leitung und Erde bis zu 500 V	

Leistungsmerkmale

Referenzbedingungen

- Fehlergrenzen in Anlehnung an ISO 11631
- Wasser
 - +15 ... +45 °C (+59 ... +113 °F)
 - 2 ... 6 bar (29 ... 87 psi)
- Angaben gemäß Kalibrierprotokoll
- Angaben zur Messabweichung basierend auf akkreditierten Kalibrieranlagen gemäß ISO 17025

Maximale Messabweichung

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grundgenauigkeit

Masse- und Volumenfluss (Flüssigkeiten)

- ±0,05 % v.M. (Optional für Massefluss: PremiumCal; Bestellmerkmal "Kalibration Durchfluss", Option D)
- \bullet ±0,10 % v.M. (Standard)

Massefluss (Gase)

±0,35 % v.M.

Dichte (Flüssigkeiten)

Unter Referenzbedingungen Standarddichte-Kalibrierung		Erweiterte Dichtekalibrierung ^{1) 2)}
[g/cm³]	[g/cm³]	[g/cm³]
±0,0005	±0,0005	±0,0005

- 1) Gültiger Bereich für die erweiterte Dichtekalibrierung: 0 ... 2 g/cm³, +20 ... +60 $^{\circ}$ C (+68 ... +140 $^{\circ}$ F)
- 2) Bestellmerkmal "Anwendungspaket", Option E1 "Erweiterte Dichte"

Temperatur

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Nullpunktstabilität

DN		Nullpunktstabilität		
[mm]	[in]	[kg/h]	[lb/min]	
300	12	137	5,03	
350	14	137	5,03	
400	16	137	5,03	

Durchflusswerte

Durchflusswerte als Turndown-Kennzahlen abhängig von der Nennweite.

SI-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
300	4100000	410 000	205 000	82 000	41000	8200
350	4100000	410 000	205 000	82 000	41000	8200
400	4100000	410 000	205 000	82 000	41000	8200

US-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
12	150700	15 070	7535	3014	1507	301,4
14	150700	15 070	7535	3014	1507	301,4
16	150700	15 070	7535	3014	1507	301,4

Genauigkeit der Ausgänge

Die Ausgänge weisen die folgende Grundgenauigkeit auf:

Stromausgang

Genauigkeit	±5 μA

Impuls-/Frequenzausgang

v.M. = vom Messwert

Genauigkeit

Max. ±50 ppm v.M. (über den kompletten Umgebungstemperaturbereich)

Wiederholbarkeit

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grund-Wiederholbarkeit

Berechnungsgrundlagen → 🖺 53

Masse- und Volumenfluss (Flüssigkeiten)

±0,025 % v.M. (PremiumCal)

±0,05 % v.M.

Massefluss (Gase)

±0,25 % v.M.

Dichte (Flüssigkeiten)

 $\pm 0,00025 \text{ g/cm}^3$

Temperatur

 $\pm 0.25 \text{ }^{\circ}\text{C} \pm 0.0025 \cdot \text{T }^{\circ}\text{C} \ (\pm 0.45 \text{ }^{\circ}\text{F} \pm 0.0015 \cdot (\text{T}-32) \text{ }^{\circ}\text{F})$

Reaktionszeit

Die Reaktionszeit ist abhängig von der Parametrierung (Dämpfung).

Einfluss Umgebungstemperatur

Stromausgang

Temperaturkoeffizient	Max. 1 μΑ/°C
-----------------------	--------------

Impuls-/Frequenzausgang

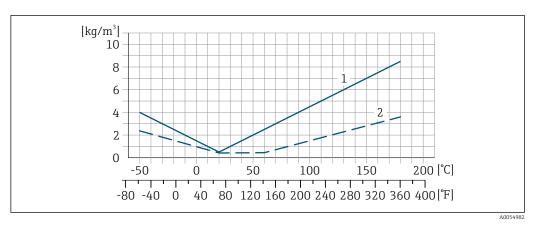
Temperaturkoeffizient	Kein zusätzlicher Effekt. In Genauigkeit enthalten.
-----------------------	---

Einfluss Messstofftemperatur

Massefluss

v.E. = vom Endwert

Bei einer Temperaturdifferenz zwischen der Temperatur bei der Nullpunktjustierung und der Prozesstemperatur, beträgt die zusätzliche Messabweichung der Messaufnehmer typisch $\pm 0,0002~\%$ v.E./°C ($\pm 0,0001~\%$ v.E./°F).


Bei einer Durchführung der Nullpunktjustierung bei Prozesstemperatur wird der Einfluss verringert.

Dichte

Bei einer Temperaturdifferenz zwischen der Dichte-Kalibriertemperatur und der Prozesstemperatur, beträgt die Messabweichung der Messaufnehmer typisch $\pm 0,00005 \text{ g/cm}^3/^{\circ}\text{C}$ ($\pm 0,000025 \text{ g/cm}^3/^{\circ}\text{F}$). Felddichtejustierung ist möglich.

Erweiterte Dichtespezifikation

Befindet sich die Prozesstemperatur außerhalb des gültigen Bereiches ($\rightarrow \equiv 50$) beträgt die Messabweichung $\pm 0,000025 \text{ g/cm}^3$ /°C ($\pm 0,0000125 \text{ g/cm}^3$ /°F)

1 Felddichtejustierung, Beispiel bei +20 ℃ (+68 ℉)

2 Erweiterte Dichtekalibrierung

Temperatur

 $\pm 0.005 \cdot \text{T} \, ^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \, ^{\circ}\text{F})$

Einfluss Messstoffdruck

Nachfolgend wird gezeigt, wie sich der Prozessdruck (Relativdruck) auf die Genauigkeit des Masseflusses auswirkt.

v.M. = vom Messwert

Der Effekt kann kompensiert werden durch:

- \blacksquare Einlesen des aktuellen Druckmesswerts über den Stromeingang oder einen digitalen Eingang.
- $\, \bullet \,$ Vorgabe eines festen Werts für den Druck in den Geräteparametern.

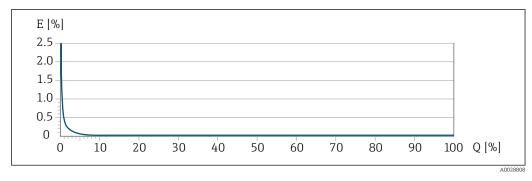
DN		[% v.M./bar]	[% v.M./psi]
[mm]	[in]		
300	12	-0,009	-0,0006
350	14	-0,009	-0,0006
400	16	-0,009	-0,0006

Berechnungsgrundlagen

v.M. = vom Messwert, v.E. = vom Endwert

BaseAccu = Grundgenauigkeit in % v.M., BaseRepeat = Grund-Wiederholbarkeit in % v.M.

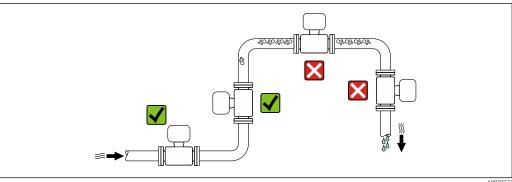
MeasValue = Messwert; ZeroPoint = Nullpunktstabilität


Berechnung der maximalen Messabweichung in Abhängigkeit von der Durchflussrate

Durchflussrate	maximale Messabweichung in % v.M.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	NULLIST
< ZeroPoint BaseAccu · 100	± ZeroPoint MeasValue · 100
A0021333	A0021334

Berechnung der maximalen Wiederholbarkeit in Abhängigkeit von der Durchflussrate

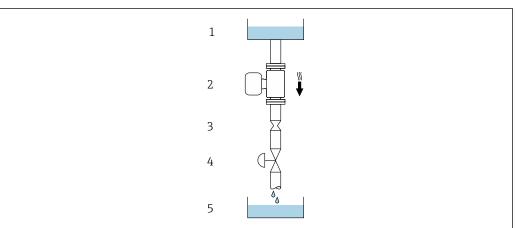
Durchflussrate	maximale Wiederholbarkeit in % v.M.
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± BaseRepeat
A0021335	NU02171
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021336	A0021337


Beispiel maximale Messabweichung

- Maximale Messabweichung in % v.M. (Beispiel mit PremiumCal)
- Durchflussrate in % vom maximalen Endwert

Montage

Montageort



Um Messfehler aufgrund von Gasblasenansammlungen im Messrohr zu vermeiden, folgende Einbauorte in der Rohrleitung vermeiden:

- Einbau am höchsten Punkt der Leitung
- Einbau unmittelbar vor einem freien Rohrauslauf in einer Fallleitung

Bei einer Fallleitung

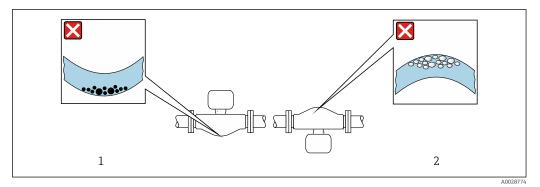
Folgender Installationsvorschlag ermöglicht dennoch den Einbau in eine offene Fallleitung. Rohrverengungen oder die Verwendung einer Blende mit kleinerem Querschnitt als die Nennweite verhindern das Leerlaufen des Messaufnehmers während der Messung.

A002877

🗉 22 🛮 Einbau in eine Fallleitung (z.B. bei Abfüllanwendungen)

- l Vorratstank
- 2 Messaufnehmer
- 3 Blende, Rohrverengung
- 4 Ventil
- 5 Abfüllbehälter

DN		Ø Blende, Rohrverengung	
[mm]	[in]	[mm]	[in]
300	12	210	8,27
350	14	210	8,27
400	16	210	8,27


Einbaulage

Die Pfeilrichtung auf dem Messaufnehmer-Typenschild hilft, den Messaufnehmer entsprechend der Durchflussrichtung einzubauen (Fließrichtung des Messstoffs durch die Rohrleitung).

	Einbaulag	Empfehlung	
A	Vertikale Einbaulage	A0015591	√ √ 1)
В	Horizontale Einbaulage Messumformer oben	A0015589	✓ ✓ ²⁾ → 2 23, 2 56
С	Horizontale Einbaulage Messumformer unten	A0015590	✓ ✓ 3) → 2 23, 2 56
D	Horizontale Einbaulage Messumformer seitlich	A0015592	√ → 1 23, 1 56

- 1) Um die Selbstentleerung zu gewährleisten, wird diese Einbaulage empfohlen.
- Anwendungen mit tiefen Prozesstemperaturen k\u00f6nnen die Umgebungstemperatur senken. Um die minimale Umgebungstemperatur f\u00fcr den Messumformer einzuhalten, wird diese Einbaulage empfohlen.
- 3) Anwendungen mit hohen Prozesstemperaturen können die Umgebungstemperatur erhöhen. Um die maximale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.

Wenn ein Messaufnehmer mit gebogenem Messrohr horizontal eingebaut wird: Messaufnehmerposition auf die Messstoffeigenschaften abstimmen.

23 Einbaulage Messaufnehmer mit gebogenem Messrohr

- 1 Vermeiden bei feststoffbeladenen Messstoffen: Gefahr von Feststoffansammlungen
- Vermeiden bei ausgasenden Messstoffen: Gefahr von Gasansammlungen

Ein- und Auslaufstrecken

Bei der Montage muss keine Rücksicht auf Turbulenz erzeugende Armaturen wie Ventile, Krümmer oder T-Stücke genommen werden, solange keine Kavitationseffekte entstehen $\rightarrow \stackrel{\text{\tiny le}}{=} 61$.

Spezielle Montagehinweise

Entleerbarkeit

Bei vertikalem Einbau können die Messrohre vollständig entleert und vor Ablagerungen geschützt werden.

Lebensmitteltauglichkeit

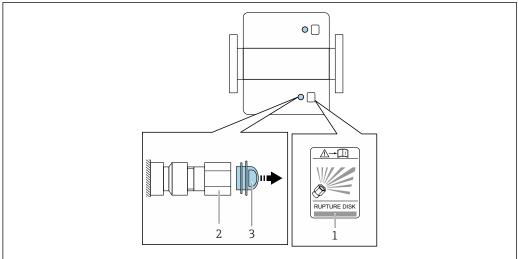
- Bei Installation in hygienischen Anwendungen: Hinweise im Kapitel "Zertifikate und Zulassungen/Lebensmitteltauglichkeit" beachten
- Für Messgeräte mit Bestellmerkmal "Gehäuse", Option B "Rostfrei, hygienisch" ist der Anschlussraumdeckel zum Verschließen handfest zuzudrehen und um weitere 45° anzuziehen (entspricht 15 Nm).

Berstscheibe

A WARNUNG

Gefährdung durch austretende Messstoffe!

Unter Druck austretende Messstoffe können zu Verletzungen oder Sachschaden führen.


- ► Vorkehrungen treffen, um Personengefährdung und Schaden beim Auslösen der Berstscheibe auszuschließen.
- ► Angaben auf dem Berstscheiben Aufkleber beachten.
- ▶ Beim Einbau des Geräts darauf achten, dass die Funktion der Berstscheibe nicht behindert wird.
- ► Keinen Heizmantel verwenden.
- lacktriangle Berstscheibe nicht entfernen oder beschädigen.

