Technische Information Cerabar PMP43 IO-Link

Prozessdruckmessung

Kompakt digitaler Messumformer mit metallischer Prozessmembrane

Solutions

Anwendungsbereiche

- Zuverlässige, wiederholbare und stabile Druckmessung und hydrostatische Füllstandsmessung
- Druckmessbereich: bis zu 100 bar (1500 psi)
- Prozesstemperatur: bis zu 200 °C (392 °F)
- Genauigkeit: bis zu ±0,075 %

Vorteile

- Perfekt zu reinigen dank vollverschweißtem Design
- Einfach geführte Inbetriebnahme mit intuitiver Benutzeroberfläche
- Farbiges Display mit Hintergrundbeleuchtung und Touch-Bedienung
- Heartbeat Technology für vorausschauende und präventive Wartung
- Bluetooth® wireless-Technologie für Inbetriebnahme, Bedienung und Wartung
- CIP und SIP fähig Schutzart: IP66/68/69

Inhaltsverzeichnis

Hinweise zum Dokument3Symbole3	Elektrom
Abkürzungsverzeichnis	Prozess
Turn Down Berechnung 4	Prozesste
Grafik-Konventionen 5	Prozessdi
	Gereinigt
Arbeitsweise und Systemaufbau 5	
Messprinzip	Konstru
Messeinrichtung 5	Bauform.
Kommunikation und Datenverarbeitung 5	Abmessu
Verlässlichkeit 6	Gewicht
Gerätespezifische IT-Sicherheit 6	Werkstof
	Oberfläch
Eingang 6	
Messgröße 6	Anzeige
Messbereich 6	Sprachen
	LED-Anz
Ausgang	Vor-Ort-A
Ausgangssignal 8	Fernbedie
Schaltvermögen	Systemin
Ausfallsignal bei Geräten mit Stromausgang 8	Unterstüt
Bürde	
Dämpfung8Protokollspezifische Daten9	Zertifika
Flotokolispezilische Dateil	Hygiene-
	Konformi
Energieversorgung 9	TSE (BSE
Anschlussbelegung	dients) . ASME BP
Verfügbare Gerätestecker	ASIVIE BP
Versorgungsspannung 9 Leistungsaufnahme	
Potenzialausgleich	Bestelli
Überspannungsschutz	Kennzeic
· · · · · · · · · · · · · · · ·	Dienstleis
Leistungsmerkmale	
Referenzbedingungen	Anwend
Auflösung	Heartbea
Grundgenauigkeit (Total Performance) 10	
Messunsicherheit bei kleinen Absolutdruck-Messberei-	Zubehör
chen	Gerätespe
Total Error	DeviceCar FieldCare
Langzeitstabilität	Device Vi
Ansprechzeit	Field Xpe
Aufwarmzeit	Field Xpe
	SmartBlu
Montage	
Einbaulage	Dokume
Montagehinweise	Standard
	Geräteabl
Umgebung 13	
Umgebungstemperaturbereich	Eingetra
Lagerungstemperatur	Emgena
Betriebshöhe	
Schutzart	
Verschmutzungsgrad	
Schwingungsfestigkeit	
Schockfestigkeit	
	Ţ

Elektromagnetische Verträglichkeit (EMV)	15
Prozess Prozesstemperatur Prozessdruckbereich Gereinigt von Öl und Fett	15 15 16 16
Konstruktiver Aufbau Bauform, Maße Abmessungen Gewicht Werkstoffe Oberflächenrauheit	17 17 18 36 36 36
Anzeige und Bedienoberfläche Sprachen LED-Anzeige Vor-Ort-Anzeige Fernbedienung Systemintegration Unterstützte Bedientools	36 36 37 37 38 38
Zertifikate und Zulassungen Hygiene-Design Konformität Konformität zu cGMP abgeleiteten Anforderungen ISE (BSE) Konformität (ADI free - Animal Derived Ingredients) ASME BPE	39 39 39 39
Bestellinformationen	39 40 40
Anwendungsspakete	40 41
Zubehör Gerätespezifisches Zubehör DeviceCare SFE100 FieldCare SFE500 Device Viewer Field Xpert SMT70 Field Xpert SMT77 SmartBlue-App	
Dokumentation Standarddokumentation Geräteabhängige Zusatzdokumentation	42
Eingetragene Marken	43

Hinweise zum Dokument

Symbole

Warnhinweissymbole

▲ GEFAHR

Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.

WARNUNG

Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.

▲ VORSICHT

Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.

HINWEIS

Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann das Produkt oder etwas in seiner Umgebung beschädigt werden.

Kommunikationsspezifische Symbole

Bluetooth®: 8

Datenübertragung zwischen Geräten über kurze Distanz via Funktechnik.

IO-Link: **(a)** IO-Link

Kommunikationssystem zur Anbindung intelligenter Sensoren und Aktoren an ein Automatisierungssystem. In der Norm IEC 61131-9 wird IO-Link unter der Bezeichnung "Single-drop digital communication interface for small sensors and actuators (SDCI)" normiert.

Symbole für Informationstypen

Erlaubt: 🗸

Abläufe, Prozesse oder Handlungen, die erlaubt sind.

Verboten: X

Abläufe, Prozesse oder Handlungen, die verboten sind.

Zusätzliche Informationen: 🚹

Verweis auf Dokumentation: 📵

Verweis auf Seite: 🖺

Handlungsschritte: 1., 2., 3.

Ergebnis eines Handlungsschritts:

Symbole in Grafiken

Positionsnummern: 1, 2, 3 ...

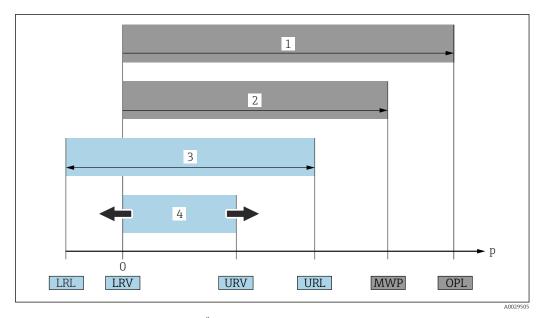
Handlungsschritte: 1., 2., 3.

Ansichten: A, B, C, ...

Abkürzungsverzeichnis

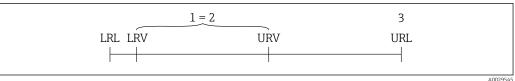
PN

Nenndruck


Bedientool

Der verwendete Begriff Bedientool wird an Stelle folgender Bediensoftware verwendet:

- FieldCare / DeviceCare, zur Bedienung über IO-Link Kommunikation und PC
- \blacksquare SmartBlue-App, zur Bedienung mit Smartphone oder Tablet für Android oder iOS


SPS

Speicherprogrammierbare Steuerung

- OPL: Die OPL (Over Pressure Limit = Überlastgrenze) für das Gerät ist abhängig vom druckschwächsten Glied der ausgewählten Komponenten, das heißt, neben der Messzelle ist auch der Prozessanschluss zu beachten. Druck- Temperaturabhängigkeit beachten. Die OPL darf nur kurzzeitig angelegt werden.
- MWP: Der MWP (Maximum Working Pressure/max. Betriebsdruck) für die Messzellen ist abhängig vom druckschwächsten Glied der ausgewählten Komponenten, d.h. neben der Messzelle ist auch der Prozessanschluss zu beachten. Druck- Temperaturabhängigkeit beachten. Der MWP darf zeitlich unbegrenzt am Gerät anliegen. Der MWP befindet sich auf dem Typenschild.
- Der Maximale Messbereich entspricht der Spanne zwischen LRL und URL. Dieser Messbereich entspricht der maximal kalibrierbaren/justierbaren Messspanne.
- Die Kalibrierte/Justierte Messspanne entspricht der Spanne zwischen LRV und URV. Werkeinstellung: O...URL. Andere kalibrierte Messspannen können kundenspezifisch bestellt werden.
- LRL Lower range limit = untere Messgrenze
- *URL Upper range limit = obere Messgrenze*
- LRV Lower range value = Messanfang
- URV Upper range value = Messende
- TD Turn Down = Messbereichsspreizung. Beispiel siehe folgendes Kapitel.

Turn Down Berechnung

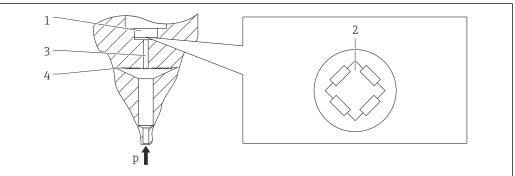
- 1 Kalibrierte/Justierte Messspanne
- 2 Auf Nullpunkt basierende Spanne
- 3 Obere Messgrenze

Beispiel:

- Messzelle: 10 bar (150 psi)
- Obere Messgrenze (URL) = 10 bar (150 psi)
- Kalibrierte/Justierte Messspanne: 0 ... 5 bar (0 ... 75 psi)
- Messanfang (LRV) = 0 bar (0 psi)
- Messende (URV) = 5 bar (75 psi)

In diesem Beispiel ist der TD somit 2:1. Diese Messspanne ist nullpunktbasierend.

Grafik-Konventionen



- Montage-, Explosions- und elektrische Anschlusszeichnungen werden vereinfacht dargestellt
- Geräte, Baugruppen, Komponenten und Maßzeichnungen werden linienreduziert dargestellt
- Es erfolgt keine maßstäbliche Darstellung in Maßzeichnungen, Maßangaben sind auf 2 Stellen hinter dem Komma gerundet
- Flansche werden, soweit nicht anders beschrieben, mit Dichtflächenform EN 1092-1; ASME B16.5, RF dargestellt

Arbeitsweise und Systemaufbau

Messprinzip

Metallische Membran

A001644

- 1 Messelement
- 2 Wheatstonesche Messbrücke
- 3 Kanal mit Füllflüssigkeit
- 4 Metallische Membran
- p Druck


Der anliegende Druck lenkt die metallische Membran der Messzelle aus. Eine Füllflüssigkeit überträgt den Druck auf eine Wheatstonesche Messbrücke (Halbleitertechnologie). Die druckabhängige Änderung der Brückenausgangsspannung wird gemessen und ausgewertet.

Vorteile:

- Einsetzbar für hohe Prozesstemperatur
- Kondensatfest
- Hohe Langzeitstabilität
- Hohe Überlastfestigkeit

Messeinrichtung

Eine komplette Messeinrichtung besteht aus:

A0053220

- 1 SPS (Speicherprogrammierbare Steuerung)
- 2 IO-Link-Master
- Gerät

Kommunikation und Datenverarbeitung

- Digitales Kommunikationsprotokoll IO-Link, 3-Draht
- Bluetooth (optional)

Verlässlichkeit

IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Produkt gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Produkt verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Produkt und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Mit einem Freigabecode kann die Benutzerrolle geändert werden (gilt für Bedienung über Vor-Ort-Anzeige, Bluetooth oder FieldCare, DeviceCare, Asset Management Tools (z. B. AMS, PDM)).

Zugriff via Bluetooth® wireless technology

Sichere Signalübertragung per Bluetooth® wireless technology erfolgt nach einem vom Fraunhofer-Institut getesteten Verschlüsselungsverfahren.

- Ohne die SmartBlue-App ist das Gerät per Bluetooth® wireless technology nicht sichtbar.
- Es wird nur eine Punkt-zu-Punkt-Verbindung zwischen dem Gerät und einem Smartphone oder Tablet aufgebaut.
- Die Bluetooth® wireless technology Schnittstelle kann über die Vor-Ort-Bedienung (optional) oder SmartBlue deaktiviert werden.

Eingang

Messgröße

Gemessene Prozessgrößen

- Absolutdruck
- Relativdruck

Berechnete Prozessgrößen

Druck

Messbereich

In Abhängigkeit von der Gerätekonfiguration können der maximale Betriebsdruck (MWP) und die Überlastgrenze (OPL) von den Tabellenwerten abweichen.

