
BA02034F/00/EN/02.24-00 71673384 2024-09-05 Valid as of version V 01.00.zz

Operating Instructions Solicap M FTI56

Capacitance Point level switch for bulk solids

Related documents

Table of contents

1	About this document 5
1.1 1.2	Document function5Symbols51.2.1Safety symbols51.2.2Electrical symbols51.2.3Tool symbols51.2.4Symbols for certain types ofinformation and examine6
1.3	information and graphics
2	Basic safety instructions
2.1 2.2 2.3 2.4 2.5	Requirements for the personnel8Intended use8Workplace safety8Operational safety82.4.1Ex-areaProduct safety8
	5
3	Incoming acceptance and product
3.1	identification
3.2	Incoming acceptance9Product identification93.2.1Nameplate3.2.2Manufacturer address9
3.3	Storage and transport
4	Mounting 10
4.1	Mounting requirements104.1.1General notes and precautions104.1.2Mounting the sensor114.1.3Range of sensor lengths154.1.4Rope shortening154.1.5Measuring conditions164.1.6Installation instructions17
4.2	Probe with separate housing194.2.1Extension heights: separate housing194.2.2Wall bracket204.2.3Wall mounting214.2.4Pipe mounting214.2.5Shortening the connecting cable22
4.3	Post-installation check
5	Electrical connection
5.1	Connecting requirements265.1.1Potential equalization26
	5.1.2 Cable specification 26 5.1.3 Connector 26 5.1.4 Cable entry 27

5.3	Connec 5.3.1 5.3.2 5.3.3 5.3.4	ting the measuring device 2-wire AC electronic insert FEI51 DC PNP electronic insert FEI52 3-wire electronic insert FEI53 AC and DC with relay output	28 28 29 30		
		electronic insert FEI54			
	5.3.5	SIL2 / SIL3 electronic insert FEI55	33		
	5.3.6	PFM electronic insert FEI57S	34		
5.4	5.3.7 Post-co	NAMUR electronic insert FEI58 nnection check	35 36		
	•		0.7		
6	-	ition options	37		
6.1		interface and display elements for	27		
6.2		FEI52, FEI54, FEI55	37		
0.2		FEI57S	38		
6.3		interface and display elements for	50		
0.5			39		
7	Comn	nissioning	41		
7.1	Installa	tion and function check	41		
7.2		ssioning the electronic inserts FEI51,			
	FEI52,	FEI54 and FEI55	41		
	7.2.1	Setting the measuring range	41		
	7.2.2	Carrying out empty calibration	42		
	7.2.3	Carrying out full calibration	43		
	7.2.4	Carrying out empty and full			
	7 2 5	calibration	44		
	7.2.5	Reset: Calibration and switch-point	46		
	7.2.6	adjustment	40 47		
	7.2.0	Configuring two-point control and	47		
	1.4.7	buildup mode	48		
	7.2.8	T Setting the switching delay	50		
	7.2.9	 Activating the self-test	51		
	7.2.10	Setting the MIN, MAX and SIL fail-			
		safe mode	53		
	7.2.11	Restoring factory settings	57		
	7.2.12	Ħ Upload and download sensor DAT			
		(EEPROM)	58		
	7.2.13	Output signals	60		
7.3	Commissioning with electronic inserts FEI53				
		7S	61		
	7.3.1	Setting the alarm response if the	()		
	7 7 7	measuring range is exceeded	62		
	7.3.2 7.3.3	Setting the measuring range	62 63		
7.4		Output signals	05		
7.1	FEI58.		63		
	7.4.1	Function keys A, B, C	64		
	7.4.2	Performing calibration	64		
	7.4.3	Setting the switch point adjustment	66		
	7.4.4	Setting the switching delay	67		
	7.4.5	MIN and MAX fail-save mode	67		

	7.4.6 Display calibration situation 68			
	7.4.7 Displaying the diagnostic code 68			
	7.4.8 Test key C 68			
	7.4.9 Output signals			
8	Diagnostics and troubleshooting 7			
8.1	Activating fault diagnostics FEI51, FEI52,			
0.2	FEI54 and FEI55 70 Feurly discussion 72			
8.2 8.3	Fault diagnostics FEI53 and FEI57S72Activating fault diagnostics FEI5872			
0.5 8.4	Firmware history			
	5			
9	Maintenance 75			
9.1	External cleaning			
9.2 9.3	Cleaning the probe75Seals75			
9.5 9.4	Seals75Endress+Hauser services75			
J.1				
10	Repair			
10.1	General notes			
10.2	Spare parts			
10.3	Repairing Ex-certified devices			
10.4	Replacement 77			
10.5	Return 77 Disposal 77			
10.6	Disposal			
	10.6.2 Disposing of the measuring device 77			
11	Accessories			
11 11.1				
11.1	Protective cover78Seal set for stainless steel housing78Surge arresters78			
11.1 11.2	Protective cover78Seal set for stainless steel housing78Surge arresters7811.3.1HAW56278			
11.1 11.2 11.3	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78			
11.1 11.2	Protective cover78Seal set for stainless steel housing78Surge arresters7811.3.1HAW56278			
11.1 11.2 11.3	Protective cover78Seal set for stainless steel housing78Surge arresters7811.3.1 HAW5627811.3.2 HAW56978Technical information78Technical data79			
11.1 11.2 11.3 11.4	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79			
11.1 11.2 11.3 11.4 12 12.1	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79			
11.1 11.2 11.3 11.4 12	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 Output 79			
11.1 11.2 11.3 11.4 12 12.1	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79			
11.1 11.2 11.3 11.4 12 12.1	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79			
11.1 11.2 11.3 11.4 12 12.1	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79			
11.1 11.2 11.3 11.4 12 12.1	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 Operating conditions: Environment 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 0.2.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80 12.4.2 Climate class 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 0utput 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80 12.4.2 Climate class 80 12.4.3 Vibration resistance 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 0utput 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80 12.4.2 Climate class 80 12.4.3 Vibration resistance 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 I2.1.1 Measuring range 79 Output 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80 12.4.2 Climate class 80 12.4.3 Vibration resistance 80 12.4.4 Shock resistance 80 12.4.5 Cleaning 80			
11.1 11.2 11.3 11.4 12 12.1 12.2	Protective cover 78 Seal set for stainless steel housing 78 Surge arresters 78 11.3.1 HAW562 78 11.3.2 HAW569 78 Technical information 78 Input 79 12.1.1 Measuring range 79 0utput 79 12.2.1 Switch behavior 79 12.2.2 Switch-on behaviour 79 12.2.3 Fail-safe mode 79 12.2.4 Galvanic isolation 80 Performance characteristics 80 12.3.1 Ambient temperature effect 80 12.4.1 Ambient temperature range 80 12.4.2 Climate class 80 12.4.3 Vibration resistance 80			

12.5	Operating conditions: Process		82
	12.5.1	Process temperature range	82
	12.5.2	Process pressure and temperature	
		derating	83
	12.5.3	Temperature-derating separate	
		housing	84
Index	x		86

1 About this document

1.1 Document function

These Operating Instructions contain all the information required in the various life cycle phases of the device: from product identification, incoming acceptance and storage, to installation, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

1.2 Symbols

1.2.1 Safety symbols

DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

WARNING

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

ACAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

\sim

Alternating current

\sim

Direct current and alternating current

Direct current

Ŧ

Ground connection

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.

Protective earth (PE)

Ground terminals that must be connected to ground prior to establishing any other connections.

The ground terminals are located on the interior and exterior of the device:

- Interior ground terminal: protective earth is connected to the mains supply.
- Exterior ground terminal: device is connected to the plant grounding system.

1.2.3 Tool symbols

● ✓
Phillips head screwdriver

0

Flat blade screwdriver

0

Torx screwdriver

⊖ ∉ Allen key

ダ Open-ended wrench

1.2.4 Symbols for certain types of information and graphics

Permitted

Procedures, processes or actions that are permitted

✓ ✓ Preferred

Procedures, processes or actions that are preferred

🔀 Forbidden

Procedures, processes or actions that are forbidden

Tip Indicates additional information

Reference to documentation

Reference to page

Reference to graphic

Notice or individual step to be observed

1., 2., 3.

Series of steps

Result of a step

?

Help in the event of a problem

۲

Visual inspection

Operation via operating tool

Write-protected parameter

1, 2, 3, ... Item numbers

A, B, C, ... Views

Hazardous area Indicates the hazardous area

X Safe area (non-hazardous area) Indicates the non-hazardous area

 $\underline{\Lambda} \rightarrow \square$ Safety instructions Observe the safety instructions contained in the associated Operating Instructions

Temperature resistance of the connection cables

Specifies the minimum value of the temperature resistance of the connection cables

LED not lit

ED lit

×.

LED flashes

1.3 Documentation

All available documents can be downloaded using:

- the serial number of the device (see cover page for description) or
- the data matrix code of the device (see cover page for description) or
- the "Downloads" area of the website www.endress.com

1.3.1 Supplementary device-dependent documentation

Additional documents are supplied depending on the device version ordered: Always comply strictly with the instructions in the supplementary documentation. The supplementary documentation is an integral part of the device documentation.

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel must fulfill the following requirements to carry out the necessary tasks:

- Are trained and qualified to perform specific functions and tasks.
- ► Are authorized by the plant owner or operator to perform specific tasks.
- Are familiar with federal or national regulations.
- ► Have read and understood the instructions in the manual and supplementary documentation.
- ► They follow instructions and comply with conditions.

2.2 Intended use

The Solicap M FTI56 is a compact point level switch devices for capacitive level limit detection in bulk solids.

2.3 Workplace safety

For work on and with the device:

• Wear the required protective equipment according to federal or national regulations.

2.4 Operational safety

When performing configuration, testing, and maintenance work on the device, alternative supervisory measures must be taken to guarantee the operational safety and process safety.

2.4.1 Ex-area

When using the measuring system in Ex-areas, the appropriate national standards and regulations must be observed. Separate Ex-documentation, which constitutes an integral part of this documentation, is supplied with the device. The installation procedures, connection data and safety instructions it contains must be observed.

- Make sure that the technical staff has adequate training.
- The special measuring and safety-related requirements for the measuring points must be observed.

2.5 Product safety

This measuring device is designed following good engineering practice to meet state-ofthe-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It is compliant with the EC directives listed in the device-specific EC Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

3 Incoming acceptance and product identification

3.1 Incoming acceptance

Check whether the packaging or content is damaged. Check that the goods delivered are complete and compare the scope of delivery with the information in your order.

3.2 Product identification

3.2.1 Nameplate

Different nameplates are used depending on the device version.

