Действительно начиная с версии 01.00.zz (Фирменное ПО прибора)

Инструкция по эксплуатации Liquiphant FTL43 HART

Вибрационный принцип измерения Датчик предельного уровня для жидкостей

- Убедитесь в том, что документ хранится в безопасном месте и всегда доступен при работе с прибором
- В целях предотвращения опасности для персонала и имущества внимательно ознакомьтесь с разделом «Основные указания по технике безопасности», а также со всеми другими указаниями по технике безопасности, содержащимися в документе и имеющими отношение к рабочим процедурам

Изготовитель сохраняет за собой право на изменение технических характеристик без предварительного уведомления. Актуальную информацию и обновления настоящего руководства по эксплуатации можно получить в региональной торговой организации Endress+Hauser.

Содержание

1	Об этом документе	5
1.1	Назначение документа	. 5
1.2	Условные обозначения	. 5
1.3	Список аббревиатур	. 6
1.4	Документация	6
1.5	Зарегистрированные товарные знаки	6
2	Основные указания по технике	
	безопасности	. 7
2.1	Требования к работе персонала	. 7
2.2	Назначение	. 7
2.3	Техника безопасности на рабочем месте	. 8
2.4	Эксплуатационная безопасность	8
2.5	Безопасность продукта	. 8
2.0 2.7	П-оезопасность прибора	. 9 . 0
2.7		• •
3	Описание изделия	9
3.1	Конструкция изделия	10
4	Приемка и идентификация	
1	присыка и идентификации	10
/ 1	Изделия	10
4.1 4.2	Приемка	10
4.2 4 3	Идентификация изделия Хранение и транспортировка	11
1.9		11
5	Монтаж	12
5.1	Требования к монтажу	12
5.2	Монтаж устройства	16
5.3	Проверка после монтажа	17
6	Электрическое подключение	17
6.1	Подключение прибора	17
6.2	Обеспечение требуемой степени защиты	19
6.3	Проверки после подключения	20
7	Опции управления	20
7.1	Обзор опций управления	20
7.2	Структура и функции меню управления	20
7.3	Доступ к меню управления через	
	светодиодный индикатор	22
7.4	Доступ к меню управления посредством	
	программного обеспечения	24
8	Системная интеграция	26
8.1	Обзор файлов описания прибора	26
8.2	Измеряемые переменные, передача	
	которых возможна по протоколу HART	27

9	Ввол в эксплуатацию	27
0 1		
9.1 9.2	Предварительные условия Проверка монтажа и функциональная	71
	проверка	27
9.3	Обзор вариантов ввода в эксплуатацию	28
9.4	Ввод в эксплуатацию с помощью	
	FieldCare/DeviceCare	28
9.5	Ввод в эксплуатацию с помощью	
	дополнительных управляющих программ	
	(AMS, PDM и т. д.)	29
9.6	Настройка адреса прибора с помощью	
	программного обеспечения	29
9.7	Моделирование	29
9.8	Защита параметров настройки от	
	несанкционированного доступа	30
10	Эксплуатация	30
10.1		-
10.1	Считывание данных состояния олокировки	20
10.2	приоора	30
10.2	Чтение измеренных значении	31
10.3	Адаптация прибора к условиям	0.1
10 /	технологического процесса	31
10.4	Texнология Heartbeat Technology	
	(опционально)	31
10.5	Функциональный тест приборов WHG	
	(опционально)	33
10.6	Отображение архива измеренных	
	· · · · · · · · · · · · · · · · · · ·	
	значений	33
11	значений Диагностика и устранение	33
11	значений Диагностика и устранение неисправностей	33 34
11	значений Диагностика и устранение неисправностей	33 34
11 11.1	значений	33 34
11 11.1	значений	33 34 34
11 11.1 11.2	значений	33 34 34
11 11.1 11.2	значений	 33 34 34
11 11.1 11.2	значений	 33 34 36 36
11 11.1 11.2 11.3	значений	 33 34 34 36 37
11 11.1 11.2 11.3 11.4	значений	33 34 34 36 37 37
11 11.1 11.2 11.3 11.4 11.5	значений	 33 34 34 36 37 37
11 11.1 11.2 11.3 11.4 11.5	значений	 33 34 34 36 37 37 37
11 11.1 11.2 11.3 11.4 11.5 11.6	значений	 33 34 34 36 37 37 37 37 37 37
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7	значений	 33 34 34 36 37 37 37 40
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	значений	 33 34 34 36 37 37 37 40 42
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	значений	 33 34 36 37 37 37 40 42 42
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	значений	 33 34 36 37 37 37 40 42 42 42 42 42
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12	значений	 33 34 36 37 37 37 40 42 42 42 42 42 42 42 42 43
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12 12.1	значений	 33 34 34 36 37 37 40 42 42 42 42 42 43
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12 12.1 13	значений	 33 34 36 37 37 37 40 42 42 42 43 43
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12 12.1 13 12.1	значений	 33 34 36 37 37 40 42 42 42 42 43 43
11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 12 12.1 13 13.1	значений	 33 34 36 37 37 37 37 40 42 42 42 42 43 43 43 43

13.3	Утилизация 44
14	Аксессуары 44
14.1 14.2 14.3 14.4 14.5 14.6 14.7	Специальные принадлежности дляприбора44DeviceCare SFE10045FieldCare SFE50045Device Viewer45Field Xpert SMT7045Field Xpert SMT7745Приложение SmartBlue45
15	Технические данные 46
15.1 15.2	Выход
Алф	авитный указатель 50

1 Об этом документе

1.1 Назначение документа

Настоящее руководство по эксплуатации содержит все данные, необходимые на различных этапах жизненного цикла устройства: от идентификации изделия, приемки и хранения до установки, подключения, ввода в эксплуатацию и эксплуатации, устранения неисправностей, технического обслуживания и утилизации.

1.2 Условные обозначения

1.2.1 Символы техники безопасности

Δ ΟΠΑСΗΟ

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к тяжелой травме или смерти.

А ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к тяжелой травме или смерти.

ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

1.2.2 Символы для обозначения инструментов

🛷 Рожковый гаечный ключ

1.2.3 Специальные символы связи

Bluetooth®: 🚷

Беспроводная передача данных между устройствами на небольшом расстоянии.

1.2.4 Символы для различных типов информации

Разрешено: 🗸

Означает разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Означает запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 🔳

Ссылка на страницу: 🗎

Серия шагов: 1., 2., 3.

Результат отдельного шага: 🖵

1.2.5 Символы на рисунках

Номера пунктов: 1, 2, 3 ...

Серия шагов: 1., 2., 3.

Виды: А, В, С, ...

1.3 Список аббревиатур

PN

Номинальное давление

МРД

Максимальное рабочее давление МРД указано на заводской табличке.

DTM

Средство управления типом прибора

Управляющая программа

Термин "управляющая программа" используется вместо следующего операционного программного обеспечения:

- FieldCare / DeviceCare, для работы через HART-связь и ПК
- Приложение SmartBlue для работы со смартфона или планшета с операционной системой Android или iOS

плк

Программируемый логический контроллер (ПЛК)

1.4 Документация

Общие сведения о сопутствующей технической документации можно получить следующими способами.

- Программа Device Viewerwww.endress.com/deviceviewer: введите серийный номер с заводской таблички.
- Приложение Endress+Hauser Operations: введите серийный номер с заводской таблички или просканируйте матричный штрих-код на заводской табличке.

1.5 Зарегистрированные товарные знаки

Apple®

Apple, логотип Apple, iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Android, Google Play и логотип Google Play – товарные знаки Google Inc.

Bluetooth®

Тестовый символ и логотипы *Bluetooth®* являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

HART®

Зарегистрированный товарный знак организации FieldComm Group, Остин, Техас, США.

2 Основные указания по технике безопасности

2.1 Требования к работе персонала

Требования к персоналу, выполняющему монтаж, ввод в эксплуатацию, диагностику и техобслуживание:

- Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- Получить разрешение на выполнение данных работ от руководства предприятия.
- Ознакомиться с нормами федерального/национального законодательства.
- Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать основные условия.

Обслуживающий персонал должен соответствовать следующим требованиям:

- Получить инструктаж и разрешение у руководства предприятия в соответствии с требованиями выполняемой задачи.
- Следовать инструкциям, представленным в данном руководстве.

2.2 Назначение

Прибор, описанный в настоящем руководстве, предназначен только для измерения уровня жидкостей.

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Избегайте механических повреждений:

 Не прикасайтесь к поверхностям приборов и не очищайте их с использованием острых или твердых предметов.

Пояснение относительно пограничных ситуаций:

Сведения о специальных средах и жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности, и не предоставляют каких бы то ни было гарантий.

