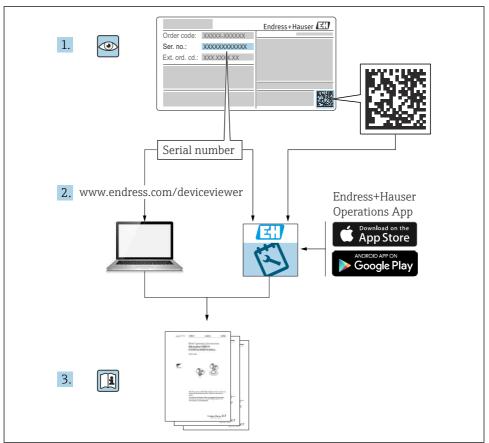
Краткое руководство по эксплуатации Micropilot FMR30B

Бесконтактный радарный уровнемер НАРТ


Ниже приведено краткое руководство по эксплуатации; оно не заменяет руководство по эксплуатации, относящееся к прибору.

Детальная информация по прибору содержится в руководстве по эксплуатации и прочих документах: Версии, доступные для всех приборов:

- Интернет: www.endress.com/deviceviewer
- Смартфон/планшет: Endress+Hauser Operations App

1 Сопутствующая документация

A0023555

2 Информация о настоящем документе

2.1 Назначение документа

В кратком руководстве по эксплуатации содержится наиболее важная информация от приемки оборудования до его ввода в эксплуатацию.

2.2 Символы

2.2.1 Символы техники безопасности

№ ОПАСНО

Данный символ предупреждает об опасной ситуации. Если допустить данную ситуацию, она приведет к тяжелой или смертельной травме.

№ ОСТОРОЖНО

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к тяжелой или смертельной травме.

№ ВНИМАНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Данный символ предупреждает о потенциально опасной ситуации. Если допустить данную ситуацию, она может привести к повреждению изделия или предметов, находящихся рядом с ним.

2.2.2 Специальные символы связи

Bluetooth®: 8

Беспроводная передача данных между устройствами на небольшом расстоянии.

2.2.3 Символы для различных типов информации

Разрешено: 🗸

Означает разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Означает запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 📵

Ссылка на страницу: 🖺

Серия шагов: 1., 2., 3.

Результат отдельного шага: 🛶

2.2.4 Символы на рисунках

Номера пунктов: 1, 2, 3 ...

Серия шагов: 1., 2., 3.

Виды: А, В, С, ...

2.3 Документация

Общие сведения о сопутствующей технической документации можно получить следующими способами.

- Программа Device Viewerwww.endress.com/deviceviewer: введите серийный номер с заводской таблички.
- Приложение Endress+Hauser Operations: введите серийный номер с заводской таблички или просканируйте матричный штрих-код на заводской табличке.

3 Основные указания по технике безопасности

3.1 Требования к работе персонала

Персонал должен соответствовать следующим требованиям:

- ► Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- ▶ Следовать инструкциям и соблюдать основные условия.

3.2 Назначение

Область применения и технологическая среда

Прибор для непрерывного бесконтактного измерения уровня жидкостей, паст, пульп и сыпучих материалов. Поскольку рабочая частота прибора составляет около 80 ГГц, максимальная пиковая мощность излучения – менее 1,5 мВт, а средняя выходная

мощность – менее 70 мкВт, прибор можно устанавливать снаружи закрытых металлических емкостей (например, над бассейнами или открытыми каналами). Работающий прибор полностью безопасен для людей и животных.

При соблюдении предельных значений, указанных в разделе "Технические характеристики", и условий, указанных в руководствах и дополнительной документации, измерительный прибор можно использовать только для выполнения следующих измерений:

- измеряемые переменные процесса: уровень, расстояние, мощность сигнала;
- рассчитываемые переменные процесса: объем или масса в резервуарах произвольной формы; расход через измерительные водосливы или желоба (рассчитывается на основании уровня с использованием функции линеаризации).

Чтобы поддерживать прибор в надлежащем состоянии во время работы, необходимо соблюдать следующие правила:

- используйте прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью;
- соблюдайте предельные значения, указанные в разделе "Технические характеристики".

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Избегайте механических повреждений.

► Не прикасайтесь к поверхностям прибора (например, для очистки) твердыми или заостренными предметами.

Пояснение по поводу сложных ситуаций

Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточные риски

За счет теплопередачи от выполняемого процесса, а также вследствие рассеивания мощности электронных компонентов корпус электроники и встроенные компоненты (например дисплей, главный модуль электроники и электронный модуль ввода / вывода) могут нагреться до 80 °C (176 °F). Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

▶ При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

3.3 Техника безопасности на рабочем месте

При работе с прибором необходимо соблюдать следующие правила:

- ▶ Пользуйтесь необходимыми средствами индивидуальной защиты в соответствии с национальными правилами.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

3.4 Эксплуатационная безопасность

Опасность получения травмы!

- Эксплуатируйте прибор только в том случае, если он находится в надлежащем техническом состоянии, а ошибки и неисправности отсутствуют.
- ▶ Оператор несет ответственность за исправность прибора.