The nameplates contain the following information:

- Manufacturer name and device name
- Address of the certificate holder and country of manufacture
- Order code and serial number
- Technical data
- Approval-specific information

Compare the data on the nameplate with your order.

3.2.2 Manufacturer address

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany Place of manufacture: See nameplate.

3.3 Storage and transport

For storage and transportation, pack the device to protect it against impact. The original packing offers the best protection for this. The permitted storage temperature is -50 to +85 °C (-58 to +185 °F).

4 Mounting

4.1 Mounting requirements

4.1.1 General notes and precautions

NOTICE

Filling the silo.

• The filling stream must not be directed onto the probe.

NOTICE

Angle of material flow.

► Take care to the expected angle of the material flow and the outlet funnel when determining the mounting location or probe length.

NOTICE

Distance between probes.

▶ The minimum distance of 500 mm (19.7 in) between the probes must be observed.

NOTICE

Threaded coupling for mounting.

The threaded coupling must be as short as possible. Condensation or product residue can occur in a long threaded coupling and interfere with the correct operation of the probe.

NOTICE

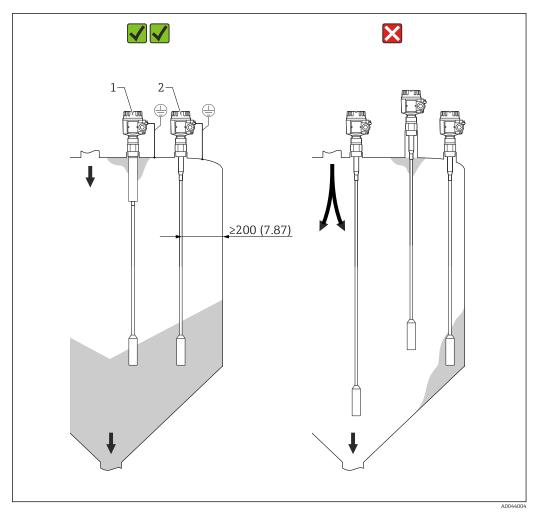
Heat insulation

- Insulate the external silo wall to avoid exceeding the permitted temperature of the Solicap M housing.
- Insulate the silo wall to prevent the condensation and reduce buildup in the threaded coupling area.

- 1 Mounting examples. Unit of measurement mm (in)
- a Angle of the slope
- 1 FTI55
- 2 FTI56
- 3 Distance from the loading point
- 4 Heat insulation

4.1.2 Mounting the sensor

NOTICE


Mouting the probe rope in the loading curtain area can cause an incorrect device operation!

• Mount the probe away from the loading curtain.

NOTICE

The probe rope cannot touch the metal container wall!

• Make sure that the probe rope is insulated from the metal container wall.

Mounting examples. Unit of measurement mm (in)

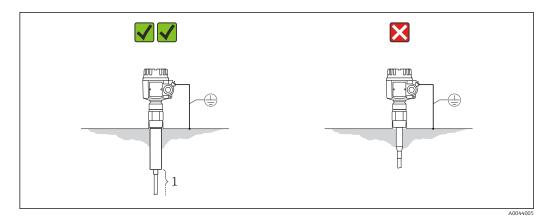
FTI56 with inactive length in the event of condensation and material buildup

2 The correct distance from the silo wall, the material inlet and the material outlet

Silo roof

Ensure that the silo roof is of a sufficiently stable construction. High tensile forces can occur when material is being extracted, particularly in the case of heavy and powdery bulk solids which have a tendency to form buildup.

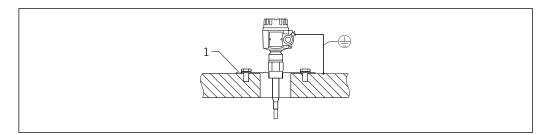
Coarse-grained bulk solids


In silos with extremely coarse-grained or extremely abrasive bulk solids, the use of a Solicap M FTI56 is recommended only for maximum detection.

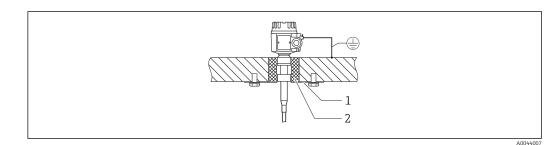
Distance between the rope probes

To rule out mutual probe interference, you must maintain a minimum distance of 0.5 m between the rope probes. This also applies if you are installing several Solicap M units in adjacent silos with nonconductive walls.

Installation in the case of condensation

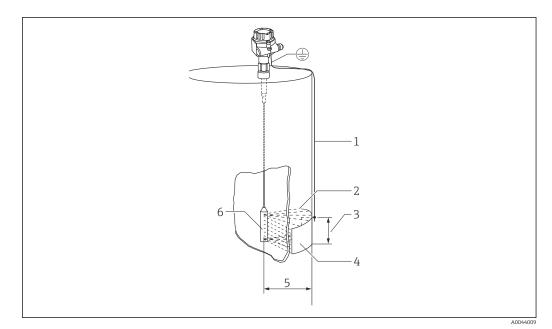

Use the Solicap M with inactive length. The inactive length prevents moisture and buildup forming between the active part of the probe and the silo roof.

- Silo with walls that conduct electricity
- 1 Active part of the probe

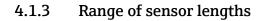

The threaded coupling must be projected into the silo to reduce the effects of condensation and buildup. The maximum thread length is 25 mm (0.98 in).

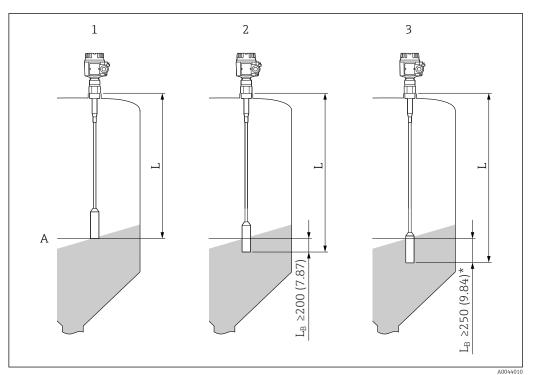
Heat insulation reduces condensation and therefore buildup on the steel plate.

Mounting in the concrete silo wall


1 Steel plate connected to the reinforcing steel

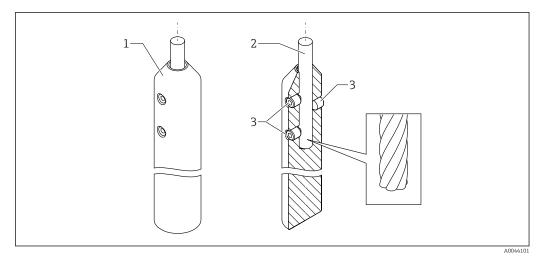
- ☑ 5 Mounting in the concrete silo wall in case of condensation
- 1 Steel plate
- 2 Heat insulation


Installation in plastic tanks


If installing in a silo made of plastic, a counter electrode must be mounted on the silo exterior at the same height as the tensioning weight. The length of the edge of the metal counter electrode should be approximately the same length as the distance between the tensioning weight and the silo wall.

፼ 6 Mounting the probe in plastic tanks

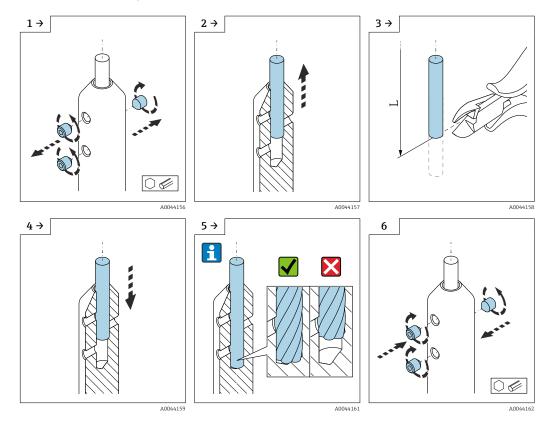
- 1
- 2
- Ground connection Electrical HF field Surface area e.g. 1 m² (10.7 ft²) Metal counter electrode Distance of 1 m (3.3 ft) Tensioning weight 3
- 4 5
- 6


☑ 7 Rope length in correlation with the material. Unit of measurement mm (in)

- A Level
- L_B Covered length
- 1 Rope length (L) for electrically conductive bulk solids, e.g. coal
- 2 Rope length (L) for bulk solids with high dielectric constant, e.g. rock salt
- 3 Rope length (L) for bulk solids with low dielectric constant, e.g. dried grain

The covered length (L_B) must be 5 % longer than the distance between the tank roof and the limit level, and no shorter than 250 mm (9.84 in) for non-conductive bulk solids with a low dielectric constant (ϵ_r).

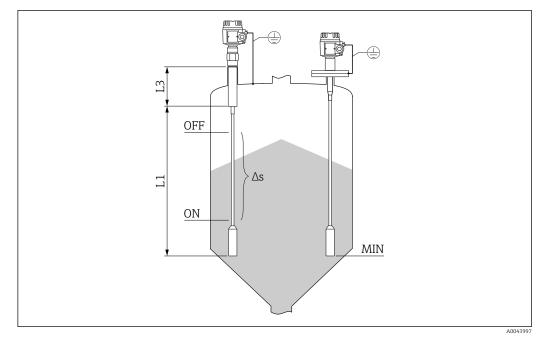
4.1.4 Rope shortening


Both versions of the rope probes can be shortened. The weigth must be removed from the rope first.

8 The tension weight overview

- 1 The tension weight
- 2 The rope
- 3 The locking screws

The rope shortening procedure



4.1.5 Measuring conditions

When installing in a nozzle, use inactive length L3. The rope probes can be used to control a screw conveyor (Δ s mode). The on-value and off-value are determined by the empty and full calibration. Partially insulated probes are only suitable for nonconductive bulk solids.

- DK > 10: measuring range up to 4 m (13 ft)
- 5 < DK < 10: measuring range up to 12 m (39 ft)
- 2 < DK < 5: measuring range up to 20 m (66 ft)

The minimum capacitance change for point level detection must be \ge 5 pF.

9 Measuring conditions

L1 Active length

L3 Inactive length

 Δs Two-point control

MIN Minimum measuring level

Minimum probe length for nonconductive media < 1 μ S/cm

The minimum probe length can be calculated using the formula:

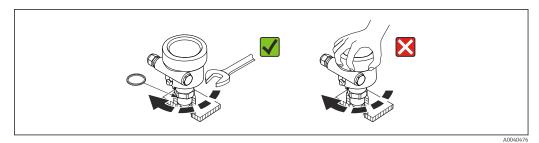
$$l_{\min} = \frac{\Delta C_{\min}}{C_{s} \cdot (\epsilon_{r} - 1)}$$

l _{min}	minimum probe length
ΔC_{min}	5 pF
C _s	probe capacitance in air
ε _r	relative dielectric constant, e.g. for dried grain = 3.0

4.1.6 Installation instructions

NOTICE

Do not damage the probe insulation during installation!