Absolutdruck

Messzelle	Maximaler Messbereich		Kleinste werkseitig kalibrierbare Messspanne	
	untere (LRL)	obere (URL)	Standard	Platinum
	[bar (psi)]	[bar (psi)]	[bar (psi)]	
400 mbar (6 psi)	0	+0,4 (+6)	0,05 (0,75) 1)	80 mbar (1,2 psi)
1 bar (15 psi)	0	+1 (+15)	0,05 (0,75) 2)	200 mbar (3 psi)
2 bar (30 psi)	0	+2 (+30)	0,10 (1,50) ²⁾	400 mbar (6 psi)
4 bar (60 psi)	0	+4 (+60)	0,20 (3,00) 2)	800 mbar (12 psi)
10 bar (150 psi)	0	+10 (+150)	0,50 (7,50) ²⁾	2 bar (30 psi)
40 bar (600 psi)	0	+40 (+600)	2,00 (30,0) ²⁾	8 bar (120 psi)
100 bar (1500 psi)	0	+100 (+1500)	5,00 (73) ²⁾	20 bar (300 psi)

- 1) Größter werkseitig einstellbarer Turn Down: 8:1
- 2) Größter werkseitig einstellbarer Turn Down: 20:1

Absolutdruck

Messzelle	MWP	OPL	Werkeinstellungen ¹⁾
	[bar (psi)]	[bar (psi)]	
400 mbar (6 psi)	1 (14,5)	1,6 (23)	0 400 mbar (0 6 psi)
1 bar (15 psi)	2,7 (39)	4 (58)	0 1 bar (0 15 psi)
2 bar (30 psi)	6,7 (97)	10 (145)	0 2 bar (0 30 psi)
4 bar (60 psi)	10,7 (155)	16 (232)	0 4 bar (0 60 psi)
10 bar (150 psi)	25 (362)	40 (580)	0 10 bar (0 150 psi)
40 bar (600 psi)	100 (1450)	160 (2320)	0 40 bar (0 600 psi)
100 bar (1500 psi)	103,5 (1500)	160 (2320)	0 100 bar (0 1500 psi)

¹⁾ Abweichende Messbereiche (z. B.-1 ... +5 bar (-15 ... +75 psi)) können mit kundenspezifischen Einstellungen bestellt werden. Eine Invertierung des Ausgangssignals ist möglich (LRV = 20 mA; URV = 4 mA). Voraussetzung: URV < LRV.

Relativdruck

Messzelle	Maximaler Messbereich Kleinste werkseitig kalibrierbare Messspanne 1)		alibrierbare Messspanne ¹⁾	
	untere (LRL)	obere (URL)	Standard	Platinum
	[bar (psi)]	[bar (psi)]	[bar (psi)]	
400 mbar (6 psi)	-0,4 (-6)	+0,4 (+6)	0,05 (0,75) ²⁾	80 mbar (1,2 psi)
1 bar (15 psi)	-1 (-15)	+1 (+15)	0,05 (0,75) ³⁾	200 mbar (3 psi)
2 bar (30 psi)	-1 (-15)	+2 (+30)	0,10 (1,50) ³⁾	400 mbar (6 psi)
4 bar (60 psi)	-1 (-15)	+4 (+60)	0,20 (3,00) 3)	800 mbar (12 psi)
10 bar (150 psi)	-1 (-15)	+10 (+150)	0,50 (7,50) ³⁾	2 bar (30 psi)
25 bar (375 psi)	-1 (-15)	+25 (+375)	1,25 (18,50) ³⁾	5 bar (75 psi)
40 bar (600 psi)	-1 (-15)	+40 (+600)	2,00 (30,00) 3)	8 bar (120 psi)
100 bar (1500 psi)	-1 (-15)	+100 (+1500)	5,00 (73) ³⁾	20 bar (300 psi)

- 1) Größter werkseitig einstellbarer Turn down: 5:1.
- 2) Größter werkseitig einstellbarer Turn Down: 8:1
- 3) Größter werkseitig einstellbarer Turn Down: 20:1

Relativdruck

Messzelle	MWP	OPL	Werkeinstellungen ¹⁾
	[bar (psi)]	[bar (psi)]	
400 mbar (6 psi)	1 (14,5)	1,6 (23)	0 400 mbar (0 6 psi)
1 bar (15 psi)	2,7 (39)	4 (58)	0 1 bar (0 15 psi)
2 bar (30 psi)	6,7 (97)	10 (145)	0 2 bar (0 30 psi)
4 bar (60 psi)	10,7 (155)	16 (232)	0 4 bar (0 60 psi)
10 bar (150 psi)	25 (363)	40 (580)	0 10 bar (0 150 psi)
25 bar (375 psi)	25,8 (375)	100 (1450)	0 25 bar (0 375 psi)
40 bar (600 psi)	100 (1450)	160 (2320)	0 40 bar (0 600 psi)
100 bar (1500 psi)	103,5 (1500)	160 (2320)	0 100 bar (0 1500 psi)

¹⁾ Abweichende Messbereiche (z. B.–1 ... +5 bar (–15 ... +75 psi)) können mit kundenspezifischen Einstellungen bestellt werden. Eine Invertierung des Ausgangssignals ist möglich (LRV = 20 mA; URV = 4 mA). Voraussetzung: URV < LRV.

Ausgang

Ausgangssignal

- 2 Ausgänge, konfigurierbar als Schaltausgang, Analogausgang oder IO-Link-Ausgang
- Der Stromausgang bietet drei auswählbare Betriebsarten:
 - 4 ... 20,5 mA
 - NAMUR NE 43: 3,8 ... 20,5 mA (Werkseinstellung)
 - US mode: 3,9 ... 20,5 mA

Schaltvermögen

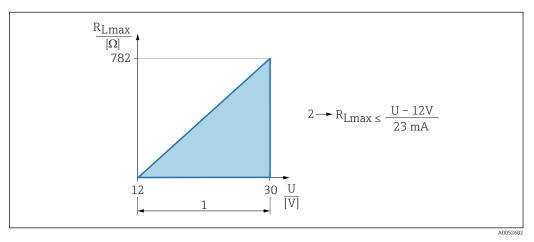
- Schaltzustand EIN: $I_a \le 200 \text{ mA}^{-1}$; Schaltzustand AUS: $I_a < 0.1 \text{ mA}^{-2}$
- Schaltzyklen: $> 1 \cdot 10^7$
- Spannungsabfall PNP: ≤ 2 V
- Überlastsicherheit: Automatische Lastüberprüfung des Schaltstroms;
 - Max. kapazitive Last: 1 μF bei max. Versorgungsspannung (ohne resistive Last)
 - Max. Periodendauer: 0,5 s; min. t_{on}: 40 μs
 - Periodische Schutzabschaltung bei Überstrom (f = 1 Hz)

Ausfallsignal bei Geräten mit Stromausgang

Stromausgang

Ausfallsignal gemäß NAMUR-Empfehlung NE 43.

- Max. Alarm: einstellbar von 21,5 ... 23 mA
- Min. Alarm: < 3,6 mA (Werkseinstellung)


Vor-Ort-Anzeige und Bedientool via digitale Kommunikation

Statussignal (gemäß NAMUR-Empfehlung NE 107):

Klartextanzeige

Bürde

Für den Stromausgang gilt: Um eine ausreichende Klemmenspannung sicherzustellen, darf abhängig von der Versorgungsspannung U des Speisegeräts ein maximaler Bürdenwiderstand R_L (inklusive Zuleitungswiderstand) nicht überschritten werden.

- 1 Spannungsversorgung 12 ... 30 V
- 2 R_{Lmax} maximaler Bürdenwiderstand
- U Versorgungsspannung

Bei zu großer Bürde:

- Ausgabe des Fehlerstromes und Anzeige einer Fehlermeldung (Ausgabe: MIN-Alarmstrom)
- Periodische Überprüfung, ob Fehlerzustand verlassen werden kann

Dämpfung

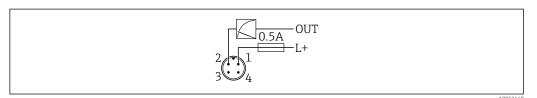
Eine Dämpfung wirkt sich auf alle kontinuierlichen Ausgänge aus. Werkseinstellung: 1 s (einstellbar von 0 ... 999 s)

8

¹⁾ Bei gleichzeitiger Benutzung der Ausgänge "1 x PNP + 4 ... 20 mA" kann der Schaltausgang OUT1 mit bis zu 100 mA Laststrom über den gesamten Temperaturbereich belastet werden. Bis 50 °C (122 °F) Umgebungstemperatur und bis 85 °C (185 °F) Prozesstemperatur darf der Schaltstrom bis zu 200 mA betragen. Wird die Konfiguration "1 x PNP" oder "2 x PNP" benutzt, so können die Schaltausgänge in Summe mit bis zu 200 mA über den gesamten Temperaturbereich belastet werden.

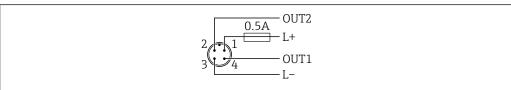
²⁾ Beim Schaltausgang OUT2 abweichend, für Schaltzustand AUS: $I_a < 3.6$ mA und $U_a < 2$ V und für Schaltzustand EIN: Spannungsabfall PNP: ≤ 2.5 V

Protokollspezifische Daten


IO-Link-Spezifikation 1.1.3

Gerätetypkennung: 0x92 0xC5 0x01

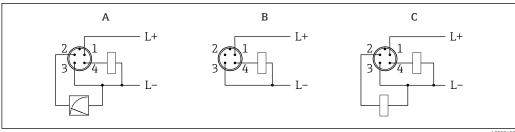
Energieversorgung


Anschlussbelegung

2-Draht

- 1 Versorgungsspannung L+, Aderfarbe braun (BN)
- 2 OUT (L-), Aderfarbe weiß (WH)

3- oder 4-Draht



A005245

- 1 Versorgungsspannung L+, Aderfarbe braun (BN)
- 2 Schalt- oder Analogausgang (OUT2), Aderfarbe weiß (WH)
- 3 Versorgungsspannung L-, Aderfarbe blau (BU)
- 4 Schalt- oder IO-Link-Ausgang (OUT1), Aderfarbe schwarz (BK)

Die Funktionalität des Ausgangs 1 und 2 ist konfigurierbar.

Anschlussbeispiele

A0052458

- A 1 x PNP Schalt- und Analogausgang
- B 1 x PNP Schaltausgang
- C 2 x PNP Schaltausgang

Verfügbare Gerätestecker

Stecker M12

Weitere Informationen siehe Kapitel "Gerätespezifisches Zubehör"

Versorgungsspannung

 $12 \dots 30 V_{DC}$ an einem Gleichstrom-Netzteil

Die IO-Link Kommunikation ist erst ab einer Versorgungsspannung von 18 V gewährleistet.

Das Netzteil muss sicherheitstechnisch geprüft sein (z.B. PELV, SELV, Class 2) und den jeweiligen Protokollspezifikationen genügen.

Gemäß IEC/EN 61010-1 ist für das Gerät ein geeigneter Trennschalter vorzusehen.

Schutzschaltungen gegen	Verpolung, HF-Einflüss	e und Überspannungsspitze	en sind eingebaut.

Leistungsaufnahme

Nicht explosionsgefährdeter Bereich: Um die Gerätesicherheit gemäß Norm IEC/DIN EN 61010 zu erfüllen, muss durch die Installation dafür gesorgt werden, dass der maximale Strom auf 500 mA begrenzt wird.

Potenzialausgleich

Bei Bedarf Potenzialausgleich über Prozessanschluss oder kundenseitige Erdungsschelle herstellen.