Остаточные риски

Из-за передачи тепла от технологического процесса и рассеивания мощности внутри электроники температура корпуса может повышаться до 80 °C (176 °F) во время

работы. Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

 При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

2.3 Техника безопасности на рабочем месте

При работе с датчиком необходимо соблюдать следующие правила:

- Пользуйтесь необходимыми средствами индивидуальной защиты в соответствии с национальными правилами.
- Подключение прибора выполняется при отключенном питании.

2.4 Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатируйте прибор только в том случае, если он находится в надлежащем техническом состоянии, а ошибки и неисправности отсутствуют.
- Ответственность за бесперебойную работу прибора несет оператор.

Изменение конструкции прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность.

 Если модификация все же необходима, обратитесь за консультацией к изготовителю.

Ремонт

Для обеспечения постоянной эксплуатационной безопасности и надежности необходимо соблюдать следующие правила.

• Используйте только оригинальные аксессуары.

Взрывоопасная зона

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в форме утверждения (например, взрывозащита, безопасность сосуда, работающего под давлением):

- информация на заводской табличке позволяет определить соответствие приобретенного прибора взрывоопасной зоне, в которой прибор будет установлен.
- соблюдайте инструкции, приведенные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего руководства.

2.5 Безопасность продукта

Этот прибор был разработан и испытан в соответствии с современными стандартами эксплуатационной безопасности и в соответствии с передовой инженерной практикой. Прибор поставляется с завода в безопасном для эксплуатации состоянии.

Устройство отвечает основным требованиям техники безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕЭС, перечисленным в декларации соответствия требованиям ЕЭС для конкретного прибора. Компания Endress+Hauser подтверждает прохождение испытаний прибором нанесением маркировки СЕ.

2.6 ІТ-безопасность

Гарантия нашей компании действительна только в том случае, если изделие установлено и используется в соответствии с руководством по эксплуатации. Изделие оснащено механизмами безопасности для защиты от любого непреднамеренного изменения настроек.

Меры ИТ-безопасности, которые обеспечивают дополнительную защиту изделия и связанной с ним передачи данных, должны быть реализованы самим оператором в соответствии с действующими в его компании стандартами безопасности.

2.7 ІТ-безопасность прибора

Прибор снабжен специальными функциями, реализующими защитные меры оператором. Эти функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность. Уровень доступа пользователя может быть изменен с помощью кода доступа (применяется к управлению через Bluetooth или FieldCare, DeviceCare, инструменты управления активами, например, AMS, PDM).

2.7.1 Доступ по протоколу беспроводной связи Bluetooth®

Технология защищенной передачи сигнала по протоколу беспроводной связи Bluetooth[®] включает в себя метод шифрования, протестированный Институтом Фраунгофера.

- Без приложения SmartBlue прибор невидим при использовании технологии беспроводной связи Bluetooth[®].
- Устанавливается только одно соединение типа "точка-точка" между прибором и смартфоном или планшетом.
- Интерфейс беспроводной технологии Bluetooth[®] можно отключить локально или через SmartBlue.

3 Описание изделия

Датчик предельного уровня для любых жидкостей, для определения минимального или максимального уровня в баках, резервуарах и трубопроводах.

3.1 Конструкция изделия

🖻 1 Конструкция изделия

- 1 Корпус с электронным модулем
- 2 Температурная проставка, непроницаемое уплотнение (второй уровень защиты), опционально
- 3 Присоединение к процессу, например Tri-Clamp
- 4 Присоединение к процессу, например резьба
- 5 Компактное исполнение зонда с вибрационной вилкой
- 6 Зонд удлинительной трубки с вибрационной вилкой
- 7 Зонд с короткой трубкой и вибрационной вилкой

4 Приемка и идентификация изделия

4.1 Приемка

При приемке прибора проверьте следующее:

- Код заказа в накладной (1) идентичен коду заказа на наклейке прибора (2)?
- Изделие не повреждено?
- Соответствуют ли данные на заводской табличке данным заказа в накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли правила техники безопасности (ХА)?

Если хотя бы одно из этих условий не выполнено, обратитесь в офис продаж изготовителя.

4.2 Идентификация изделия

Возможны следующие варианты идентификации изделия:

- технические данные, указанные на заводской табличке;
- Код заказа с разбивкой функций прибора, указанный в транспортной накладной
- ввод серийного номера с заводской таблички в программу Device Viewer (www.endress.com/deviceviewer): будут отображены все сведения об измерительном приборе.

4.2.1 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору. Состав этой информации указан ниже:

- данные изготовителя;
- Номер заказа, расширенный код заказа, серийный номер
- Технические характеристики, степень защиты
- Версии программного обеспечения и аппаратной части
- Информация о сертификате
- Код DataMatrix (информация о приборе)

Сравните данные на заводской табличке с данными заказа.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните прибор в чистом и сухом помещении и примите меры по защите от ударных повреждений

Температура хранения

-40 до +85 °С (-40 до +185 °F)

4.3.2 Транспортировка изделия до точки измерения

А ОСТОРОЖНО

Неправильная транспортировка!

Корпус и вибрационная вилка могут быть повреждены, кроме того, существует опасность несчастного случая!

- Транспортировать измерительный прибор до точки измерения следует в оригинальной упаковке.
- Держите прибор за корпус, температурную проставку, присоединение к процессу или удлинительную трубку.
- Не сгибайте, не укорачивайте и не удлиняйте вибрационную вилку.

🖻 2 Обращение с прибором

5 Монтаж

- Для прибора в компактном исполнении или с трубкой длиной прибл. до 500 мм (19,7 дюйм) допустима любая ориентация.
- Для прибора с длинной трубкой вертикальная ориентация, сверху
- Минимальное расстояние между вибрационной вилкой и стенкой резервуара или трубы: 10 мм (0,39 дюйм)

🗷 3 Примеры монтажа в резервуаре, баке или трубопроводе

5.1 Требования к монтажу

5.1.1 Инструкции по установке

- При монтаже важно следить за тем, чтобы используемый уплотнительный элемент имел рабочую температуру, соответствующую максимальной температуре процесса.
- Приборы с допуском CSA предназначены для использования в помещениях. Приборы подходят для использования во влажных средах в соответствии с МЭК/EN 61010-1
- Защитите корпус от ударов.

5.1.2 Учитывайте точку переключения прибора

Ниже приведены стандартные точки переключения в зависимости от ориентации датчика предельного уровня.

Вода +23 °С (+73 °F)

Н Минимальное расстояние между вибрационной вилкой и стенкой резервуара или трубы: 10 мм (0,39 дюйм)

- 🗟 4 Стандартные точки переключения. Единица измерения мм (дюйм)
- А Монтаж сверху
- В Монтаж снизу
- С Монтаж сбоку
- D Точка переключения

5.1.3 Учет вязкости

Значения вязкости

- Низкая вязкость: < 2 000 мПа·с</p>
- Высокая вязкость: > 2 000 до 10 000 мПа·с

Низкая вязкость

Чизкая вязкость, например вода: <2 000 мПа·с.</p>

Возможна установка вибрационной вилки в монтажном патрубке.

🗟 5 Пример монтажа для жидкостей с низкой вязкостью. Единица измерения мм (дюйм)

Высокая вязкость

УВЕДОМЛЕНИЕ

Жидкости с высокой вязкостью могут провоцировать задержку переключения.

- Убедитесь в том, что жидкость может легко стекать с вибрационной вилки.
- Зачистите поверхность патрубка.

Высокая вязкость, например вязкие масла: ≤ 10000 мПа·с.

Вибрационная вилка не должна устанавливаться в монтажном патрубке!

🖻 6 Пример монтажа для жидкостей с высокой вязкостью. Единица измерения мм (дюйм)

5.1.4 Защита от образования налипаний

- Используйте короткие монтажные патрубки, чтобы обеспечить свободное размещение вибрационной вилки в резервуаре.
- Предусмотрите достаточное расстояние между ожидаемыми налипаниями на стенке резервуара и вибрационной вилкой.

🗷 7 Примеры монтажа в технологической среде с высокой вязкостью

5.1.5 Учет необходимого свободного пространства

Оставьте достаточно свободного пространства снаружи резервуара для монтажа и электрического подключения.

🗷 8 Учет необходимого свободного пространства

5.1.6 Обеспечение опоры прибора

При наличии интенсивной динамической нагрузки необходимо обеспечить опору прибора. Максимально допустимая боковая нагрузка на удлинительные трубки и датчики: 75 Нм (55 фунт сила фут).

🗷 9 Примеры обеспечения опоры при динамической нагрузке

5.1.7 Сварной переходник с отверстием для утечек

Приварите переходник таким образом, чтобы отверстие для утечек было направлено вниз. Это позволит быстро обнаруживать любую утечку.