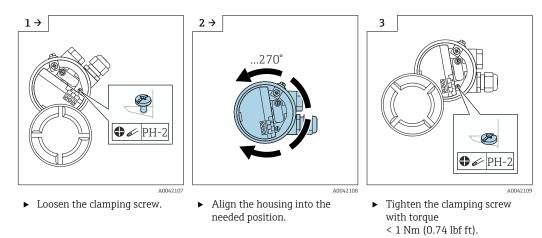

• Check the rope insulation.

NOTICE

Do not screw the probe using the probe housing!

• Use an open-end wrench to screw the probe.

A004020



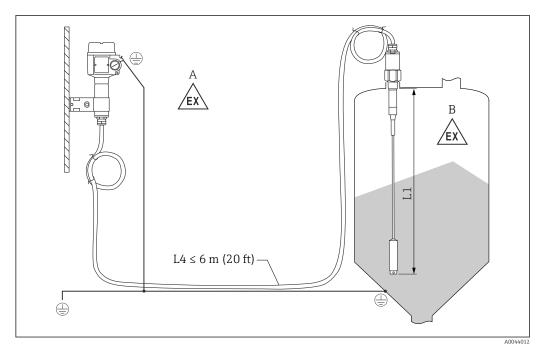
🖻 10 Proper probe installation

Aligning the housing

The housing can be rotated 270° to align the cable entry. To prevent moisture penetration, route the connecting cable downwards in front of the cable gland and secure it with a cable tie. This is particularly recommended for outdoor mounting.

Aligning the housing

The clamping screw for aligning the housing type T13 is located in the electronics compartment.


Sealing the probe housing

Make sure that the cover is sealed. Water cannot enter into the device when performing installation, connection and configuration tasks. Always seal the housing cover and cable entries securely.

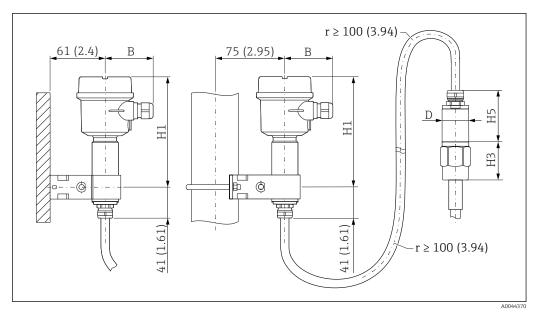
The O-ring seal on the housing cover is shipped with a coat of special lubricant applied. In this way, the cover can be sealed tight and the aluminum thread does not bite when screwing down.

Never use mineral oil-based grease as this destroys the O-ring.

4.2 Probe with separate housing

■ 11 Connection of the probe and separate housing

- A Explosive zone 1
- B Explosive zone 0
- L1 Rope length: max. 19.7 m (65 ft)
- L4 Cable length


The maximum cable length L4 and rope length L1 cannot exceed 20 m (66 ft).

- The maximum cable length between the probe and separate housing is 19.7 m (65 ft).
- The required cable length must be indicated in the ordering process of a Liquicap M with separate housing.
- If the cable connection has to be shortened or led through a wall, then it must be separated from the process connection.

4.2.1 Extension heights: separate housing

The cable has:

- a minimum bending radius of $r \ge 100 \text{ mm} (3.94 \text{ in})$
- Ø 10.5 mm (0.14 in)
- outer jacket made of silicone, notch resistance

I2 Housing side: wall mounting, pipe mounting, and sensor side. Unit of measurement mm (in)

Values of parameters ¹):

B parameter

- polyester housing (F16): 76 mm (2.99 in)
- stainless steel housing (F15): 64 mm (2.52 in)
- aluminum housing (F17): 65 mm (2.56 in)

H1 parameter

- polyester housing (F16): 172 mm (6.77 in)
- stainless steel housing (F15): 166 mm (6.54 in)
- aluminum housing (F17): 177 mm (6.97 in)

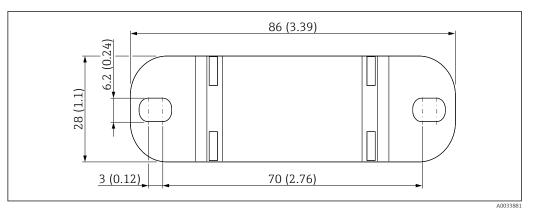
D parameter

Ø 50 mm (1.97 in)

H5 parameter

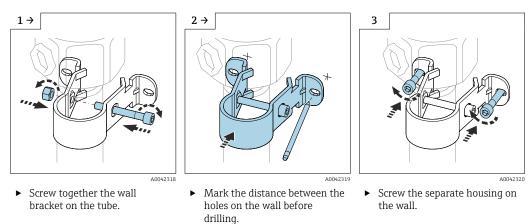
Ø62 mm (2.44 in)

H3 parameter value

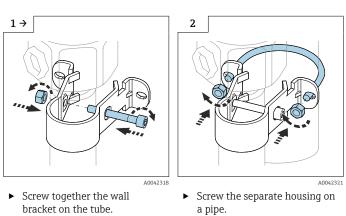

The height H3 depends on the type of process connection.

4.2.2 Wall bracket

• The wall bracket is a part of the scope of delivery.


- To use the wall bracket as a drill template, the wall bracket must be first screwed to the separate housing.
- The distance between the holes is reduced by screwing it to the separate housing.

¹⁾ See parameters on the drawings.



🖻 13 Wall bracket overview. Unit of measurement mm (in)

Wall mounting 4.2.3

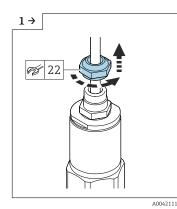
Pipe mounting 4.2.4

The maximum pipe diameter is 50.8 mm (2 in).

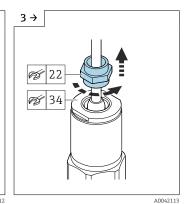
bracket on the tube.

4.2.5 Shortening the connecting cable

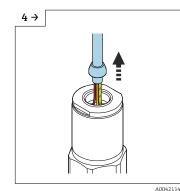
NOTICE

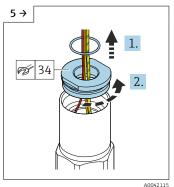

Risk of damage to connections and cable.

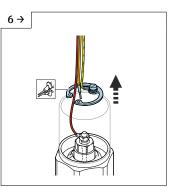
- Make sure that neither the connecting cable nor the probe is turning with the pressing screw!
- The maximum connection length between the probe and the separate housing is 6 m (20 ft).
 - When ordering a device with separate housing, the desired length must be specified.
- We recommend reusing all strands with ring terminals in case of shortening the connecting cable.
 - To avoid the risk of short-circuiting when the strands are not to be reused, the connections of the new ring terminals fitted must be isolated with a heat shrinking sleeve.
 - Use heat-shrink tubes to insulate all soldered joints.


If the cable connection has to be shortened or led through a wall, it must be separated from the process connection.

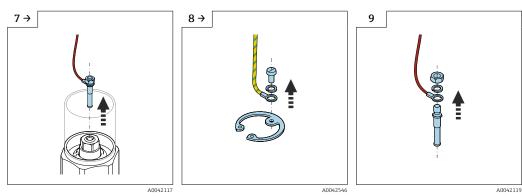
Probe without active buildup compensation


Disconnecting the connection cable

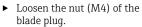

- Loosen the pressing screw with an open-end wrench AF22.
- 2 →
- Pull the insert seal out of the cable gland.

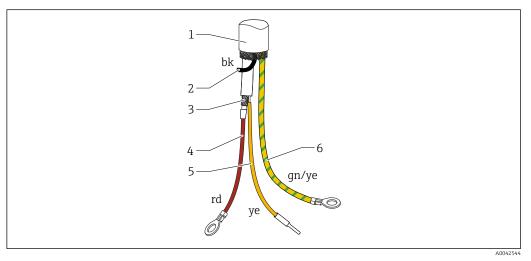

 Block the adapter disk with the open-end wrench AF34 and loosen the cable gland with the open-end wrench AF22.

• Pull out the cable with the cone.



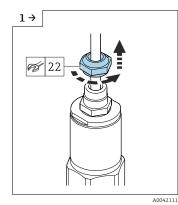
 Remove the seal and loosen the adapter disk with the open-end wrench AF34.



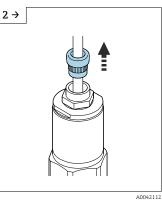

Remove the snap ring with a snap ring pliers.

►

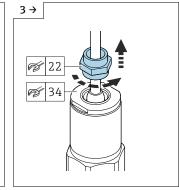
- Remove the blade plug from the socket.
- Loosen the screw to disconnect the yellow-green cable.



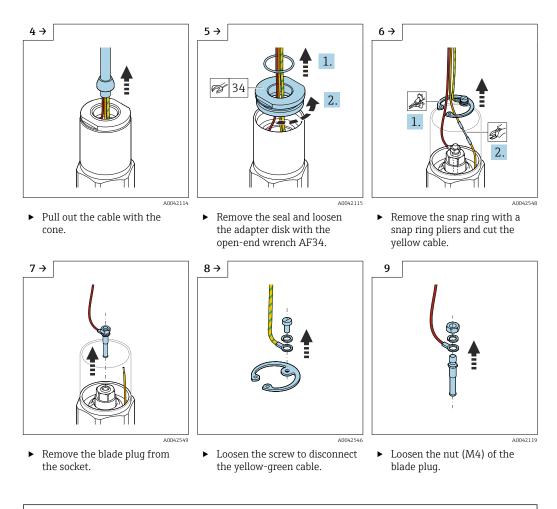
■ 14 Cable connections

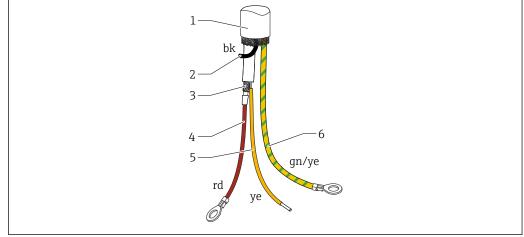

- 1 External screening (not required)
- 2 Strand black (bk) (not required)
- 3 Coaxial cable with central core and screen
- 4 Solder the red (rd) strand with the central core of the coaxial cable (probe)
- 5 Insulated strand (ye) with the heat shrinking sleeve
- 6 Strand yellow and green (gn/ye) with a ring terminal

Probe with active buildup compensation


Disconnecting the connection cable

►




Loosen the pressing screw with an open-end wrench AF22. Pull the insert seal out of the cable gland.