Die Lage der Berstscheibe ist durch einen daneben angebrachten Aufkleber gekennzeichnet.

Der Transportschutz ist zu entfernen.

Die vorhandenen Anschlussstutzen sind nicht für eine Spül- oder Drucküberwachungsfunktion vorgesehen, sondern sind Einbauort der Berstscheibe.

Um im Falle eines Berstscheibenbruchs austretenden Messstoff abzuführen, kann am Innengewinde der Berstscheibe eine Ablasseinrichtung eingeschraubt werden.

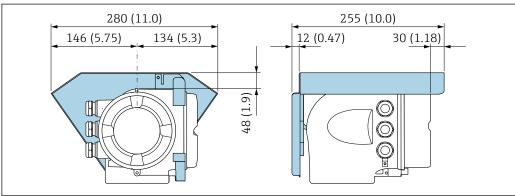
- Hinweisschild zur Berstscheibe
- Berstscheibe mit 1/2" NPT-Innengewinde und SW 1"
- 3 Transportschutz

Angaben zu den Abmessungen: Kapitel "Konstruktiver Aufbau" (Zubehör).

Nullpunktverifizierung und Nullpunktjustierung

Alle Messgeräte werden nach dem neusten Stand der Technik kalibriert. Die Kalibrierung erfolgt unter Referenzbedingungen → 🖺 50. Eine Nullpunktjustierung im Feld ist deshalb grundsätzlich nicht erforderlich.

Eine Nullpunktjustierung ist erfahrungsgemäß nur in speziellen Fällen empfehlenswert:


- Bei höchsten Ansprüchen an die Messgenauigkeit und geringen Durchflussmengen.
- Bei extremen Prozess- oder Betriebsbedingungen, z.B. bei sehr hohen Prozesstemperaturen oder sehr hoher Viskosität des Messstoffes.
- Bei Gasanwendungen mit niedrigem Druck.

Informationen zur Überprüfung des Nullpunkts, sowie zur Durchführung einer Nullpunktjustierung: Betriebsanleitung zum Gerät.

Um die höchst mögliche Messgenauigkeit bei niedriger Durchflussrate zu erhalten, muss die Installation den Sensor im Betrieb vor mechanischen Spannungen schützen.

Wetterschutzhaube

 24 Maßeinheit mm (in)

Umgebung

Umgebungstemperaturbereich

Messgerät	■ -40 +60 °C (-40 +140 °F) ■ Bestellmerkmal "Test, Zeugnis", Option JP: -50 +60 °C (-58 +140 °F)
Ablesbarkeit der Vor- Ort-Anzeige	$-20 \dots +60 ^{\circ}\text{C} (-4 \dots +140 ^{\circ}\text{F})$ Außerhalb des Temperaturbereichs kann die Ablesbarkeit der Vor-Ort-Anzeige beeinträchtigt sein.

Abhängigkeit Umgebungstemperatur zu Messstofftemperatur → 🖺 59

▶ Bei Betrieb im Freien:

Direkte Sonneneinstrahlung vermeiden, besonders in wärmeren Klimaregionen.

Lagerungstemperatur

Klimaklasse DIN EN 60068-2-38 (Prüfung Z/AD) Relative Luftfeuchte Das Gerät ist für den Einsatz in Außen- und Innenbereichen mit einer relativen Luftfeuchte von 4 ... 95 % geeignet. Betriebshöhe Gemäß EN 61010-1 ■ ≤ 2 000 m (6 562 ft) ■ > 2 000 m (6 562 ft) mit zusätzlichen Überspannungsschutz (z.B. Endress+Hauser HAW Series)

Schutzart

Messumformer

- IP66/67, Type 4X enclosure, geeignet für Verschmutzungsgrad 4
- Bei geöffnetem Gehäuse: IP20, Type 1 enclosure, geeignet für Verschmutzungsgrad 2
- Anzeigemodul: IP20, Type 1 enclosure, geeignet für Verschmutzungsgrad 2

Optional

Bestellmerkmal "Sensoroptionen", Option CM "IP69

Externe WLAN-Antenne

IP67

Vibrations- und Schockfestigkeit

Schwingen sinusförmig in Anlehnung an IEC 60068-2-6

- 2 ... 8,4 Hz, 3,5 mm peak
- 8,4 ... 2 000 Hz, 1 g peak

Schwingen Breitbandrauschen in Anlehnung an IEC 60068-2-64

- 10 ... 200 Hz, 0,003 g²/Hz
- 200 ... 2 000 Hz, 0,001 g²/Hz
- Total: 1,54 g rms

Schocks Halbsinus in Anlehnung an IEC 60068-2-27

6 ms 30 c

Stoß durch raue Handhabung in Anlehnung an IEC 60068-2-31

Mechanische Belastung

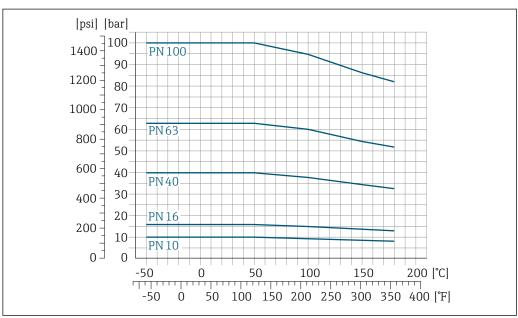
Messumformergehäuse:

- Vor mechanischen Einflüssen wie Stößen oder Schlägen schützen
- Nicht als Steighilfe verwenden

Elektromagnetische Verträglichkeit (EMV)

- Nach IEC/EN 61326 und NAMUR-Empfehlung 21 (NE 21)
- Nach IEC/EN 61000-6-2 und IEC/EN 61000-6-4
- Geräteausführung mit PROFIBUS DP: Erfüllt Emissionsgrenzwerte für Industrie nach EN 50170 Volume 2, IEC 61784
- Für PROFIBUS DP gilt: Bei Baudraten > 1,5 MBaud muss eine EMV-Kabeleinführung verwendet werden und der Kabelschirm muss möglichst bis zur Anschlussklemme weiterlaufen.
- Details sind in der Konformitätserklärung ersichtlich.
- Diese Einrichtung ist nicht dafür vorgesehen, in Wohnbereichen verwendet zu werden, und kann einen angemessenen Schutz des Funkempfangs in solchen Umgebungen nicht sicherstel-

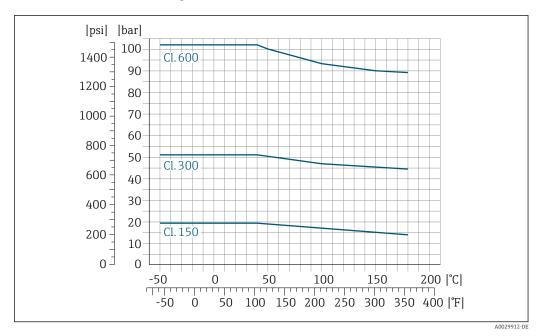
Prozess


Messstofftemperaturbereich

-50 ... +180 °C (-58 ... +356 °F)

Druck-Temperatur-Kurven

Die folgenden Druck-Temperatur-Kurven beziehen sich auf alle drucktragenden Teile des Geräts und nicht nur auf den Prozessanschluss. Die Kurven zeigen den maximal erlaubten Messstoffdruck in Abhängigkeit von der jeweiligen Messstofftemperatur.


Flanschanschluss in Anlehnung an EN 1092-1 (DIN 2501)

Endress+Hauser 59

Mit Flanschwerkstoff 1.4404 (316/316L)

Flanschanschluss in Anlehnung an ASME B16.5

■ 26 Mit Flanschwerkstoff 1.4404 (316/316L)

Gehäuse Messaufnehmer

Das Gehäuse des Messaufnehmers ist mit trockenem Stickstoff gefüllt und schützt die innenliegende Elektronik und Mechanik.

Wenn ein Messrohr ausfällt (z.B. aufgrund von Prozesseigenschaften wie korrosiven oder abrasiven Messstoffen), wird der Messstoff vom Messaufnehmergehäuse zunächst zurückgehalten.

Sollte es zu einem Ausfall eines Messrohrs kommen, steigt der Druck im Messaufnehmergehäuse entsprechend dem Betriebsdruck an. Wenn der Betreiber entscheidet, dass der Berstdruck des Messaufnehmergehäuses keine ausreichende Sicherheit bietet, kann das Messgerät mit einer Berstscheibe ausgestattet werden. Dadurch wird verhindert, dass sich im Inneren des Messaufnehmergehäuses ein zu hoher Druck aufbaut. Die Verwendung einer Berstscheibe wird daher in Anwendungen mit hohen Gasdrücken dringend empfohlen und insbesondere in Anwendungen, in denen der Prozessdruck höher ist als 2/3 des Berstdrucks des Messaufnehmergehäuses.

Falls der austretende Messstoff kontrolliert abgeführt werden muss, ist ein Sensor mit Berstscheibe zu verwenden. Der Ablauf ist an die zusätzliche Verschraubung anzuschließen → 🖺 67.

Soll der Sensor mit Gas gespült werden (Gasdetektion), ist er mit Spülanschlüssen auszustatten.

Spülanschlüsse nur öffnen, wenn anschließend sofort mit einem trockenen, inerten Gas befüllt werden kann. Nur mit niedrigem Druck spülen.

Maximaldruck: 2 bar (29,0 psi)

Berstdruck des Messaufnehmergehäuses

Nachfolgende Berstdrücke des Messaufnehmergehäuses gelten nur für Standardmessgeräte und/ oder Messgeräte mit geschlossenen Spülanschlüssen (nicht geöffnet/wie ab Werk ausgeliefert).

Ist ein Messgerät mit Spülanschlüssen (Bestellmerkmal "Sensoroption", Option CH "Spülanschluss") an das Spülsystem angeschlossen, dann hängt der maximale Druck vom Spülsystem selbst oder vom Messgerät ab, je nachdem, welche Komponente die niedrigere Druckklassifizierung hat.

Wenn das Messgerät mit einer Berstscheibe ausgestattet ist (Bestellmerkmal "Sensoroption", Option CA "Berstscheibe"), dann ist der Auslösedruck der Berstscheibe entscheidend .

Der Berstdruck des Messaufnehmergehäuses bezieht sich auf einen typischen Innendruck, der vor einem mechanischen Ausfall des Messaufnehmergehäuses erreicht wird und während der Typprüfung bestimmt wurde. Die entsprechende Erklärung zur Typprüfung kann zusammen mit dem Mess-

gerät bestellt werden (Bestellmerkmal "Weitere Zulassung", Option LN "Berstdruck Sensorgehäuse, Typenprüfung").

Γ	N	Berstdruck Messaufnehmergehäuse				
[mm]	[in]	[bar]	[psi]			
300	12	28	406			
350	14	28	406			
400	16	28	406			

Angaben zu den Abmessungen: Kapitel "Konstruktiver Aufbau" → 🖺 64


Berstscheibe

Um die Sicherheit zu erhöhen, kann eine Geräteausführung mit Berstscheibe mit einem Auslösedruck von 5,5 ... 6,5 bar (80 ... 94 psi) verwendet werden (Bestellmerkmal "Sensoroption", Option CA "Berstscheibe").

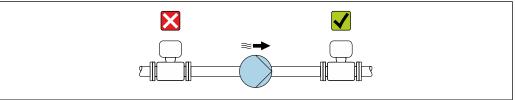
Angaben zu den Abmessungen: Kapitel "Konstruktiver Aufbau" (Zubehör) → 🗎 67

Durchflussgrenze

Die geeignete Nennweite wird ermittelt, indem zwischen dem Durchfluss und dem zulässigen Druckabfall optimiert wird.

- Der minimal empfohlene Endwert beträgt ca. 1/20 des maximalen Endwerts
 Für die häufigsten Anwendungen sind 20 ... 50 % des maximalen Endwerts als ideal anzusehen
- Bei abrasiven Medien (z.B. feststoffbeladenen Flüssigkeiten) ist ein tiefer Endwert zu wählen: Strömungsgeschwindigkeit < 1 m/s (< 3 ft/s).
- Bei Gasmessungen gilt:
 - Die Strömungsgeschwindigkeit in den Messrohren sollte die halbe Schallgeschwindigkeit (0,5 Mach) nicht überschreiten
 - Der maximale Massefluss ist abhängig von der Dichte des Gases: Formel
- Page 2 Zur Berechnung der Durchflussgrenze: Produktauswahlhilfe Applicator → 🖺 95

Druckverlust


Zur Berechnung des Druckverlusts: Produktauswahlhilfe *Applicator* → 🗎 95

Systemdruck

Es ist wichtig, dass keine Kavitation und kein Ausgasen der in Flüssigkeiten enthaltenen Gase auftritt. Dies wird durch einen genügend hohen Systemdruck verhindert.