Изменение конструкции прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность:

▶ Если изменение все же необходимо, обратитесь за консультацией к изготовителю.

Ремонт

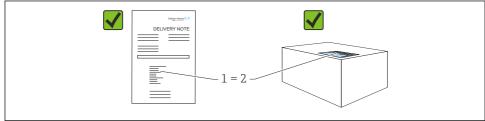
Для обеспечения постоянной эксплуатационной безопасности и надежности необходимо соблюдать следующие правила:

▶ Используйте только оригинальные принадлежности.

Взрывоопасная зона

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в сертификате (например, взрывозащита, безопасность оборудования, работающего под давлением):

- Информация на заводской табличке позволяет определить соответствие приобретенного прибора взрывоопасной зоне его монтажа.
- См. характеристики, указанные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего документа.


3.5 Безопасность изделия

Данный прибор был разработан и испытан в соответствии с современными стандартами эксплуатационной безопасности и в соответствии с передовой инженерной практикой. Прибор поставляется с завода в безопасном для эксплуатации состоянии.

Прибор отвечает основным требованиям техники безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает данное соответствие нанесением на прибор маркировки СЕ.

4 Приемка и идентификация изделия

4.1 Приемка

A0016870

Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли товар?
- Соответствует ли информация, указанная на заводской табличке, с данными заказа и накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (XA)?
- Если одно из этих условий не выполнено, обратитесь в торговую организацию компании-изготовителя.

4.2 Идентификация изделия

Возможны следующие варианты идентификации изделия:

- технические данные, указанные на заводской табличке;
- Код заказа с разбивкой функций прибора, указанный в транспортной накладной
- ввод серийного номера с заводской таблички в программу Device Viewer (www.endress.com/deviceviewer): будут отображены все сведения об измерительном приборе.

4.2.1 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору. Состав этой информации указан ниже:

- Данные изготовителя
- Номер заказа, расширенный код заказа, серийный номер
- Технические характеристики, степень защиты
- Версии программного обеспечения и аппаратной части
- Информация, связанная с сертификатами, ссылка на указания по технике безопасности (XA)
- Код DataMatrix (информация о приборе)

Сравните данные на заводской табличке с данными заказа.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните прибор в чистом и сухом помещении и примите меры по защите от ударных повреждений

Температура хранения

-40 до +80 °С (-40 до +176 °F)

4.3.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус или датчик могут получить повреждения или оторваться. Опасность получения травмы!

▶ Транспортируйте прибор до точки измерения в оригинальной упаковке или держа за технологическое соединение.

5 Монтаж

5.1 Требования к монтажу

5.1.1 Инструкции по монтажу

При монтаже:

используемый уплотнительный элемент должен иметь постоянную рабочую температуру, соответствующую максимальной температуре процесса.

- Приборы подходят для использования во влажных средах в соответствии с IEC/EN 61010-1
- Локальный дисплей можно адаптировать к условиям освещения (цветовая схема приведена в меню управления <a>в)
- Защитите корпус от ударов

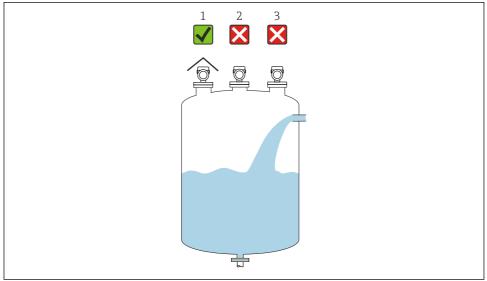
5.1.2 Диапазон температур окружающей среды

-40 до +80 °C (-40 до +176 °F)

При эксплуатации на открытых площадках в условиях интенсивного солнечного света:

- Устанавливайте прибор в затененном месте.
- Предотвратите воздействие на прибор прямых солнечных лучей, особенно в регионах с жарким климатом.
- Используйте защитный козырек от погодных явлений.

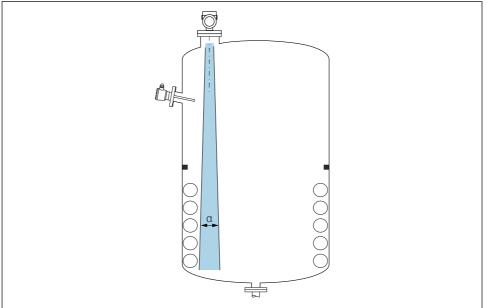
5.1.3 Рабочая высота


До 5000 м (16404 фут) над уровнем моря

5.1.4 Степень защиты

Испытание в соответствии с IEC 60529, редакция 2.2 2013-08/DIN EN 60529 2014-09 и NEMA 250-2014:

- IP66, NEMA тип 4X
- IP67


5.1.5 Место монтажа

A0055811

- Использование защитного козырька от погодных явлений; защита от прямых солнечных лучей или дождя
- 2 Установка не по центру: помехи могут привести к неправильному анализу сигналов
- 3 Не устанавливайте над потоком загружаемой среды

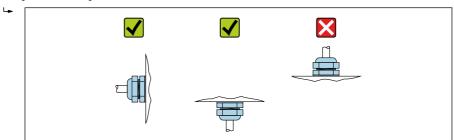
5.1.6 Внутренние элементы резервуара

A0031777

Избегайте установки внутренних устройств (датчиков предельного уровня, датчиков температуры, стержней, вакуумных колец, теплообменников, перегородок и т. п.) в зоне распространения сигнального луча. Учитывайте угол расхождения луча α .