A0042113

 Block the adapter disk with the open-end wrench AF34 and loosen the cable gland with the open-end wrench AF22.

■ 15 Cable connections

- *1* External screening (not required)
- 2 Strand black (bk) (not required)
- 3 Coaxial cable with central core a screening
- 4 Solder the red (rd) strand with the central core of the coaxial cable (probe)
- 5 Solder the strand with the screening of the yellow (ye) coaxial cable (ground)
- 6 Strand yellow and green (gn/ye) with a ring terminal

4.3 Post-installation check

After installing the measuring device, carry out the following checks:

 \Box Do a visual check for damages.

□ Make sure that the device meets the specifications at the measuring point with regard to process temperature and pressure, ambient temperature, measuring range.

□ Make sure that the process connection been tightened with the tightening torque?

□ Check if the measuring points are correctly labeled.

 $\hfill\square$ Make sure that the device is adequately protected against precipitation and direct sunlight.

5 Electrical connection

Before connecting the power supply, note the following:

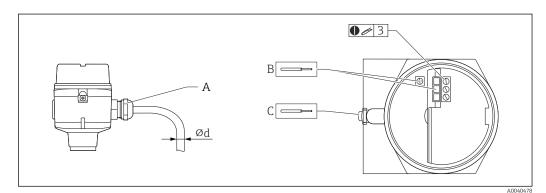
- the supply voltage must match the data specified on the nameplate
- switch off the supply voltage before connecting the device
- connect the potential equalization to the ground terminal on the sensor
- When using the probe in hazardous areas, the relevant national standards and the information in the safety instructions (XA) must be observed.

Use the specified cable gland only.

5.1 Connecting requirements

5.1.1 Potential equalization

ADANGER


Risk of explosion!

• Connect the cable screen on the sensor side only if installing the probe in Ex-areas!

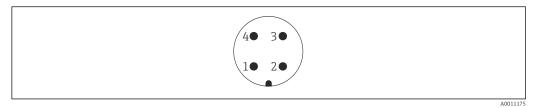
Connect the potential equalization to the outer ground terminal of the housing (T13, F13, F16, F17, F27). In the case of the stainless steel housing F15, the ground terminal can also be located in the housing. For further safety instructions, please refer to the separate documentation for applications in hazardous areas.

5.1.2 Cable specification

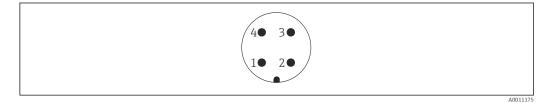
Connect the electronic inserts by using commercially available instrument cables. If a potential equalization is present, and the shielded instrument cables are used, connect the shielding on both sides to optimize the shielding effect.

■ 16 Probe and electronic insert connection

- A Cable entry
- B Electronic insert connections: cable size max. 2.5 mm² (14 AWG)
- *C* The ground connection outside the housing, cable size max. 4 mm² (12 AWG)
- Ød Cable diameter


Cable entries

- Nickel-plated brass: Ød = 7 to 10.5 mm (0.28 to 0.41 in)
- Synthetic material: Ød = 5 to 10 mm (0.2 to 0.38 in)
- Stainless steel: Ød = 7 to 12 mm (0.28 to 0.47 in)


5.1.3 Connector

For the version with a connector M12, the housing does not have to be opened for connecting the signal line.

PIN assignment for M12 connector

- E 17 M12 connector with 2-wire-electronic insert FEI55, FEI57, FEI58, FEI57C
- 1 Positive potential
- 2 Not used
- 3 Negative potential
- 4 Ground

- I8 M12 connector with 3-wire-electronic insert FEI52, FEI53
- 1 Positive potential
- 2 Not used
- 3 Negative potential
- 4 External load / signal

5.1.4 Cable entry

Cable gland

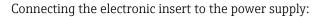
M20x1.5 for Ex d only cable entry M20 Two cable glands are included in scope of delivery.

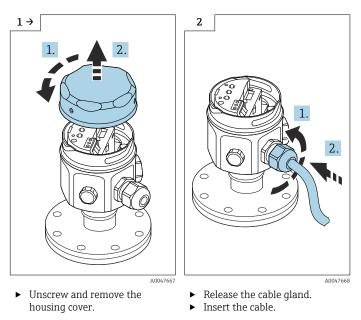
Cable entry

- G½
- NPT¹/₂
- NPT³/₄

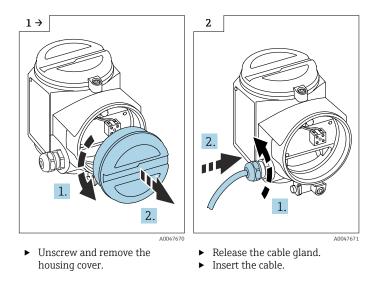
5.2 Wiring and connecting

5.2.1 Connection compartment


Depending on explosion protection, the connection compartment is available in the following variants:


Standard protection, Ex ia protection

- polyester housing F16
- stainless steel housing F15
- aluminum housing F17
- aluminum housing F13 with gas-tight process seal
- aluminum housing T13, with the separate connection compartment


Ex d protection, Gas-tight process seal

- aluminum housing F13 with gas-tight process seal
- aluminum housing T13, with the separate connection compartment

Connecting the electronic insert to the power supply mounted in the housing T13:

Screw terminal for conductor cross-sections 0.5 to 2.5 mm.

5.3 Connecting the measuring device

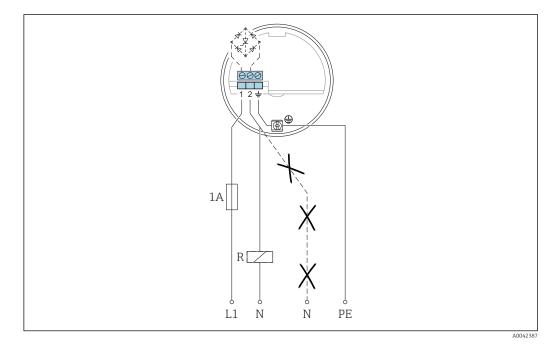
5.3.1 2-wire AC electronic insert FEI51

R Connect the electronic insert in series with an external load.

Power supply

- Supply voltage: 19 to 253 V_{AC}
- Power consumption: < 1.5 W
- Residual current consumption: < 3.8 mA
- Short-circuit protection: overvoltage category II

Signal on alarm


The output signal on power failure or in the event of damage to the sensor: < 3.8 mA

Connectable load

- For relays with a minimum holding power or rated power:
 - > 2.5 VA at 253 V_{AC} (10 mA)
 - > 0.5 VA at 24 V_{AC} (20 mA)
- Relays with a lower holding power or rated power can be operated using an RC module connected in parallel.
- For relays with a maximum holding power or rated power:
 - < 89 VA at 253 V_{AC}
 - \blacksquare < 8.4 VA at 24 V_{AC}
- The voltage drop across FEI51: maximum 12 V
- Residual current with blocked thyristor: maximum 3.8 mA
- Load switched directly into the power supply circuit via the thyristor.

Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation options" → 🗎 37. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

Connecting the FEI51

L1 L1 phase cable

- N Neutral cable
- PE Grounding cable

R External load

1. Connect the FEI51 according to the schema.

- 2. Tighten the cable gland.
- 3. Set the function switch to position 1.
- 4. Switch on the supply voltage.

5.3.2 DC PNP electronic insert FEI52

The three-wire DC connection should, wherever possible, be connected as follows:

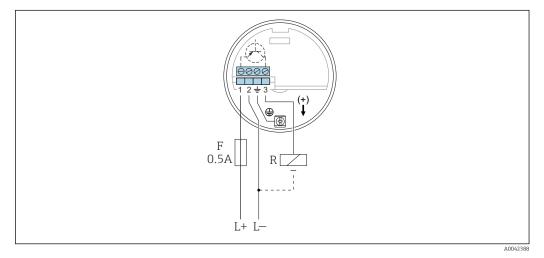
- to programmable logic controllers (PLCs)
- to DI modules in accordance with EN 61131-2

A positive signal is present at the switch output of the electronic system (PNP).

Power supply

- Supply voltage: 10 to 55 V_{DC}
- Ripple: maximum 1.7 V, 0 to 400 Hz
- Current consumption: < 20 mA
- Power consumption without load: maximum 0.9 W
- Power consumption with a full load (350 mA): 1.6 W
- Reverse polarity protection: yes
- Separation voltage: 3.7 kV
- Overvoltage category: II

Signal on alarm


The output signal on power failure or in the event of device failure: $I_R < 100 \ \mu A$

Connectable load

- Load switched via transistor and separate PNP connection: maximum 55 V
- Load current: maximum 350 mA cyclical overload and short-circuit protection
- Residual current: < 100 μA with transistor blocked
- Capacitance load:
 - maximum 0.5 µF at 55 V
 - maximum 1 µF at 24 V
- Residual voltage: < 3 V for transistor switched through

Do not switch on the supply voltage until you have familiarized yourself with the device functions as described in the section "Operation option" $\rightarrow \textcircled{B}$ 37. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

Connecting the FEI52

- L+ Power input +
- L- Power input -F Fuse
- F Fuse
- R External load: I_{max} =350 mA, U_{max} = 55 V_{DC}

1. Connect the FEI52 regarding to the schema.

- 2. Tighten the cable gland.
- 3. Set the function switch to position 1.

4. Switch on the supply voltage.

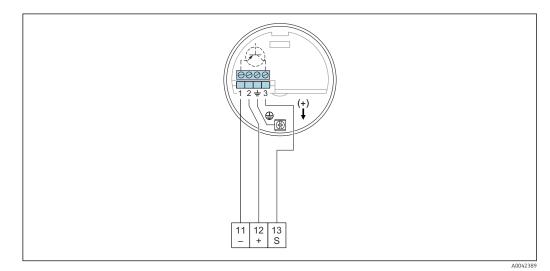
5.3.3 3-wire electronic insert FEI53

The 3-wire DC connection is used in conjunction with the Nivotester switching device FTC325 3–WIRE from Endress+Hauser. The switching device's communication signal operates at 3 to 12 V_{DC} .

The fails afe mode (MIN) / (MAX) and the point level adjustment are configured on the Nivote ster.