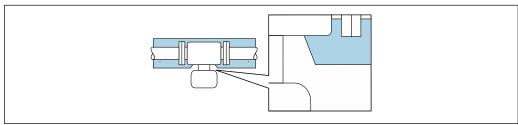
Deshalb werden folgende Montageorte empfohlen:

- Am tiefsten Punkt einer Steigleitung
- Auf der Druckseite von Pumpen (keine Unterdruckgefahr)

A0028777

Wärmeisolation

Bei einigen Messstoffen ist es wichtig, dass die Abstrahlungswärme vom Messaufnehmer zum Messumformer gering gehalten wird. Für die erforderliche Isolation sind verschiedenste Materialien verwendbar.


Für Anwendungen mit Wärmeisolation werden folgende Geräteausführungen empfohlen: Ausführung mit verlängertem Halsrohr:

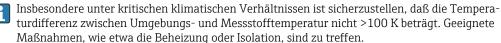
Bestellmerkmal "Messrohr Material", Option SA mit einer Halsrohrlänge von 105 mm (4,13 in).

HINWEIS

Überhitzung der Messelektronik durch Wärmeisolierung!

- ▶ Empfohlene Einbaulage: Horizontale Einbaulage, Messumformergehäuses nach unten gerichtet.
- Das Messumformergehäuse nicht mitisolieren.
- ▶ Maximal zulässige Temperatur am unteren Ende des Messumformergehäuses: 80 °C (176 °F)
- Wärmeisolation mit freiem Halsrohr: Wir empfehlen das Halsrohr nicht zu isolieren, um eine optimale Wärmeabfuhr zu gewährleisten.

■ 27 Wärmeisolation mit freiem Halsrohr


A0034391

Beheizung

Bei einigen Messstoffen muss darauf geachtet werden, dass im Bereich des Messaufnehmers kein Wärmeverlust stattfindet.

Beheizungsmöglichkeiten

- Elektrisch, z.B. mit Heizbändern ²⁾
- Über heißwasser- oder dampfführende Rohre
- Über Heizmäntel

HINWEIS

Gefahr der Überhitzung bei Beheizung

- ► Sicherstellen, dass die Temperatur am unteren Ende des Messumformergehäuses nicht höher ist als 80 °C (176 °F).
- Gewährleisten, dass am Messumformerhals eine genügend grosse Konvektion vorhanden ist.
- Sicherstellen, dass eine genügend große Oberfläche des Messumformerhalses frei bleibt. Der nicht abgedeckte Teil dient der Wärmeabfuhr und schützt die Messelektronik vor Überhitzung und Unterkühlung.
- ▶ Bei Einsatz im explosionsgefährdeten Bereich: Hinweise in der gerätespezifischen Ex-Dokumentation beachten. Detaillierte Angaben zu den Temperaturtabellen: Separates Dokument "Sicherheitshinweise" (XA) zum Gerät.

Vibrationen

Anlagenvibrationen haben aufgrund hoher Messrohr-Schwingfrequenz keinen Einfluss auf die Funktionstüchtigkeit des Messsystems.

62

²⁾ Es wird allgemein empfohlen, parallele Heizbänder zu verwenden (bidirektionaler Stromfluss). Dabei sind besondere Überlegungen anzustellen, wenn ein einadriges Heizkabel verwendet werden soll. Weitere Informationen finden Sie im Dokument EA01339D "Installationsanleitung für elektrische Begleitheizungssysteme" \rightarrow \bigcirc 98

Eichbetrieb

Optional ist das Messgerät nach OIML R117 geprüft und besitzt ein EU-Bewertungszertifikat, das zur Verwendung in EU-Baumusterprüfbescheinigungen nach Messgeräterichtlinie 2014/32/EU für den gesetzlich messtechnisch kontrollierten Einsatz ("Eichpflichtiger Verkehr") für Flüssigkeiten außer Wasser(Anhang VII) berechtigt.

Optional ist das Messgerät nach OIML R137 geprüft und besitzt eine EU-Baumusterprüfbescheinigung nach Messgeräterichtlinie 2014/32/EU für den gesetzlich messtechnisch kontrollierten Einsatz ("eichpflichtiger Verkehr") als Gaszähler (Anhang IV).

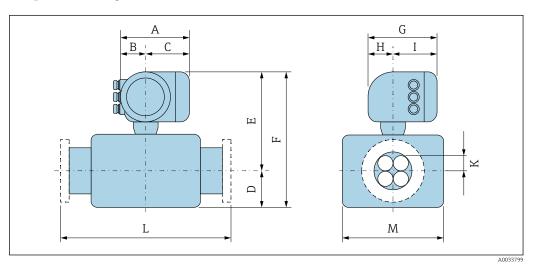
Der Einsatz erfolgt mit gesetzlich messtechnisch kontrollierter Totalisatoranzeige auf der Vor-Ort-Anzeige und optional mit gesetzlich messtechnisch kontrollierten Ausgängen.

Gesetzlich messtechnisch kontrollierte Messgeräte totalisieren bidirektional, d.h. alle Ausgänge berücksichtigen Durchflussanteile in positiver (vorwärts) und negativer (rückwärts) Fließrichtung.

Ein gesetzlich messtechnisch kontrolliertes Messgerät ist, in der Regel, durch entsprechende Plombierungen am Messumformer oder Messaufnehmer gegen Manipulationen gesichert. Normalerweise dürfen diese Plombierungen nur durch einen Vertreter der zuständigen Eichbehörde aufgebrochen werden.

Nach dem Inverkehrbringen oder nach der Plombierung des Messgeräts ist eine Bedienung nur noch eingeschränkt möglich.

Für auf den OIML Zertifikaten basierende Nationale Zulassungen für Applikationen mit Flüssigkeiten außer Wasser oder Gase sind ausführliche Bestellinformationen bei Ihrer lokalen Endress+Hauser Vertriebszentrale verfügbar.



Weitere Informationen sind den ergänzenden Dokumentationen zu entnehmen.

Konstruktiver Aufbau

Abmessungen in SI-Einheiten

Kompaktausführung

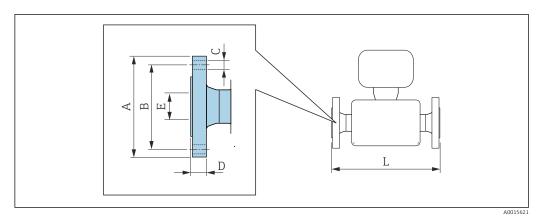
Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

DN	A 1)	B 1)	С	D	E	F	G 2)	Н	I 2)	K	L	M
[mm]	[mm]	[mm]										
300	169	68	101	140	499	639	200	59	141	102,3	3)	1227
350	169	68	101	140	499	639	200	59	141	102,3	3)	1227
400	169	68	101	140	499	639	200	59	141	102,3	3)	1227

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Bei Version ohne Vor-Ort-Anzeige: Werte 30 mm
- 3) Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d

DN	A 1)	В	С	D	Е	F	G ²⁾	Н	I 2)	К	L	М
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]							
300	188	85	103	140	499	639	217	58	159	102,3	3)	1227
350	188	85	103	140	499	639	217	58	159	102,3	3)	1227
400	188	85	103	140	499	639	217	58	159	102,3	3)	1227


- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Bei Version ohne Vor-Ort-Anzeige: Werte 40 mm
- 3) Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option L "Guss, rostfrei"

DN	A 1)	В	С	D	Е	F	G	Н	I	K	L	M
[mm]	[mm]	[mm]										
300	186	85	101	140	499	639	217	60	157	102,3	2)	1227
350	186	85	101	140	499	639	217	60	157	102,3	2)	1227
400	186	85	101	140	499	639	217	60	157	102,3	2)	1227

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Abhängig vom jeweiligen Prozessanschluss

Festflansch-Anschlüsse EN 1092-1, ASME B16.5

🗷 28 Maßeinheit mm (in)

Längentoleranz Maß L in mm: ±4

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN 10 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option DAS										
DN A B C D E L [mm] [mm] [mm] [mm] [mm]										
300	445	400	12 × Ø22	26	309,7	1707				
350	350 505 460 16 × Ø22 26 341,4 1707									
400 565 515 16 × Ø26 26 392,2 1716										
Oberflächenra	Oberflächenrauheit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 12,5 μm									

1.4404 (F316	Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN 16 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option D1S									
DN A B C D E L [mm] [mm] [mm] [mm] [mm]										
300	300 460 410 12 × Ø26 28 309,7 1727									
350	520	470	16 × Ø26	30	339,6	1734				
400 580 525 12 × Ø30 32 390,4 1741										
Oberflächenrauheit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 12,5 μm										

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN40 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option D2S									
DN A B C D E L [mm] [mm] [mm] [mm] [mm]									
300	515	450	16 × Ø33	42	307,9	1800			
350	580	510	16 × Ø36	46	338,0	1818			
400 660 585 16 × Ø39 50 384,4 1836									
Oberflächenrauheit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 12,5 µm									

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN63 1.4404 (F316/F316L)

Bestellmerkmal "Prozessanschluss", Option D3S

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
300	530	460	16 × Ø36	52	301,9	1844
350	600	525	16 × Ø39	56	330,6	1863
400	670	585	16 × Ø42	60	378,0	1880

Oberflächenrauheit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 ... 12,5 μm

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N): PN100 1.4404 (F316/F316L)

Bestellmerkmal "Prozessanschluss", Option D4S)

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
300	585	500	16 × Ø42	68	295,5	1901
350	655	560	16 × Ø48	74	323,6	1936
400	715	620	16 × Ø48	82,2	364,9	1936

Oberflächenrauheit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 ... 12,5 μm

Flansch in Anlehnung an ASME B16.5: Cl 150

1.4404 (F316/F316L)

 $Bestellmerk mal \ "Prozessanschluss", Option \ {\bf AAS}$

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
300	482,6	431,8	12 × Ø25,4	32,2	304,8	1794
350	533,4	476,3	16 × Ø28,4	35,5	336,5	1820
400	596,9	539,8	16 × Ø28,4	37,0	387,3	1820

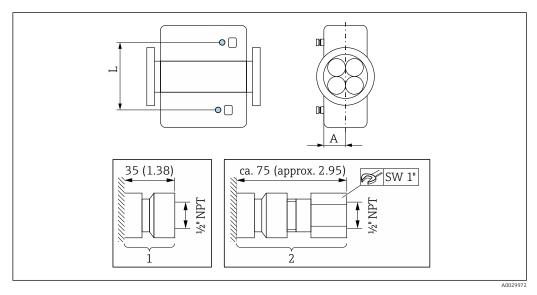
Oberflächenrauheit (Flansch): Ra 3,2 ... 6,3 μm

Flansch in Anlehnung an ASME B16.5: Cl 300 1.4404 (F316/F316L)

Bestellmerkmal "Prozessanschluss", Option ABS

		,						
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
300	520,7	450,9	16 × Ø31,8	51,3	304,8	1826		
350	584,2	514,4	16 × Ø31,8	54,4	336,5	1852		
400	647,7	571,5	16 × Ø35,1	57,6	387,3	1858		
Oberflächenra	Oberflächenrauheit (Flansch): Ra 3,2 6,3 µm							

Flansch in Anlehnung an ASME B16.5: Cl 600 1.4404 (F316/F316L)

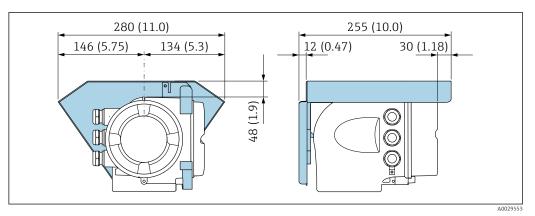

Bestellmerkmal "Prozessanschluss", Option ACS

Destettinerkin	Desteumentman 1102essansentass, Option Acs									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
300	558,8	489,0	20 × Ø35,1	73,7	288,8	1875				
350	603,3	527,1	20 × Ø38,1	77,0	317,5	1891				

Flansch in Anlehnung an ASME B16.5: Cl 600 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option ACS										
DN [mm]										
400 685,8 603,3 20 × Ø41,1 83,2 363,3 1912										
Oberflächenrauheit (Flansch): Ra 3,2 6,3 µm										

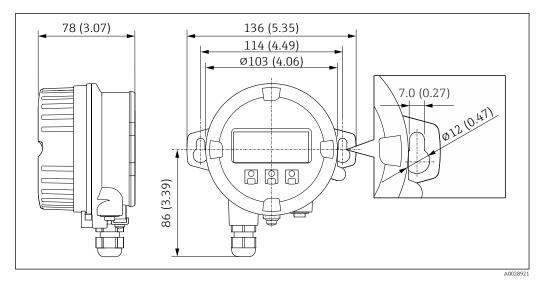
Zubehör

Berstscheibe/Spülanschlüsse



₽ 29

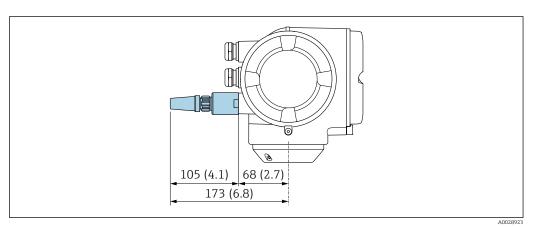
- l Anschlussstutzen für Spülanschlüsse: Bestellmerkmal "Sensor Optionen", Option CH "Spülanschluss"
- 2 Anschlussstutzen mit Berstscheibe: Bestellmerkmal "Sensoroption", Option CA "Berstscheibe"


DN	A	L
[mm]	[mm]	[mm]
300	182	547
350	182	547
400	182	547

Wetterschutzhaube

🖪 30 Maßeinheit mm (in)

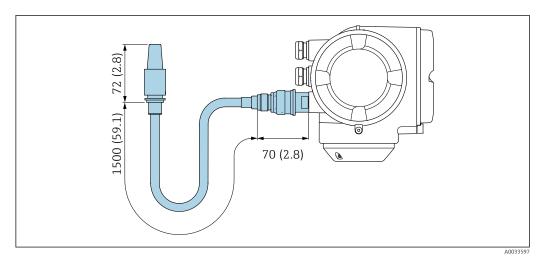
Abgesetztes Anzeige- und Bedienmodul DKX001



🛮 31 Maßeinheit mm (in)

Externe WLAN-Antenne

Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet.