5.1.7 Выравнивание осей антенны

См. руководство по эксплуатации.

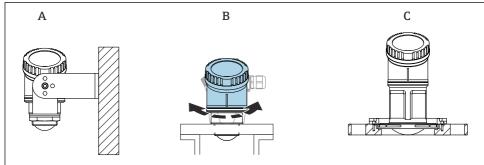

5.2 Общие инструкции

▲ ОСТОРОЖНО

Потеря степени защиты в случае распаковки прибора во влажной среде

▶ Устанавливайте прибор исключительно в сухом месте!

1. Смонтируйте прибор или поверните корпус так, чтобы кабельные вводы не были направлены вверх.



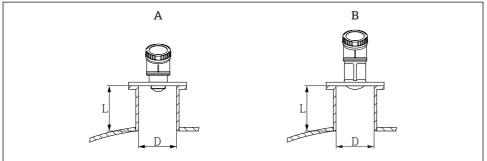
Δ0029263

- 2. В обязательном порядке плотно затягивайте крышку корпуса и кабельные вводы.
- 3. Затягивайте контргайки кабельных вводов.
- При прокладывании кабеля необходимо предусмотреть провисающую петлю для стока воды.

5.3 Монтаж прибора

5.3.1 Типы монтажа

A0055850


- 🖭 1 Монтаж на стене или в патрубке
- А Монтаж на стене с возможностью регулировки
- В Затяжка на технологическом соединении со стороны антенны, верхнюю часть корпуса можно поворачивать
- С Монтаж с накидным фланцем UNI

🛂 Учитывайте следующие особенности:

- При использовании в качестве бесконтактного уровнемера монтируйте прибор только в вертикальном положении.
- Для приборов с антенной 80 мм монтаж возможен только с накидным фланцем UNI.

5.3.2 Инструкции по монтажу

Внутренняя часть патрубка должна быть гладкой и не иметь выступающих краев и сварочных швов. По возможности закруглите край патрубка.

Δ0055854

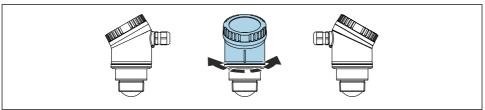
■ 2 Монтаж в патрубке

- А Антенна 40 мм (1,5 дюйм)
- В Антенна 80 мм (3 дюйм)

Максимальная длина патрубка L зависит от диаметра патрубка D.

Обратите внимание на ограничения по диаметру и длине патрубка.

Антенна 40 мм (1,5 дюйм)

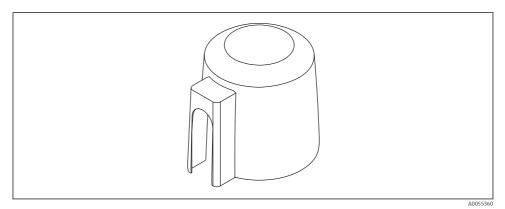

- D: мин. 40 мм (1,5 дюйм)
- L: макс. (D 30 мм (1,2 дюйм)) × 7,5

Антенна 80 мм (3 дюйм)

- D: мин. 80 мм (3 дюйм)
- L: макс. (D 50 мм (2 дюйм)) × 12

5.3.3 Поворот корпуса

- Простой монтаж благодаря оптимальному выравниванию корпуса
- Простота доступа к прибору при эксплуатации
- Оптимальная читаемость данных, отображаемых на локальном дисплее

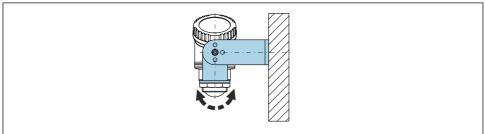


A0055932

5.3.4 Защитный козырек от погодных явлений

При использовании вне помещений рекомендуется применять защитный козырек от погодных явлений.

Защитный козырек от погодных явлений можно заказать в качестве принадлежностей или вместе с прибором, используя спецификацию "Принадлежности, входящие в комплект поставки".



🗷 3 Защитный козырек от погодных явлений

📭 Датчик не полностью покрывается защитным козырьком от погодных явлений.

5.3.5 Установка с монтажным кронштейном, регулируемая

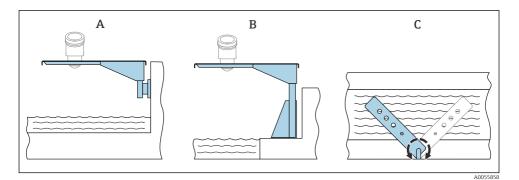
Монтажный кронштейн можно заказать в качестве принадлежностей или вместе с прибором, используя спецификацию "Принадлежности, входящие в комплект поставки".