Power supply

- Supply voltage: 14.5 V_{DC}
- Current consumption: < 15 mA
- Power consumption: maximum 230 mW
- Reverse polarity protection: yes
- Separation voltage: 0.5 kV


Signal on alarm

The voltage at terminal 3 opposite terminal 1: < 2.7 V

Connectable load

- floating relay contacts in the connected switching unit Nivotester FTC325 3-WIRE
- for the contact load capacity, refer to the technical data of the switching device
- Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation option" $\rightarrow \cong$ 38. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

Connecting the FEI53

11 Negative terminal in Nivotester FTC325

12 Positive terminal in Nivotester FTC325

S Signal terminal in Nivotester FTC325

1. Connect the FEI53 according to the schema.

2. Tighten the cable gland.

3. Set the function switch to position 1.

4. Switch on the supply voltage.

5.3.4 AC and DC with relay output electronic insert FEI54

The universal voltage connection with relay output (DPDT) operates in two different voltage ranges (AC and DC).

When connecting devices with a high inductance, use a spark suppression system to protect the relay contacts.

Power supply

- Supply voltage:
 - 19 to 253 V_{AC}, 50 to 60 Hz
 - 19 to 55 V_{DC}
- Power consumption: 1.6 W
- Reverse polarity protection: yes
- Separation voltage: 3.7 kV
- Overvoltage category: II


Signal on alarm

The output signal on power failure or in the event of device failure: relay de-energized

Connectable load

- Loads switched via 2 floating changeover contacts (DPDT)
- maximum values (AC):
 - I_{max} = 6 A
 - U_{max} = 253 V_{AC}
 - $P_{max} = 1500 \text{ VA at } \cos \varphi = 1$
 - $P_{max} = 750 \text{ VA at } \cos \phi > 0.7$
- maximum values (DC):
 - $I_{max} = 6 \text{ A at } 30 \text{ V}_{DC}$
 - $I_{max} = 0.2 \text{ A at } 125 \text{ V}_{DC}$
- The following applies when connecting a functional low-voltage circuit with double isolation as per IEC 1010: the sum of voltages of relay output and power supply maximum 300 V
- Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation option" $\rightarrow \square$ 37. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

Connecting the FEI54

- F Fuse
- L1 Phase (AC) terminal
- L+ The positive (DC) terminal
- N Neutral (AC) terminal
- *L- The negative (DC) terminal*
- *PE* Grounding cable1 Refer also to connectable load
- 1. Connect the FEI51 according to the schema.
- 2. Tighten the cable gland.
- 3. Set the function switch to position 1.

4. Switch on the supply voltage.

5.3.5 SIL2 / SIL3 electronic insert FEI55

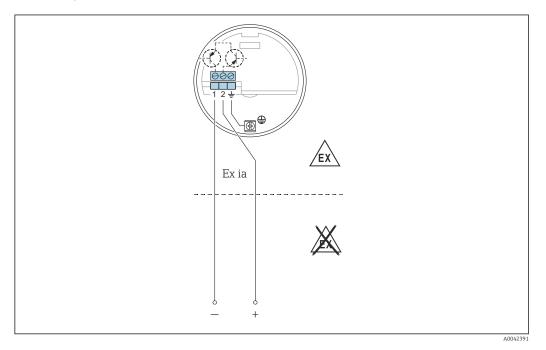
The two-wire DC connection should, if possible, be connected as follows:

- to programmable logic controllers (PLC)
- to AI modules 4 to 20 mA in accordance with EN 61131-2

The point level signal is sent via an output signal jump from 8 to 16 mA.

Power supply

- Supply voltage: 11 to 36 V_{DC}
- Power consumption: < 600 mW</p>
- Reverse polarity protection: yes
- Separation voltage: 0.5 kV


Signal on alarm

The output signal on power failure or in the event of device failure: < 3.6 mA

Connectable load

- U_{max}:
 - 11 to 36 V_{DC} for non-hazardous area and Ex ia
- 14.4 to 30 V_{DC} for Ex d
- I_{max} = 16 mA
- Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation operation" → 🗎 37. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

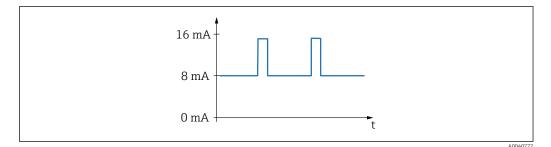
Connecting the FEI55

- 1. Connect the FEI51 according to the schema.
- 2. Tighten the cable gland.
- 3. Set the function switch to position 1.
- 4. Switch on the supply voltage.

Functional safety (SIL)

The electronic insert FEI55 meets the requirements of SIL2 or SIL3 in accordance with IEC 61508, IEC 61511-1 and can be used in the safety systems with the corresponding requirements.

An exact description of the requirements in terms of functional safety can be found in document FY01075F.


5.3.6 PFM electronic insert FEI57S

The two-wire DC connection is used in conjunction with the following Nivotester switching device from Endress+Hauser:

FTC325 PFM

The PFM signal is between 17 to 185 Hz.

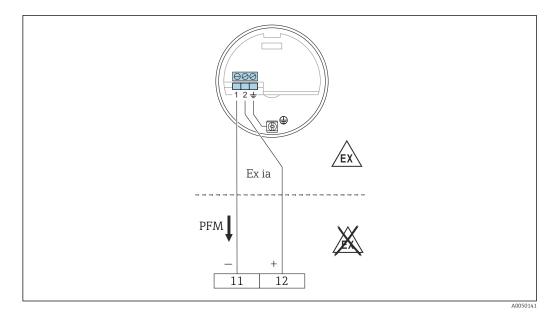
The fails afe mode (MIN) / (MAX) and the point level adjustment are configured on the Nivote ster.

🖻 19 Frequency: 17 to 185 Hz

Power supply

- Supply voltage: 9.5 to 12.5 V_{DC}
- Power consumption: < 150 mW
- Reverse polarity protection: yes
- Separation voltage: 0.5 kV

Output signal


PFM 17 to 185 Hz

Connectable load

- floating relay contacts in the connected switching unit Nivotester: FTC325 PFM
- for the contact load capacity, refer to the technical data of the switching device

Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation option" → 🗎 38. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

Connecting the FEI57S

- 11 The negative terminal in Nivotester FTC325
- 12 The positive terminal in Nivotester FTC325
- 1. Connect the FEI51 according to the schema.
- 2. Tighten the cable gland.
- 3. Switch on the supply voltage.

5.3.7 NAMUR electronic insert FEI58

The two-wire connection for a separate switching unit in accordance with NAMUR specifications (IEC 60947-5-6), e.g. Nivotester FTL325N from Endress+Hauser.

Change in the output signal from high to low current in event of point level detection.

Additional function: test key on the electronic insert.

Press the key to breaks the connection to the isolating amplifier.

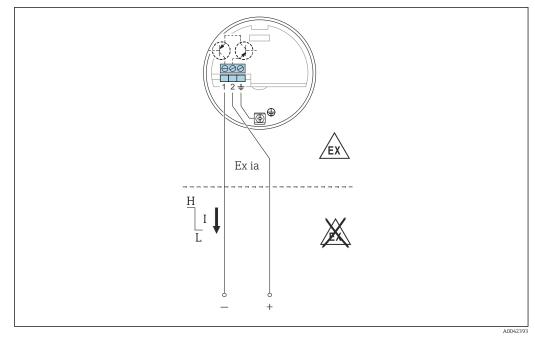
In the case of Ex d operation, the additional function can only be used if the housing is not exposed to an explosive atmosphere.

When connecting to Multiplexer: set 3 s as the cycle time at least.

Power supply

- Power consumption:
 - < 6 mW at I < 1 mA
 - < 38 mW at I = 2.2 to 4 mA
- Interface connection data: IEC 60947-5-6

Signal on alarm


The output signal in the event of damage to the sensor: < 1.0 mA

Connectable load

- The technical data of the connected isolating amplifier as per IEC 60947-5-6 (NAMUR)
- The connection also to isolating amplifiers which have special safety circuits I > 3.0 mA

Do not switch on the supply voltage until you have learned about the device functions as described in section "Operation option" → 🗎 39. This will ensure that you do not accidentally trigger any processes by switching on the supply voltage.

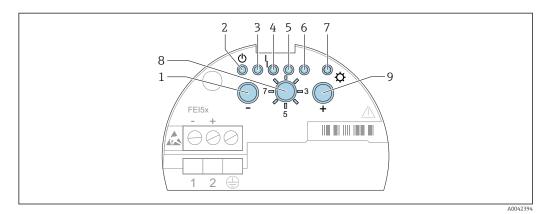
Connecting the FEI58

20 Terminals must be connected to the isolating amplifier (NAMUR) IEC 60947-5-6

- 1. Connect the FEI51 according to the schema.
- 2. Tighten the cable gland.
- 3. Switch on the supply voltage.

5.4 Post-connection check

After wiring the measuring device, carry out the following checks:


□ Make sure that the terminal assignment is correct?

- □ Make sure that the cable gland is sealed tight?
- □ Make sure that the housing cover is fully screwed?

 \square Make sure that the device is operational and the green LED flashing when the device is on.

Operation options 6

6.1 Human interface and display elements for FEI51, FEI52, FEI54, FEI55

- 🖻 21 FEI51, FEI52, FEI54, FEI55 human interface
- 1 Key 🖂
- Green LED operational status 2
- 3 Green LED
- Red LED fault 4
- 5 Green LED
- Green LED 6
- Yellow LED switching state 7
- 8 Mode switch 9
- Key 🖅
- 1. Operation select for normal operation
- 2. Restor factory settings:
 - → press \Box and \boxdot for 20 s restore factory settings
- 3. Calibration
 - └ press ⊡ to set empty calibration press 🛨 to set full calibration press \Box and \pm for 10 s to reset the calibration and switch-point adjustment
- 4. Switch-point adjustment
 - press 🖃 to decrease the switch-point ┕► press 🛨 to increase the switch-point
- 5. Measuring modes
 - \vdash press \Box to decrease the measuring range press once \boxdot to set the two-point control Δ s press twice 🛨 to activate the build-up mode
- 6. Switching delay
 - ╘╼ press 🖃 to decrease the delay press 🛨 to increase to delay
- 7. Self-test
 - └ press ⊟ and ⊕ to activate the self-test
- 8. Setting MIN/MAX failsafe mode or SIL mode
 - └ press ⊡ for minimum
 - press 🛨 for maximum

press \Box and \pm to lock or unlock the SIL mode


9. Upload sensor DAT (EEPROM)

← press ⊡ for download press ⊕ for upload

6.2 Human interface and display elements for FEI53, FEI57S

The electronic inserts FEI53 and FEI57S are used in conjunction with Nivotester switching devices.