Externe WLAN-Antenne am Gerät montiert

■ 32 Maßeinheit mm (in)

Externe WLAN-Antenne mit Kabel montiert


Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.

₹ 33 Maßeinheit mm (in)

Abmessungen in US-Einhei-

Kompaktausführung

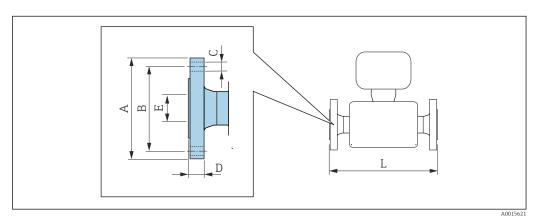
Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

DN	A 1)	B 1)	С	D	E	F	G ²⁾	Н	I 2)	K	L	M
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
12	6,65	2,68	3,98	5,51	19,65	25,16	7,87	2,32	5,55	4,03	3)	48,31
14	6,65	2,68	3,98	5,51	19,65	25,16	7,87	2,32	5,55	4,03	3)	48,31
16	6,65	2,68	3,98	5,51	19,65	25,16	7,87	2,32	5,55	4,03	3)	48,31

- 1) 2) Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in
- Bei Version ohne Vor-Ort-Anzeige: Werte 1,18 in
- 3) Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d

DN	A 1)	B 1)	С	D	Е	F	G ²⁾	Н	I 2)	К	L	М
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
12	7,40	3,35	4,06	5,51	19,65	25,16	8,54	2,28	6,26	4,03	3)	48,31
14	7,40	3,35	4,06	5,51	19,65	25,16	8,54	2,28	6,26	4,03	3)	48,31
16	7,40	3,35	4,06	5,51	19,65	25,16	8,54	2,28	6,26	4,03	3)	48,31


- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in
- 2) 3) Bei Version ohne Vor-Ort-Anzeige: Werte - 1,57 in Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option L "Guss, rostfrei"

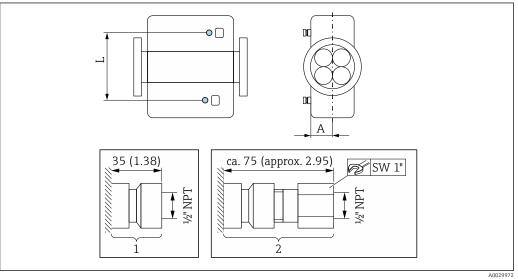
DN	A 1)	B 1)	С	D	Е	F	G	Н	I	К	L	М
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
12	7,32	3,35	3,98	5,51	19,65	25,16	8,54	2,36	6,18	4,03	2)	48,31
14	7,32	3,35	3,98	5,51	19,65	25,16	8,54	2,36	6,18	4,03	2)	48,31
16	7,32	3,35	3,98	5,51	19,65	25,16	8,54	2,36	6,18	4,03	2)	48,31

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in
- Abhängig vom jeweiligen Prozessanschluss 2)

Festflansch-Anschlüsse ASME B16.5

Maßeinheit mm (in)

Längentoleranz Maß L in inch: ±0,16

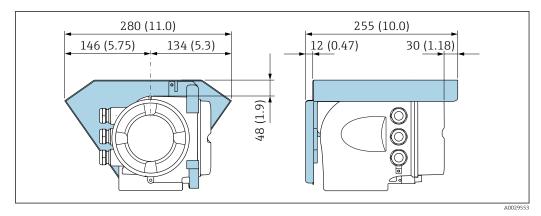

Flansch in Anlehnung an ASME B16.5: Cl 150 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option AAS										
DN [in]										
12	19,00	17,00	12 × Ø1,00	1,27	12,00	70,63				
14	14 21,00 18,75 16 × Ø1,12 1,40 13,25 71,65									
16 23,50 21,25 16 × Ø1,12 1,46 15,25 71,65										
Oberfläche	Oberflächenrauheit (Flansch): Ra 125 250 µin									

Flansch in Anlehnung an ASME B16.5: Cl 300 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option ABS										
DN [in]										
12	20,50	17,75	16 × Ø1,25	2,02	12,00	71,89				
14	14 23,00 20,25 16 × Ø1,25 2,14 13,25 72,91									
16	16 25,50 22,50 16 × Ø1,38 2,27 15,25 73,15									
Oberfläche	Oberflächenrauheit (Flansch): Ra 125 250 μin									

Flansch in Anlehnung an ASME B16.5: Cl 600 1.4404 (F316/F316L) Bestellmerkmal "Prozessanschluss", Option ACS										
DN [in]										
12	22,00	19,25	20 × Ø1,38	2,90	11,37	73,82				
14	14 23,75 20,75 20 × Ø1,50 3,03 12,50 74,45									
16 27,00 23,75 20 × Ø1,62 3,28 14,30 75,28										
Oberfläche	nrauheit (Flans	ch): Ra 125 2	50 μin							

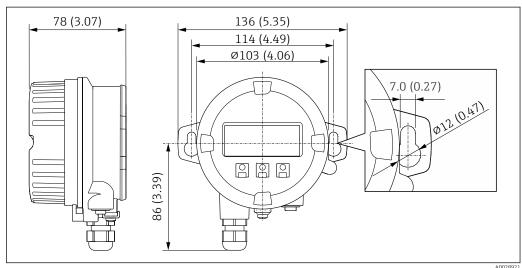
Zubehör

Berstscheibe/Spülanschlüsse



₹ 35

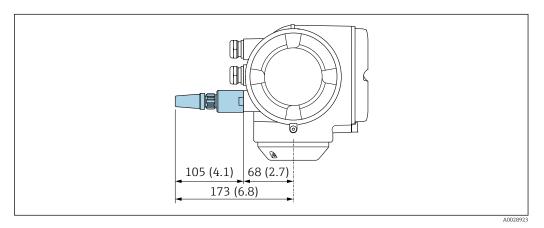
- Anschlussstutzen für Spülanschlüsse: Bestellmerkmal "Sensor Optionen", Option CH "Spülanschluss" Anschlussstutzen mit Berstscheibe: Bestellmerkmal "Sensoroption", Option CA "Berstscheibe"


DN	A	L
[in]	[in]	[in]
12	7,17	21,54
14	7,17	21,54
16	7,17	21,54

Wetterschutzhaube

🛮 36 Maßeinheit mm (in)

Abgesetztes Anzeige- und Bedienmodul DKX001

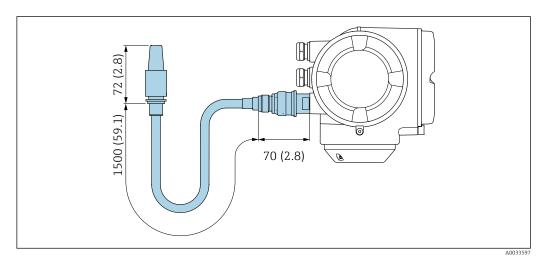


🖸 37 Maßeinheit mm (in)

Externe WLAN-Antenne

Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet.

Externe WLAN-Antenne am Gerät montiert


🖪 38 Maßeinheit mm (in)

72 Endress+Hauser

A002892

Externe WLAN-Antenne mit Kabel montiert

Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.

■ 39 Maßeinheit mm (in)

Gewicht

Alle Werte (Gewicht ohne Verpackungsmaterial) beziehen sich auf Geräte mit ASME B16.5 Class 150-Flanschen. Gewichtsangaben inklusive Messumformer gemäß Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet".

Abweichende Werte aufgrund anderer Messumformerausführungen:

- Messumformerausführung für den Ex-Bereich (Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d): +2 kg (+4,4 lbs)
- Messumformerausführung aus Guss, rostfrei (Bestellmerkmal "Gehäuse", Option L "Guss, rostfrei"): +6 kg (+13 lbs)

Gewicht in SI-Einheiten

DN [mm]	Gewicht [kg]
300	553
350	577
400	601

Gewicht in US-Einheiten

DN [in]	Gewicht [lbs]
12	1219
14	1272
16	1325

Werkstoffe

Gehäuse Messumformer

Bestellmerkmal "Gehäuse":

- $\, \bullet \,$ Option A "Alu, beschichtet": Aluminium, AlSi10Mg, beschichtet
- Option L "Guss, rostfrei": Guss, rostfreier Stahl, 1.4409 (CF3M) ähnlich zu 316L

Fensterwerkstoff

Bestellmerkmal "Gehäuse":

- Option **A** "Alu, beschichtet": Glas
- Option L "Guss, rostfrei": Glas

Kabeleinführungen/-verschraubungen

🖪 40 Mögliche Kabeleinführungen/-verschraubungen

- 1 Innengewinde $M20 \times 1,5$
- 2 Kabelverschraubung $M20 \times 1,5$
- 3 Adapter für Kabeleinführung mit Innengewinde G ½" oder NPT ½"
- 4 Gerätestecker

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

Die verschiedenen Kabeleinführungen sind für den explosionsgefährdeten und nicht explosionsgefährdeten Bereich geeignet.

Kabeleinführung/-verschraubung	Werkstoff
Verschraubung M20 × 1,5	Non-Ex: Kunststoff
verschiaubung M20 ^ 1,5	Z2, D2, Ex d/de: Messing mit Kunststoff
Adapter für Kabeleinführung mit Innengewinde G ½"	Messing vernickelt
Adapter für Kabeleinführung mit Innengewinde NPT 1/2"	

Bestellmerkmal "Gehäuse", Option L "Guss, rostfrei"

Die verschiedenen Kabeleinführungen sind für den explosionsgefährdeten und nicht explosionsgefährdeten Bereich geeignet.

Kabeleinführung/-verschraubung	Werkstoff
Kabelverschraubung M20 × 1,5	Rostfreier Stahl, 1.4404 (316L)
Adapter für Kabeleinführung mit Innengewinde G ½"	
Adapter für Kabeleinführung mit Innengewinde NPT ½"	

Gerätestecker

Elektrischer Anschluss	Werkstoff
Stecker M12x1	Buchse: Rostfreier Stahl, 1.4404 (316L)Kontaktträger: Polyamid
	Kontakte: Messing vergoldet

Gehäuse Messaufnehmer

- Säuren- und laugenbeständige Außenoberfläche
- Rostfreier Stahl, 1.4404 (316L)

74

Messrohre

Rostfreier Stahl, 1.4404 (316/316L); Verteilerstück: Rostfreier Stahl, 1.4404 (316/316L)

Prozessanschlüsse

Flansche gemäss EN 1092-1 (DIN2501) / ASME B 16.5: Rostfreier Stahl, 1.4404 (F316/F316L)

Verfügbare Prozessanschlüsse→ 🗎 75

Dichtungen

Geschweißte Prozessanschlüsse ohne innenliegende Dichtungen

Zubehör

Wetterschutzhaube

Rostfreier Stahl, 1.4404 (316L)

Externe WLAN-Antenne

- Antenne: Kunststoff ASA (Acrylnitril-Styrol-Acrylester) und Messing vernickelt
- Adapter: Rostfreier Stahl und Messing vernickelt
- Kabel: Polyethylen
- Stecker: Messing vernickelt
- Befestigungswinkel: Rostfreier Stahl

Prozessanschlüsse

Festflanschanschlüsse:

- EN 1092-1 (DIN 2501) Flansch
- EN 1092-1 (DIN 2512N) Flansch
- ASME B16.5 Flansch

Werkstoffe der Prozessanschlüsse → 🗎 75

Oberflächenrauhigkeit

Nicht poliert

Anzeige und Bedienoberfläche

Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

- Inbetriebnahme
- Betrieb
- Diagnose
- Expertenebene

Schnelle und sichere Inbetriebnahme

- Geführte Menüs ("Make-it-run" Assistenten) für Anwendungen
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen
- Zugriff auf das Gerät via Webserver
- WLAN-Zugriff auf das Gerät mittels mobilem Handbediengerät, Tablet oder Smartphone

Sicherheit im Betrieb

- Bedienung in Landessprache
- Einheitliche Bedienphilosophie am Gerät und in den Bedientools
- Beim Austausch von Elektronikmodulen: Übernahme der Gerätekonfiguration durch den integrierten Datenspeicher (HistoROM Backup), der die Prozess-, Messgerätedaten und das Ereignis-Logbuch enthält. Keine Neuparametrierung nötig.