A0055857

🗷 4 Установка с монтажным кронштейном, регулируемая

С помощью монтажного кронштейна расположите антенну перпендикулярно поверхности среды.

УВЕДОМЛЕНИЕ


Монтажный кронштейн не имеет проводящего соединения с корпусом преобразователя.

Возможно накопление электростатического заряда.

 Подсоедините монтажный кронштейн к локальной системе выравнивания потенциалов.

5.3.6 Монтаж на поворотной консоли

Консоль, настенный кронштейн и монтажную раму можно приобрести в качестве принадлежностей.

🗷 5 Монтаж на поворотной консоли

- А Консоль с настенным кронштейном (вид сбоку)
- В Консоль с монтажной рамой (вид сбоку)
- С Консоль можно поворачивать, например для того, чтобы поместить прибор над центром желоба (вид сверху)

УВЕДОМЛЕНИЕ

Монтажный кронштейн не имеет проводящего соединения с корпусом преобразователя.

Возможно накопление электростатического заряда.

 Подсоедините монтажный кронштейн к локальной системе выравнивания потенциалов.

5.4 Проверка после монтажа

 Не поврежден ли прибор (внешний осмотр)

- □ Соответствуют ли предъявляемым требованиям идентификационный номер и маркировка точки измерения (внешний осмотр)?
- □ Прибор защищен от воздействия осадков и прямых солнечных лучей?
- □ Надежно ли закреплен прибор?
- $\ \square$ Соответствует ли прибор техническим параметрам точки измерения? Примеры приведены ниже:

Рабочая температура
Рабочее давление
Температура окружающей среды
Диапазон измерений

6 Электрическое подключение

6.1 Подключение прибора

6.1.1 Выравнивание потенциалов

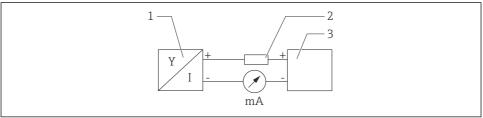
Никаких специальных мер по выравниванию потенциалов не требуется.

6.1.2 Сетевое напряжение

12 до 30 В пост. тока на блоке питания постоянного тока

Блок питания должен иметь сертификат безопасности (например, PELV, SELV, класс 2) и соответствовать определенным спецификациям протокола.

В системе предусмотрены схемы безопасности для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.


6.1.3 Потребляемая мощность

- Невзрывоопасная зона: Чтобы соответствовать требованиям безопасности прибора в соответствии со стандартом МЭК/EN 61010, установка должна обеспечивать ограничение максимального тока до 500 мА.
- Взрывоопасная зона: Максимальный ток ограничен уровнем Ii = 100 мА в блоке питания преобразователя, если прибор используется в искробезопасной цепи (Ex ia).

6.1.4 Подключение прибора

Функциональная схема 4 до 20 мА HART

Подключение прибора с интерфейсом связи HART, источником питания и индикатором 4 до $20~\mathrm{mA}$

- € 6 Функциональная схема подключения HART
- 1 Прибор с интерфейсом связи HART
- 2 Резистор HART
- 3 Источник питания
- В случае использования источника питания с малым импедансом в сигнальной цепи необходимо устанавливать резистор связи HART сопротивлением 250 Ом.

Падение напряжения, которое следует учитывать:

Не более 6 В для коммуникационного резистора 250 Ом

Функциональная схема прибора с интерфейсом НАРТ, подключение только с индикатором RIA15 без управления, без резистора связи

Индикатор RIA15 в раздельном исполнении можно заказать вместе с прибором.

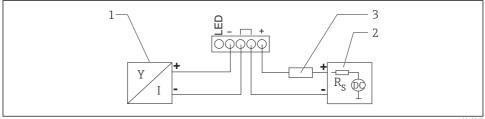
Также можно заказать отдельно в качестве принадлежностей, подробнее см. техническое описание ТІО1043К и руководство по эксплуатации ВАО1170К

Назначение клемм RIA15

Положительное подключение, измерение тока

Отрицательное подключение, измерение тока (без подсветки)

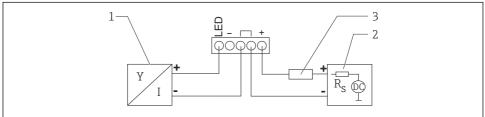
- Светодиод
 - Отрицательное подключение, измерение тока (с подсветкой)


Рабочее заземление: клемма в корпусе

Индикатор сигналов RIA15 получает питание по токовой петле и не требует внешнего источника питания.

Падение напряжения, которое следует учитывать:

- ≤1 В в стандартном исполнении со связью 4 до 20 мА;
- ≤1.9 В со связью по протоколу НАРТ:
- дополнительные 2.9 В. если используется подсветка дисплея.