5.2 Монтаж устройства

5.2.1 Необходимые инструменты

Рожковый гаечный ключ для монтажа датчика

5.2.2 Установка

Выравнивание вибрационной вилки с помощью маркировки

Вибрационную вилку можно выровнять с помощью маркировки таким образом, чтобы технологическая среда легко огибала вилку, не оставляя налипаний.

Маркировка на технологическом соединении:

Спецификация материала, обозначение резьбы, окружность, линия или двойная линия

I1 Положение вибрационной вилки при горизонтальном монтаже в резервуаре с помощью маркировки

Монтаж прибора в трубопроводе

 Скорость потока до 5 м/с при вязкости 1 мПа·с и плотности 1 g/cm³ (62,4 lb/ft³) (SGU).

При других условиях технологической среды следует проверить правильность работы.

- У потока среды не будет существенных преград, если вибрационная вилка будет правильно сориентирована, а маркировка будет соответствовать направлению потока.
- Маркировка видна при смонтированном приборе.

I2 Монтаж в трубопроводе (следует учитывать положение вилки и маркировку)

Ввинчивание прибора (для присоединений к процессу с резьбой)

- Вращайте только за шестигранный болт, 15 до 30 Нм (11 до 22 фунт сила фут)
- Не вращайте за корпус!

Ŕ

🗷 13 Прикручивание прибора

5.3 Проверка после монтажа

□ Датчик не поврежден (внешний осмотр)?

Соответствуют ли предъявляемым требованиям идентификационный номер и маркировка точки измерения (внешний осмотр)?

□ Датчик закреплен надежно?

□ Соответствует ли прибор техническим параметрам точки измерения?

Примеры приведены ниже

- Рабочая температура
- Рабочее давление
- Температура окружающей среды
- Диапазон измерений

6 Электрическое подключение

6.1 Подключение прибора

6.1.1 Выравнивание потенциалов

При необходимости установить выравнивание потенциалов с помощью присоединения к процессу или заземляющего зажима, поставляемого заказчиком.

6.1.2 Напряжение питания

12 до 30 В пост. тока на блоке питания постоянного тока

Для 4 до 20 мА применяются те же требования, что и для HART. Для приборов, одобренных для использования во взрывоопасных зонах, необходимо использовать активный барьер с гальванической изоляцией.

В системе предусмотрены защитные схемы для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

6.1.3 Потребляемая мощность

- Невзрывоопасная зона: Чтобы соответствовать требованиям безопасности прибора в соответствии со стандартом МЭК/EN 61010, установка должна обеспечивать ограничение максимального тока до 500 мА.
- Взрывоопасная зона: Максимальный ток ограничен уровнем li = 100 мА в блоке питания преобразователя, если прибор используется в искробезопасной цепи (Ex ia).

6.1.4 4 до 20 мА НАКТ

🖻 14 Блок-схема подключения HART

- 1 Прибор с интерфейсом связи HART
- 2 Резистор связи НАКТ
- 3 Подача питания
- 4 Мультиметр или амперметр

Pезистор связи HART 250 Ом в сигнальной линии необходим на случай источника питания с полным сопротивлением.

Учтите падение напряжения:

не более 6 В для резистора связи 250 Ом

6.1.5 Защита от перенапряжения

Прибор соответствует стандарту МЭК/DIN EN IEC 61326-1 (таблица 2 "Промышленная среда"). В зависимости от типа порта (питание постоянного тока, порт ввода/вывода) применяются различные уровни испытаний на переходные перенапряжения (МЭК/DIN EN 61000-4-5 Скачок) в соответствии с МЭК/DIN EN 61326-1: Тестовый уровень на портах питания постоянного тока и портах ввода/вывода — линия-земля 1000 В.

Категория защиты от перенапряжения

В соответствии со стандартом МЭК/DIN EN 61010-1 прибор предназначен для использования в сетях II категории защиты от перенапряжения.

6.1.6 Назначение клемм

А ОСТОРОЖНО

Может быть подключено сетевое напряжение!

Опасность поражения электрическим током и/или взрыва!

- Убедитесь, что при подключении отсутствует сетевое напряжение.
- Напряжение питания должно соответствовать параметрам, указанным на заводской табличке.
- Согласно стандарту МЭК/ЕN 61010 прибор должен быть оснащен автоматическим выключателем.
- Кабели должны быть надлежащим образом изолированы с учетом напряжения питания и категории перенапряжения.
- Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ В системе предусмотрены защитные схемы для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

А ОСТОРОЖНО

Неправильное подключение нарушает электробезопасность!

- Невзрывоопасная зона: Чтобы соответствовать требованиям безопасности прибора в соответствии со стандартом МЭК/EN 61010, установка должна обеспечивать ограничение максимального тока до 500 мА.
- Взрывоопасная зона: Максимальный ток ограничен уровнем li = 100 мА в блоке питания преобразователя, если прибор используется в искробезопасной цепи (Ex ia).
- Для использования прибора в опасной зоне соблюдайте действующие национальные законодательные акты, а также указания по технике безопасности (XA).
- Вся информация по взрывобезопасности представлена в отдельной документации по взрывобезопасности (Ex). Такая документация по взрывобезопасности доступна по запросу. Документы по взрывобезопасности в качестве стандартной комплектации прилагаются к приборам, сертифицированным для эксплуатации во взрывоопасных зонах.

Подключите прибор в следующем порядке:

- 1. Убедитесь, что сетевое напряжение соответствует напряжению, указанному на заводской табличке.
- 2. Подключите прибор согласно следующей схеме.
- 3. Включите питание.

2-проводное подключение

1 Напряжение питания L+, коричневый провод (BN)

3 ОUT (L-), синий провод (BU)

6.2 Обеспечение требуемой степени защиты

Для смонтированного соединительного кабеля M12: IP66/68/69, тип NEMA 4X/6P

УВЕДОМЛЕНИЕ

Утрата соответствия классу защиты IP вследствие ненадлежащего монтажа!

- Степень защиты относится только к такому состоянию, при котором соединительный кабель подключен, а сальник плотно затянут.
- Степень защиты действует только в том случае, если соединительный кабель соответствует предполагаемому классу защиты.

6.3 Проверки после подключения

Не поврежден ли прибор или кабель (внешний осмотр)?

□ Используемый кабель соответствует техническим требованиям?

Подключенный кабель не натянут?

Правильно ли установлено резьбовое соединение?

Сетевое напряжение соответствует техническим требованиям, указанным на заводской табличке?

□ Нет обратной полярности, соблюдено ли назначение клемм?

При подаче питания: Готов ли прибор к работе и горит ли светодиодный индикатор рабочего состояния?

7 Опции управления

7.1 Обзор опций управления

- Управление с помощью клавиши управления светодиодным индикатором
- Управление с помощью Bluetooth[®]
- Управление с помощью управляющей программы Endress+Hauser
- Работа через портативный компьютер, Fieldcare, DeviceCare, AMS и PDM

7.2 Структура и функции меню управления

Полное меню управления доступно с помощью управляющих программ (FieldCare, DeviceCare, SmartBlue) для выполнения более сложных настроек прибора.

Различные программные "мастера" (ассистенты) упрощают ввод приборов в эксплуатацию в различных областях применения. Пользователь получает рекомендации на различных этапах настройки.

7.2.1 Обзор меню управления

Меню "Руководство"

Главное меню Руководства содержит функции, позволяющие пользователям быстро выполнять основные задачи, например ввод в эксплуатацию. Это меню состоит в основном из мастеров управления и специальных функций, охватывающих несколько областей.

Меню "Диагностика"

Настройки и информация по диагностике, а также помощь в поиске и устранении неисправностей.

Меню "Применение"

Функции для детальной настройки процесса для оптимальной интеграции прибора в приложение.

Меню "Система"

Системные настройки по управлению прибором, администрированию пользователя или безопасности.

7.2.2 Уровни доступа и соответствующие полномочия

Этот прибор поддерживает 2 уровня доступа пользователя: **Техническое** обслуживание и **Оператор**

- Уровень доступа пользователя Техническое обслуживание (в том виде, в котором поставляется заказчику) имеет доступ для чтения/записи.
- Уровень доступа пользователя Оператор имеет доступ только для чтения.

Текущий уровень доступа пользователя отображается в главном меню.

Параметры прибора могут быть полностью настроены с помощью уровня доступа пользователя **Техническое обслуживание**. Впоследствии доступ к настройке прибора можно заблокировать, назначив пароль. Этот пароль служит кодом доступа и защищает конфигурацию прибора от несанкционированного доступа.

Блокировка меняет уровень доступа пользователя **Техническое обслуживание** на уровень доступа пользователя **Оператор**. Повторный доступ к конфигурации можно получить, введя код доступа.

При вводе неверного кода доступа пользователю предоставляются права доступа, соответствующие уровню доступа **Оператор**.