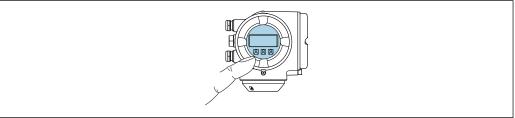
Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

- Behebungsmaßnahmen sind via Gerät und in den Bedientools abrufbar
- Vielfältige Simulationsmöglichkeiten, Logbuch zu eingetretenen Ereignissen und optional Linienschreiberfunktionen

Sprachen

Bedienung in folgenden Landessprachen möglich:

- Via Vor-Ort-Bedienung
- Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Koreanisch, Vietnamesisch, Tschechisch, Schwedisch
- Via Webbrowser
 - Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Vietnamesisch, Tschechisch, Schwedisch
- Via Bedientool "FieldCare", "DeviceCare": Englisch, Deutsch, Französisch, Spanisch, Italienisch, Chinesisch, Japanisch


Vor-Ort-Bedienung

Via Anzeigemodul

Ausstattung:

- Bestellmerkmal "Anzeige; Bedienung", Option F "4-zeilige, beleuchtete, grafische Anzeige; Touch Control"
- Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"

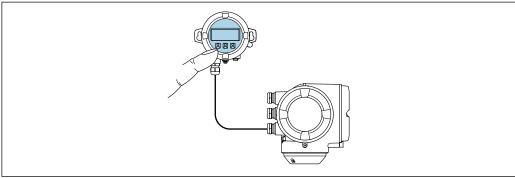
A0026785

■ 41 Bedienung mit Touch Control

Anzeigeelemente

- 4-zeilige, beleuchtete, grafische Anzeige
- Hintergrundbeleuchtung weiß, bei Gerätefehler rot
- \blacksquare Anzeige für die Darstellung von Messgrößen und Statusgrößen individuell konfigurierbar

76


Bedienelemente

- Bedienung von außen ohne Öffnen des Gehäuses via Touch Control (3 optische Tasten): 🕀 , 🖃 , 🗉
- Bedienelemente auch in den verschiedenen Zonen des explosionsgefährdeten Bereichs zugänglich

Via abgesetztem Anzeige- und Bedienmodul DKX001

- Bei der direkten Bestellung des abgesetzten Anzeige- und Bedienmoduls DKX001 mit dem Messgerät wird das Messgerät immer mit einem Blinddeckel ausgeliefert. Eine Anzeige oder Bedienung am Messumformer ist in dem Fall nicht vorhanden.
- Bei nachträglicher Bestellung darf das abgesetzte Anzeige- und Bedienmodul DKX001 nicht gleichzeitig mit dem vorhandenen Anzeigemodul des Messgeräts angeschlossen werden. Es darf immer nur eine Anzeige oder Bedienung am Messumformer angeschlossen sein.

■ 42 Bedienung via abgesetztem Anzeige- und Bedienmodul DKX001

A0026786

Anzeige- und Bedienelemente

Gehäusewerkstoff

Der Gehäusewerkstoff des Anzeige- und Bedienmoduls DKX001 ist abhängig von der Auswahl des Werkstoffs des Messumformergehäuses.

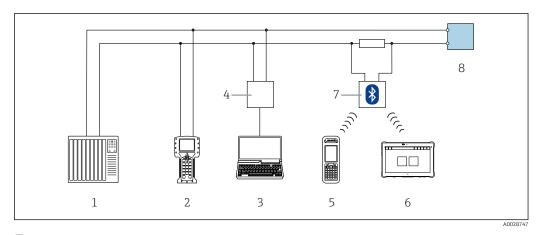
Messumformergehäuse		Abgesetztes Anzeige- und Bedienmodul
Bestellmerkmal "Gehäuse"	Werkstoff	Werkstoff
Option A "Alu, beschichtet"	AlSi10Mg, beschichtet	AlSi10Mg, beschichtet
Option L "Guss, rostfrei"	Guss rostfreier Stahl, 1.4409 (CF3M) ähnlich zu 316L	1.4409 (CF3M)

Kabeleinführung

Entspricht der Auswahl des Messumformergehäuses, Bestellmerkmal "Elektrischer Anschluss".

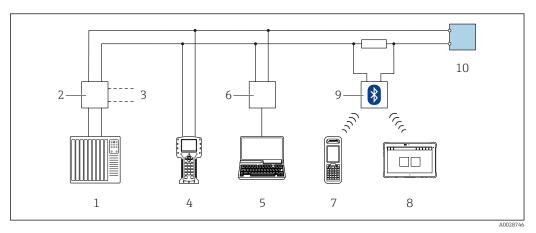
Verbindungskabel

→ 🖺 49


Abmessungen

→ 🖺 68

Fernbedienung


Via HART-Protokoll

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit HART-Ausgang verfügbar.

■ 43 Möglichkeiten der Fernbedienung via HART-Protokoll (aktiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Field Communicator 475
- 3 Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX350 oder SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth-Modem mit Anschlusskabel
- 8 Messumformer

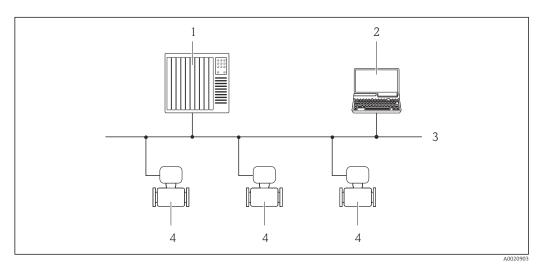


■ 44 Möglichkeiten der Fernbedienung via HART-Protokoll (passiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Messumformerspeisegerät, z.B. RN221N (mit Kommunikationswiderstand)
- 3 Anschluss für Commubox FXA195 und Field Communicator 475
- 4 Field Communicator 475
- 5 Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 oder SFX370
- 8 Field Xpert SMT70
- 9 VIATOR Bluetooth-Modem mit Anschlusskabel
- 10 Messumformer

Via FOUNDATION Fieldbus Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit FOUNDATION Fieldbus verfügbar.

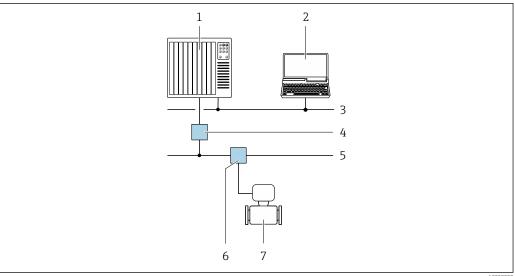


 \blacksquare 45 Möglichkeiten der Fernbedienung via FOUNDATION Fieldbus Netzwerk

- 1 Automatisierungssystem
- 2 Computer mit FOUNDATION Fieldbus Netzwerkkarte
- 3 Industrienetzwerk
- 4 High Speed Ethernet FF-HSE Netzwerk
- 5 Segmentkoppler FF-HSE/FF-H1
- 6 FOUNDATION Fieldbus FF-H1 Netzwerk
- 7 Versorgung FF-H1 Netzwerk
- 8 T-Verteiler
- 9 Messgerät

Via PROFIBUS DP Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFIBUS DP verfügbar.

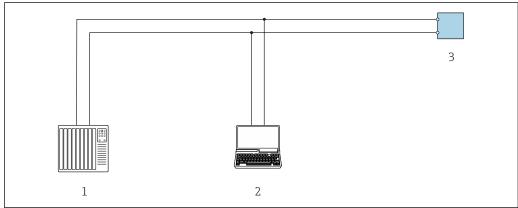


 \blacksquare 46 Möglichkeiten der Fernbedienung via PROFIBUS DP Netzwerk

- $1 \quad \ \ Automatisierungs system$
- 2 Computer mit PROFIBUS-Netzwerkkarte
- 3 PROFIBUS DP Netzwerk
- 4 Messgerät

Via PROFIBUS PA Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFIBUS PA verfügbar.



₽ 47 Möglichkeiten der Fernbedienung via PROFIBUS PA Netzwerk

- 1 Automatisierungssystem
- Computer mit PROFIBUS-Netzwerkkarte 2
- PROFIBUS DP Netzwerk 3
- Segmentkoppler PROFIBUS DP/PA 4
- PROFIBUS PA Netzwerk
- 6 T-Verteiler
- Messgerät

Via Modbus-RS485-Protokoll

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit Modbus-RS485-Ausgang verfügbar.

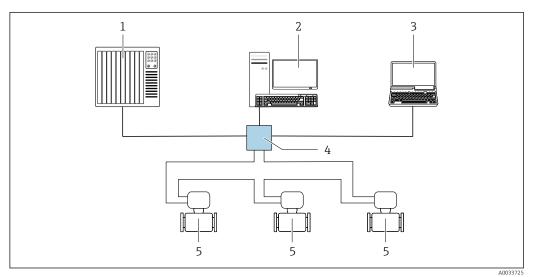
Möglichkeiten der Fernbedienung via Modbus-RS485-Protokoll (aktiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Computer mit Webbrowser (z.B. Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- Messumformer

Via EtherNet/IP-Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit EtherNet/IP verfügbar.

Sterntopologie

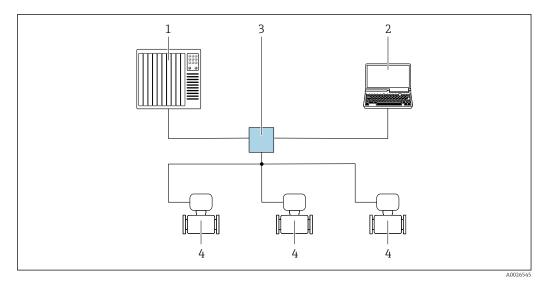


🛮 49 Möglichkeiten der Fernbedienung via EtherNet/IP-Netzwerk: Sterntopologie

- Automatisierungssystem, z.B. "RSLogix" (Rockwell Automation)
- 2 Workstation zur Messgerätbedienung: Mit Custom Add-On Profile für "RSLogix 5000" (Rockwell Automation) oder mit Electronic Data Sheet (EDS)
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Webserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP"
- 4 Standard Ethernet Switch, z.B. Scalance X204 (Siemens)
- 5 Messgerät

Ringtopologie

Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und die Serviceschnittstelle (CDI-RJ45).

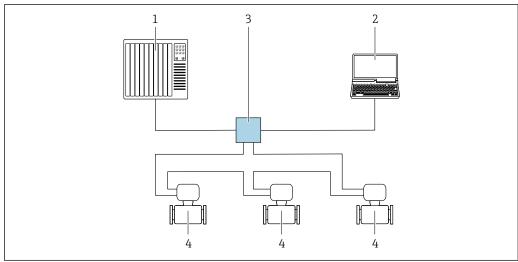

■ 50 Möglichkeiten der Fernbedienung via EtherNet/IP-Netzwerk: Ringtopologie

- 1 Automatisierungssystem, z.B. "RSLogix" (Rockwell Automation)
- 2 Workstation zur Messgerätbedienung: Mit Custom Add-On Profile für "RSLogix 5000" (Rockwell Automation) oder mit Electronic Data Sheet (EDS)
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Webserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP"
- 4 Standard Ethernet Switch, z.B. Scalance X204 (Siemens)
- 5 Messgerät

Via PROFINET-Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFINET verfügbar.

Sterntopologie

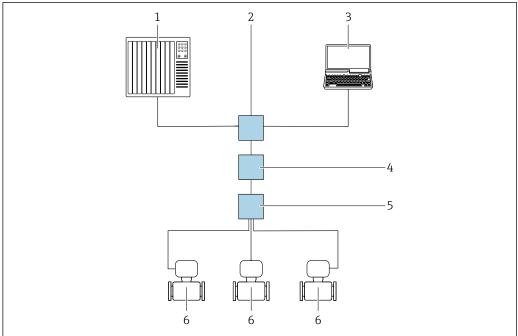


■ 51 Möglichkeiten der Fernbedienung via PROFINET Netzwerk: Sterntopologie

- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Webserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet Switch, z.B. Scalance X204 (Siemens)
- 4 Messgerät

Ringtopologie

Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und die Serviceschnittstelle (CDI-RJ45).