Подключение прибора с интерфейсом HART и индикатора RIA15 без подсветки

A001956

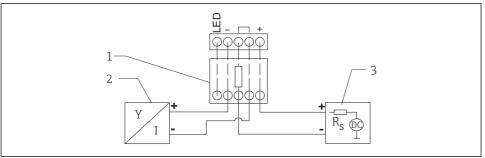
- Функциональная схема прибора с интерфейсом HART и индикатором сигналов RIA15 без подсветки
- 1 Прибор с интерфейсом связи HART
- 2 Источник питания
- 3 Резистор HART

Подключение прибора с интерфейсом HART и индикатора RIA15 с подсветкой

A0019568

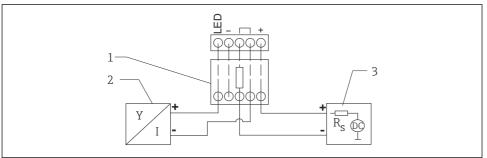
- Функциональная схема прибора с интерфейсом HART и индикатором сигналов RIA15 с подсветкой
- 1 Прибор с интерфейсом связи HART
- 2. Источник питания
- 3 Резистор HART

Функциональная схема прибора с интерфейсом HART, индикатором RIA15 с управлением и резистором связи



Падение напряжения, которое следует учитывать: макс. 7 В

Также можно заказать отдельно в качестве принадлежностей, подробнее см. техническое описание TI01043K и руководство по эксплуатации BA01170K


Подключение модуля резистора связи HART и индикатора RIA15 без подсветки

Δ002083

- Функциональная схема прибора с интерфейсом HART, индикатора RIA15 без подсветки и модуля резистора связи HART
- 1 Модуль резистора связи HART
- 2 Прибор с интерфейсом связи HART
- 3 Источник питания

Подключение модуля резистора связи HART и индикатора RIA15 с подсветкой

A0020840

- Функциональная схема прибора с интерфейсом НАRT, индикатора RIA15 с подсветкой и модуля резистора связи НАRT
- 1 Модуль резистора связи HART
- 2 Прибор с интерфейсом связи HART
- 3 Источник питания

6.1.5 Технические характеристики кабелей

Номинальная площадь поперечного сечения

0,5 до 2,5 мм² (20 до 13 AWG)

Наружный диаметр кабеля

Ø5 до 10 мм (0,2 до 0,38 дюйм)

6.1.6 Защита от перенапряжения

Прибор соответствует производственному стандарту IEC/DIN EN 61326-1 (таблица 2 "Промышленная среда"). В зависимости от типа соединения (источник питания постоянного тока, входная линия, выходная линия) используются различные уровни испытаний для предотвращения переходных перенапряжений (IEC/DIN EN 61000-4-5 Избыточное напряжение) в соответствии со стандартом IEC/DIN EN 61326-1: уровень испытаний для линий питания постоянного тока и линий ввода-вывода: трос на заземление 1 000 В.

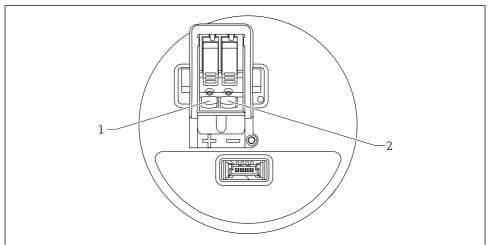
Категория перенапряжения

В соответствии с IEC/DIN EN 61010-1 прибор предназначен для использования в сетях с категорией защиты от перенапряжения II.

6.1.7 Подключение проводки

▲ ОСТОРОЖНО

Может быть подключено сетевое напряжение!


Опасность поражения электрическим током и (или) взрыва!

- ► Если прибор используется во взрывоопасной зоне, необходимо обеспечить его соответствие национальным стандартам и требованиям, приведенным в документации по технике безопасности (XA). Необходимо использовать штатные кабельные уплотнения.
- Сетевое напряжение должно соответствовать техническим требованиям, указанным на заводской табличке.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.
- ▶ Для прибора должен быть предусмотрен автоматический выключатель в соответствии со стандартом IEC/EN 61010.
- ▶ Кабели должны быть надлежащим образом изолированы с учетом сетевого напряжения и категории перенапряжения.
- Соединительные кабели должны обеспечивать достаточную температурную стабильность с учетом температуры окружающей среды.
- ▶ Эксплуатируйте измерительный прибор только с закрытыми крышками.

Подключите прибор в следующем порядке:

- 1. Открутите крышку (щелчок при открытии).
- 2. Пропустите кабели сквозь кабельные уплотнения или кабельные вводы.
- 3. Подключите кабель.
- 4. Затяните кабельные уплотнения или кабельные вводы, чтобы обеспечить их герметичность.
- 5. Плотно затяните крышку клеммного отсека (щелчок при закрытии).