Überspannungsschutz

Das Gerät erfüllt die Produktnorm IEC/DIN EN 61326-1 (Tabelle 2 Industrieumgebung). Abhängig von der Art des Anschlusses (DC-Versorgung, Ein- Ausgangsleitung) werden nach IEC/DIN EN 61326-1 verschiedene Prüfpegel gegen transiente Überspannungen (IEC/DIN EN 61000-4-5 Surge) angewandt: Prüfpegel für DC-Versorgungsleitungen und IO-Leitungen: 1000 V Leitung gegen Erde.

Überspannungskategorie

Gemäß IEC/DIN EN 61010-1 ist das Gerät für den Einsatz in Netzen der Überspannungskategorie II vorgesehen.

Leistungsmerkmale

Referenzbedingungen

- Nach IEC 62828-2
- Umgebungstemperatur T_A = konstant, im Bereich +21 ... +33 °C (+70 ... +91 °F)
- Feuchte φ = konstant, im Bereich: 5 ... 80 % rF ± 5 %
- Umgebungsdruck p_U = konstant, im Bereich: 860 ... 1060 mbar (12,47 ... 15,37 psi)
- Versorgungsspannung: 24 V_{DC} ±3 V_{DC}
- Position der Messzelle: horizontal ±1°
- Eingabe von LOW SENSOR TRIM und HIGH SENSOR TRIM für Messanfang und Messende
- Messspanne auf Nullpunkt basierend
- Messbereichsspreizung (Turn Down, TD) = URL/|URV LRV|

Auflösung

Stromausgang: $< 1 \mu A$

Grundgenauigkeit (Total Performance)

Die Leistungsmerkmale beziehen sich auf die Genauigkeit des Geräts. Die Faktoren, welche die Genauigkeit beeinflussen, lassen sich in zwei Gruppen unterteilen

- Total Performance des Geräts
- Einbaufaktoren

Alle Leistungsmerkmale erfüllen $\geq \pm 3$ Sigma.

Die Total Performance des Geräts umfasst die Referenzgenauigkeit und den Einfluss der Umgebungstemperatur und wird anhand der folgenden Formel berechnet:

Total Performance = $\pm \sqrt{((E1)^2 + (E2)^2)}$

E1 = Referenzgenauigkeit

E2 = Einfluss der Temperatur

Berechnung von E2:

Einfluss der Temperatur pro ±28 °C (50 °F)

(entspricht dem Bereich von $-3 \dots +53 \,^{\circ}\text{C} \, (+27 \dots +127 \,^{\circ}\text{F}))$

 $E2 = E2_M + E2_E$

 $E2_M$ = Haupttemperaturfehler

 $E2_E$ = Elektronikfehler

Die Werte beziehen sich auf die kalibrierte Spanne. Die Messpanne ist Nullpunktbasiert.

Referenzgenauigkeit [E1]

Die Referenzgenauigkeit umfasst die Nicht-Linearität gemäß der Grenzpunktmethode, die Druckhysterese und die Nicht-Wiederholbarkeit nach [IEC 61298-2].

Platinum nicht für frontbündige Prozessanschlüsse Clamp DN22, G 1/2.

Messzelle	Standard	Platinum
400 mbar (6 psi)	TD 1:1 = ± 0.2 % TD > 1:1 bis 10:1 = ± 0.5 % · TD	-
1 bar (15 psi)	TD 1:1 = ±0,1 % TD > 1:1 bis 10:1 = ±0,3 % · TD	TD 1:1 = ± 0.1 % TD > 1:1 bis 10:1 = ± 0.2 % · TD
2 bar (30 psi)	TD 1:1 bis 5:1 = ± 0.1 % TD > 5:1 bis 10:1 = ± 0.2 %	TD 1:1 bis 5:1 = ±0,075 % TD > 5:1 bis 10:1 = ±0,1 %
4 bar (60 psi) 10 bar (150 psi) 25 bar (375 psi)	TD 1:1 bis 10:1 = ±0,1 % TD > 10:1 bis 20:1 = ±0,2 %	TD 1:1 bis 10:1 = ±0,075 % TD > 10:1 bis 20:1 = ±0,1 %
40 bar (600 psi)	TD 1:1 bis 10:1 = ±0,1 % TD > 10:1 bis 20:1 = ±0,3 %	TD 1:1 bis 5:1 = ±0,075 % TD > 5:1 bis 10:1 = ±0,15 %
100 bar (1500 psi)	TD 1:1 bis 10:1 = ±0,1 % TD > 10:1 bis 20:1 = ±0,2 %	TD 1:1 bis 10:1 = ±0,075 % TD > 10:1 bis 20:1 = ±0,15 %

Einfluss der Temperatur [E2]

$E2_{M}$ - Haupttemperaturfehler

Der Ausgang ändert sich aufgrund des Einflusses der Umgebungstemperatur [IEC 62828-1] im Hinblick auf die Referenztemperatur [IEC 62828-1]. Die Werte geben den maximalen Fehler aufgrund von min./max. Umgebungs- oder Prozesstemperaturbedingungen an.

Merkmal Anwendung: Prozesstemperatur +100 °C (+212 °F), Prozesstemperatur +130 °C (+266 °F) (+150 °C (+302 °F) max 1h), Prozesstemperatur +150 °C (+302 °F)

- 400 mbar (6 psi) Messzelle
 - Prozessanschluss Clamp 1", DIN11851 DN25, NEUMO BioControl DN25, NPT 3/4", NPT 1", G1" frontbündig, G1" mit O-Ring, G1" mit Dichtkonus, Aseptoflex: ±(1,05 % · TD + 0,10 %)
 - Prozessanschluss SMS 1", Ingoldstutzen: ±(1,55 % · TD + 0,10 %)
 - Prozessanschluss MNPT1/2 Bohrung 11,4 mm, MPNT1/2 FNPT1/4, G1/2" EN837, G1/2 Bohrung 11,4 mm, M20 x 1,5: ±(0,20 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,63 % · TD + 0,10 %)
- 1 bar (15 psi) Messzelle
 - Prozessanschluss Clamp 1", DIN11851 DN25, NEUMO BioControl DN25, NPT 3/4", NPT 1", G1" frontbündig, G1" mit O-Ring, G1" mit Dichtkonus, Aseptoflex: ±(0,42 % ⋅ TD + 0,10 %)
 - Prozessanschluss SMS 1", Ingoldstutzen: ±(0,62 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,25 % · TD + 0,10 %)
- 2 bar (30 psi) Messzelle
 - Prozessanschluss SMS 1", Ingoldstutzen: ±(0,35 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,25 % · TD + 0,10 %)
- 4 bar (60 psi), 10 bar (150 psi), 25 bar (375 psi), 40 bar (600 psi) und 100 bar (1500 psi) Messzelle

 \pm (0,20 % · TD + 0,10 %

Merkmal Anwendung: Prozesstemperatur +200 °C (+392 °F)

- 400 mbar (6 psi) Messzelle
 - Prozessanschluss Clamp 1", Clamp 1 1/2", DIN11851 DN25, NEUMO BioControl DN25, NPT 3/4", NPT 1", G1" frontbündig, G1" mit O-Ring, G1" mit Dichtkonus, Aseptoflex: ±(1,47 % · TD + 0,10 %)
 - Prozessanschluss SMS 1": ±(1,75 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,63 % · TD + 0,10 %)
- 1 bar (15 psi) Messzelle
 - Prozessanschluss Clamp 1", DIN 11851 DN25, NEUMO BioControl DN25, NPT 3/4", NPT 1", G1" frontbündig, G1" Einbau, G1" mit Dichtkonus: ±(0,59 % ⋅ TD + 0,10 %)
 - Prozessanschluss SMS 1", Ingoldstutzen: ±(0,7 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,25 % · TD + 0,10 %)
- 2 bar (30 psi) Messzelle
 - Prozessanschluss SMS 1": ±(0,4 % · TD + 0,10 %)
 - Alle weiteren Prozessanschlüsse: ±(0,25 % · TD + 0,10 %)
- 4 bar (60 psi), 10 bar (150 psi), 25 bar (375 psi), 40 bar (600 psi)und 100 bar (1500 psi) Messzelle

 $\pm (0.20 \% \cdot TD + 0.10 \%$

E2_E - Elektronikfehler

Digitalausgang: 0 %

Messunsicherheit bei kleinen Absolutdruck-Messbereichen

Kleinste erweiterte Messunsicherheit, die von unseren Normalen weitergegeben werden kann:

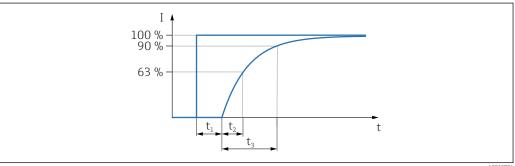
- im Bereich von 1 ... 30 mbar (0,0145 ... 0,435 psi): 0,4 % vom (momentanen) Messwert
- im Bereich < 1 mbar (0,0145 psi): 1 % vom (momentanen) Messwert

Total Error

Der Total Error des Geräts umfasst die Total Performance und den Einfluss der Langzeitstabilität und wird anhand der folgenden Formel berechnet:

Total Error = Total Performance + Langzeitstabilität

Langzeitstabilität


Die Spezifikationen beziehen sich auf die obere Messgrenze (URL).

1 Jahr: ±0,2 %
5 Jahre: ±0,4 %
10 Jahre: ±0,5 %
15 Jahre: ±0,6 %

Ansprechzeit

Totzeit, Zeitkonstante

Darstellung der Totzeit und der Zeitkonstante gemäß IEC62828-1:

A0019786

Sprungantwortzeit = Totzeit (t_1) + Zeitkonstante T90 (t_3) gemäß IEC62828-1

Dynamisches Verhalten Schaltausgang

≤ 20 ms

Dynamisches Verhalten Stromausgang

- Totzeit (t₁): Maximal 50 ms
- Zeitkonstante T63 (t₂): Maximal 60 ms
- Zeitkonstante T90 (t₃): Maximal 100 ms

Aufwärmzeit

Die Aufwärmzeit (gemäß IEC 62828-4) gibt die Zeit an, die das Gerät benötigt, um nach dem Anlegen der Versorgungsspannung seine höchste Genauigkeit oder Leistung zu erreichen.

Aufwärmzeit: ≤ 10 s

Montage

Einbaulage

Die Einbaulage richtet sich nach der Messanwendung und kann eine Nullpunktverschiebung (bei leerem Behälter zeigt der Messwert nicht Null an) verursachen. Die Nullpunktverschiebung kann elektronisch mit dem Gerät korrigiert werden.

Montagehinweise

- Bei der Installation beachten, dass das verwendete Dichtelement eine Dauerbetriebstemperatur aufweist, die der maximalen Temperatur des Prozesses entspricht
- Geräte sind für den Einsatz in nassen Umgebungen geeignet gemäß IEC / DIN EN 61010-1
- Die Geräte werden nach den gleichen Richtlinien wie Manometer montiert
- Gehäuse vor Schlageinwirkung schützen
- Geräte mit CSA Zulassung sind für den Inneneinsatz vorgesehen

Umgebung

Umgebungstemperaturbereich

-40 ... +85 °C (-40 ... +185 °F)

Bei höheren Prozesstemperaturen verringert sich die zulässige Umgebungstemperatur.



Die folgenden Angaben berücksichtigen nur funktionale Aspekte. Für zertifizierte Geräteausführungen kann es weitere Einschränkungen geben.

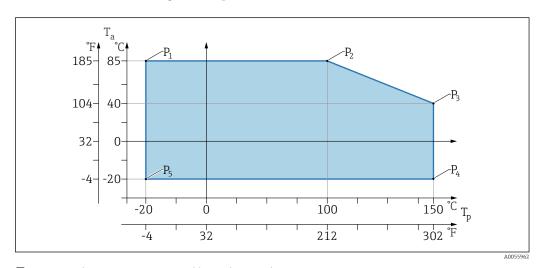
Je nach verwendetem Prozessanschluss variiert die zulässige Prozesstemperatur. Übersicht über die Prozessanschlüsse siehe Kapitel "Prozesstemperaturbereich".