Назначение пароля, изменение уровня доступа пользователя:

▶ Навигация: Система → Управление пользователями

7.3 Доступ к меню управления через светодиодный индикатор

7.3.1 Обзор

- 1 Светодиодный индикатор рабочего состояния
- 2 Кнопка управления "Е"
- 3 Светодиод Bluetooth
- 4 Светодиодный индикатор контрольного испытания срабатывания или функциональной проверки
- 5 Светодиодный индикатор блокировки клавиатуры

Управление с помощью светодиодного индикатора невозможно, если включено соединение Bluetooth.

Светодиодный индикатор рабочего состояния (1)

См. раздел "Диагностические события".

Светодиод Bluetooth (3)

- Светодиод горит: интерфейс Bluetooth активен
- Светодиод не горит. Bluetooth отключен или опция Bluetooth не заказана
- Светодиод мигает: установлено соединение Bluetooth

Светодиодный индикатор контрольного испытания срабатывания или функциональной проверки (4)

Светодиодный индикатор (4) мигает: В настоящее время выполняется контрольное испытание или функциональный тест.

См. раздел "Функция контрольного испытания"

Светодиодный индикатор блокировки клавиатуры (5)

- Светодиод горит: ключ заблокирован
- Светодиод не горит: ключ высвобожден

7.3.2 Эксплуатация

Прибор приводится в действие кратковременным нажатием на рабочую кнопку "Е" (< 2 с) или нажатием и удерживанием ее (> 2 с).

Навигация

- Светодиод выбранной функции мигает
- Кратковременно нажмите рабочую кнопку "Е" для переключения между функциями
- Нажмите и удерживайте рабочую кнопку "Е", чтобы выбрать определенную функцию

Мигание светодиодов (активный/неактивный)

А Функция выбрана, но не активна

В Функция выбрана и активна

Деактивация блокировки кнопок

1. Нажмите и удерживайте рабочую кнопку "Е".

└ Мигает светодиодный индикатор Bluetooth.

- 2. Кратковременно нажмите рабочую кнопку "Е" несколько раз, пока не замигает светодиод блокировки клавиатуры.
- 3. Нажмите и удерживайте рабочую кнопку "Е".

▶ Блокировка клавиатуры отключена.

Включение или отключение Bluetooth

- 1. При необходимости отключите блокировку клавиатуры.
- 2. Повторяйте короткие нажатия кнопки "Е", пока не замигает светодиодный индикатор Bluetooth.
- 3. Нажмите и удерживайте рабочую кнопку "Е".
 - ➡ Bluetooth включен (светодиодный индикатор Bluetooth горит) или Bluetooth отключен (светодиодный индикатор Bluetooth гаснет).

7.3.3 Функция контрольного испытания

Для контрольного испытания в системах безопасности согласно WHG

- 1. Не допускайте запуска нежелательных коммутационных операций!
 - Функциональная проверка должна выполняться, когда состояние прибора исправное (16 мА): отказоустойчивый режим МАХ и датчик не погружен, либо отказоустойчивый режим МІN и датчик погружен. При необходимости отключите блокировку клавиатуры (см. раздел
 - "Деактивация блокировки кнопок").

Повторяйте короткие нажатия кнопки "Е", пока не замигает светодиодный индикатор контрольного испытания срабатывания или функционального теста.

- 2. Нажмите и удерживайте рабочую кнопку "Е" более 4 с.
 - Выполняется функциональная проверка прибора.
 Состояние выхода изменится с исправного состояния на состояние запроса (8 мА).

Во время функциональной проверки светодиод контрольного испытания или функционального теста мигает.

Светодиод контрольного испытания или функционального теста горит непрерывно в течение 12 с при успешном завершении функциональной проверки. Светодиодные индикаторы блокировки клавиатуры и Bluetooth выключены. Прибор вернется к нормальному режиму работы.

Светодиодный индикатор контрольного испытания срабатывания или функционального теста быстро мигает в течение 12 с, если функциональная проверка не завершена успешно. Светодиодные индикаторы блокировки клавиатуры и Bluetooth выключены. Прибор остается в обычном режиме.

- 🛐 Продолжительность функциональной проверки: 10 с не менее
- Функциональная проверка также может быть выполнена с помощью цифровых коммуникационных интерфейсов (например, HART, DeviceCare, приложение SmartBlue).

7.4 Доступ к меню управления посредством программного обеспечения

7.4.1 Подключение к управляющей программе

Доступ с помощью управляющей программы возможен:

- Через систему связи HART, например Commubox FXA195
- Посредством Bluetooth (опционально)

FieldCare

Диапазон функций

Средство управления производственными активами на основе технологии FDT, разработанное специалистами Endress+Hauser. С помощью ПО FieldCare можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Используя информацию о статусе, FieldCare также является простым, но эффективным способом проверки их статуса и состояния.

Доступ осуществляется по цифровой связи (Bluetooth, система связи HART)

Типичные функции:

- Настройка параметров преобразователей
- Загрузка и сохранение данных прибора (выгрузка/скачивание)
- Протоколирование точки измерения
- Визуализация памяти измеренных значений (строчный регистратор) и журнала событий

Дополнительные сведения о FieldCare: Дополнительные сведения о FieldCare см. в руководстве по эксплуатации

DeviceCare

Диапазон функций

Инструмент для подключения и настройки полевых приборов Endress+Hauser.

В сочетании с программами – диспетчерами типовых приборов (DTM) DeviceCare предлагает удобное, комплексное решение.

🛐 Подробнее см. в буклете "Инновации" INO1047S

FieldXpert SMT70, SMT77

Планшетный ПК Field Xpert SMT70 для настройки приборов обеспечивает мобильное управление парком приборов во взрывоопасных (зона 2) и невзрывоопасных зонах. Модель предназначена для специалистов по пусконаладке и техническому обслуживанию. Планшетный ПК управляет измерительными приборами компании Endress+Hauser и других производителей, поддерживающими цифровую передачу данных, и документирует происходящий процесс. Модель SMT70 представляет собой комплексное решение. Планшетный ПК поступает в продажу уже с загруженной библиотекой драйверов и представляет собой удобный в использовании сенсорный инструмент для управления измерительными приборами в течение всего жизненного цикла.

Техническое описание TI01342S

Планшет Field Xpert SMT77 для настройки приборов обеспечивает мобильное управление парком приборов во взрывоопасных зонах (зона 1).

👔 Техническое описание TI01418S

7.4.2 Управление с помощью приложения SmartBlue

Управлять прибором и настраивать его можно с помощью приложения SmartBlue.

- Для этого необходимо загрузить на мобильное устройство приложение SmartBlue.
- Информация о совместимости приложения SmartBlue с мобильными устройствами приведена в Apple App Store (устройства на базе IOS) или Google Play Store (устройства на базе Android).
- Неправильная эксплуатация не допущенными к ней лицами предотвращается благодаря шифрованию связи и парольной защите шифрования.
- Функция Bluetooth[®] может быть отключена после первоначальной настройки прибора.

🗉 15 — QR-код для бесплатного приложения Endress+Hauser SmartBlue

Загрузка и установка:

- **1.** Отсканируйте QR-код или введите строку **SmartBlue** в поле поиска в Apple App Store (iOS) или Google Play Store (Android).
- 2. Установите и запустите приложение SmartBlue.
- **3.** Для устройств на базе Android: включите функцию отслеживания местоположения (GPS) (не требуется для устройств на базе iOS).
- 4. Выберите устройство, готовое к приему, из отображаемого списка устройств.

Войдите в систему:

- 1. Введите имя пользователя: admin
- 2. Введите исходный пароль: серийный номер прибора
- 🚹 Смените пароль после первого входа.
- 🖪 Забыли пароль? Обратитесь в сервисный центр Endress+Hauser.

8 Системная интеграция

8.1 Обзор файлов описания прибора

- Идентификатор изготовителя: 17 (0x0011)
- Идентификатор типа прибора: 0x11DF
- Спецификация HART: 7.6
- Файлы DD, информация и файлы различных типов:
 www.endress.com
 - www.fieldcommgroup.org

8.2 Измеряемые переменные, передача которых возможна по протоколу HART

Следующие измеряемые значения назначаются для переменных прибора на заводе.

Переменная прибора	Измеренное значение
Первичная переменная (PV) (Первичная переменная) ¹⁾	Определение предельного уровня ²⁾
Вторичная переменная (SV) (Вторичная переменная)	Частота датчика ³⁾
Третичное значение измерения (TV) (Третья переменная)	Состояние вилки ⁴⁾
Чертвертая переменная (QV) (Четвертая переменная)	Температура датчика

- 1) Первичная переменная (PV) всегда применяется к токовому выходу.
- Определение предельного уровня это исходное состояние, зависящее от состояния вилки (погружена/непогружена) и функции безопасности (МИН/МАКС)
- 3) Частота датчика частота колебаний вилки
- 4) Состояние вилки описывает состояние вилки (Вилка покрыта/Вилка не покрыта)

Назначение измеряемых значений переменным прибора можно изменить в следующем подменю.