6.1.8 Назначение клемм

ADDEEDAD

■ 11 Назначение клемм

- Положительная клемма
- 2 Отрицательная клемма

6.2 Обеспечение требуемой степени защиты

Испытание в соответствии с IEC 60529, редакция $2.2\ 2013$ -08/DIN EN 60529 2014-09 и NEMA 250-2014:

- IP66. NEMA тип 4X
- IP67

6.3 Проверка после подключения

- □ Не поврежден ли прибор или кабель (внешний осмотр)?
- □ Используемый кабель соответствует техническим требованиям?
- □ Подключенный кабель не натянут?
- □ Правильно ли установлено резьбовое соединение?
- \square Сетевое напряжение соответствует техническим требованиям, указанным на заводской табличке?
- □ Нет обратной полярности, соблюдено ли назначение клемм?
- □ При наличии электропитания работает ли прибор и отображается ли информация на экране?

7 Опции управления

См. руководство по эксплуатации.

8 Ввод в эксплуатацию

8.1 Предварительные условия

▲ ОСТОРОЖНО

Настройки на токовом выходе могут привести к условиям, связанным с безопасностью (например, переполнение продукта)!

- ▶ Проверка настроек токового выхода.
- ▶ Настройка токового выхода зависит от настройки параметра параметр Назначить РV.

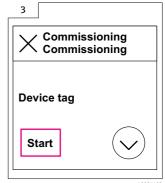
8.2 Монтаж и функциональная проверка

Перед вводом измерительной точки в эксплуатацию убедитесь в том, что были выполнены проверки после монтажа и подключения.

- 🖺 Проверка после монтажа
- 🖺 Проверка после подключения


8.3 Обзор вариантов ввода в эксплуатацию

- Ввод в эксплуатацию с помощью локального дисплея
- Ввод в эксплуатацию с помощью приложения SmartBlue
- Ввод в эксплуатацию с помощью FieldCare / DeviceCare / Field Xpert
- Ввод в эксплуатацию с помощью дополнительных управляющих программ (AMS, PDM и т. д.)


8.4 Ввод в эксплуатацию с помощью локального дисплея

При необходимости разблокируйте управление (см. 🗎 раздел "Блокировка или разблокировка локального дисплея" > "Разблокировка").

Запустите мастер Ввод в работу.

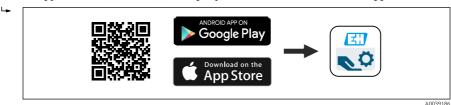
- Нажмите на значок меню.
- Выберите меню Руководство.
- Запустите мастер Ввод в работу.
- 🃭 Стандартная настройка технологической среды "Жидкость".

Мастер ввода в эксплуатацию не запрашивает технологическую среду. Если прибор используется в твердых средах, необходимо изменить среду с помощью локального дисплея или приложения SmartBlue.

A0056191

Навигация: Применение → Сенсор → Базовые настройки → Тип продукта

Настройка измерения расхода невозможна с помощью локального дисплея; возможна настройка только посредством цифровой связи (Bluetooth и HART)


8.5 Ввод в эксплуатацию с помощью приложения SmartBlue

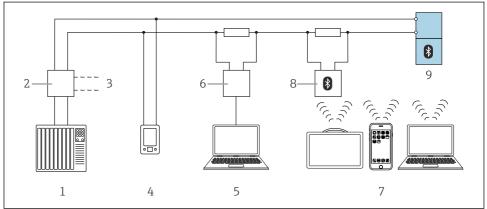
8.5.1 Требования к прибору

Ввод в эксплуатацию с помощью приложения SmartBlue возможен только в том случае, если прибор оснащен технологией Bluetooth (модуль Bluetooth установлен на заводе перед поставкой или добавлен позже).

8.5.2 Приложение SmartBlue

1. Отсканируйте QR-код или введите строку SmartBlue в поле поиска в App Store.

🗷 12 Ссылка для загрузки


2. Запустите SmartBlue.

- 3. Выберите прибор в отображаемом списке активных устройств.
- 4. Введите данные для входа в систему.
 - Имя пользователя: admin
 Пароль: серийный номер прибора
- 5. Чтобы получить дополнительные сведения, коснитесь того или иного значка.
- 🚹 После первого входа в систему измените пароль!

8.6 Ввод в эксплуатацию с помощью ПО FieldCare / DeviceCare

- 1. Загрузите файл DTM: http://www.endress.com/download -> Device Driver -> Device Type Manager (DTM)
- 2. Обновите каталог.
- 3. Нажмите меню **Руководство** и запустите мастер **Ввод в работу**.

8.6.1 Подключение через FieldCare, DeviceCare и FieldXpert

A0044334

🛮 13 Варианты дистанционного управления по протоколу HART

- 1 ПЛК (программируемый логический контроллер)
- 2 Блок питания преобразователя, например, RN42
- 3 Подключение к приемопередающему устройству Commubox FXA195 и AMS $Trex^{TM}$
- 4 Приемопередающее устройство AMS $Trex^{TM}$
- 5 Компьютер с управляющей программой (например, DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SMT70/SMT77, смартфон или компьютер с управляющей программой (например, DeviceCare/FieldCare, AMS Device View, SIMATIC PDM)
- 8 Bluetooth-модем с соединительным кабелем (например, VIATOR)
- 9 Преобразователь

8.7 Ввод в эксплуатацию с помощью дополнительных управляющих программ (AMS, PDM и т. д.)