Prozesstemperatur maximal +130 °C (+266 °F)

(Produktmerkmal "Anwendung"; Bestelloption "B")

 \blacksquare 1 Umgebungstemperatur T_a in Abhängigkeit von der Prozesstemperatur T_p

P	T_p	T _a
P1	-40 °C (-40 °F)	+85 °C (+185 °F)
P2	+100 °C (+212 °F)	+85 °C (+185 °F)
Р3	+130 °C (+266 °F)	+40 °C (+77 °F)

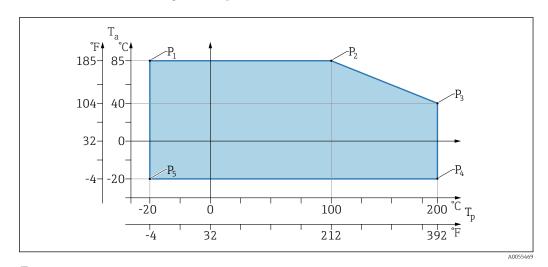

Endress+Hauser 13

A0055963

P	T_{p}	T _a
P4	+130 °C (+266 °F)	-40 °C (-40 °F)
P5	−40 °C (−40 °F)	-40 °C (-40 °F)

Prozesstemperatur maximal +150 °C (+302 °F)

(Produktmerkmal "Anwendung"; Bestelloption "C")



 $\blacksquare \ 2 \qquad \textit{Umgebungstemperatur} \ T_a$ in Abhängigkeit von der Prozesstemperatur T_p

P	$T_{\rm p}$	T _a
P1	-20 °C (-4 °F)	+85 °C (+185 °F)
P2	+100 °C (+212 °F)	+85 °C (+185 °F)
P3	+150 °C (+302 °F)	+40 °C (+77 °F)
P4	+150 °C (+302 °F)	−20 °C (−4 °F)
P5	−20 °C (−4 °F)	-20 °C (-4 °F)

Prozesstemperatur maximal +200 °C (+392 °F)

(Produktmerkmal "Anwendung"; Bestelloption "D")

 \blacksquare 3 Umgebungstemperatur T_a in Abhängigkeit von der Prozesstemperatur T_p

P	T_p	T _a
P1	−20 °C (−4 °F)	+85 °C (+185 °F)
P2	+100 °C (+212 °F)	+85 °C (+185 °F)
Р3	+200 °C (+392 °F)	+40 °C (+77 °F)
P4	+200 °C (+392 °F)	-20 °C (-4 °F)
P5	−20 °C (−4 °F)	-20 °C (-4 °F)

Lagerungstemperatur	−40 +85 °C (−40 +185 °F)
Betriebshöhe	Bis zu 5000 m (16404 ft) über Meereshöhe.
Klimaklasse	Nach IEC 60068-2-38 Prüfung Z/AD (relative Luftfeuchtigkeit 4 100 %).
Schutzart	Prüfung gemäß IEC 60529 Edition 2.2 2013-08/ DIN EN 60529:2014-09 und NEMA 250-2014
	Bei montiertem M12-Anschlusskabel: IP66/68/69, NEMA Type 4X/6P
	(IP68: (1,83 mH ₂ O für 24 h))
	Verschmutzungsgrad 2 gemäß IEC / DIN EN 61010-1.
Schwingungsfestigkeit	 Stochastisches Rauschen (Random Sweep) nach IEC / DIN EN 60068-2-64 Fall 2/ Gewährleistet für 5 2000 Hz: 1,25 (m/s²)²/Hz, ~ 5 g Sinus Schwingung nach IEC 62828-1:2017 mit 10 60 Hz ±0,35 mm; 60 1000 Hz 5 g
Schockfestigkeit	 Prüfnorm: IEC / DIN EN 60068-2-27 Fall 2 Schockfestigkeit: 30 g (18 ms) in allen 3 Achsen
Elektromagnetische Verträglichkeit (EMV)	 Elektromagnetische Verträglichkeit nach IEC / DIN EN 61326-Serie und NAMUR-Empfehlung EMV (NE21) Maximale Abweichung unter Störeinfluss: < 0,5 %
	Weitere Details sind aus der EU-Konformitätserklärung ersichtlich.

Prozess

Prozesstemperatur

Prozesstemperatur maximal	Ausführung 1)
+100 °C (+212 °F)	A
+130 °C (+266 °F) (+150 °C (+302 °F) ²⁾)	В
+150 °C (+302 °F)	С
+200 °C (+392 °F)	D

- Produktkonfigurator Merkmal "Anwendung" Temperatur für maximal eine Stunde (Gerät im Betrieb aber nicht innerhalb Messspezifikation) 2)

Füllflüssigkeit

Füllflüssigkeit	Prozesstemperaturbereich	Ausführung 1)
Synthetiköl, FDA	-40 +130 °C (-40 +266 °F)(+150 °C (+302 °F) ²⁾)	3
Pflanzenöl, FDA	−20 +200 °C (−4 +392 °F)	4

- Produktkonfigurator Merkmal "Füllflüssigkeit" 1)
- Temperatur für maximal eine Stunde (Gerät im Betrieb aber nicht innerhalb Messspezifikation) 2)

Prozessdruckbereich

Druckangaben

Der maximale Druck für das Gerät ist abhängig vom druckschwächsten Bauteil (Bauteile sind: Prozessanschluss, optionale Anbauteile oder Zubehör).

- ► Gerät nur innerhalb der vorgeschriebenen Grenzen der Bauteile betreiben!
- ▶ MWP (Maximum Working Pressure/max. Betriebsdruck): Auf dem Typenschild ist der MWP angegeben. Dieser Wert bezieht sich auf eine Referenztemperatur von +20 °C (+68 °F) und darf über unbegrenzte Zeit am Gerät anliegen. Temperaturabhängigkeit des MWP beachten. Bei höheren Temperaturen die zugelassenen Druckwerte für Flansche aus den folgenden Normen entnehmen: EN 1092-1 (die Werkstoffe 1.4435 und 1.4404 sind in ihrer Festigkeit-Temperatur-Eigenschaft identisch und in der EN 1092-1 Tab. 18 unter 13E0 eingruppiert. Die chemische Zusammensetzung der beiden Werkstoffe kann identisch sein), ASME B 16.5a (Norm in ihrer jeweils aktuellen Version ist gültig).
- ▶ Die Überlastgrenze ist derjenige Druck, mit dem ein Gerät während einer Prüfung maximal belastet werden darf. Sie ist um einen bestimmten Faktor größer als der maximale Betriebsdruck. Dieser Wert bezieht sich auf eine Referenztemperatur von +20 °C (+68 °F).
- ▶ Bei Sensorbereich- und Prozessanschluss-Kombinationen bei denen der OPL (Over pressure limit) des Prozessanschlusses kleiner ist als der Nennwert der Messzelle, wird das Gerät werksmäßig maximal auf den OPL-Wert des Prozessanschlusses eingestellt. Muss der gesamte Messzellenbereich genutzt werden, so ist ein Prozessanschluss mit einem höheren OPL-Wert (1,5 x MWP; MWP = PN) zu wählen.
- ▶ Die Druckgeräterichtlinie (2014/68/EU) verwendet die Abkürzung "PS". Die Abkürzung "PS" entspricht dem maximalen Betriebsdruck (MWP) des Geräts
- ▶ Abweichende MWP-Angaben siehe Kapitel "Konstruktiver Aufbau".

Gereinigt von Öl und Fett

Zusätzlich bietet Endress+Hauser Geräte für spezielle Anwendungen an, die von Öl und Fett gereinigt sind. Für diese Geräte gelten keine besonderen Einschränkungen hinsichtlich den Prozessbedingungen.

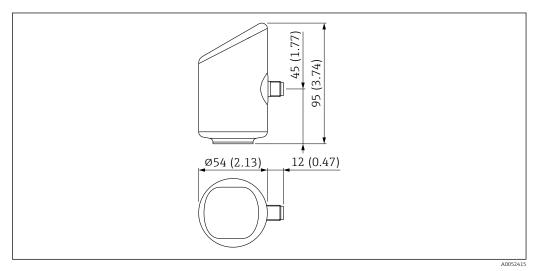
Konstruktiver Aufbau

Bauform, Maße

Gerätehöhe

Die Gerätehöhe ergibt sich aus

- der Höhe des Gehäuses (1)
- konfigurationsabhängigen Anbauteilen (2)
- der Höhe des jeweiligen Prozessanschlusses (3)



- 1 Gehäuse
- konfigurationsabhängige Anbauteile
- 2 3 Prozessanschluss

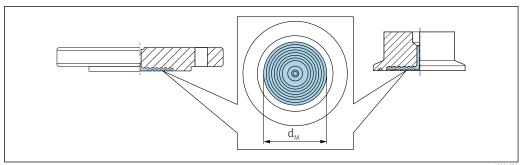
In den folgenden Kapiteln sind die Einzelhöhen der Komponenten aufgeführt. Gerätehöhe ermitteln, indem die Einzelhöhen addiert werden.

Abmessungen

Gehäuse

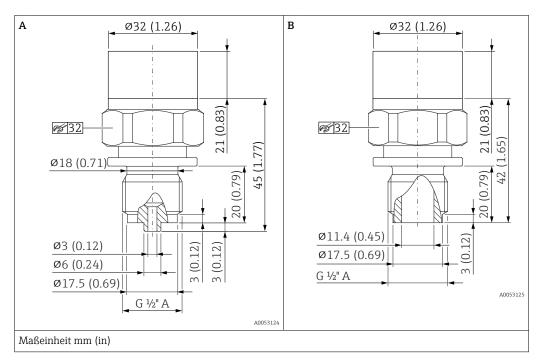
Maßeinheit mm (in)

Wichtiger Hinweis zu den Prozessanschlüssen

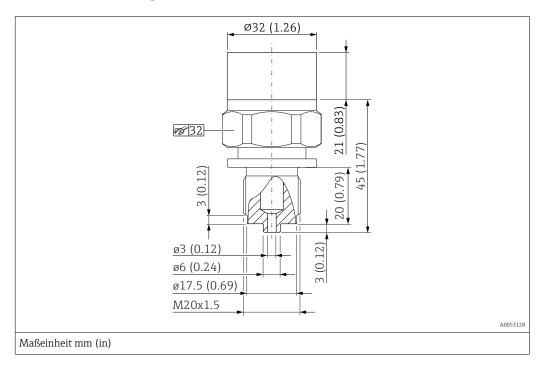

Die Bauform einiger Prozessanschlüsse wird durch die Auswahl folgender Merkmale in der Bestellstruktur bestimmt:

- Merkmal Anwendung:
 - Prozesstemperatur +100 °C (+212 °F)
 - Prozesstemperatur +130 °C (+266 °F), +150 °C (+302 °F) max 1h
 - Prozesstemperatur +150 °C (+302 °F)
 - Prozesstemperatur +200 °C (+392 °F)
- Merkmal Oberflächenveredelung:
 - Standard
 - Hygienisch RA<0,38µm/15µin elektropoliert

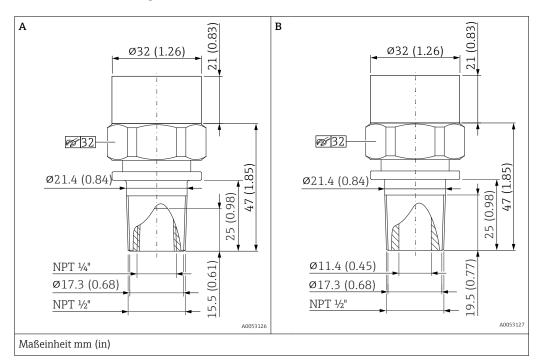
Diese Merkmale werden beim jeweiligen Prozessanschlusses beschrieben, wenn sie benötigt werden.