A0033719

■ 52 Möglichkeiten der Fernbedienung via PROFINET-Netzwerk: Ringtopologie

- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Webserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 3 Standard Ethernet Switch, z.B. Scalance X204 (Siemens)
- 4 Messgerät

Via APL-Netzwerk

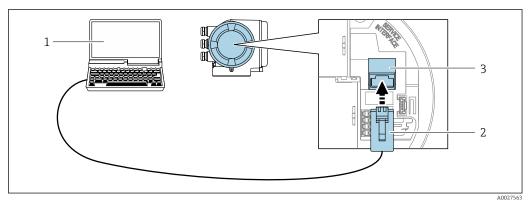
A0046117

■ 53 Möglichkeiten der Fernbedienung via APL-Netzwerk

- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Ethernet-Switch, z.B. Scalance X204 (Siemens)
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Webserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare mit PROFINET COM DTM oder SIMATIC PDM mit FDI-Package)
- 4 APL-Power-Switch (optional)
- 5 APL-Field-Switch
- 6 Messgerät

Serviceschnittstelle

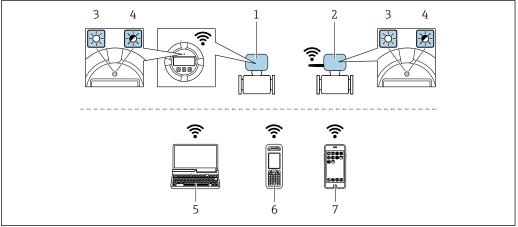
Via Serviceschnittstelle (CDI-RJ45)


Um eine Konfiguration des Geräts vor Ort durchzuführen kann eine Punkt-zu-Punkt-Verbindung aufgebaut werden. Der Anschluss erfolgt bei geöffnetem Gehäuse direkt über die Serviceschnittstelle (CDI-RJ45) des Geräts.

Optional ist für den nicht explosionsgefährdeten Bereich ein Adapter für RJ45 auf M12 Stecker erhältlich:

Bestellmerkmal "Zubehör", Option NB: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann ohne Öffnen des Geräts über einen M12 Stecker erfolgen.



■ 54 Anschluss via Serviceschnittstelle (CDI-RJ45)

- 1 Computer mit Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Webserver oder mit Bedientool "FieldCare", "DeviceCare" mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- 2 Standard-Ethernet-Verbindungskabel mit RJ45-Stecker
- 3 Serviceschnittstelle (CDI-RJ45) des Messgeräts mit Zugriff auf integrierten Webserver

Via WLAN-Schnittstelle

Die optionale WLAN-Schnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilig, beleuchtet; Touch Control + WLAN"

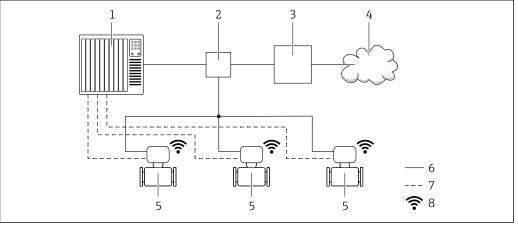
A003457

- 1 Messumformer mit integrierter WLAN-Antenne
- 2 Messumformer mit externer WLAN-Antenne
- 3 LED leuchtet konstant: WLAN-Empfang am Messgerät ist aktiviert
- 4 LED blinkt: WLAN-Verbindung zwischen Bediengerät und Messgerät ist hergestellt
- 5 Computer mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare)
- 6 Mobiles Handbediengerät mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Bedientool (z.B. FieldCare, DeviceCare)
- 7 Smartphone oder Tablet (z.B. Field Xpert SMT70)

Funktion	WLAN: IEEE 802.11 b/g (2,4 GHz) • Access Point mit DHCP Server (Werkseinstellung) • Netzwerk
Verschlüsselung	WPA2-PSK AES-128 (gemäß IEEE 802.11i)
Einstellbare WLAN-Kanäle	1 bis 11
Schutzart	IP67

Verfügbare Antennen	Interne Antenne Externe Antenne (optional) Bei schlechten Sende-/Empfangsbedingungen am Montageort. Als Zubehör verfügbar . Jeweils nur 1 Antenne aktiv!
Reichweite	 Interne Antenne: Typischerweise 10 m (32 ft) Externe Antenne: Typischerweise 50 m (164 ft)
Werkstoffe (Externe Antenne)	 Antenne: Kunststoff ASA (Acrylnitril-Styrol-Acrylat-Copolymere) und Messing vernickelt Adapter: Rostfreier Stahl und Messing vernickelt Kabel: Polyethylen Stecker: Messing vernickelt Befestigungswinkel: Rostfreier Stahl

Netzwerk Integration


Die Netzwerk Integration ist nur für die Kommunikationsart HART verfügbar.

Mit dem optionalen Anwendungspaket OPC-UA-Server kann das Gerät über die Serviceschnittstelle (CDI-RJ45 und WLAN) in ein Ethernet-Netzwerk eingebunden werden und mit OPC-UA Clienten kommunizieren. Bei dieser Verwendung ist auf die IT-Sicherheit zu achten.

Messumformer mit einer Ex de Zulassung dürfen **nicht** über die Serviceschnittstelle (CDI-RJ45) angeschlossen werden!

Bestellmerkmal "Zulassung Messumformer + Sensor", Optionen (Ex de): BA, BB, C1, C2, GA, GB, MA, MB, NA, NB

Für einen dauerhaften Zugriff auf Gerätedaten und zur Konfiguration über Webserver wird das Gerät über Serviceschnittstelle (CDI-RJ45) direkt in ein Netzwerk eingebunden werden. Damit kann von der Leitstelle aus jederzeit auf das Gerät zugegriffen werden. Die Verarbeitung der Messwerte über die Ein- und Ausgänge erfolgt separat über das Automatisierungssystem.

A0033618

- Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Ethernet Switch
- 3 Edge Gateway
- 4 Cloud
- 5 Messgerät
- Ethernet Netzwerk
- Messwerte über Ein- und Ausgänge
- Optionale WLAN-Schnittstelle
- Die optionale WLAN-Schnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Anzeige; Bedienung", Option **G** "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"
- Sonderdokumentation zum Anwendungspaket OPC-UA-Server → 🖺 98.

Unterstützte Bedientools

Für den lokalen Zugriff oder den Fernzugriff auf das Messgerät können verschiedene Bedientools verwendet werden. Abhängig vom verwendeten Bedientool kann der Zugriff mithilfe von unterschiedlichen Bediengeräten und via verschiedene Schnittstellen erfolgen.

Unterstützte Bedientools	Bediengerät	Schnittstelle	Weitere Informationen
Webbrowser	Notebook, PC oder Tab- let mit Webbrowser	 Serviceschnittstelle CDI-RJ45 WLAN-Schnittstelle Ethernet-basierter Feldbus (EtherNet/IP, PROFINET) 	Sonderdokumentation zum Gerät → 🖺 98
DeviceCare SFE100	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 95
FieldCare SFE500	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 95
Field Xpert	SMT70/77/50	 Alle Feldbus-Protokolle WLAN-Schnittstelle Bluetooth Serviceschnittstelle CDI-RJ45 	Betriebsanleitung BA01202S Gerätebeschreibungsdateien: Updatefunktion vom Handbe- diengerät verwenden
SmartBlue App	Smartphone oder Tablet mit iOs oder Android	WLAN	→ 🖺 95

Weitere Bedientools auf Basis FDT Technologie mit einem Gerätetreiber wie DTM/iDTM oder DD/EDD sind für die Gerätebedienung nutzbar. Diese Bedientools sind bei den jeweiligen Herstellern erhältlich. Es wird eine Integration u.a. in folgende Bedientools unterstützt:

- FactoryTalk AssetCentre (FTAC) von Rockwell Automation → www.rockwellautomation.com
- Process Device Manager (PDM) von Siemens → www.siemens.com
- Asset Management Solutions (AMS) von Emerson → www.emersonprocess.com
- FieldCommunicator 375/475 von Emerson → www.emersonprocess.com
- Field Device Manager (FDM) von Honeywell → www.process.honeywell.com
- FieldMate von Yokogawa → www.yokogawa.com
- PACTWare → www.pactware.com

Die zugehörigen Gerätebeschreibungsdateien sind verfügbar: www.endress.com → Download-Area

Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser via Ethernet-APL, der und via Serviceschnittstelle (CDI-RJ45) oder via WLAN-Schnittstelle bedient und konfiguriert werden. Der Aufbau des Bedienmenüs ist dabei derselbe wie bei der Vor-Ort-Anzeige. Neben den Messwerten werden auch Statusinformationen zum Gerät dargestellt und ermöglichen eine Kontrolle des Gerätezustands. Zusätzlich können die Daten vom Gerät verwaltet und die Netzwerkparameter eingestellt werden.

Für die Ethernet-APL Verbindung wird ein Zugriff auf das Netzwerk benötigt.

Für die WLAN-Verbindung wird ein Gerät benötigt, das über eine optional bestellbare WLAN-Schnittstelle verfügt: Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilig beleuchtet; Touch Control + WLAN". Das Gerät dient als Access Point und ermöglicht eine Kommunikation mittels Computer oder mobilem Handbediengerät.

Unterstützte Funktionen

Datenaustausch zwischen Bediengerät (wie z.B. Notebook) und Messgerät:

- Konfiguration vom Messgerät laden (XML-Format, Konfiguration sichern)
- Konfiguration ins Messgerät speichern (XML-Format, Konfiguration wieder herstellen)
- Export der Eventliste (.csv-Datei)

- Export der Parametereinstellungen (.csv-Datei oder PDF-Datei, Dokumentation der Konfiguration der Messstelle erstellen)
- Export des Heartbeat Verifizierungsberichts (PDF-Datei, nur verfügbar mit dem Anwendungspaket Heartbeat Verification)
- Flashen der Firmware-Version für z.B. Upgrade der Geräte-Firmware
- Download Treiber für Systemintegration
- Darstellung von bis zu 1000 gespeicherten Messwerten (Nur verfügbar mit dem Anwendungspaket Extended HistoROM)

HistoROM Datenmanagement

Das Messgerät verfügt über ein HistoROM Datenmanagement. Das HistoROM Datenmanagement umfasst sowohl die Speicherung als auch das Importieren und Exportieren wichtiger Geräte- und Prozessdaten. Dadurch können Betriebs- und Serviceeinsätze wesentlich sicherer und effizienter durchgeführt werden.

Im Auslieferungszustand sind die Werkseinstellungen der Parametrierdaten als Sicherung im Gerätespeicher hinterlegt. Dieser kann z.B. nach der Inbetriebnahme mit einem aktualisierten Datensatz überschrieben werden.

Zusatzinformationen Speicherkonzept

Es gibt verschiedene Speicher, in denen Gerätedaten gespeichert und vom Gerät genutzt werden:

	HistoROM Backup	T-DAT	S-DAT
Verfügbare Daten	 Ereignis-Logbuch z. B. Diagnoseereignisse Sicherung eines Parameterdatensatzes Firmwarepaket des Geräts Treiber für Systemintegration zum Export via Webserver z. B.: GSD für PROFIBUS DP GSD für PROFIBUS PA GSDML für PROFINET EDS für EtherNet/IP DD für FOUNDATION Fieldbus 	 Messwertspeicherung (Bestelloption "Extended HistoROM") Aktueller Parameterdatensatz (wird zur Laufzeit durch Firmware verwendet) Schleppzeiger (Minimum/Maximum-Werte) Summenzählerwert 	 Messaufnehmerdaten: z. B. Nennweite Seriennummer Kalibrierdaten Gerätekonfiguration (z. B. SW-Optionen, fixes I/O oder Multi I/O)
Speicherort	Fix auf der Benutzerschnittstellen-Leiterplatte im Anschlussraum	Steckbar auf der Benutzerschnittstellen- Leiterplatte im Anschlussraum	Im Sensorstecker im Messumformer- Halsteil

Datensicherung

Automatisch

- Automatische Speicherung der wichtigsten Gerätedaten (Messaufnehmer und -umformer) in den DAT-Modulen
- Im Austauschfall Messumformer oder Messgerät: Nach Austausch des T-DATs mit bisherigen Gerätedaten steht das neue Messgerät sofort und fehlerfrei wieder in Betrieb
- Im Austauschfall Elektronikmodul (z.B. I/O-Elektronikmodul): Nach Austausch des Elektronikmoduls wird die Software des Moduls mit der vorhandenen Gerätefirmware verglichen. Im Bedarfsfall erfolgt ein Up- oder Downgrade der Software des Moduls. Anschließend ist das Elektronikmodul sofort einsatzbereit und es tritt kein Kompatibilitätsfehler auf.

Manuell

Zusätzlicher Parameterdatensatz (komplette Parametereinstellungen) im integrierten Gerätespeicher HistoROM Backup für:

- Datensicherungsfunktion
 Sicherung und spätere Wiederherstellung einer Geräteparametrierung im Gerätespeicher HistoROM Backup
- Datenvergleichsfunktion
 Vergleich der aktuellen Geräteparametrierung mit der im Gerätespeicher HistoROM Backup gespeicherten Geräteparametrierung

Datenübertragung

Manuell

- Übertragung einer Geräteparametrierung auf ein anderes Gerät mithilfe der Exportfunktion des jeweiligen Bedientools, z.B. mit FieldCare, DeviceCare oder Webserver: Zum Duplizieren der Parametrierung oder zur Ablage in ein Archiv (z.B. zwecks Sicherung)
- Übertragung der Treiber für die Systemintegration via Webserver, z.B.:
 - GSD für PROFIBUS DP
 - GSD für PROFIBUS PA

 - EDS für EtherNet/IP
 - DD für FOUNDATION Fieldbus

Ereignisliste

Automatisch

- Chronologische Anzeige von max. 20 Ereignismeldungen in der Ereignisliste
- Mit Freischaltung des Anwendungspakets Extended HistoROM (Bestelloption): Anzeige von bis zu 100 Ereignismeldungen in der Ereignisliste mit Zeitstempel, Klartextbeschreibung und Behebungsmaßnahmen
- Export und Anzeige der Ereignisliste über verschiedene Schnittstellen und Bedientools z.B. Device-Care, FieldCare oder Webserver

Messwertspeicher

Manuell

Mit Freischaltung des Anwendungspakets **Extended HistoROM** (Bestelloption):

- Aufzeichnung über 1 bis 4 Kanäle von bis zu 1000 Messwerten (jeweils bis zu 250 Messwerte pro Kanal)
- Frei konfigurierbares Aufzeichnungsintervall
- Export der Messwertaufzeichnung über verschiedene Schnittstellen und Bedientools z.B. Field-Care, DeviceCare oder Webserver

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

CE-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung der CE-Kennzeichnung.