Загрузите драйверы для конкретных приборов: https://www.endress.com/en/downloads Для получения более подробной информации см. справку по соответствующей управляющей программе.

8.8 Примечания к мастер "Ввод в работу"

Мастер **Ввод в работу** обеспечивает простой ввод в эксплуатацию под контролем пользователя.

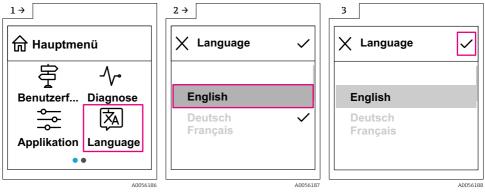
- 1. После запуска мастер **Ввод в работу** введите соответствующее значение в каждом параметре или выберите соответствующую опцию. Данные значения будут записаны непосредственно в память прибора.
- 2. Нажмите >, чтобы перейти на следующую страницу.
- 3. После заполнения всех страниц нажмите кнопку ОК, чтобы закрыть окно мастер **Ввод в работу**.
- Если работа мастер **Ввод в работу** прекращена до настройки всех необходимых параметров, то прибор может перейти в неопределенное состояние. В такой ситуации произойдет возврат прибора к заводским настройкам по умолчанию.
- Стандартная настройка технологической среды "Жидкость".

 Мастер ввода в эксплуатацию не запрашивает технологическую среду. Если прибор используется в твердых средах, необходимо изменить среду с помощью локального дисплея или приложения SmartBlue.
 - Навигация: Применение → Сенсор → Базовые настройки → Тип продукта
- Настройка измерения расхода невозможна с помощью локального дисплея; возможна настройка только посредством цифровой связи (Bluetooth и HART)

8.9 Настройка адреса прибора с помощью программного обеспечения

См. параметр "Адрес HART"

Ввод адреса для обмена данными по протоколу HART.


- ullet Руководство ightarrow Ввод в работу ightarrow Адрес HART
- Применение → Выход HART → Конфигурация → Адрес HART
- Адрес HART по умолчанию: 0

8.10 Настройка языка управления

8.10.1 Локальный дисплей

Настройка языка управления

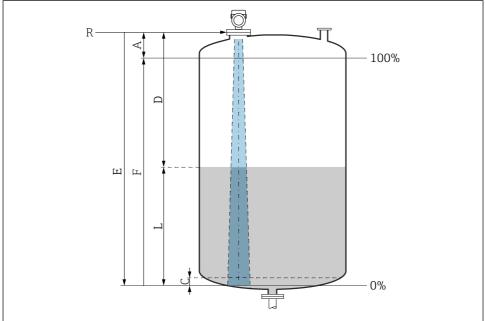
- Прежде чем вы сможете установить рабочий язык, необходимо сначала разблокировать локальный дисплей:
- ▶ Откройте меню управления.

► Нажмите кнопку Language.

8.10.2 Управляющая программа

Установите язык отображения

Система → Дисплей → Language

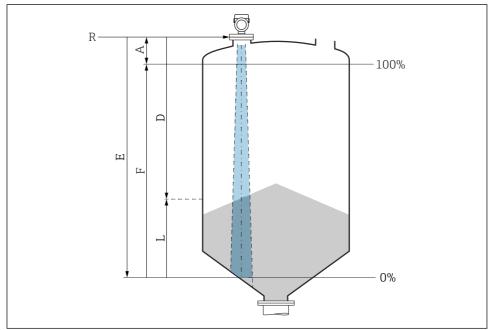

8.11 Настройка прибора

📭 Рекомендуется ввод в эксплуатацию с помощью мастера ввода в эксплуатацию.

См. 🗎 раздел "Ввод в эксплуатацию с помощью приложения SmartBlue"

См. 🖺 раздел "Ввод в эксплуатацию с помощью FieldCare / DeviceCare"

8.11.1 Измерение уровня в жидкостях


A0016933

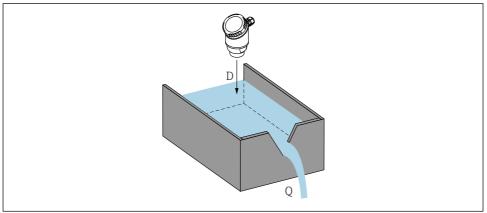
🛮 14 Параметры конфигурации для измерения уровня жидких сред

- R Контрольная точка измерения
- A Длина антенны + 10 мм (0,4 дюйм)
- C 50 до 80 мм (1,97 до 3,15 дюйм); среда ɛr < 2
- **D** Расстояние
- L Уровень
- E Параметр "Калибровка пустой емкости" (= 0 %)
- F Параметр "Калибровка заполненной емкости" (= 100 %)

В случае сред с низкой диэлектрической проницаемостью, ${
m cr} < 2$, дно резервуара может быть видно сквозь среду при очень низких уровнях (ниже уровня C). В этом участке диапазона точность измерения ухудшается. Если это нежелательно, рекомендуется разместить нулевую точку на расстоянии C над дном резервуара для этих применений (см. рисунок).