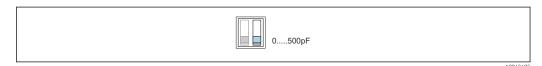
A description of the human interface and display elements of the Nivotester switching device is provided in the documentation that accompanies the device.

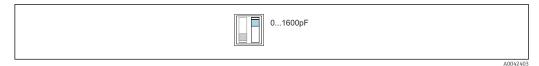


■ 22 FEI53 and FEI57S human interface

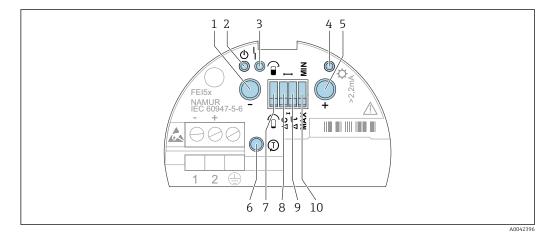
- 1 Green LED operational status
- 2 Standard or alarm DIP switch
- 3 Measuring range DIP switch
- 4 Red LED fault

The operating status of the device is indicated by LEDs on the electronic insert and provides information on operational readiness and, where applicable, the type of fault.


The functions of the DIP switches:

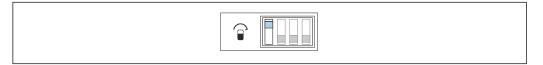

■ 23 Standard: if the measuring range is exceeded no alarm is output

■ 24 Alarm: if the measuring range is exceeded an alarm is output



🗉 25 Measuring range: the measuring range is between 0 to 500 pF. Span: the span is between 0 to 500 pF

26 Measuring range: the measuring range is between 5 to 1 600 pF. Span: the span is between 5 to 1 600 pF

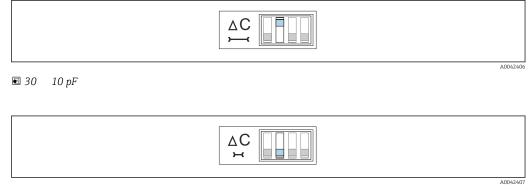

6.3 Human interface and display elements for FEI58

- 🖻 27 FEI58 human interface
- 1 Function key A
- 2 Green LED operational status
- 3 Red LED fault
- 4 Yellow LED switching state
- 5 Function key B
- 6 Test key
- 7 Calibration DIP switch
- 8 Switch-point DIP switch
- 9 Delay DIP switch
- 10 Fail-safe mode DIP switch

The functions of the DIP switches

Calibration DIP switch:

28 The probe is covered during calibration


A004240

29 The probe is uncovered during calibration

Switch-point adjustment:

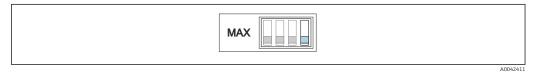
A0042408

A0042409

配 31 2 pF

Switching delay:

32 5 s


|--|

🗷 33 1 s

Fail-safe mode:

A004241)

If a substitution of the state of the sta

If a solution of the state o

Function key

- Key A: displays diagnostic code
- Key B: displays calibration situation
- Test key: disconnects the transmitter from the switching unit
- Keys A and B pressed during:
 - operation: perform calibration
 - startup: delete calibration points

7 Commissioning

7.1 Installation and function check

Make sure that the post-installation check and final check have been completed before you start your measuring point:

- see the chapter "Post-installation check" \rightarrow \cong 24
- see the chapter "Post-connection check" $\rightarrow \cong 36$

7.2 Commissioning the electronic inserts FEI51, FEI52, FEI54 and FEI55

Due to the first start-up of the device the output is in safe status. This is signaled by the flashing yellow LED.

The device is not operational until you have carried out a calibration. To attain maximum operational safety, carry out an empty and a full calibration. This is particularly recommended for critical applications.

Refer to the following subchapters for information on how to carry out the calibration.

Setting the measuring range $\rightarrow \blacksquare 41$.

Carrying out empty calibration \rightarrow 🗎 42.

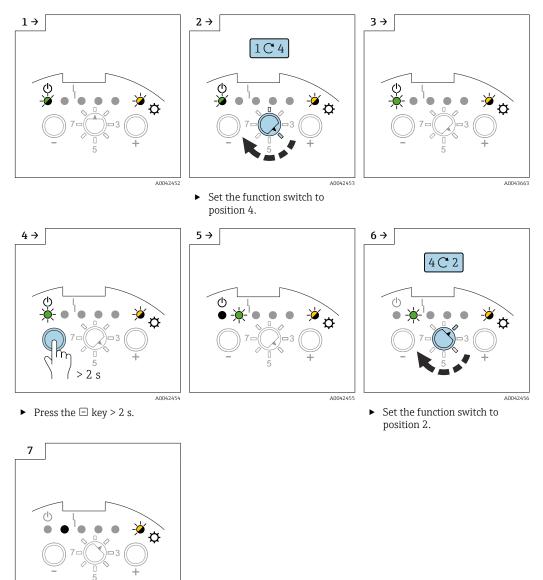
Carrying out full calibration $\rightarrow \triangleq 43$.

Carrying out empty and full calibration \rightarrow \blacksquare 44.

Operation $\rightarrow \blacksquare 37$.

The yellow LED 7:

- flashes fast if a calibration or switching point are not set
- shows the switching status according to the selected application and the fail-safe mode


7.2.1 Setting the measuring range

The choice of measuring range (0 to 500 pF and 0 to 1600 pF) depends on the function of the probe.

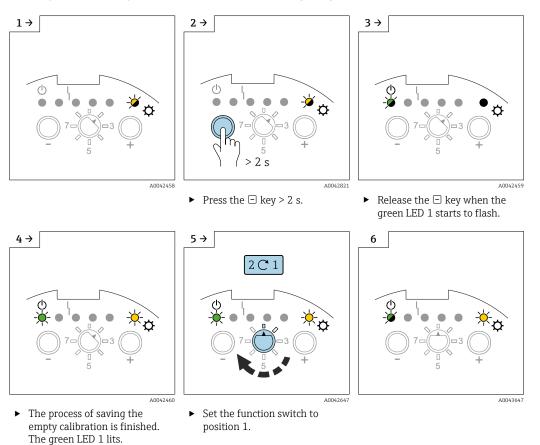
- If the probe is used as a point level switch, it is possible to retain the factory setting of 0 to 500 pF
- If the probe is used for two-point control, the following settings are recommended for vertical installation:
 - measuring range from 0 to 500 pF for probe lengths up to 1 m (3.3 ft)
 - measuring range from 0 to 1600 pF for probe lengths up to 10 m (33 ft)

Partially insulated probes are only suitable for nonconductive bulk solids.

To set the range to 0 to 1600 pF:

7.2.2 Carrying out empty calibration

A0043270

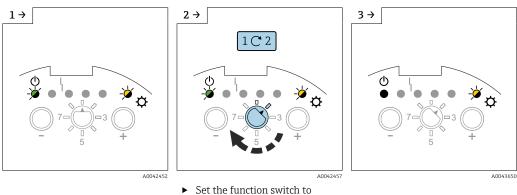

The empty calibration stores the capacitance value of the probe when the tank is empty. If the measured capacitance value is, for example, 50 pF (empty calibration), a switching threshold of 2 pF is added to this value. In this case, the capacitance value of the switch point would be 52 pF.

The switching threshold depends on the value set for the switch point adjustment $\rightarrow \cong 47$.

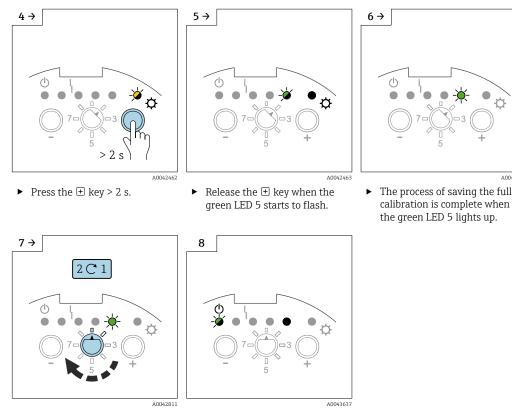
Carrying out empty calibration

Make sure that the probe is not covered with the product.

To carry out an empty calibration, set the measuring range first $\rightarrow \oplus$ 41.


7.2.3 Carrying out full calibration

The full calibration measures the capacitance value of the probe when the tank is full. If the measured capacitance value is, for example, 100 pF (full calibration), a switching threshold of 2 pF is subtracted from this value. The capacitance value of the switch point is thus 98 pF.


The switching threshold depends on the value set for the switch point adjustment $\rightarrow \cong 47$.

To carrying out full calibration

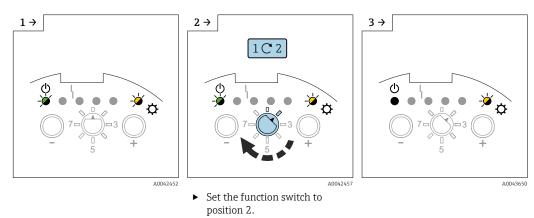
Н

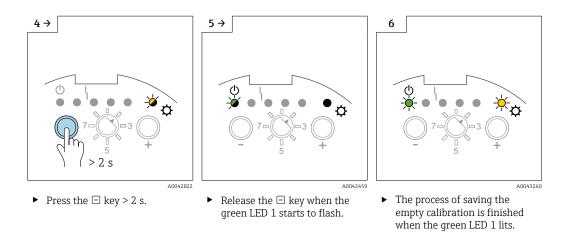
 Set the function switch to position 2.

Set the function switch to position 1.

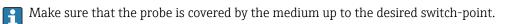
7.2.4 Carrying out empty and full calibration

- An empty and full calibration provides the greatest possible operational security. This is strongly recommended for critical applications.
- The empty and full calibration measures the capacitance values of the probes when the tank is full and when it is empty. For example: if the measured capacitance value of the empty calibration is 50 pF and that of the full calibration is 100 pF, the average capacitance value of 75 pF is stored as the switch-point.

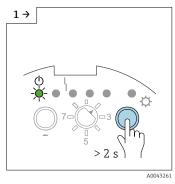

Empty calibration

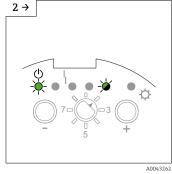


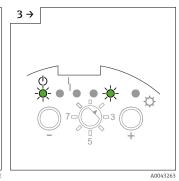
Mak sure that the probe is not covered with the product.