UKCA-Kennzeichnung

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren UK-Rechtsverordnungen (Statutory Instruments). Diese sind zusammen mit den zugewiesenen Normen in der entsprechenden UKCA-Konformitätserklärung aufgeführt. Durch Selektion der Bestelloption zur UKCA-Kennzeichnung bestätigt Endress+Hauser die erfolgreiche Prüfung und Bewertung des Geräts mit der Anbringung der UKCA-Kennzeichnung.

Kontaktadresse Endress+Hauser UK:

Endress+Hauser Ltd.

Floats Road

Manchester M23 9NF

United Kingdom

www.uk.endress.com

RCM-Kennzeichnung

Ex-Zulassung

Das Messgerät ist zum Einsatz im explosionsgefährdeten Bereich zertifiziert und die zu beachtenden Sicherheitshinweise im separaten Dokument "Safety Instructions" (XA) beigefügt. Dieses ist auf dem Typenschild referenziert.

Geräte mit dem Bestellmerkmal "Zulassung; Messumformer + Sensor", Option BA, BB, BC oder BD besitzen das Schutzniveau (EPL) Ga/Gb (Zone 0 im Messrohr).

Die separate Ex-Dokumentation (XA) mit allen relevanten Daten zum Explosionsschutz ist bei Ihrer Endress+Hauser Vertriebszentrale erhältlich.

ATEX/IECEx

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Ex db eb

Kategorie	Zündschutzart
II1/2G	Ex db eb ia IIC T6T1 Ga/Gb Ex db eb ia IIB T6T1 Ga/Gb
II2G	Ex db eb ia IIC T6T1 Gb Ex db eb ia IIB T6T1 Gb

Ex db

Kategorie	Zündschutzart
II1/2G	Ex db ia IIC T6T1 Ga/Gb Ex db ia IIB T6T1 Ga/Gb
II2G	Ex db ia IIC T6T1 Gb Ex db ia IIB T6T1 Gb

Ех ес

Kategorie	Zündschutzart				
II3G	Ex ec IIC T5T1 Gc				

Ex tb

Kategorie	Zündschutzart			
II2D	Ex tb IIIC T** °C Db			

CCSA{US}

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

IS (Ex i) und XP (Ex d)

- Class I, II, III Division 1 Groups A-G
- Class I, II, III Division 1 Groups C-G

NI (Ex ec)

Class I Division 2 Groups A-D

Ex db eb

- \blacksquare Class I, Zone 1 AEx/ Ex db eb ia IIC T6...T1 Ga/Gb
- Class I, Zone 1 AEx/ Ex db eb ia IIB T6...T1 Ga/Gb
- Class I, Zone 1 AEx/Ex db eb ia IIC T6...T1 Gb Class I, Zone 1 AEx/Ex db eb ia IIB T6...T1 Gb

Ex db

- Class I, Zone 1 AEx/ Ex db ia IIC T6...T1 Ga/Gb Class I, Zone 1 AEx/ Ex db ia IIB T6...T1 Ga/Gb
- Class I, Zone 1 AEx/ Ex db ia IIC T6...T1 Gb Class I, Zone 1 AEx/ Ex db ia IIB T6...T1 Gb

Ex e

Class I, Zone 2 AEx/ Ex ec IIC T5...T1 Gc

Ex tb

Zone 21 AEx/ Ex tb IIIC T** °C Db

Zertifizierung HART

HART Schnittstelle

Das Messgerät ist von der FieldComm Group zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß HART 7
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung FOUNDATION Fieldbus

FOUNDATION Fieldbus Schnittstelle

Das Messgerät ist von der FieldComm Group zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß FOUNDATION Fieldbus H1
- Interoperability Test Kit (ITK), Revisionsstand 6.2.0 (Zertifikat auf Anfrage erhältlich)
- Physical Layer Conformance Test
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung PROFIBUS

PROFIBUS Schnittstelle

Das Messgerät ist von der PNO (PROFIBUS Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß PA Profil 3.02
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung EtherNet/IP

Das Messgerät ist von der ODVA (Open Device Vendor Association) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß dem ODVA Conformance Test
- EtherNet/IP Performance Test
- EtherNet/IP PlugFest Konform
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung PROFINET

PROFINET-Schnittstelle

Das Messgerät ist von der PNO (PROFIBUS Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß:
 - Test Spezifikation für PROFINET devices
 - PROFINET Security Level 2 Netload Class 2 0 Mbit/s
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)
- Das Gerät unterstützt die PROFINET Systemredundanz S2.

Zertifizierung PROFINET mit Ethernet-APL

$PROFINET\hbox{-}Schnitt stelle$

Das Messgerät ist von der PNO (PROFIBUS Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß:
 - Test Spezifikation für PROFINET devices
 - PROFINET PA Profil 4
 - PROFINET Netload Robustness Class 2 10 Mbit/s
 - APL-Conformance Test
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)
- Das Gerät unterstützt die PROFINET Systemredundanz S2.

Druckgerätezulassung

Die Messgeräte sind mit oder ohne PED oder PESR bestellbar. Wenn ein Gerät mit PED oder PESR benötigt wird, muss dies explizit bestellt werden. Für PESR ist unter Bestellmerkmal "Zulassungen" zwingend eine UK-Bestelloption zu wählen.

- Mit der Kennzeichnung
 - a) PED/G1/x (x = Kategorie) oder
 - b) PESR/G1/x (x = Kategorie)
 - auf dem Messaufnehmer-Typenschild bestätigt Endress+Hauser die Konformität mit den "Grundlegenden Sicherheitsanforderungen"
 - a) des Anhangs I der Druckgeräterichtlinie 2014/68/EU oder
 - b) des Schedule 2 der Statutory Instruments 2016 no. 1105.
- Geräte mit dieser Kennzeichnung (mit PED oder PESR) sind geeignet für folgende Messstoffarten:
 - Fluide der Gruppe 1 und 2 mit einem Dampfdruck von größer oder kleiner gleich 0,5 bar (7,3 psi)
 - Instabile Gase
- Geräte ohne diese Kennzeichnung (ohne PED oder PESR) sind nach guter Ingenieurspraxis ausgelegt und hergestellt. Sie entsprechen den Anforderungen von
 - a) Art. 4 Abs. 3 der Druckgeräterichtlinie 2014/68/EU oder
 - b) Part 1, Abs. 8 der Statutory Instruments 2016 no. 1105.

Ihr Einsatzbereich ist

- a) in den Diagrammen 6 bis 9 im Anhang II der Druckgeräterichtlinie 2014/68/EU oder
- b) im Schedule 3, Abs. 2 der Statutory Instruments 2016 no. 1105 dargestellt.

Funkzulassung

Das Messgerät besitzt eine Funkzulassung.

Detaillierte Informationen zur Funkzulassung: Sonderdokumentation → 🗎 98

Messgerätezulassung

Das Messgerät ist (optional) als Gaszähler (MI-002) oder Komponente in Messanlagen (MI-005) im gesetzlich messtechnisch kontrollierten Einsatz gemäß der europäischen Messgeräterichtlinie 2014/32/EU (MID) zugelassen.

Das Messgerät ist nach OIML R117 oder OIML R137 OIML R117 qualifiziert und verfügt über ein zugehöriges OIML Certificate of Conformity (optional).

Weitere Zertifizierungen

CRN-Zulassung

Für einige Gerätevarianten gibt es eine CRN-Zulassung. Für ein CRN-zugelassenes Gerät muss ein CRN-zugelassener Prozessanschluss mit einer CSA-Zulassung bestellt werden.

Tests und Zeugnisse

- ISO 23277 ZG2x (PT)+ISO 10675-1 ZG1 (RT) Messrohr (PT) + Prozessanschluss (RT) Schweissnaht, Prüfbericht
- Eindring+Röntgenprüf. ASME B31.3 NFS(RT) Messrohr (PT) + Prozessanschluss (RT) Schweissnaht, Prüfbericht
- Eindring+Röntgenprüf.ASME VIII Div.1(RT) Messrohr (PT) + Prozessanschluss (RT) Schweissnaht, Prüfbericht
- Sicht+Eindring+Röntgen NORSOK M-601 (RT) Messrohr (VT+PT) +Prozessanschl. (VT+RT) Schweissnaht. Prüfbericht

Prüfung von Schweißverbindungen

Option	Prü	Komponente				
	ISO 23277 AL2x (PT) ISO 10675-1 AL1 (RT, DR)	ASME B31.3 NFS	ASME VIII Div.1 Appx. 4+8	NORSOK M-601	Messrohr	Prozessanschluss
KF	Х				PT	RT
KK		х			PT	RT
KP			х		PT	RT
KR				Х	VT, PT	VT, RT

PT = Eindringprüfung, RT = Durchstrahlprüfung, VT = Sichtprüfung Alle Optionen mit Testbericht

Externe Normen und Richtlinien

■ EN 60529

Schutzarten durch Gehäuse (IP-Code)

■ IEC/EN 60068-2-6

Umgebungseinflüsse: Prüfverfahren - Prüfung Fc: Schwingen (sinusförmig).

■ IEC/EN 60068-2-31

Umgebungseinflüsse: Prüfverfahren - Prüfung Ec: Schocks durch raue Handhabung, vornehmlich für Geräte.

■ EN 61010-1

Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Allgemeine Anforderungen

■ EN 61326-1/-2-3

EMV-Anforderungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte

■ NAMUR NE 21

Elektromagnetische Verträglichkeit von Betriebsmitteln der Prozess- und Labortechnik

■ NAMUR NE 32

Sicherung der Informationsspeicherung bei Spannungsausfall bei Feld- und Leitgeräten mit Mikroprozessoren

■ NAMUR NE 43

Vereinheitlichung des Signalpegels für die Ausfallinformation von digitalen Messumformern mit analogem Ausgangssignal.

■ NAMUR NE 53

Software von Feldgeräten und signalverarbeitenden Geräten mit Digitalelektronik

■ NAMUR NE 80

Anwendung der Druckgeräte-Richtlinie auf PLT-Geräte

■ NAMUR NE 105

Anforderungen an die Integration von Feldbus-Geräten in Engineering-Tools für Feldgeräte

■ NAMUR NE 107

Selbstüberwachung und Diagnose von Feldgeräten

■ NAMUR NE 131

Anforderungen an Feldgeräte für Standardanwendungen

■ NAMUR NE 132

Coriolis-Massemesser

■ NACE MR0103

Materials resistant to sulfide stress cracking in corrosive petroleum refining environments.

■ NACE MR0175/ISO 15156-1

Materials for use in H2S-containing Environments in Oil and Gas Production.

■ ETSI EN 300 328

Vorschriften für 2,4-GHz-Funkkomponenten.

■ EN 301489

Elektromagnetische Verträglichkeit und Funkspektrumangelegenheiten (ERM).

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Konfiguration** auswählen.

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Anwendungspakete

Um die Funktionalität des Geräts je nach Bedarf zu erweitern, sind für das Gerät verschiedene Anwendungspakete lieferbar: z.B. aufgrund von Sicherheitsaspekten oder spezifischer Anforderungen von Applikationen.

Die Anwendungspakete können bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Website: www.endress.com.

Detaillierte Informationen zu den Anwendungspaketen: Sonderdokumentationen $\rightarrow \stackrel{\text{\tiny the }}{=} 97$

Erweiterte Dichte

Bestellmerkmal "Anwendungspaket", Option E1 "Erweiterte Dichte"

Bei volumenbasierten Anwendungen kann das Gerät einen Volumendurchfluss durch Berechnung ermitteln und ausgeben, indem es den Massendurchfluss durch die gemessene Dichte dividiert.

Dieses Anwendungspaket ist die Standardkalibrierung für eichpflichtige Anwendungen nach nationalen und internationalen Normen (z.B. OIML, MID) und wird für volumenbasierte fiskalische Dosieranwendungen über einen weiten Temperaturbereich empfohlen.

Das mitgelieferte Kalibrierungszertifikat beschreibt detailliert die Dichteleistung in Luft und Wasser bei verschiedenen Temperaturen.

Detaillierte Angaben: Betriebsanleitung zum Gerät.

Petroleum

Bestellmerkmal "Anwendungspaket", Option EJ "Petroleum"

Mit dem Anwendungspaket können die wichtigsten Kenngrößen für die Öl & Gas Industrie berechnet und ausgegeben werden.