Применение \rightarrow Выход HART \rightarrow Выход HART

В контуре HART Multidrop только один прибор может использовать аналоговое значение тока для передачи сигнала. Для всех остальных приборов в **параметр "Режим тока контура"** выберите опция **Деактивировать**.

8.2.1 Переменные прибора и измеренные значения

На заводе-изготовителе переменным приборам присваиваются следующие коды.

1 Переменные прибора можно запросить с помощью команды HART[®] 9 или 33 с ведущего устройства HART[®].

8.2.2 Системные единицы измерения

Частота колебаний указана в герцах. Отображение температуры возможно в °С, °F или К.

9 Ввод в эксплуатацию

9.1 Предварительные условия

А ОСТОРОЖНО

Настройки на токовом выходе могут привести к условиям, связанным с безопасностью (например, переполнение продукта)!

- Проверка настроек токового выхода.
- Настройка токового выхода зависит от настройки параметра параметр Назначить PV.

9.2 Проверка монтажа и функциональная проверка

Перед вводом измерительной точки в работу убедитесь в том, что были выполнены проверки после монтажа и подключения:

- 🖺 Раздел "Проверка после монтажа"
- Раздел "Проверки после подключения"

9.3 Обзор вариантов ввода в эксплуатацию

- Введение в эксплуатацию с помощью клавиши управления светодиодным индикатором
- Ввод в эксплуатацию из приложения SmartBlue
- Ввод в эксплуатацию из FieldCare/DeviceCare/Field Xpert
- Ввод в эксплуатацию с помощью дополнительных управляющих программ (AMS, PDM и т. д.)

9.4 Ввод в эксплуатацию с помощью FieldCare/ DeviceCare

- **1.** Загрузите DTM: http://www.endress.com/download -> Драйвер прибора -> Диспетчер типов прибора (DTM)
- 2. Обновите каталог.
- 3. Щелкните меню Руководство и запустите мастер Ввод в работу.

9.4.1 Примечания к мастер "Ввод в работу"

Мастер **Ввод в работу** позволяет выполнять простой ввод в эксплуатацию под руководством пользователя.

- 1. После запуска мастер **Ввод в работу** введите соответствующее значение в каждом параметре или выберите соответствующую опцию. Эти значения будут записаны непосредственно в память прибора.
- 2. Для перехода к следующей странице нажмите кнопку "Next".
- **3.** После того, как все страницы будут заполнены, нажмите кнопку "End", чтобы закрыть мастер **Ввод в работу**.
- Если работу мастер **Ввод в работу** отменить до того, как будут настроены все необходимые параметры, прибор может находиться в неопределенном состоянии. В такой ситуации произойдет возврат прибора к заводским настройкам по умолчанию.

9.4.2 Установка соединения с помощью FieldCare, DeviceCare и FieldXpert

🖻 16 Варианты дистанционного управления по протоколу HART

- 1 ПЛК (программируемый логический контроллер)
- 2 Блок питания преобразователя, например, RN42
- 3 Разъем для подключения коммуникатора прибора Commubox FXA195 и AMS TrexTM
- 4 Коммуникатор прибора AMS TrexTM
- 5 Компьютер с программным обеспечением (например, DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SMT70/SMT77, смартфон или компьютер с управляющей программой (например DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 8 Bluetooth-модем с соединительным кабелем (например VIATOR)
- 9 Преобразователь

9.5 Ввод в эксплуатацию с помощью дополнительных управляющих программ (AMS, PDM и т. д.)

Загрузите драйверы для конкретных приборов: https://www.endress.com/en/downloads

Для получения более подробной информации см. справку по соответствующей управляющей программе.

9.6 Настройка адреса прибора с помощью программного обеспечения

См. параметр "Адрес HART"

Ввод адреса для обмена данными по протоколу HART.

- Руководство → Ввод в работу → Адрес НАRT
- Применение → Выход HART → Конфигурация → Адрес HART
- Адрес HART по умолчанию: 0

9.7 Моделирование

9.7.1 Подменю "Моделирование"

Переменные процесса и диагностические события могут быть смоделированы с помощью подменю **Моделирование**.

Навигация: Диагностика → Моделирование

В процессе моделирования переключающего или токового выхода прибор выдает предупреждающее сообщение на протяжении всего времени моделирования.

9.8 Защита параметров настройки от несанкционированного доступа

9.8.1 Программное блокирование и разблокирование

Блокировка с помощью пароля в приложении FieldCare/DeviceCare/SmartBlue

Доступ к настройке параметров прибора можно заблокировать, назначив пароль. Когда прибор поставляется с завода, для уровня доступа пользователя устанавливается значение опция **Техническое обслуживание**. Параметры прибора могут быть полностью настроены с помощью уровня доступа пользователя опция **Техническое обслуживание**. Впоследствии доступ к настройке прибора можно заблокировать, назначив пароль. В результате этой блокировки опция **Техническое обслуживание** переключается на опция **Оператор**. Доступ к настройке открывается при вводе пароля.

Путь меню к пункту определения пароля:

Меню Система подменю User management

Уровень доступа пользователя изменяется с опция **Техническое обслуживание** на опция **Оператор** по такому пути меню:

Система → User management

Снятие блокировки с помощью ПО FieldCare/DeviceCare/SSmartBlue

После ввода пароля вы можете включить конфигурацию параметров прибора как опция **Оператор** с паролем. При этом устанавливается уровень доступа опция **Техническое обслуживание**.

При необходимости пароль можно удалить в User management: Система \rightarrow User management

10 Эксплуатация

10.1 Считывание данных состояния блокировки прибора

10.1.1 Светодиодный индикатор

Светодиодный индикатор блокировки клавиатуры

- 🛛 🖻 Светодиод горит: Прибор заблокирован
- 🛚 🖻 Светодиод не горит: Прибор разблокирован

10.1.2 Управляющая программа

🔲 Управляющая программа (FieldCare/DeviceCare/FieldXpert/SmartBlue)

Навигация: Система → Управление прибором → Статус блокировки

10.2 Чтение измеренных значений

Измеренные значения могут считываться с помощью управляющей программы.

Навигация: меню Применение → подменю Измеренные значения

10.3 Адаптация прибора к условиям технологического процесса

Для этой цели предусмотрены следующие меню:

- Основные настройки в меню Руководство
- Расширенные настройки в следующих разделах:
 - Меню Диагностика
 - Меню Применение
 - Меню Система

Более подробную информацию см. в документе "Описание параметров прибора".

10.4 Технология Heartbeat Technology (опционально)

10.4.1 Heartbeat Verification

Macтep "Heartbeat Verification"

Этот мастер настройки используется для запуска автоматической проверки функциональности устройства.

- Мастер можно использовать посредством управляющих программ
- Мастер сопровождает действия пользователя по генерированию отчета о проверке

10.4.2 Heartbeat Verification/Мониторинг

Подменю **Heartbeat** доступно только во время работы посредством FieldCare, DeviceCare или приложения SmartBlue. Подменю содержит мастера для настройки пакетов прикладных программ Heartbeat Verification и Heartbeat Monitoring.

Документация, которая относится к программному обеспечению Heartbeat Technology, приведена на веб-сайте компании Endress+Hauser: www.endress.com → «Документация».

10.4.3 Режим работы "Определение среды"

Заводская настройка рабочего режима (состояние в момент поставки): определение предельного уровня жидкостей. Этот параметр распространяется на большинство применений.

Кроме того, в сочетании с пакетом Heartbeat можно выбрать следующие режимы работы:

- Обнаружение пены
- Пеноподавление

Обнаружение пены

Область применения: определение предельного уровня в жидкостях с пенообразованием.

Прибор обнаруживает пену и переключается, как только вибрационная вилка погружается в пену.

Применение в соответствии с WHG (Закон о водных ресурсах Германии) в этом режиме работы невозможно.

Обнаружение легкой пены, такой как:

- Пивная пена
- Молочная пена

Влияние на характер переключения:

- Особенно крупные пузырьки воздуха в пене
- Значительно сниженное содержание жидкости в пене
- Изменение свойств пены в процессе эксплуатации

🖻 17 Принцип действия обнаружения пены

- А не погружено
- В погружено

9

Пеноподавление

Область применения: определение предельного уровня в жидкостях с пенообразованием.

Прибор переключается только при погружении в однородную жидкость.

В этом режиме прибор не реагирует на пену (пена подавляется).

Применение в соответствии с WHG (Закон о водных ресурсах Германии) в этом режиме работы невозможно.