Begriffserklärung

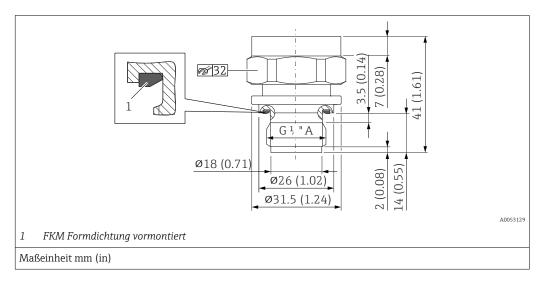
- DN oder NPS = alphanumerische Bezeichnung eines Bauteils
- PN oder Class = alphanumerische Druckkenngröße eines Bauteils
- d_M: Membrandurchmesser (siehe folgendes Bild)


A0056033

Gewinde ISO 228 G, innenliegende Prozessmembran


Bezeichnung		Gewicht	Bestelloption
		[kg (lb)]	
Gewinde ISO 228 G ½" A, EN 837	A	0,22 (0,49)	WBJ
Gewinde ISO 228 G ½" A, Bohrung 11,4 mm (0,45 in)	В		wwj

Gewinde DIN13, innenliegende Prozessmembran

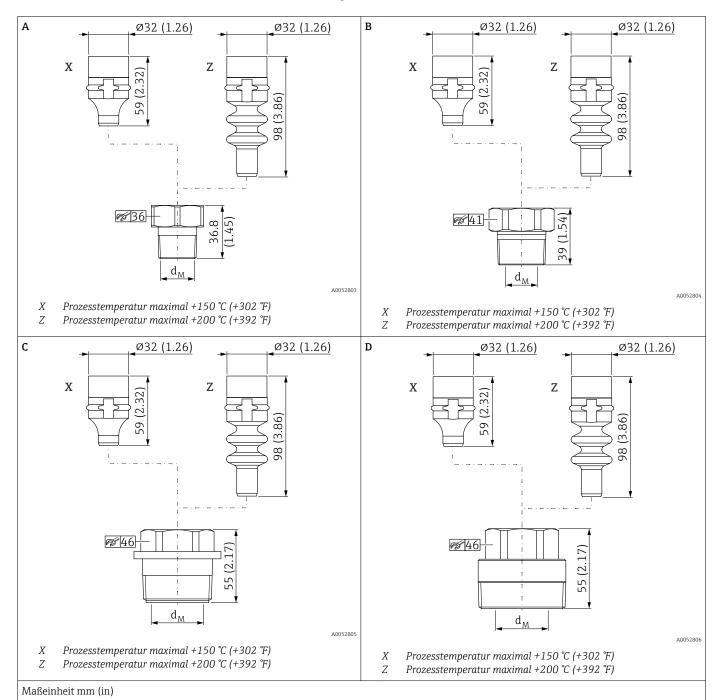

Bezeichnung	Gewicht	Bestelloption
	[kg (lb)]	
DIN 13 M20 x 1,5, EN 837, Bohrung 3 mm (0,12 in)	0,22 (0,49)	X4J

Gewinde ASME, innenliegende Prozessmembran

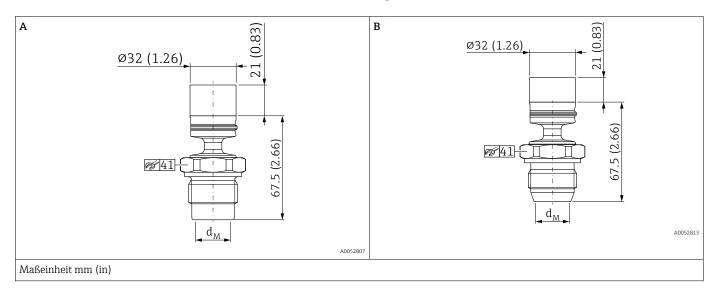


Bezeichnung		Gewicht	Bestelloption
		[kg (lb)]	
ASME ½" MNPT, ¼" FNPT (innen)	А	0,23 (0,51)	VXJ
ASME ½" MNPT, Bohrung 11,4 mm (0,45 in)	В		VWJ

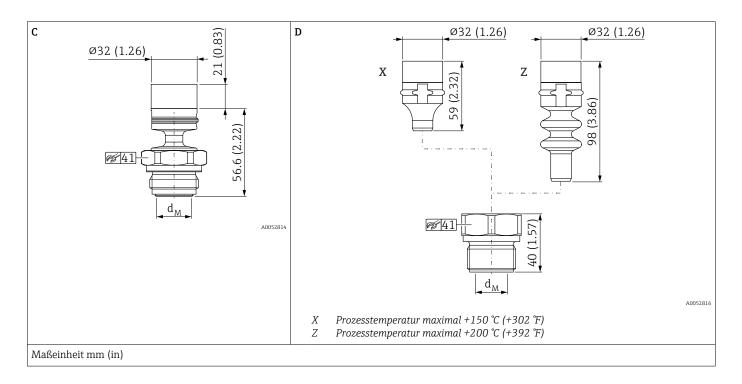
Gewinde ISO 228 G, frontbündige Prozessmembran



Bezeichnung	d _M	Gewicht	Bestelloption
	[mm (in)]	[kg (lb)]	
Gewinde ISO 228 G ½" A DIN3852, Form E	17,2 (0,68)	0,14 (0,31)	WJJ


Bezeichnung	d _M	Gewicht	Bestelloption
	[mm (in)]	[kg (lb)]	
Gewinde ISO 228 G ½" A Dichtung O-Ring frontbündig	17,2 (0,68)	0,15 (0,33)	WUJ

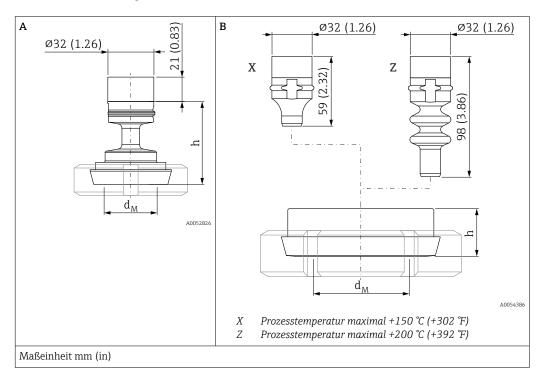
Gewinde MNPT, frontbündige Prozessmembran



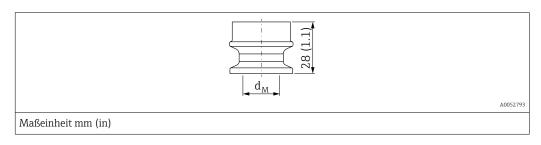
Bezeichnung	Bild	$\mathbf{d}_{\mathbf{M}}$	Gewicht	Bestelloption
		[mm (in)]	[kg (lb)]	
MNPT 3/4"	A	22 (0,87)	0,22 (0,49)	VHJ
MNPT 1"	В	28 (1,10)	0,33 (0,73)	VJJ
MNPT 1 1/2"	С	41 (1,61)	0,73 (1,61)	VLJ
MNPT 2"	D	48 (1,89)	1,05 (2,32)	VMJ

Gewinde G1, G1 1/2, G2, frontbündige Prozessmembran

Bezeichnung	Bild	d _M	Gewicht	Bestelloption
		[mm (in)]	[kg (lb)]	
G1" mit O-Ring	A	22 (0,87)	0,42 (0,93)	WSJ
G1" mit Dichtkonus	В		0,39 (0,86)	WQJ

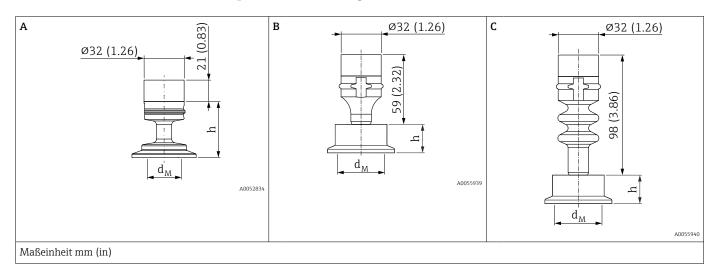


Bezeichnung	Bild	d _M	Gewicht	Bestelloption
		[mm (in)]	[kg (lb)]	
G1" mit Aseptoflex O-Ring aus EPDM	С	22 (0,87)	0,35 (0,77)	45J
G1"	D	28 (1,10)	0,34 (0,75)	WLJ


Bezeichnung	Bild	d _M	Gewicht	Bestelloption
		[mm (in)]	[kg (lb)]	
G1 1/2"	Е	41 (1,61)	0,72 (1,59)	WNJ
G2"	F	48 (1,89)	1,17 (2,58)	WPJ

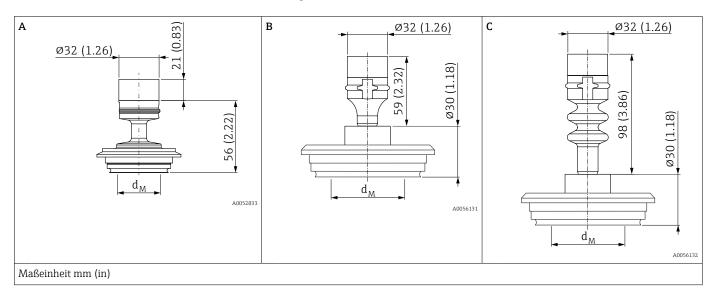
DIN11851, frontbündige Prozessmembran

Bezeichnung	PN	Bild	d _M	h	Gewicht kg	Bestelloption
	[bar]		[mm (in)]	[mm (in)]	[kg (lb)]	
DIN11851 DN25	40	A	22 (0,87)	44 (1,73)	0,43 (0,95)	1GJ
DIN11851 DN32	40	A	32 (1,26)	57 (2,24)	0,55 (1,21)	1НЈ
DIN11851 DN40	40	A	36 (1,42)	57 (2,24)	0,61 (1,35)	1JJ
DIN11851 DN50	25	A		57 (2,24)	0,76 (1,68)	1DJ
DIN11851 DN80	25	В	61 (2,4)	30 (1,18)	1,9 (4,19)	1FJ


Clamp ISO2852 DN18-22, DIN32676 DN15-20, frontbündige Prozessmembran

Bezeichnung		d _M	Gewicht	Bestelloption	
	[bar]	[mm (in)]	[kg (lbs)		
Clamp ISO2852 DN18-22, DIN32676 DN15-20,	40	17,2 (0,68)	0,09 (0,20)	3AJ	