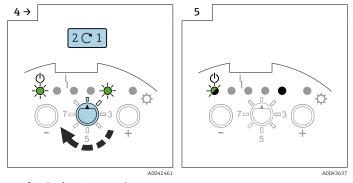

🕞 Setting the empty calibration

To carry out an empty calibration:



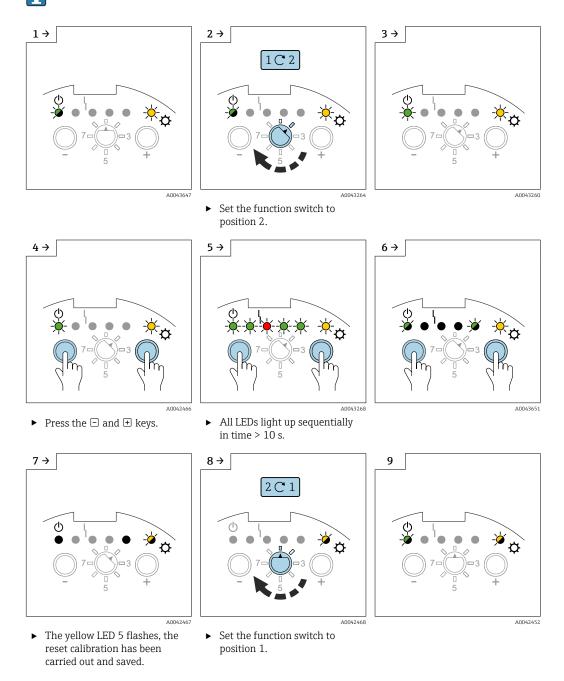

Full calibration


Carrying out full calibration


▶ Press the 🕂 key > 2 s.

► Release the the the green LED 5 starts to flash.

 The process of saving the full calibration is complete when the green LED 5 lights up.



Set the function switch to position 1.


7.2.5 Reset: Calibration and switch-point adjustment

Resetting the calibration or switch-point shift (all the other settings remain unchanged)

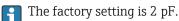
The switch-point adjustment is reset to the factory setting of 2 pF.

The device is not operational until you have carried out a new calibration.

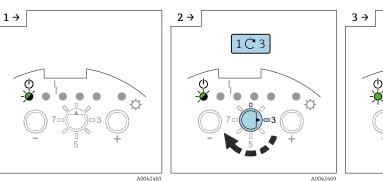
If only one calibration (empty or full) was carried out, and if buildup forms on the rope probe while the probe is in operation, the device may no longer respond to changes in level. A switch point adjustment (e.g. 4 pF, 8 pF, 16 pF, 32 pF) compensates for this condition and ensures that you obtain a constant switch point again.

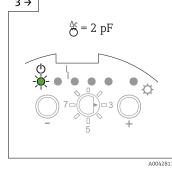
For media that do not have a tendency to build up, we recommend a setting of 2 pF, as the probe is most sensitive to changes in level at this setting.

For media with heavy buildup (e.g. plaster), we recommend using probes with active buildup compensation.

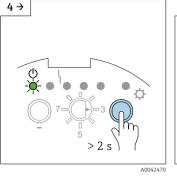

H

A switch point adjustment can be carried out only if a full or empty calibration has been carried out first.

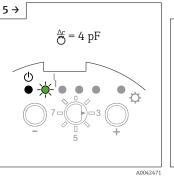

A switch point adjustment is not possible if an empty and a full calibration have been carried out.

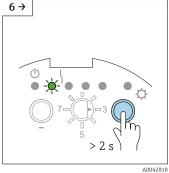

The switch point adjustment is disabled if you switch on the two-point control $\rightarrow \cong 48$.

Setting the switch point adjustment

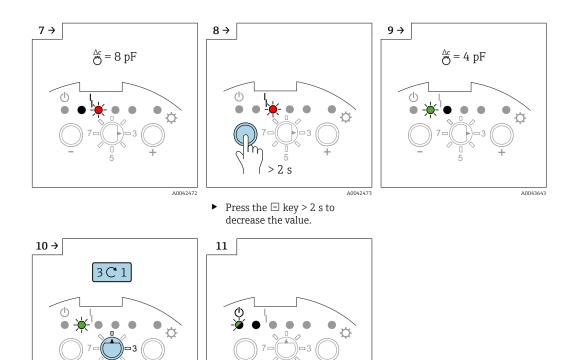


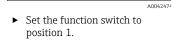
To adjust the switch point:





 Set the function switch to position 3.




 Press the ± key > 2 s to increase the value.

 Press the
 key > 2 s to increase the value.

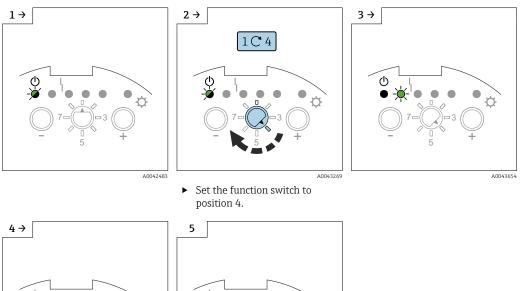
	$\overset{\Delta c}{\mathbf{O}}$	GN	GN	N RI) GN	GN	YE
	2 pF	-)			•	•	•
	4 pF	•	-)	(- •	•	•	•
	8 pF	•		-)	(- •	•	٠
	16 pF	•				•	٠
_	32 pF	•				-)	

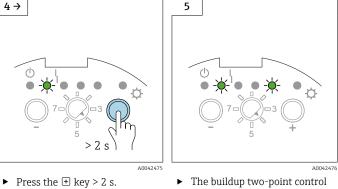
A0043652

36 LED sequence regarding the switch point capacitance value

7.2.7 Configuring two-point control and buildup mode

It is possible to use the probe rope of a fully insulated and vertically installed probe for pump control as a two-point control. The switch points of the empty and full calibration activate, for example, a conveyor unit.

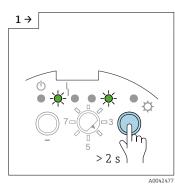

To use use the two-point control:


- set the necessary measuring range, see "Setting the measuring range" $\rightarrow \square 41$.
- perform empty and full calibration
- set the failsafe mode (MIN/MAX) in accordance with your requirements, see $\rightarrow \cong$ 53.

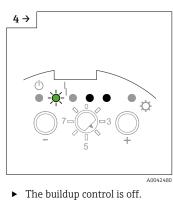
To switch on the two-point control (Ds- mode), the switch point adjustment is disabled. The switch points correspond to the calibration points.

The "Buildup mode" ensures that a safe switch point is output even if the probe is not fully released from the conductive medium (> 1000μ S/cm). Deposits or buildup on the rope are compensated for.

Configuring two-point control



is on.


2 →

5 →

Configuring the buildup control

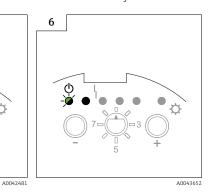
▶ Press the ± key > 2 s.

 Set the function switch to position 1.

► The buildup control is on.

4 C 1

► Press the ± key > 2 s.


>2 s

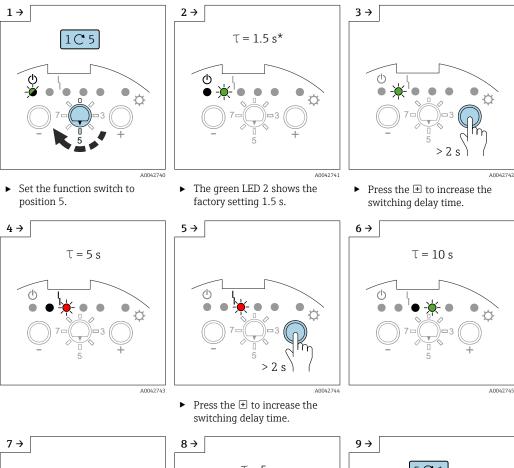
A0042479

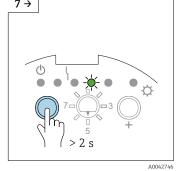
3 →

ð

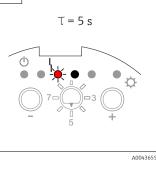
A0042478

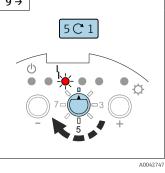
7.2.8 T Setting the switching delay

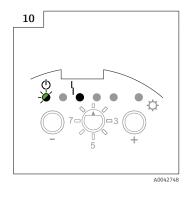

NOTICE

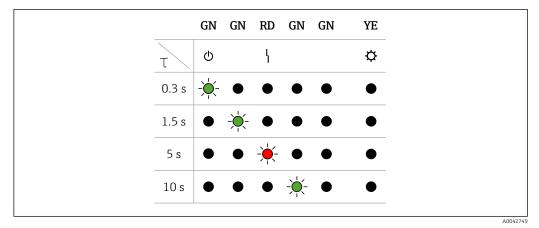

The tank can overflow if the switching delay is set for too long.

The switching delay causes the device to signal the point level after a delay. This is highly useful in tanks with turbulent medium surfaces caused, for example, by the filling process or by collapsing mounds. By doing so, you ensure that the filling of the tank does not end until the probe is continuously covered by the medium.


A switching delay that is too short may, for example, cause the filling process to be restarted as soon as the medium surface settles.


Setting the switching delay

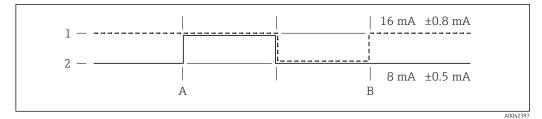


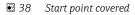

Press the
 key to decrease
 the value.

Set the function switch to position 1.

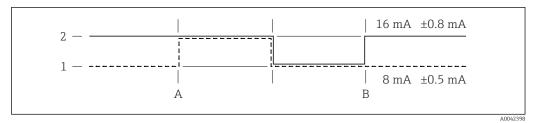
■ 37 The LED sequence regarding the switching delay value.

7.2.9 O Activating the self-test

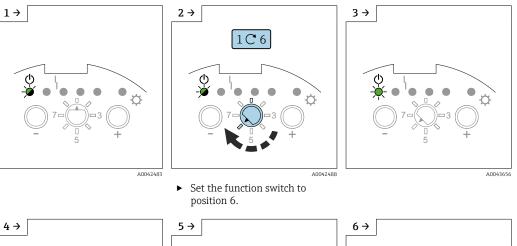

NOTICE

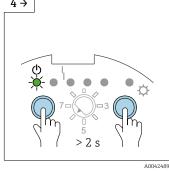

Accidental process run!

This could result, for example, in overflowing the tank.

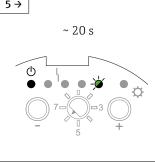

- ► Make sure that you do not accidentally activate any processes with the self-test!
- The self-test simulates switching states:
 - probe not covered
 - probe covered

This allows you to check if the connected devices are activated correctly.