🖻 18 Принцип действия для пеноподавления

А не погружено

В погружено

10.5 Функциональный тест приборов WHG (опционально) ¹⁾

Модуль "Proof test" содержит мастер **Функциональный тест**, требуемый через соответствующие промежутки времени для следующих применений: Сертификат WHG (закон ФРГ о регулировании водного режима):

- Мастер можно использовать посредством управляющей программы (приложения SmartBlue, DTM).
- Мастер сопровождает пользователя в процессе формирования отчета о проверке.
- Отчет о проверке можно сохранить в файл PDF.

10.6 Отображение архива измеренных значений

См. сопроводительную документацию по пакету SD Heartbeat Technology.

¹⁾ Только для приборов с официальным утверждением WHG

11 Диагностика и устранение неисправностей

11.1 Устранение неисправностей общего характера

11.1.1 Общие неисправности

Прибор не запускается

- Возможная причина Сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке прибора Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения
- Возможная причина: не соблюдена полярность питания Способ устранения неисправности: измените полярность
- Возможная причина: слишком велико сопротивление нагрузки Меры по устранению: увеличьте напряжение питания, чтобы достичь минимального напряжения на клеммах

Светодиодные индикаторы мигают при запуске прибора

Возможная причина: влияние электромагнитных помех Меры по устранению: проверьте заземление прибора

Связь через интерфейс HART не работает

- Возможная причина: отсутствует или неправильно установлен резистор связи Меры по устранению: установите резистор связи (250 Ом) правильно
- Возможная причина: ненадлежащим образом подключен модем Commubox Меры по устранению: подключите Commubox правильно

11.1.2 Ошибка. Управление с помощью приложения SmartBlue через интерфейс Bluetooth[®]

Управление через SmartBlue возможно только на приборах с дисплеем с Bluetooth (опционально).

Прибор не отображается в динамическом списке

- Возможная причина: отсутствует Bluetooth-соединение Меры по устранению: включите Bluetooth в полевом приборе с помощью дисплея или программного инструмента и/или на смартфоне/планшете
- Возможная причина: превышен радиус действия сигнала Bluetooth Меры по устранению: сократите расстояние между полевым прибором и смартфоном/планшетом Соединение имеет диапазон до 25 м (82 фут)

Радиус действия с промежуточной видимостью 10 м (33 фут)

- Возможная причина: на устройстве с операционной системой Android не включена геолокация, или ее использование не разрешено для приложения SmartBlue Способ устранение неисправности: включение/разрешение службы геопозиционирования на устройстве Android для приложения SmartBlue
- Дисплей не имеет Bluetooth

Прибор числится в оперативном списке, однако подключение установить не удается

- Возможная причина: прибор уже соединен с другим смартфоном/планшетом через интерфейс Bluetooth
 - Допускается только одно соединение типа "точка-точка"
- Меры по устранению: отсоедините смартфон/планшет от прибора
- Возможная причина ошибочный ввод имени пользователя и пароля Меры по устранению: стандартное имя пользователя – admin, а паролем является серийный номер прибора, указанный на его заводской табличке (только если пароль не был изменен пользователем ранее) Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

Не удается установить соединение посредством приложения SmartBlue

- Возможная причина: введен неверный пароль Меры по устранению: введите действительный пароль, обращая внимание на регистр символов
- Возможная причина: пароль утерян
 Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)

Не удается войти в систему посредством приложения SmartBlue

- Возможная причина: прибор вводится в действие первый раз
 Меры по устранению: введите имя пользователя (admin) и пароль (серийный номер прибора), обращая внимание на прописные и строчные буквы
- Возможная причина: электрический ток и напряжение не соответствуют требованиям.

Способ устранения неисправности: поднимите сетевое напряжение.

Невозможно управлять прибором посредством приложения SmartBlue

- Возможная причина: введен неверный пароль Меры по устранению: введите действительный пароль, обращая внимание на регистр символов
- Возможная причина: пароль утерян Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com)
- Возможная причина: отсутствует авторизация уровня доступа опция Оператор Меры по устранению: перейдите в опцию опция Техническое обслуживание

11.1.3 Меры по устранению неисправности

Для получения информации о мерах в случае сообщения об ошибке: Смотрите раздел "Необработанные диагностические сообщения" 🚔.

Если эти меры не привели к устранению неисправности, обратитесь в представительство компании Endress+Hauser.

11.1.4 Дополнительные проверки

Если не удается определить явную причину ошибки (или если причиной неисправности может быть как прибор, так и технологическое оборудование), можно выполнить следующие дополнительные проверки.

- 1. Убедитесь в том, что соответствующий прибор работает должным образом. Замените прибор, если цифровое значение не соответствует ожидаемому значению.
- 2. Включите моделирование и проверьте токовый выход. Замените прибор, если токовый выход не соответствует смоделированному значению.
- 3. Сбросьте параметры прибора на заводские настройки.

11.1.5 Поведение прибора в случае отключения электроэнергии

В случае неожиданного отключения электроэнергии динамические данные сохраняются постоянно (согласно NAMUR NE 032).

11.1.6 Поведение токового выхода в случае отказа

Поведение токового выхода в случае отказа определяется параметром параметр **Выходной ток неисправности**.

📔 Прибор не оснащен DIP-переключателем

Обзор и краткое описание параметров

Параметр	Описание	Выбор / Ввод данных пользователем
Выходной ток неисправности	Выходной ток в случае ошибки. Мин.: < 3,6 мА Макс.: >21,5 мА Примечание: аппаратный DIP-переключатель для аварийного тока (при наличии) имеет приоритет перед программной настройкой.	Мин.Макс.
Ток при отказе	Установите значение токового выхода для аварийной сигнализации	21,5 до 23 мА

11.2 Диагностическая информация на светодиодном индикаторе рабочего состояния

1 Светодиодный индикатор рабочего состояния

• Соединение MIN, вилка не погружена: светодиодный индикатор горит желтым цветом (8 мА)

Соединение MIN, вилка погружена: светодиодный индикатор горит зеленым цветом (16 MA)

Соединение MIN, ошибка: светодиодный индикатор горит красным цветом (< 3,6 мА/>21 мА)

 Соединение МАХ, вилка не погружена: светодиодный индикатор горит зеленым цветом (16 мА)

Соединение МАХ, вилка погружена: светодиодный индикатор горит желтым цветом (8 мА)

Соединение МАХ, ошибка: светодиодный индикатор горит красным цветом (< 3,6 mA/>21 mA)

 При поиске прибора (Squawk HART) или идентификации прибора или при установлении соединения Bluetooth: светодиодный индикатор рабочего состояния мигает во время работы функции

Светодиодный индикатор мигает независимо от цвета светодиода

11.3 Диагностическое событие в приборе

Если в приборе произошло диагностическое событие, то в верхней левой области состояния управляющей программы отображается сигнал состояния вместе с соответствующим символом уровня события согласно рекомендациям NAMUR NE 107:

- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (М)

Выберите запись сигнала состояния, чтобы просмотреть подробные данные сигнала состояния.

Сведения о диагностических событиях и мерах по устранению неисправностей можно распечатать с помощью подменю Перечень сообщений диагностики.

11.4 Адаптация диагностической информации

Уровень события можно настроить:

Навигация: Диагностика → Diagnostic settings → Конфигурация

11.5 Необработанные диагностические сообщения

Необработанные диагностические сообщения могут отображаться в параметр Диагностика активна.

Навигация: Диагностика → Диагностика активна

11.6Диагностический список

Все необработанные в данный момент диагностические сообщения могут быть отображены в подменю Перечень сообщений диагностики.

Навигация: Диагностика → Перечень сообщений диагностики

11.6.1 Список диагностических событий

Замена электроники или перепрошивка невозможны.

В таких случаях требуется замена прибора.