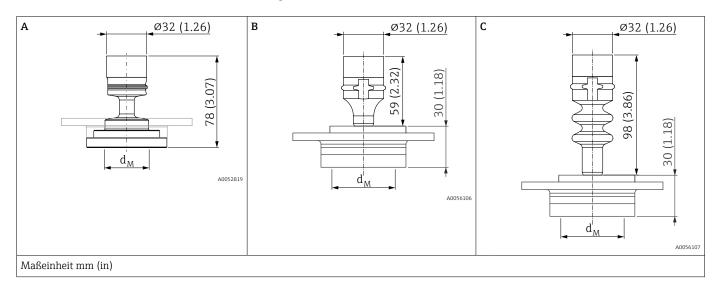
26


Tri-Clamp ISO2852, frontbündige Prozessmembran

Prozesstemperatur maximal +130 °C (+266 °F) (+150 °C (+302 °F) für 1 Stunde) Prozesstemperatur maximal +150 °C (+302 °F)										
Bezeichnung	PN	Oberfläche	Bild	d _M	h	Gewicht	Bestelloption			
	[bar]			[mm (in)]	[mm (in)]	[kg (lb)]				
Tri-Clamp ISO2852	40	Standard	А	22 (0,87)	44 (1,73)	0,21 (0,46)	3ВЈ			
DN25 (1")		Elektropoliert	А							
Tri-Clamp ISO2852 DN38 (1 ½")		Standard	А	32 (1,26)		0,21 (0,46)	3CJ			
		Elektropoliert	А							
Tri-Clamp ISO2852		Standard	А	36 (1,42)		0,26 (0,57)	3EJ			
DN51 (2")		Elektropoliert	А							
Tri-Clamp ISO2852		Standard	А	36 (1,42)		0,33 (0,73)	3]]			
DN63.5 (2 ½")		Elektropoliert	В	61 (2,4)	30 (1,18)					
Tri-Clamp ISO2852		Standard	A	36 (1,42)	44 (1,73)	0,42 (0,93)	3FJ			
DN76.1 (3")		Elektropoliert	В	61 (2,4)	30 (1,18)					

Prozesstemperatur maximal +200 °C (+392 °F)										
Bezeichnung	PN	Oberfläche	Bild	d _M	h	Gewicht	Bestelloption			
	[bar]			[mm (in)]	[mm (in)]	[kg (lb)]				
Tri-Clamp ISO2852 DN25 (1")	40	Standard	С	22 (0,87)	30 (1,18)	0,32 (0,71)	3ВЈ			
		Elektropoliert	С	22 (0,87)						
Tri-Clamp ISO2852 DN38 (1 ½")		Standard	С	36 (1,42)		1 (2,21)	3CJ			
		Elektropoliert	С	36 (1,42)						
Tri-Clamp ISO2852		Standard	С	41 (1,61)		1,1 (2,43)	3EJ			
DN51 (2")		Elektropoliert	С	41 (1,61)						
Tri-Clamp ISO2852 DN63.5 (2 ½")		Standard	С	61 (2,4)		0,7 (1,54)	3]]			
Tri-Clamp ISO2852 DN76.1 (3")		Standard	С	61 (2,4)		1,2 (2,65)	3FJ			

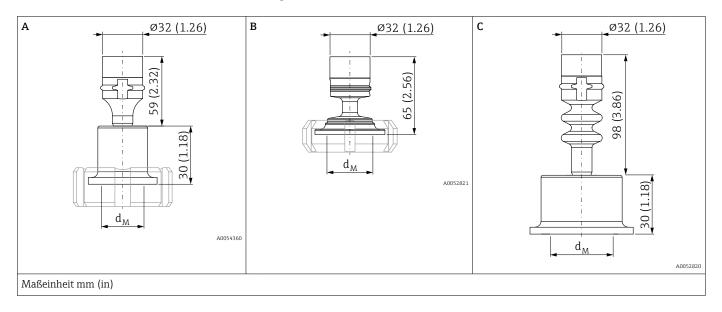
Varivent, frontbündige Prozessmembran



Prozesstemperatur maximal +130 °C (+266 °F) (+150 °C (+302 °F) für 1 Stunde) Prozesstemperatur maximal +150 °C (+302 °F)										
	[bar]			[mm (in)]	[kg (lb)]					
Varivent F für Rohre DN25 - DN32	40	Standard	А	36 (1,42)	0,47 (1,04)	41J				
		Elektropoliert	В		0,7 (1,54)					
Varivent N für Rohre DN40 - DN162		Standard	A		0,74 (1,63)	42J				
		Elektropoliert	В	61 (2,4)	0,9 (1,98)					

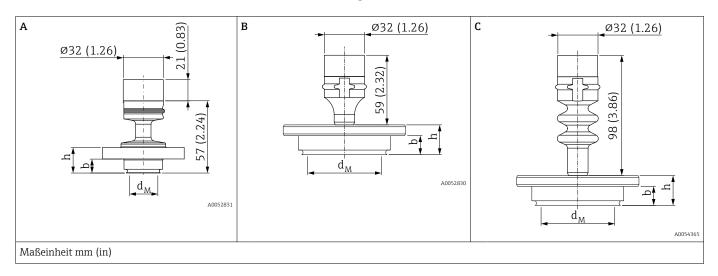
Prozesstemperatur maximal +200 °C (+392 °F)									
Bezeichnung	PN	Bild d _M		Gewicht	Bestelloption				
	[bar]		[mm (in)]	[kg (lb)]					
Varivent F für Rohre DN25 - DN32	40	С	36 (1,42)	0,4 (0,88)	41J				
Varivent N für Rohre DN40 - DN162		С	61 (2,4)	0,8 (1,76)	42J				

28


DRD, frontbündige Prozessmembran

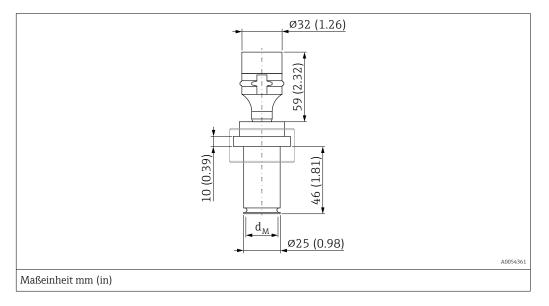
Prozesstemperatur maximal +130 °C (+266 °F) (+150 °C (+302 °F) für 1 Stunde) Prozesstemperatur maximal +150 °C (+302 °F)									
Bezeichnung	PN	Oberfläche Bild d _M		Gewicht kg	Bestelloption				
	[bar]			[mm (in)]	[kg (lb)]				
DRD 65mm	25	Standard	A	36 (1,42)	0,48 (1,06)	4AJ			
		Elektropoliert	В	48 (1,89)	0,65 (1,43)				

Prozesstemperatur maximal +200 °C (+392 °F)									
Bezeichnung	PN	Oberfläche	Gewicht kg	Bestelloption					
	[bar]			[mm (in)]	[kg (lb)]				
DRD 65mm	25	Standard	С	48 (1,89)	0,75 (1,65)	4AJ			
		Elektropoliert	С						

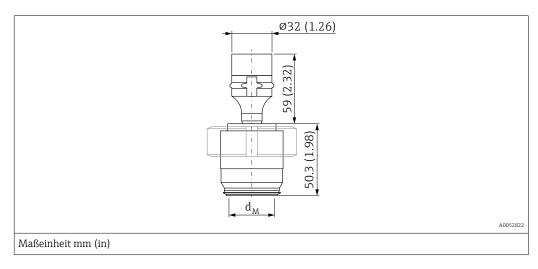

SMS, frontbündige Prozessmembran

Prozesstemperatur maximal +130 °C (+266 °F) (+150 °C (+302 °F) für 1 Stunde) Prozesstemperatur maximal +150 °C (+302 °F)										
Bezeichnung PN Bild d_M Gewicht Bestelloption										
	[bar]		[mm] (in)	[kg (lb)]						
SMS 1	40	A	22 (0,87)	0,13 (0,29)	4PJ					
SMS 1 1/2		В	36 (1,42)	0,25 (0,55)	4QJ					
SMS 2		В		0,32 (0,71)	4RJ					

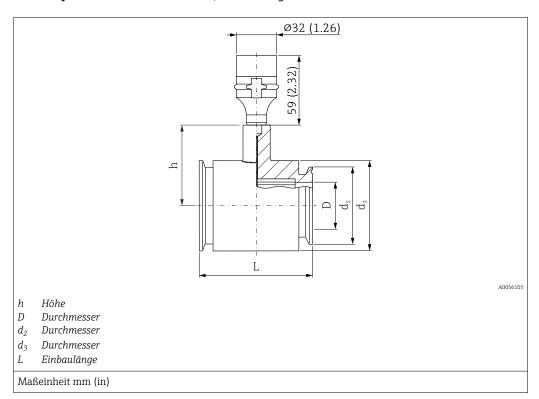
Prozesstemperatur maximal +200 °C (+392 °F)									
Bezeichnung	PN	Bild	Bestelloption						
	[bar]		[mm] (in)	[kg (lb)]					
SMS 1	40	С	22 (0,87)	0,25 (0.55)	Т6Ј				
SMS 1 1/2		С	36 (1,42)	0,65 (1.43)	T7J				
SMS 2		С	48 (1,89)	1,05 (2.32)	TXJ				


NEUMO BioControl, frontbündige Prozessmembran

Prozesstemperatur maximal +130 °C (+266 °F) (+150 °C (+302 °F) für 1 Stunde) Prozesstemperatur maximal +150 °C (+302 °F)									
Bezeichnung	PN	Oberfläche	Bild	b	h	d _M	Gewicht	Bestelloption	
	[bar]			[mm (in)]	[mm (in)]	[mm (in)]	[kg (lb)]		
NEUMO BioControl D25	16	Standard	А	11 (0,43)	20 (0,79)	22 (0,87)	0,41 (16,1)	5AJ	
		Elektropoliert	В				0,6 (1,32)		
NEUMO BioControl D50		Standard	А	17 (0,67)	27 (1,06)	36 (1,42)	0,86 (1,90)	5DJ	
		Elektropoliert	В			41 (1,61)	1,1 (2,43)		
NEUMO BioControl D80		Standard	В	25 (0,98)	37 (1,46)	61 (2,4)	2,59 (5,71)	5FJ	
		Elektropoliert	В	1					


Prozesstemperatur maximal +200 °C (+392 °F)										
Bezeichnung	PN	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	[bar]		[mm (in)]	[mm (in)]	[mm (in)]	[kg (lb)]				
NEUMO BioControl D80	16	С	25 (0,98)	37 (1,46)	61 (2,4)	2,8 (6,17)	5FJ			

Ingoldstutzen 25x46, frontbündige Prozessmembran

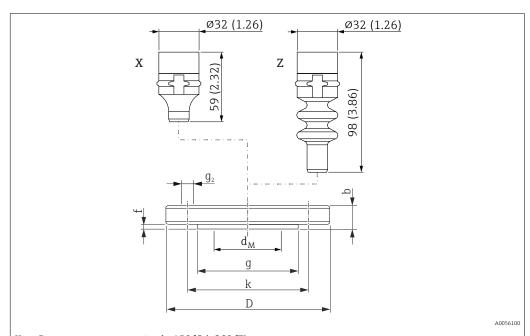


Bezeichnung	PN	d _M	Gewicht	Bestelloption
	[bar]	[mm (in)]	[kg (lb)]	
Ingoldstutzen 25x46 mit O-Ring aus EPDM	25	22 (0,87)	0,3 (0,66)	5RJ

Universaladapter, frontbündige Prozessmembran

Bezeichnung	Dichtung	PN	d _M	Gewicht	Bestelloption
		[bar]	[mm (in)]	[kg (lb)]	
Universaladapter	Silikon Formdichtung	10	32 (1,26)	0,54 (1,19)	52J
	EPDM Formdichtung				50J

Tri-Clamp ISO2852 Rohrdruckmittler, frontbündige Prozessmembran


DN	NPS	PN	D	d ₂	d ₃	h	L	Gewicht	Bestelloption
	[in]	[bar]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg (lb)]	
10	3/4	40	10,5	25	34	41,5	140	0,6 (1.32)	3QJ
25	1		22,5	50,5	54	67	126	1,7 (3.75)	3RJ
38	1 1/2		35,5	50,5	69	67	126	1,0 (2.21)	3SJ ¹⁾
51	2		48,6	64	78	79	100	1,7 (3.75)	3TJ ¹⁾

¹⁾ inkl. $3.1\,\mathrm{und}$ Drucktest nach Druckgeräterichtlinie, Kategorie II

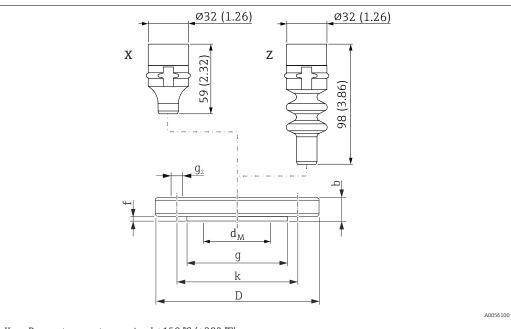
Die CIP Reinigung (clean in place (Heißwasser)) vor der SIP Reinigung (sterilization in place (Dampf)) durchführen. Eine häufige Anwendung der SIP Reinigung erhöht die Beanspruchung der Prozessmembran. Unter ungünstigen Umständen kann auf langfristige Sicht ein häufiger Temperaturwechsel zur Materialermüdung der Prozessmembran und möglicherweise zur Leckage führen.