8.11.2 Измерение уровня сыпучих сред

A0016934

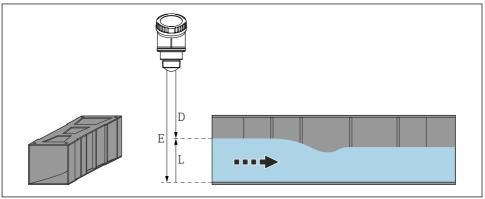

🗷 15 Параметры конфигурации для измерения уровня сыпучих сред

- R Контрольная точка измерения
- А Длина антенны + 10 мм (0,4 дюйм)
- D Расстояние
- L Уровень
- Е Параметр "Калибровка пустой емкости" (= 0%)
- F Параметр "Калибровка заполненной емкости" (= 100%)

8.11.3 Настройка измерения расхода с помощью программного обеспечения

Условия монтажа для измерения расхода

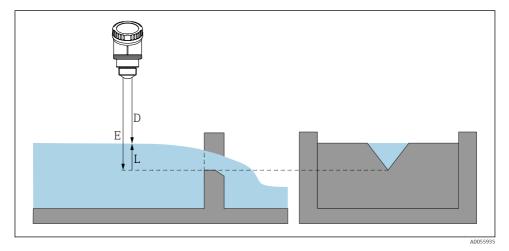
- Для измерения расхода необходим канал или водослив.
- Расположите датчик в середине канала или водослива.
- Сориентируйте датчик перпендикулярно поверхности воды.
- Для защиты прибора от солнечных лучей и дождя используйте защитный козырек от погодных явлений.



Δ0055933

🗷 16 Параметры конфигурации для измерения расхода в жидкостях

- D Расстояние
- Q Расход при измерении в водосливах или каналах (рассчитывается на основе уровня путем линеаризации)


Настройка измерения расхода

Δ005593

🗷 17 Пример: желоб Khafagi-Venturi

- Е Калибровка пустой емкости (нулевая точка)
- D Расстояние
- L Уровень

🛮 18 Пример: водослив треугольного сечения

- Е Калибровка пустой емкости (нулевая точка)
- **D** Расстояние
- L Уровень
- Настройка измерения расхода невозможна с помощью локального дисплея; возможна настройка только посредством цифровой связи (Bluetooth и HART)

8.11.4 Настройка параметр "Частотный режим"

Параметр **Частотный режим** используется для определения настроек радиолокационных сигналов для конкретной страны или региона.

Параметр Частотный режим должен быть настроен в начале ввода в эксплуатацию в меню управления с помощью соответствующей управляющей программы.

Применение ightarrow Сенсор ightarrow Расширенные настройки ightarrow Частотный режим

Рабочая частота 80 ГГц:

- Опция Режим 2: континентальная Европа, США, Австралия, Новая Зеландия, Канада, Бразилия, Япония, Южная Корея, Тайвань, Таиланд
- Опция Режим 3: Россия. Казахстан
- Опция Режим 4: Мексика
- Опция Режим 5: Индия, Малайзия, Южная Африка, Индонезия
- Метрологические характеристики прибора могут отличаться в зависимости от установленного режима. Указанные метрологические характеристики относятся к прибору, поставляемому заказчику (опция **Режим 2**).

8.11.5 Подменю "Моделирование"

Переменные процесса и диагностические события могут быть смоделированы с помощью подменю **Моделирование**.

Навигация: Диагностика → Моделирование

В процессе моделирования переключающего или токового выхода прибор выдает предупреждающее сообщение на протяжении всего времени моделирования.

8.12 Защита параметров настройки от несанкционированного доступа

8.12.1 Программное блокирование и разблокирование

Блокировка с помощью пароля в приложении FieldCare/DeviceCare/SmartBlue

Доступ к настройке параметров прибора можно заблокировать, назначив пароль. Когда прибор поставляется с завода, для уровня доступа пользователя устанавливается значение опция **Техническое обслуживание**. Параметры прибора могут быть полностью настроены с помощью уровня доступа пользователя опция **Техническое обслуживание**. Впоследствии доступ к настройке прибора можно заблокировать, назначив пароль. В результате этой блокировки опция **Техническое обслуживание** переключается на опция **Оператор**. Доступ к настройке открывается при вводе пароля.

Путь меню к пункту определения пароля:

Меню Система подменю Администрирование пользователей

Уровень доступа пользователя изменяется с опция **Техническое обслуживание** на опция **Оператор** по такому пути меню:

Система → Администрирование пользователей

Отмена процедуры блокировки с помощью локального дисплея//DeviceCare/FieldCareSmartBlue

После ввода пароля вы можете включить конфигурацию параметров прибора как опция **Оператор** с паролем. При этом устанавливается уровень доступа опция **Техническое обслуживание**.

При необходимости пароль можно удалить в Администрирование пользователей: Система → Администрирование пользователей

www.addresses.endress.com