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]	
Диагностика датчика					
004	Неисправность сенсора	 Перезапустите прибор Замените электронику Замените прибор 	F	Alarm	
007	Неисправность сенсора	 Проверьте вилку Замените прибор 	F	Alarm	
042	Сенсор поврежден коррозией	 Проверьте вилку Замените прибор 	F	Alarm	
049	Сенсор поврежден коррозией	 Проверьте вилку Замените прибор 	М	Warning ¹⁾	
061	Неисправность электроники	Заменить главный блок электроники	F	Alarm	
062	Сбой соединения датчика	 Проверьте соединение сенсора с блоком электроники Замените электронику 	F	Alarm	
081	Ошибка инициализации датчика	 Перезапустите прибор Обратитесь в сервисную службу 	F	Alarm	
Диагностика	электроники				
201	Неисправность электроники	 Перезагрузите устройство Замените электронику 	F	Alarm	
203	HART неисправность прибора	Проверить состояние прибора	S	Warning	
204	HART дефект электроники	Проверить состояние прибора	F	Alarm	
242	Несовместимая прошивка	 Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль 	F	Alarm	
252	Несовместимый модуль	 Проверить, правильный ли блок электроники подключен Заменить модуль электроники 	F	Alarm	
270	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm	
272	Неисправность блока основной электроники	 Перезапустите прибор Обратитесь в сервисную службу 	F	Alarm	
273	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm	
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm	
283	Несовместимость содержимого памяти	 Перезапустите прибор Обратитесь в сервисную службу 	F	Alarm	
287	Несовместимость содержимого памяти	 Перезапустите прибор Обратитесь в сервисную службу 	М	Warning	

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
388	Электроника и HistoROM неисправны	 Перезапустите устройство Замените электронику и HistoROM Свяжитесь с сервисом 	F	Alarm
Диагностика н	конфигурации			
410	Сбой передачи данных	 Повторите передачу данных Проверьте присоединение 	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	С	Warning
420	HART Конфигурация прибора заблокирована	Проверьте конфигурацию блокировки устройства	S	Warning
421	HART токовая петля зафиксир.	Проверьте режим Multi-drop или текущее моделирование.	S	Warning
431	Требуется выравнивание	Выполнить баланс.	С	Warning
437	Конфигурация несовместима	 Обновите прошивку Выполните сброс до заводских настроек 	F	Alarm
438	Массив данных отличается	 Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства 	М	Warning
441	Токовый выход 1 насыщенный	 Проверьте технологический процесс Проверьте настройки токового выхода 	S	Warning
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning
491	Ток.выход моделирование запущено	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
538	Неправильная конфигурация датчика	 Проверьте настройки датчика Проверьте настройки прибора 	М	Warning
Диагностика і	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	F	Alarm
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
805	Ток контура неисправность	 Проверьте проводку Замените электронику или устройство 	F	Alarm

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
806	Диагностика контура	 Только с пассивным входом / выходом: проверьте сетевое напряжение токовой петли. Проверьте проводку и соединения. 	M	Warning ¹⁾
807	Нет баз.знач низк.напряжение при 20мА	Напряжение питания слишком низкое, увеличьте напряжение питания	М	Warning
825	Темп. электроники вне доп. диапазона	 Проверьте температуру окружающей среды Проверьте рабочую температуру 	S	Warning
826	Температура датчика вне диапазона	 Проверьте температуру окружающей среды Проверьте рабочую температуру 	S	Warning ¹⁾
842	Рабочее предельное значение	 Проверьте плотность процесса Проверьте вибровилку 	F	Alarm
846	НАRТ неосновная переменная вне диапазона	Проверить состояние прибора	S	Warning
847	НАRТ основная переменная вне диапазона	Проверить состояние прибора	S	Warning
848	HART переменная прибора предупреждение	Проверить состояние прибора	S	Warning
900	Предупреждение низкая частота	 Проверьте условия процесса Увеличьте давление системы 	М	Warning ¹⁾
901	Предупреждение высокая частота	 Проверьте условия процесса Увеличьте давление системы 	М	Warning ¹⁾
946	Обнаружена вибрация	Проверьте правильность монтажа	S	Warning

1) Параметры диагностики могут быть изменены.

11.7 Журнал событий

11.7.1 История событий

Подменю "Журнал событий" предоставляет хронологический обзор сообщений о событиях, которые произошли ²⁾

Навигация: Диагностика → Журнал событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

История событий содержит записи следующих типов.

- Диагностические события
- Информационные события

²⁾ Если прибор управляется посредством FieldCare, список событий может быть отображен с помощью FieldCare функции "Event List".

Кроме времени наступления события (которое исчисляется в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (длится оно или закончилось).

- Диагностическое событие
 - Э: Наступление события
 - 🕞: Окончание события
- Информационное событие
 Наступление события

11.7.2 Фильтрация журнала событий

С помощью фильтров можно определить, какая категория сообщений о событиях отображается в подменю **Журнал событий**.

Навигация: Диагностика → Журнал событий

Категории для фильтрации

- Bce
- Отказ (F)
- Функциональная проверка (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (М)
- Информация

11.7.3 Обзор информационных событий

📔 I11284 и I11285 не могут возникнуть

Прибор не имеет DIP-переключателей

Номер данных	Наименование данных
I1000	(Прибор ОК)
I1079	Датчик изменён
I1089	Питание включено
I1090	Сброс конфигурации
I1091	Конфигурация изменена
I11074	Проверка прибора активна
I1110	Переключатель защиты от записи изменен
I11104	Диагностика контура
I11284	Переключ. настройки HW MIN активен
I11285	Переключатель настройки ПО активен
I1151	Сброс истории
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1264	Безопасная последовательность прервана!
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен

Номер данных	Наименование данных	
I1444	Проверка прибора успешно завершена	
I1445	Проверка прибора не выполнена	
I1461	Ошибка проверки датчика	
I1512	Началась загрузка	
I1513	Загрузка завершена	
I1514	Загрузка началась	
I1515	Загрузка завершена	
I1551	Исправлена ошибка назначения	
I1552	Не выполнено: поверка гл.электрон.	
I1554	Последовательность безопасности начата	
I1555	Последовательность безопасн.подтверждена	
I1556	Безопасный режим выкл	
I1956	Сброс	

11.8 Перезапуск прибора

11.8.1 Сброс через цифровую связь

Настройки прибора можно сбросить с помощью параметр **Сброс параметров прибора**.

Навигация: Система → Device management

Сброс не затрагивает индивидуальные настройки, выполненные на заводе (конфигурация, заказанная пользователем, сохраняется).

11.8.2 Сброс пароля с помощью управляющей программы

Введите код для сброса текущего пароля 'Техническое обслуживание'. Код предоставляется вашей локальной службой техподдержки.

Навигация: Система
 \rightarrow Администрирование пользователе
й \rightarrow Сброс пароля \rightarrow Сброс пароля

🔳 Более подробную информацию см. в документе "Описание параметров прибора".

11.9 Информация о приборе

Все сведения о приборе содержатся в подменю Информация.

Навигация: Система → Информация

🔟 Более подробную информацию см. в документе "Описание параметров прибора".

11.10 История разработки встроенного ПО

11.10.1 Версия

01.00.00 Исходное ПО

12 Техническое обслуживание

12.1 Операция технического обслуживания

12.1.1 Очистка наружной поверхности

Используемые моющие средства не должны разрушать поверхность и уплотнения.

Можно использовать следующие чистящие средства:

- Ecolab P3 topaktive 200
- Ecolab P3 topaktive 500
- Ecolab P3 topaktive OKTO
- Ecolab P3 topax 66
- Ecolab TOPAZ AC5
- 30 % раствор H2O₂ (испарение)

Соблюдайте указанную степень защиты прибора.

13 Ремонт

13.1 Общая информация

13.1.1 Принцип ремонта

Концепция peмонта Endress+Hauser состоит в том, что peмонт может осуществляться только путем замены прибора.

13.1.2 Замена прибора

После замены прибора ранее сохраненные параметры можно скопировать на вновь установленный прибор.

После полной замены прибора параметры можно снова загрузить в систему прибора через интерфейс связи. Следует предварительно выгрузить данные в компьютер с помощью ПО FieldCare/DeviceCare.

13.2 Возврат

Требования, предъявляемые к безопасному возврату прибора, могут варьироваться в зависимости от типа прибора и национального законодательства.

- Подробнее см. на сайте: https://www.endress.com/support/return-material

 → Выберите регион.
- 2. При возврате прибора упаковывайте его таким образом, чтобы он был надежно защищен от внешних воздействий. Наибольшую степень защиты обеспечивает оригинальная упаковка.

13.3 Утилизация

X

Если этого требует Директива 2012/19 ЕС об отходах электрического и электронного оборудования (WEEE), изделия маркируются указанным символом, с тем чтобы свести к минимуму возможность утилизации WEEE как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.

14 Аксессуары

Аксессуары, выпускаемые в настоящее время для изделия, можно выбрать в конфигураторе выбранного продукта по адресу www.endress.com.

- 1. Выберите изделие с помощью фильтров и поля поиска.
- 2. Откройте страницу изделия.
- 3. Выберите раздел «Запчасти / Аксессуары.

14.1 Специальные принадлежности для прибора

14.1.1 Разъем М12

Разъем М12, прямой

- Материал:
 - Корпус: РА; соединительная гайка: нержавеющая сталь; уплотнение: EPDM
- Степень защиты (полная герметичность): IP69
- Код заказа: 71638191

Разъем М12, угловой

- Материал:
 - Корпус: РА; соединительная гайка: нержавеющая сталь; уплотнение: EPDM
- Степень защиты (полная герметичность): IP69
- Код заказа: 71638253

14.1.2 Кабели

Кабель 4 х 0,34 мм² (20 AWG) с разъемом M12, угловым (резьбовая вилка), длина 5 м (16 фут)

- Материал: корпус: TPU; соединительная гайка: цинковый сплав с химическим никелированием, литой под давлением; кабель: ПВХ
- Степень защиты (полная герметичность): IP68/69
- Код заказа: 52010285
- Цветовая кодировка проводов
 - 1 = BN = коричневый
 - 2 = WT = белый
 - 3 = BU = синий
 - 4 = BK = черный

14.1.3 Приварная шейка, технологический переходник и фланец

Подробную информацию см. в документе TIOO426F/OO/EN «Приварные адаптеры, технологические переходники и фланцы».