Flansch EN1092-1, frontbündige Prozessmembran

Anschlussmaße gemäß EN1092-1

- Prozesstemperatur maximal +150 °C (+302 °F) X Z D b
- Prozesstemperatur maximal +200 °C (+392 °F)
- Durchmesser des Flansches
- Dicke
- Dichtleistendurchmesser
- g f Dichtleistenhöhe
- Lochkreis
- Durchmesser der Bohrung

Maßeinheit mm (in)


Flansch		Bestelloption						
DN	PN	Form	D	b	g	f	Ød _M	
			[mm]	[mm]	[mm]	[mm]	[mm]	
25	10-40	B1	115	18	68	3	28	ној
40	10-40	B1	150	18	87		-	E1J
50	10-40	B1	165	20	102		61	нзј
80	10-40	B1	200	24	138		89	Н5Ј

Flansch	Flansch Schraublöcher		Gewicht	Bestelloption		
DN	PN	Anzahl	g ₂ k			
			[mm]	[mm]	[kg (lb)]	
25	10-40	4	14	85	2,1 (4.63)	ној
40	10-40	4	18	110	2,2 (4.85)	E1J
50	10-40	4	18	125	3,0 (6.62)	нзј
80	10-40	8	18	160	5,3 (11.69)	Н5Ј

34

Flansch ASME, frontbündige Prozessmembran

Anschlussmaße gemäß ASME B 16.5, Dichtleiste RF

- Prozesstemperatur maximal +150 °C (+302 °F)
- Prozesstemperatur maximal +200 °C (+392 °F)
- Z D Durchmesser des Flansches
- b Dicke
- g Dichtleistendurchmesser
- Dichtleistenhöhe
- k Lochkreis
- Durchmesser der Bohrung

Maßeinheit mm (in)

Flansch	Bestelloption						
NPS	Class	D	b	g	f	Ød _M	
[in]	[lb./sq.in]	[in]	[in]	[in]	[in]	[in]	
1	150	4.25	0.56	2	0.06	1.10	AAJ
1 ½	150	5	0.69	2.88		Auf Anfrage	ACJ
2	150	6	0.75	3.62		2.40	ADJ
3	150	7.5	0.94	5		3.50	AFJ

Flansch		Schraublöcher			Gewicht	Bestelloption
NPS	Class	Anzahl	g_2	k		
[in]	[lb./sq.in]		[in]	[in]	[kg (lb)]	
1	150	4	0.62	3.12	1.2 (2.65)	AAJ
1 ½	150	4	0.62	3.88	1.5 (3.31)	ACJ
2	150	4	0.75	4.75	2.2 (4.85)	ADJ
3	150	4	0.75	6	5.1 (11.25)	AFJ

Gewicht

Für das Gesamtgewicht müssen die jeweiligen Gewichte der einzelnen Komponenten addiert werden.

Gehäusegewicht inklusive Elektronik und Vor-Ort-Anzeige: 0,43 kg (0,95 lb)

Prozessanschluss: Gewicht siehe jeweiliger Prozessanschluss

Werkstoffe

Prozessberührende Werkstoffe

Prozessanschlüsse

- EN Flansche:
- Werkstoff: AISI 316L
- Die Flanschdichtleiste ist aus dem gleichen Material wie die Membran.
- ASME Flansche:
 - Werkstoff AISI 316/316L: Kombination aus AISI 316 für erforderliche Druckfestigkeit und AISI 316L für erforderliche chemische Beständigkeit (dual rated)
- Die Flanschdichtleiste ist aus dem gleichen Material wie die Membran.
- Alle anderen Prozessanschlüsse aus 316L

Membran Material

- 316L (1.4435)
- AlloyC276

Material der Flanschdichtleiste ist aus dem gleichen Material wie die Membran

Delta-Ferritgehalt

Für den Delta-Ferritgehalt der mediumsberührten Teile können ≤ 3 % gewährleistet und zertifiziert werden, wenn im Produktmerkmal "Test, Zeuqnis, Erklärung" die Bestelloption "KD" ausgewählt wird.

Nicht-prozessberührende Werkstoffe

- Gehäuse: 316L (1.4404)
- Anzeige: Polycarbonat
- Gerätestecker: [1] Weitere Informationen siehe Kapitel "Energieversorgung"

Füllflüssigkeit

- \blacksquare Synthetiköl gemäß FDA 21 CFR 178.3620 (b)(1) und NSF H-1
- Pflanzenöl, FDA 21 CFR 172.856

Zubehör

Technische Daten (wie z.B. Materialien, Abmessungen oder Bestellnummern) siehe Zubehör-Dokument SD01553P.

Oberflächenrauheit

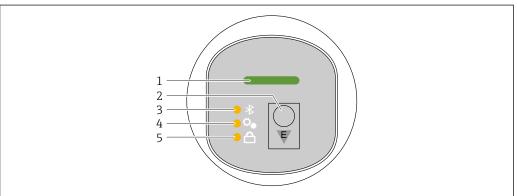
- Gehäuse: Ra < 1,6 μm (63 μin), elektropoliert
- Prozessberührende Teile: Ra < 0,76 μm (29,9 μin) (außer Flansche und Gewinde-Prozessanschlüsse)
- Prozessberührende Teile: Hygienisch Ra < 0,38 μm (15 μin) elektropoliert (Produktmerkmal "Oberflächenveredelung", Bestelloption "E")

Anzeige und Bedienoberfläche

Sprachen

Bediensprachen

- English (werkseitig Englisch, wenn keine andere Sprache bestellt wird)
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)


- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- tiếng Việt (Vietnamese)
- čeština (Czech)
- Svenska

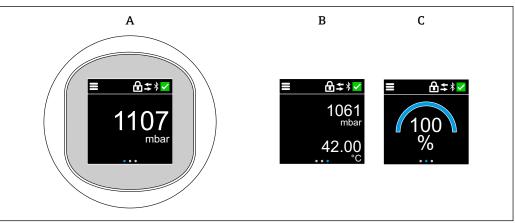
Die IODD ist in englischer Sprache verfügbar.

LED-Anzeige

Funktionen:

- Anzeige des Betriebszustandes (Betrieb oder Störung)
- Anzeige von Bluetooth-Verbindung, Verriegelungsstatus und Funktion
- Einfaches Setup folgender Funktionen mit einer Taste:
 - Verriegelung ein/aus
 - Bluetooth ein/aus
 - Lageabgleich

A005242

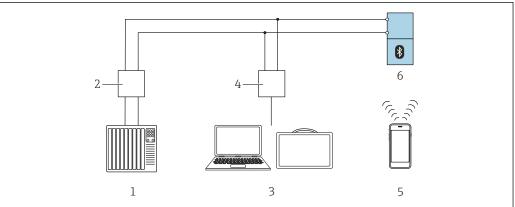

- 1 Betriebszustand LED
- 2 Bedientaste "E"
- 3 Bluetooth LED
- 4 Lageabgleich LED
- 5 Tastenverriegelung LED

Vor-Ort-Anzeige

Funktionen:

- Anzeige von Messwerten sowie Stör- und Hinweismeldungen
- Anzeige eines Symbols, dass im Fehlerfall erscheint
- Elektronisch ausrichtbare Vor-Ort-Anzeige (automatische oder manuelle Ausrichtung der Messwertanzeige in 90°-Schritten)
- 1 Die Messwertanzeige dreht sich automatisch je nach Einbaulage beim Starten des Gerätes
- Grundlegende Einstellungen über die Vor-Ort-Anzeige mit Touch Control
 - Verriegelung ein/aus
 - Auswahl der Bediensprache
 - Start der Heartbeat Verification mit bestanden/nicht bestanden-Rückmeldung auf der Vor-Ort-Anzeige
 - Bluetooth ein/aus
 - Assistent Inbetriebnahme für grundlegende Einstellungen
 - Geräteinformationen wie Name, Seriennummer und Firmware-Version ablesen
 - Aktive Diagnose und Status
 - Gerät zurücksetzen
 - Farben umkehren für helle Lichtverhältnisse
- Bei der folgenden Abbildung handelt es sich um eine exemplarische Darstellung. Die Anzeige ist abhängig von den Einstellungen der Vor-Ort-Anzeige.

³⁾ Bei Geräten ohne Touch Control sind die Einstellungen über Bedientools (FieldCare, DeviceCare, SmartBlue) möglich.


A0053054

- A Standard-Anzeige: 1 Messwert mit Einheit (einstellbar)
- B 2 Messwerte, jeweils mit Einheit (einstellbar)
- C Grafische Messwertdarstellung in %

Über das Bedienmenü lässt sich die Standard-Anzeige dauerhaft einstellen.

Fernbedienung

Via IO-Link oder Bluetooth

A0053130

- Möglichkeiten der Fernbedienung via IO-Link
- 1 SPS (Speicherprogrammierbare Steuerung)
- 2 IO-Link Master
- 3 Computer mit Bedientool (z. B. DeviceCare/FieldCare)
- 4 FieldPort SFP20
- Field Xpert SMT70/SMT77 oder Computer mit Bedientool (z. B. DeviceCare/FieldCare)
- 6 Messumformer

Bedienung über Bluetooth® wireless technology (optional)

Voraussetzung

- Gerät mit Bestelloption Bluetooth
- Smartphone oder Tablet mit Endress+Hauser SmartBlue-App oder PC mit DeviceCare ab Version 1.07.07 oder FieldXpert SMT70/SMT77

Die Reichweite der Verbindung beträgt bis zu $25\,\mathrm{m}$ (82 ft). In Abhängigkeit von Umgebungsbedingungen wie z. B. Anbauten, Wände oder Decken, kann die Reichweite variieren.

Die Bedientasten am Display sind gesperrt, sobald das Gerät über Bluetooth verbunden ist.

Systemintegration

- IO-Link V1.1.
- Smart Sensor Profile Type 4.3
- SIO Modus: Ja
- Geschwindigkeit: COM2; 38,4 kBaud

- Prozessdatenbreite: 📵 Siehe Betriebsanleitung
- Data Storage: Ja
- Block Parametrierung: Ja

Unterstützte Bedientools

Smartphone oder Tablet mit Endress+Hauser SmartBlue-App, DeviceCare ab Version 1.07.07, Field-Care.

Zertifikate und Zulassungen

Aktuelle Zertifikate und Zulassungen zum Produkt stehen unter www.endress.com auf der jeweiligen Produktseite zur Verfügung:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.
- 3. **Downloads** auswählen.

Weitere Zertifikate und Zulassungen zum Produkt stehen unter https://www.endress.com -> Downloads zur Verfügung.

Hygiene-Design Konformität

3-A und EHEDG zertifizierte Varianten des Sensors sind geeignet für Cleaning-In-Place (CIP) und Sterilization-In-Place (SIP) ohne Ausbau aus der Anlage. Das heißt, der Sensor muss während der Reinigung nicht ausgebaut werden. Dabei dürfen die maximal erlaubten Druck- und Temperaturwerte für Sensor und Adapter nicht überschritten werden (siehe Hinweise in dieser TI).