- Normvolumenfluss und berechnete Normdichte gemäß "API Manual of Petroleum Measurement Standards, Chapter 11.1"
- Wasseranteil, basierend auf der Dichtemessung
- Gewichteter Mittelwert der Dichte und Temperatur

Detaillierte Angaben: Sonderdokumentation zum Gerät.

Petroleum & Verriegelungsfunktion

Bestellmerkmal "Anwendungspaket", Option EM "Petroleum & Verriegelungsfunktion"

Mit dem Anwendungspaket können die wichtigsten Kenngrößen für die Öl & Gas Industrie berechnet und ausgegeben werden. Zusätzlich ist die Verriegelung der Einstellungen möglich.

- Normvolumenfluss und berechnete Normdichte gemäß "API Manual of Petroleum Measurement Standards, Chapter 11.1"
- Wasseranteil, basierend auf der Dichtemessung
- Gewichteter Mittelwert der Dichte und Temperatur

Detaillierte Angaben: Sonderdokumentation zum Gerät.

OPC-UA-Server

Bestellmerkmal "Anwendungspaket", Option EL "OPC-UA-Server"

Mit dem Anwendungspaket steht ein integrierter OPC-UA-Server für umfangreiche Gerätedienste für IoT- und SCADA-Anwendungen zur Verfügung.

Detaillierte Angaben: Sonderdokumentation zum Gerät.

Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Gerätespezifisches Zubehör

Zum Messumformer

Zubehör	Beschreibung
Messumformer Proline 300	Messumformer für den Austausch oder für die Lagerhaltung. Über den Bestellcode können folgende Spezifikationen angegeben werden: Zulassungen Ausgang Eingang Anzeige/Bedienung Gehäuse Software Bestellnummer: 8X3BXX Einbauanleitung EA01200D
Abgesetztes Anzeige- und Bedienmodul DKX001	 Bei direkter Bestellung mit dem Messgerät: Bestellmerkmal "Anzeige; Bedienung", Option O "Getrennte Anzeige 4-zeilig beleuchtet; 10 m (30 ft) Kabel; Touch Control" Bei separater Bestellung: Messgerät: Bestellmerkmal "Anzeige; Bedienung", Option M "Ohne, Vorbereitet für getrennte Anzeige" DKX001: Über die separate Bestellstruktur DKX001 Bei nachträglicher Bestellung: DKX001: Über die separate Bestellstruktur DKX001 Montagebügel für DKX001 Bei direkter Bestellung: Bestellmerkmal "Zubehör beigelegt", Option RA "Montagebügel, Rohr 1/2" Bei nachträglicher Bestellung: Bestellnummer: 71340960 Verbindungskabel (Ersatzkabel) Über die separate Bestellstruktur: DKX002 Weitere Angaben zum Anzeige- und Bedienmodul DKX001→ 17. Sonderdokumentation SD01763D
Externe WLAN-Antenne	Externe WLAN-Antenne mit 1,5 m (59,1 in) Verbindungskabel und zwei Befestigungswinkel. Bestellmerkmal "Zubehör beigelegt", Option P8 "Wireless Antenne Weitbereich". ■ Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet. ■ Weitere Angaben zur WLAN-Schnittstelle → 🖺 84. ■ Bestellnummer: 71351317 ■ Einbauanleitung EA01238D
Wetterschutzhaube	Wird dazu verwendet, das Messgerät vor Wettereinflüssen zu schützen: z.B. vor Regenwasser, übermäßiger Erwärmung durch Sonneneinstrahlung. Bestellnummer: 71343505 Einbauanleitung EA01160D

Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung
Commubox FXA195 HART	Für die eigensichere HART-Kommunikation mit FieldCare über die USB-Schnittstelle. Technische Information TI00404F
HART Loop Converter HMX50	Dient zur Auswertung und Umwandlung von dynamischen HART-Prozessvariablen in analoge Stromsignale oder Grenzwerte.
	 Technische Information TI00429F Betriebsanleitung BA00371F

Fieldgate FXA42	Übertragung von Messwerten angeschlossener 4 bis 20 mA analoger, sowie digitaler Messgeräte Technische Information TI01297S Betriebsanleitung BA01778S Produktseite: www.endress.com/fxa42
Field Xpert SMT50	Das Tablet PC Field Xpert SMT50 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management. Es eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieses Tablet PC ist als Komplettlösung konzipiert, mit einer vorinstallierten Treiberbibliothek, stellt es ein einfaches und touchfähiges "Werkzeug" dar, über das sich Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen.
	 Betriebsanleitung BA02053S Produktseite: www.endress.com/smt50
Field Xpert SMT70	Das Tablet PC Field Xpert SMT70 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management in explosions- und nicht explosionsgefährdeten Bereichen. Es eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieses Tablet PC ist als Komplettlösung konzipiert, mit einer vorinstallierten Treiberbibliothek, stellt es ein einfaches und touchfähiges "Werkzeug" dar, über das sich die Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen.
	 Technische Information TI01342S Betriebsanleitung BA01709S Produktseite: www.endress.com/smt70
Field Xpert SMT77	Der Tablet PC Field Xpert SMT77 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management in Ex-Zone-1-Bereichen.
	 Technische Information TI01418S Betriebsanleitung BA01923S Produktseite: www.endress.com/smt77

Servicespezifisches Zubehör

Zubehör	Beschreibung		
Applicator	 Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Auswahl von Messgeräten mit industriespezifischen Anforderungen Berechnung aller notwendigen Daten zur Bestimmung des optimalen Durchflussmessgeräts: z.B. Nennweite, Druckabfall, Fließgeschwindigkeit und Messgenauigkeiten. Grafische Darstellung von Berechnungsergebnissen Ermittlung des partiellen Bestellcodes Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanter Daten und Parameter über die gesamte Lebensdauer eines Projekts. 		
	Applicator ist verfügbar: " Über das Internet: https://portal.endress.com/webapp/applicator Als downloadbare DVD für die lokale PC-Installation.		
Netilion	lloT-Ökosystem: Unlock knowledge Mit dem Netilion lloT-Ökosystem ermöglicht Ihnen Endress+Hauser, Ihre Anlagenleistung zu optimieren, Arbeitsabläufe zu digitalisieren, Wissen weiterzugeben und die Zusammenarbeit zu verbessern. Auf der Grundlage jahrzehntelanger Erfahrung in der Prozessautomatisierung bietet Endress+Hauser der Prozessindustrie ein lloT-Ökosystem, mit dem Sie Erkenntnisse aus Daten gewinnen. Diese Erkenntnisse können zur Optimierung von Prozessen eingesetzt werden, was zu einer höheren Anlagenverfügbarkeit, Effizienz und Zuverlässigkeit führt – und letztlich zu einer profitableren Anlage. www.netilion.endress.com		

Zubehör	Beschreibung
FieldCare	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Betriebsanleitung BA00027S und BA00059S
DeviceCare	Tool zum Verbinden und Konfigurieren von Endress+Hauser Feldgeräten. Innovation-Broschüre IN01047S

Systemkomponenten

Zubehör	Beschreibung
Bildschirmschreiber Memograph M	Der Bildschirmschreiber Memograph M liefert Informationen über alle relevanten Messgrößen. Messwerte werden sicher aufgezeichnet, Grenzwerte überwacht und Messstellen analysiert. Die Datenspeicherung erfolgt im 256 MB großen internen Speicher und zusätzlich auf SD-Karte oder USB-Stick.
	Technische Information TI00133RBetriebsanleitung BA00247R
Cerabar M	Das Druckmessgerät zur Messung von Absolut- und Relativdruck von Gasen, Dämpfen und Flüssigkeiten. Es kann für das Einlesen des Betriebsdruckwerts verwendet werden.
	 Technische Information TI00426P und TI00436P Betriebsanleitung BA00200P und BA00382P
Cerabar S	Das Druckmessgerät zur Messung von Absolut- und Relativdruck von Gasen, Dämpfen und Flüssigkeiten. Es kann für das Einlesen des Betriebsdruckwerts verwendet werden.
	Technische Information TI00383PBetriebsanleitung BA00271P
iTEMP	Die Temperaturtransmitter sind universal einsetzbar und zur Messung von Gasen, Dämpfen und Flüssigkeiten geeignet. Sie können für das Einlesen der Messstoff- temperatur verwendet werden.
	Dokument "Fields of Activity" FA00006T

Ergänzende Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Standarddokumentation

Ergänzende Informationen zu Semistandard-Optionen sind in der zugehörigen Sonderdokumentation in der TSP-Datenbank verfügbar.

Kurzanleitung

Kurzanleitung zum Messaufnehmer

Messgerät	Dokumentationscode
Proline Promass X	KA01288D

96

Kurzanleitung zum Messumformer

	Dokumentationscode							
Messgerät	HART	FOUNDA- TION Field- bus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET	PROFINET mit Ether- net-APL
Proline 300	KA01309D	KA01229D	KA01227D	KA01386D	KA01311D	KA01339D	KA01341D	KA01517D

Betriebsanleitung

Messgerät	Dokumentationscode							
	HART	FOUNDA- TION Field- bus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET	PROFINET mit Ether- net-APL
Promass X 300	BA01492D	BA01525D	BA01514D	BA01864D	BA01503D	BA01735D	BA01746D	BA02118D

Beschreibung Geräteparameter

	Dokumentationscode							
Messgerät	HART	FOUNDA- TION Field- bus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET	PROFINET mit Ether- net-APL
Promass 300	GP01057D	GP01094D	GP01058D	GP01134D	GP01059D	GP01114D	GP01115D	GP01168D

Geräteabhängige Zusatzdokumentation Sicherheitshinweise

Sicherheitshinweise für elektrische Betriebsmittel für explosionsgefährdete Bereiche.

Inhalt	Dokumentationscode
ATEX/IECEx Ex d/Ex de	XA01405D
ATEX/IECEx Ex ec	XA01439D
cCSAus XP	XA01373D
cCSAus Ex d/ Ex de	XA01372D
cCSAus Ex nA	XA01507D
INMETRO Ex d/Ex de	XA01468D
INMETRO Ex ec	XA01470D
NEPSI Ex d/Ex de	XA01469D
NEPSI Ex nA	XA01471D
EAC Ex d/Ex de	XA01656D
EAC Ex nA	XA01657D
JPN Ex d	XA01778D

Abgesetztes Anzeige- und Bedienmodul DKX001

Inhalt	Dokumentationscode
ATEX/IECEx Ex i	XA01494D
ATEX/IECEx Ex ec	XA01498D
cCSAus IS	XA01499D
cCSAus Ex nA	XA01513D
INMETRO Ex i	XA01500D

Inhalt	Dokumentationscode
INMETRO Ex ec	XA01501D
NEPSI Ex i	XA01502D
NEPSI Ex nA	XA01503D

Handbuch zur Funktionalen Sicherheit

Inhalt	Dokumentationscode
Proline Promass 300	SD01727D

Sonderdokumentation

Inhalt	Dokumentationscode
Angaben zur Druckgeräterichtlinie	SD01614D
Abgesetztes Anzeige- und Bedienmodul DKX001	SD01763D
Funkzulassungen für WLAN-Schnittstelle für Anzeigemodul A309/A310	SD01793D
OPC-UA-Server 1)	SD02039D

1) Diese Sonderdokumentation ist nur bei Geräteausführungen mit HART-Ausgang verfügbar.

Inhalt	Dokumentationscode							
	HART	FOUNDA- TION Field- bus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	PROFINET	EtherNet/IP	PROFINET mit Ether- net-APL
Webserver	SD01662D	SD01665D	SD01664D	SD02226D	SD01663D	SD01969D	SD01968D	SD02762D
Heartbeat Technology	SD01642D	SD01696D	SD01698D	SD02202D	SD01697D	SD01988D	SD01982	SD02731D
Konzentrationsmes- sung	SD01644D	SD01706D	SD01708D	SD02212D	SD01707D	SD02005D	SD02004D	SD02735D
Petroleum	SD02097D	-	SD02291D	SD02216D	SD02098D	SD02099D	SD02096D	SD02739D
Petroleum & Verriege- lungsfunktion	SD02499D	-	-	-	SD02500D	-	-	SD02739D
Gas Fraction Handler	SD02584D	-	-	-	SD02584D	SD02584D	-	SD02584D
Eichpflichtiger Ver- kehr	SD01688D	-	_	-	SD01689D	-	-	-

Einbauanleitung

Inhalt	Bemerkung
Einbauanleitung für Ersatzteilsets und Zubehör	Dokumentationscode: Bei den Zubehörteilen jeweils angegeben → 🖺 94.

Eingetragene Marken

HART®

Eingetragene Marke der FieldComm Group, Austin, Texas, USA

PROFIBUS®

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

FOUNDATION™ Fieldbus

Angemeldete Marke der FieldComm Group, Austin, Texas, USA

$Modbus^{\mathbb{R}}$

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

EtherNet/IP™

Zeichen der ODVA, Inc.

Ethernet-APL™

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

PROFINET®

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

www.addresses.endress.com