14.2 DeviceCare SFE100

Конфигурационный инструмент для полевых приборов с интерфейсом IO-Link, HART, PROFIBUS и FOUNDATION Fieldbus.

DeviceCare можно бесплатно загрузить на веб-сайте

www.software-products.endress.com. Чтобы загрузить приложение, необходимо зарегистрироваться на портале ПО компании Endress+Hauser.

👔 Техническое описание TI01134S

14.3 FieldCare SFE500

Инструментальное средство для управления парком приборов на основе технологии FDT.

С его помощью можно настраивать все интеллектуальные полевые приборы в системе и управлять ими. Использование информации о состоянии также является простым, но эффективным способом проверки состояния и функционирования приборов.

👔 Техническое описание TI00028S

14.4 Device Viewer

Все запасные части для измерительного прибора вместе с кодами заказа числятся на pecypce *Device Viewer* (www.endress.com/deviceviewer).

14.5 Field Xpert SMT70

Универсальный, высокоэффективный промышленный планшетный компьютер для настройки приборов во взрывоопасных зонах (зона 2) и невзрывоопасных зонах

Подробные сведения приведены в документе "Техническое описание" ТІО1342S

14.6 Field Xpert SMT77

Универсальный, высокоэффективный промышленный планшетный компьютер для настройки приборов во взрывоопасных зонах (зона 1)

👔 Подробные сведения приведены в документе "Техническое описание" TI01418S

14.7 Приложение SmartBlue

Мобильное приложение для простой настройки приборов на месте с помощью технологии беспроводной связи Bluetooth

15 Технические данные

15.1 Выход

15.1.1 Выходной сигнал

SIO

8/16 мА (SIO) с наложенным цифровым протоколом связи НАRT, 2-проводное подключение

Непрерывная работа

4 до 20 мА, пропорционально частоте колебаний, с наложенным цифровым протоколом связи HART, 2-проводное подключение

Для токового выхода предусмотрено три различных режима работы:

- 4,0 до 20,5 мА
- NAMUR NE 43: 3,8 до 20,5 мА (заводская настройка)
- Режим US: 3,9 до 20,5 мА

15.1.2 Аварийный сигнал для приборов с токовым выходом

Токовый выход

Сигнал при сбое в соответствии с рекомендацией NAMUR NE 43.

- Максимальный аварийный сигнал: можно настроить в диапазоне от 21,5 до 23 мА
- Минимальный аварийный сигнал: < 3,6 мА (заводская настройка)

15.1.3 Нагрузка

Для обеспечения достаточного напряжения на клеммах не должно быть превышено максимальное сопротивление нагрузки R_L (включая сопротивление провода) в зависимости от сетевого напряжения U источника питания.

- 1 Источник питания 12 до 30 В
- 2 R_{Lmax}, максимальное сопротивление нагрузки
- U Сетевое напряжение

Управление посредством портативного терминала или ПК с управляющей программой: учитывайте минимально допустимое сопротивление цепи связи (250 Ом).

15.1.4 Демпфирование

Демпфирование влияет на все непрерывные выходы. Демпфирование можно активировать следующими способами.

- С помощью Bluetooth, портативного терминала или ПК с управляющей программой, непрерывно от 0 до 999 с, с шагом 0,1 с
- Заводская настройка: 1 с (можно настроить от 0 до 999 с)

15.1.5 Данные по взрывозащищенному подключению

См. отдельную техническую документацию (указания по технике безопасности (XA)) на веб-сайте www.endress.com/download.

15.1.6 Данные протокола

Идентификатор производителя: 17(0x0011)

Идентификатор типа прибора: 0x11DF

Версия прибора:

1

Спецификация HART:

7.6

Версия DD:

1

Файлы описания прибора (DTM, DD)

Информация и файлы находятся в свободном доступе по следующим адресам:

www.endress.com

- На странице с информацией о приборе: Документы/ПО → Драйверы прибора
- www.fieldcommgroup.org

Нагрузка HART:

Мин. 250 Ом

За переменными прибора на заводе-изготовителе закрепляются следующие измеряемые значения:

Переменная прибора	Измеряемое значение
Первичная переменная (PV) ¹⁾	Определение предельного уровня ²⁾
Вторичная переменная (SV)	Частота датчика ³⁾
Третичное значение измерения (TV)	Состояние вилки 4)
Чертвертая переменная (QV)	Температура датчика

1) Переменная PV всегда относится к токовому выходу.

 Определение предельного уровня – это исходное состояние, которое зависит от состояния вибрационной вилки (покрыта/не покрыта средой) и функции обеспечения безопасности (MIN/ MAX)

- 3) Частота датчика это частота колебаний вилки
- 4) Состояние вилки описывает состояние вилки (Вилка покрыта/Вилка не покрыта)

Выбор переменных устройства HART

- Определение предельного уровня
- Частота датчика
- Состояние вилки
- Температура датчика
- Температура электроники

- Измеряемый ток³⁾
- Напряжение на клеммах 3)
- Не используется

15.2 Окружающая среда

15.2.1 Диапазон температуры окружающей среды

-40 до +85 °С (-40 до +185 °F)

При более высокой рабочей температуре допустимая температура окружающей среды снижается.

В приведенной ниже информации учитываются только функциональные аспекты. К сертифицированным исполнениям прибора могут применяться дополнительные ограничения.

🗉 19 Зависимость температуры окружающей среды Т_а от рабочей температуры Т_р

Р	T _p	T _a
P1	-40 °C (-40 °F)	+85 °C (+185 °F)
P2	+80 °C (+176 °F)	+85 °C (+185 °F)
P3	+150 °C (+302 °F)	+40 °C (+77 °F)
P4	+150 °C (+302 °F)	-40 °C (-40 °F)
Р5	-40 °C (-40 °F)	−40 °C (−40 °F)

15.2.2 Температура хранения

-40 до +85 °С (-40 до +185 °F)

15.2.3 Рабочая высота

До 5000 м (16404 фут) над уровнем моря

³⁾ Видимость зависит от опций заказа и настроек прибора

15.2.4 Климатический класс

Согласно стандарту IEC 60068-2-38, испытание Z/AD (относительная влажность 4 до 100 %).

15.2.5 Степень защиты

Испытание согласно стандартам IEC 60529, издание 2.2 2013-08/ DIN EN 60529:2014-09 DIN EN 60529:2014-09 и NEMA 250-2014

Для устанавливаемого соединительного кабеля M12: IP66/68/69, NEMA, тип 4X/6P

/IP68: (1,83 м столба H₂O в течение 24 ч))

15.2.6 Степень загрязнения

Степень загрязнения 2 согласно стандарту IEC/EN 61010-1

15.2.7 Вибростойкость

- Стохастический шум (случайная развертка) согласно DIN EN 60068-2-64, вариант 2/ IEC 60068-2-64, вариант 2
- Гарантирована для 5 до 2000 Гц: 1,25 (м/с²)²/Гц, ~ 5 г

15.2.8 Ударопрочность

- Стандарт на проведение испытаний: DIN EN 60068-2-27, вариант 2
- Ударопрочность: 30 г (18 мс) по всем трем осям

15.2.9 Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Максимальное отклонение под воздействием помех: < 0,5 %

Более подробные сведения приведены в Декларации соответствия требованиям ЕС.

Алфавитный указатель

Б Бозонасность проликта 8
Блокировка прибора, состояние
В
Возврат 43
Д Декларация соответствия
Диагностическое событие В программном обеспечении 37
Документ Назначение
3
Заводская табличка
И
Использование измерительных приборов Использование не по назначению 7 Пограничные ситуации
см. назначение История событий
К Код доступа
M
Маркировка СЕ
Н
Назначение 7 Назначение документа 5
Назначение полномочий доступа к параметрам Поступ иля записи 2.1
Доступ для чтения
Адаптация прибора к условиям технологического процесса
0
Область применения Остаточные риски 7
Отображаемые значения блокировки 30
Очистка 43 Очистка наружной поверхности 43
II Переменные HART

Подменю 40 Список событий 40 Поиске и устранении неисправностей 34 Принцип ремонта 43 Проверки после подключения 20
С Список событий
Т Техника безопасности на рабочем месте
У Утилизация
Ф Фильтрация журнала событий 41
Ч Чтение измеренных значений
Э Эксплуатационная безопасность 8
D DeviceCare
F FieldCare
Р РV (переменная HART)
S SV (переменная HART)
Т TV (переменная HART)

www.addresses.endress.com