- Hinweise zu Installation und Zertifizierung nach 3-A und EHEDG:
 - Dokumentation SD02503F "Hygiene-Zulassungen"
- Informationen zu 3-A und EHEDG geprüften Adaptern:
- Dokumentation TI00426F "Einschweißadapter, Prozessadapter und Flansche"
- ASME BPE: Das Messsystem erfüllt die Anforderungen des Standards ASME BPE (Bioprocessing Equipment)

Konformität zu cGMP abgeleiteten Anforderungen

cGMP ist nur für prozessberührende Teile anwendbar:

- Die Erklärung ist ausschließlich in Englisch erhältlich
- Materialien der Konstruktion
- ADI-frei basierend auf EMA/410/01 Rev.3 (TSE/BSE-konform)
- Polieren und Oberflächenbehandlung
- Tabelle zur Übereinstimmung von Materialien und Verbindungen: USP, FDA

TSE (BSE) Konformität (ADI free - Animal Derived Ingredients)

Endress+Hauser erklärt als Hersteller:

- dass die prozessberührenden Teile dieses Produktes nicht aus Materialien tierischen Ursprungs hergestellt werden oder
- mindestens den Anforderungen der Leitlinie EMA/410/01 Rev. 3 entsprechen (TSE (BSE) konform).

ASME BPE

Das Messsystem erfüllt die Anforderungen des Standards ASME BPE (Bioprocessing Equipment).

Bestellinformationen

Ausführliche Bestellinformationen sind bei der nächstgelegenen Vertriebsorganisation www.addresses.endress.com oder im Produktkonfigurator unter www.endress.com auswählbar:

- 1. Produkt mit Hilfe der Filter und Suchmaske auswählen.
- 2. Produktseite öffnen.

3. **Konfiguration** auswählen.

i

$Produktkon figurator - das\ Tool\ f\"ur\ individuelle\ Produktkon figuration$

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Kennzeichnung

Messstelle (TAG)

Das Gerät kann mit einer Messstellenbezeichnung bestellt werden.

Ort der Messstellenkennzeichnung

In der Zusatzspezifikation auswählen:

- Anhängeschild Edelstahl
- Papierklebeschild
- TAG beigestellt vom Kunden
- Typenschild
- IEC 61406 rostfreier Stahl TAG
- IEC 61406 rostfreier Stahl + NFC TAG
- IEC 61406 rostfreier Stahl, rostfreier Stahl TAG
- IEC 61406 rostfreier Stahl + NFC, rostfreier Stahl
- IEC 61406 rostfreier Stahl TAG, beigelegtes Schild
- IEC 61406 rostfreier Stahl + NFC, beigelegtes Schild

Definition der Messstellenbezeichnung

In der Zusatzspezifikation angeben:

3 Zeilen zu je maximal 18 Zeichen

Die angegebene Messstellenbezeichnung erscheint auf dem gewähltem Schild.

Darstellung in der SmartBlue-App

Die ersten 32 Zeichen der Messstellenbezeichnung

Die Messstellenbezeichnung kann jederzeit via Bluetooth messstellenspezifisch verändert werden.

Darstellung auf dem Typenschild

Die ersten 16 Zeichen der Messstellenbezeichnung

Darstellung im Elektronischen Typenschild (ENP)

Die ersten 32 Zeichen der Messstellenbezeichnung

Details siehe Dokument SD03128P

Dienstleistung

Über den Produktkonfigurator können unter anderem folgende Dienstleistungen ausgewählt werden.

- Gereinigt von Öl+Fett (mediumberührt)
- Eingestellt HART Burst Mode PV
- Eingestellt max. Alarm Strom
- Bluetooth Kommunikation bei Auslieferung deaktiviert
- Kundenspezifischer Leer-/Vollabgleich
- Produktdokumentation auf Papier

Optional können Testberichte, Erklärungen und Materialprüfzeugnisse über das Merkmal **Dienstleistung**, Ausführung **Produktdokumentation auf Papier** als Papierausdruck bestellt werden. Die Dokumente können unter Merkmal **Test, Zeugnis, Erklärung** ausgewählt werden und liegen dann dem Gerät bei Auslieferung bei.

Anwendungsspakete

Das Anwendungspaket kann zusammen mit dem Gerät bestellt oder nachträglich mit einem Freischaltcode aktiviert werden. Ausführliche Angaben zum betreffenden Bestellcode sind über die Webseite www.endress.com oder über die Endress+Hauser Vertriebszentrale erhältlich.

Heartbeat Technology

Heartbeat Technology bietet Diagnosefunktionalität durch kontinuierliche Selbstüberwachung, die Ausgabe zusätzlicher Messgrößen an ein externes Condition Monitoring System sowie die In-situ-Verifizierung von Geräten in der Anwendung.

Heartbeat Diagnostics

Kontinuierliche Selbstüberwachung des Geräts.

Ausgabe von Diagnosemeldungen an:

- die Vor-Ort-Anzeige
- ein Asset Management-System (z.B. FieldCare oder DeviceCare)
- ein Automatisierungssystem (z. B. SPS)

Heartbeat Verification

- Geräteüberwachung im eingebauten Zustand ohne Prozessunterbrechung inklusive Verifizierungsbericht
- Eindeutige Messstellenbewertung (Bestanden/nicht bestanden) mit hoher Testabdeckung im Rahmen der Herstellerspezifikation
- Kann zur Dokumentation von normativen Anforderungen verwendet werden
- Erfüllt die Anforderungen zur messtechnischen Rückführbarkeit gemäß ISO 9001 (ISO 9001:2015 Abschnitt 7.1.5.2)

Der Verifizierungsbericht kann via Bluetooth erzeugt werden.

Heartbeat Monitoring

- Stellt kontinuierlich Geräte- und/oder Prozessdaten für ein externes System bereit. Die Auswertung dieser Daten dient der Prozessoptimierung und vorausschauenden Instandhaltung.
- Assistent Loop-Diagnose: Erkennung von erhöhten Messkreis-Widerständen oder abnehmende Spannungsversorgung
- Untermenü Statistische Sensordiagnose: Statistische Analyse und Auswertung des Drucksignals, u. a. Signalrauschen, zur Erkennung von Prozessanomalien
- Assistent Prozessfenster: frei definierbare Druck- und Temperaturgrenzen zur Erkennung von dynamischen Druckschlägen oder fehlerhafter Begleitungsheizung oder Isolierung
- Assistent Sicherheitsmodus: Mit diesem Assistenten kann das Gerät via Software schreibgeschützt werden. Im Assistenten müssen die sicherheitsrelevanten Parameter bestätigt werden.

Detaillierte Beschreibung

Siehe Sonderdokumentation SD Heartbeat Technology.

Zubehör

Gerätespezifisches Zubehör

M12-Buchse

M12-Buchse, gerade

Werkstoff:

Griffkörper: PA; Überwurfmutter: Edelstahl; Dichtung: EPDM

Schutzart (gesteckt): IP69Bestellnummer: 71638191

M12-Buchse, gewinkelt

Werkstoff:

Griffkörper: PA; Überwurfmutter: Edelstahl; Dichtung: EPDM

Schutzart (gesteckt): IP69Bestellnummer: 71638253

Kabel

Kabel 4 x 0,34 mm² (20 AWG) mit M12-Buchse gewinkelt, Schraubverschluss, Länge 5 m (16 ft)

- Werkstoff: Griffkörper: TPU; Überwurfmutter: Zinkdruckguss vernickelt; Kabel: PVC
- Schutzart (gesteckt): IP68/69
- Bestellnummer: 52010285
- Aderfarben
 - 1 = BN = braun
 - 2 = WT = weiß
 - 3 = BU = blau
 - 4 = BK = schwarz

Einschweißadapter, Prozessadapter und Flansche

Für Einzelheiten siehe TI00426F/00/DE "Einschweißadapter, Prozessadapter und Flansche".

Mechanisches Zubehör

Technische Daten (wie z.B. Materialien, Abmessungen oder Bestellnummern) siehe Zubehör-Dokument SD01553P.

DeviceCare SFE100

Konfigurationswerkzeug für IO-Link, HART-, PROFIBUS- und FOUNDATION Fieldbus-Feldgeräte DeviceCare steht zum kostenlosen Download bereit unter www.software-products.endress.com. Zum Download ist die Registrierung im Endress+Hauser-Softwareportal erforderlich.

Technische Information TI01134S

FieldCare SFE500

FDT-basiertes Anlagen-Asset-Management-Tool

Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren.

Technische Information TI00028S

Device Viewer

Im *Device Viewer* (www.endress.com/deviceviewer) werden alle Zubehörteile zum Gerät inklusive Bestellcode aufgelistet.

Field Xpert SMT70

Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in Ex-Zone-2- und Nicht-Ex Bereichen

Zu Einzelheiten: Dokument "Technische Information" TIO1342S

Field Xpert SMT77

Universeller, leistungsstarker Tablet PC zur Gerätekonfiguration in Ex-Zone-1-Bereichen

Zu Einzelheiten: Dokument "Technische Information" TIO1418S

SmartBlue-App

Mobile App für die einfache Konfiguration der Geräte vor Ort über Bluetooth-Funktechnologie.

Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild eingeben
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder Matrixcode auf dem Typenschild einscannen

Standarddokumentation

Dokumenttyp Betriebsanleitung (BA)

Installation und Erstinbetriebnahme – Enthält alle Funktionen im Bedienmenü, die für eine gewöhnliche Messaufgabe benötigt werden. Darüber hinaus gehende Funktionen sind nicht enthalten.

42

Dokumenttyp Beschreibung Geräteparameter (GP)

Das Dokument ist Teil der Betriebsanleitung und dient als Nachschlagewerk für Parameter: Es liefert detaillierte Erläuterungen zu jedem einzelnen Parameter des Bedienmenüs.

Dokumenttyp Kurzanleitung (KA)

Schnell zum 1. Messwert – Beinhaltet alle wesentlichen Informationen von der Warenannahme bis zum elektrischen Anschluss.

Dokumenttyp Sicherheitshinweise, Zertifikate

Abhängig von der Zulassung liegen dem Gerät bei Auslieferung Sicherheitshinweise bei, z. B. XA. Die Dokumentationen sind integraler Bestandteil der Betriebsanleitung.

Auf dem Typenschild ist angegeben, welche Sicherheitshinweise (XA) für das jeweilige Gerät relevant sind.

Geräteabhängige Zusatzdokumentation

Je nach bestellter Geräteausführung werden weitere Dokumente mitgeliefert: Anweisungen der entsprechenden Zusatzdokumentation konsequent beachten. Die Zusatzdokumentation ist fester Bestandteil der Dokumentation zum Gerät.

Eingetragene Marken

Apple[®]

Apple, das Apple Logo, iPhone und iPod touch sind Marken der Apple Inc., die in den USA und weiteren Ländern eingetragen sind. App Store ist eine Dienstleistungsmarke der Apple Inc.

Android®

Android, Google Play und das Google Play-Logo sind Marken von Google Inc.

Bluetooth®

Die *Bluetooth*®-Wortmarke und -Logos sind eingetragene Marken von Bluetooth SIG. Inc. und jegliche Verwendung solcher Marken durch Endress+Hauser erfolgt unter Lizenz. Andere Marken und Handelsnamen sind die ihrer jeweiligen Eigentümer.

(A) TO-l ink®

Ist ein eingetragenes Warenzeichen. In Verbindung mit Produkten und Dienstleistungen darf es grundsätzlich nur von Mitgliedern der IO-Link-Firmengemeinschaft und von Nicht-Mitgliedern, die eine entsprechende Lizenz erworben haben, verwendet werden. Genauere Hinwiese zur Nutzung finden Sie in den Regeln der IO-Link Community unter: www.io.link.com.

www.addresses.endress.com