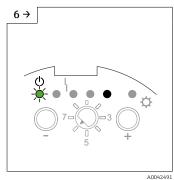

- 1 MIN safety
- 2 MAX safety
- A Proof test START point
- B Proof test END point

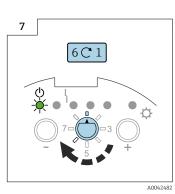


🛃 39 Start point uncovered


- 1 MIN safety
- 2
- MAX safety Proof test START point Α
- Proof test END point В

Activating the self-test




▶ Press the ⊡ and ⊕ keys > 2 s.

A0042490 The green LED 5 flashes for 20 s

▶ The test is completed when the green LED 1 lits.

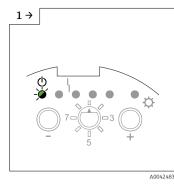
► Set the function switch to position 1.

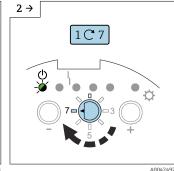
7.2.10 Setting the MIN, MAX and SIL fail-safe mode

The SIL mode function is only available in conjunction with electronic insert FEI55.

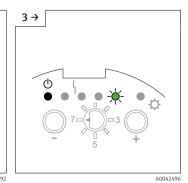
By selecting the fail-safe mode correctly, you ensure that the output always operates safely with the quiescent current.

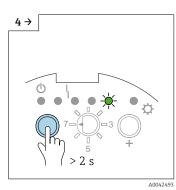
Minimum fail-safe mode (MIN)


The output switches if the switch-point is undershot (probe uncovered), a fault occurs or the line voltage fails.

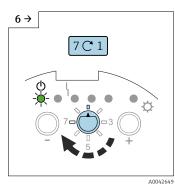

Maximum fail-safe mode (MAX)

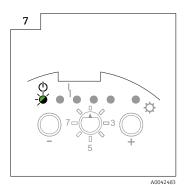
The output switches if the switch-point is exceeded (probe covered), a fault occurs or the line voltage fails.


Setting the MIN fail-safe mode:

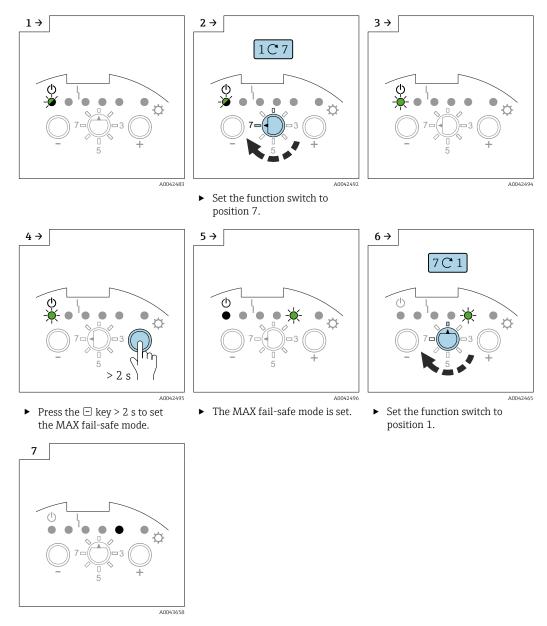

The factory setting is set to MAX fail-safe mode.

• Set the function switch to position 7.



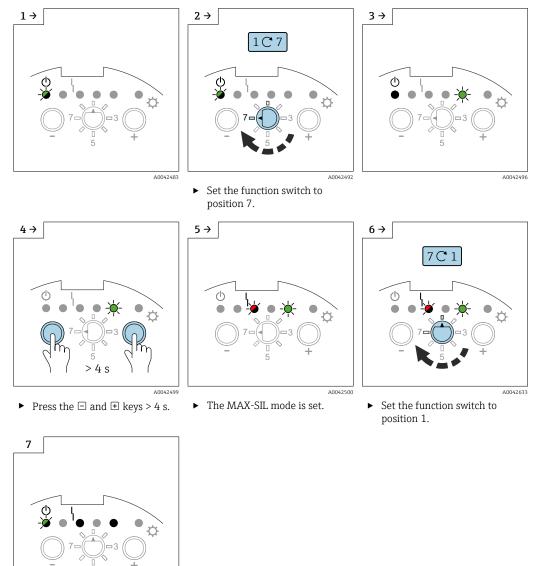

- ► The MIN fail-safe mode is set.

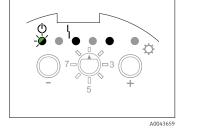
A004365


 The green LED 5 shows the factory setting.

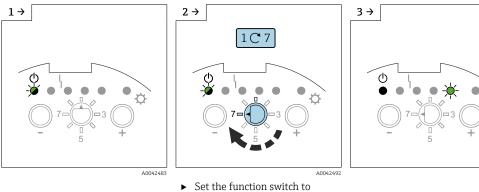
Set the function switch to position 1.

To set the MAX fail-safe mode:

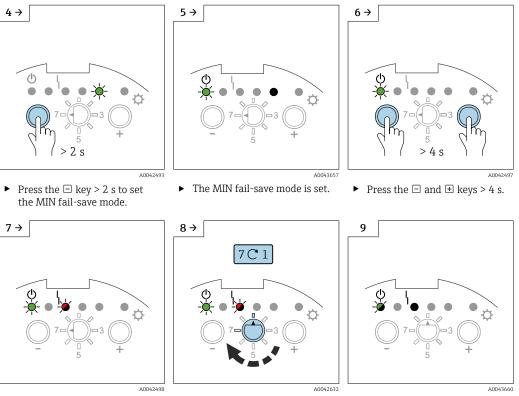



Locking in the "Lock SIL mode" activates the fault message at the current output (I<3.6 mA), and it is signaled by the red LED 4.

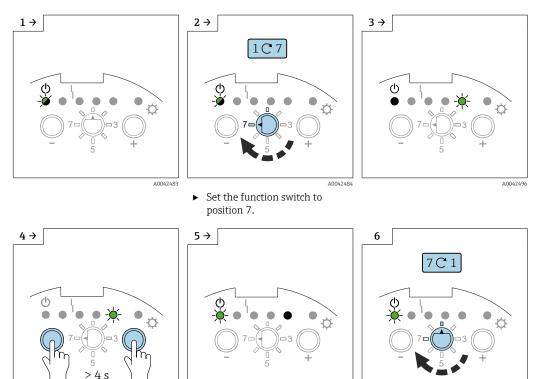
Setting the MAX fail-safe mode and lock the SIL mode:



The factory setting is set to MIN-SIL mode.



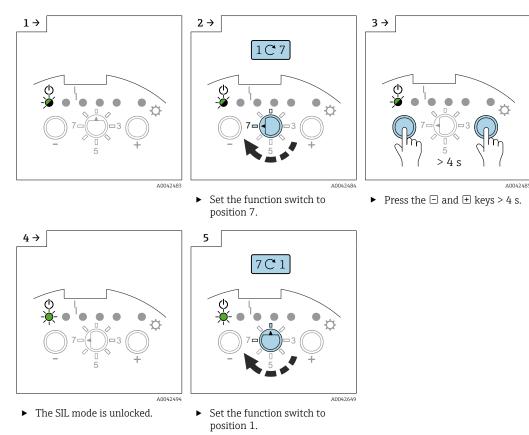
position 7.


A0042496

Ċ

- ► The MIN-SIL mode is set.
- Set the function switch to position 1.

To unlock the SIL mode and set the MAX fail-save mode (only with electronic insert FEI55):



- A0042499 ▶ Press the 🖃 and 🛨 keys > 4 s.
- The SIL mode is unlocked.

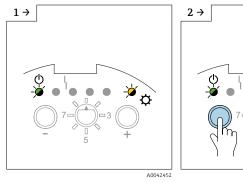
A0043657

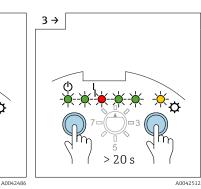
► Set the function switch to position 1.

A0042649

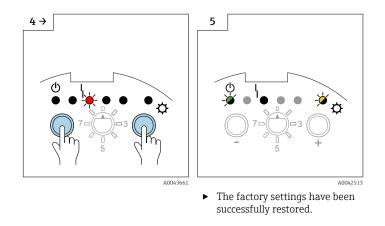
To unlock the SIL mode and set the MIN fail-save mode:

7.2.11 Restoring factory settings


This function allows you to restore the factory settings. This is particularly useful if the device has already been calibrated once and, for example, there is a fundamental change in the medium in the tank.


After restoring the factory settings, you must repeat the calibration.

Restoring factory settings


The device is set into the factory settings and it is possible to continue with setting the measuring range and the calibration.

 All LEDs light up sequentially in time > 20 s.

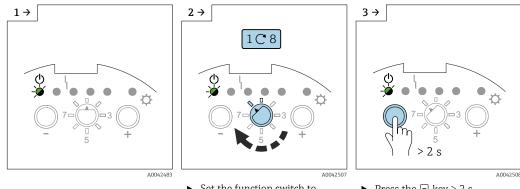
7.2.12 If Upload and download sensor DAT (EEPROM)

The customer-specific settings of the electronic insert (e.g. empty and full calibration, switch-point adjustment) are stored automatically in the sensor DAT (EEPROM) and the electronic insert.

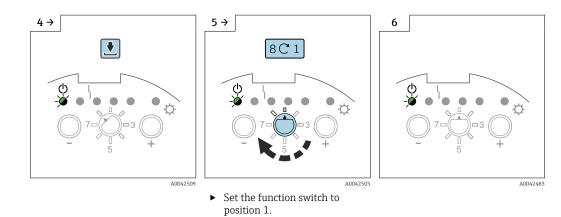
The sensor DAT (EEPROM) is updated automatically each time a parameter is changed in the electronic insert.

If replacing the electronic insert, all the data are transferred into the electronic insert using a manual upload. No additional settings are required.

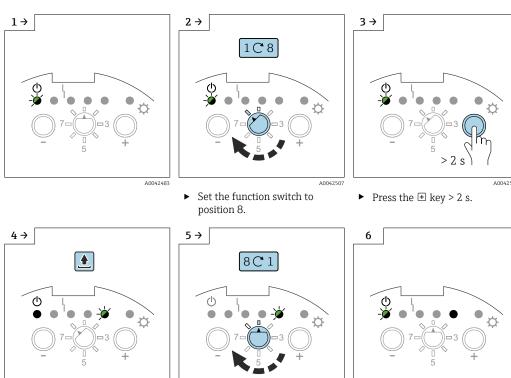
After installing the electronic insert, the manual download must be carried out to transfer the customer-specific settings of the electronic insert.


Upload

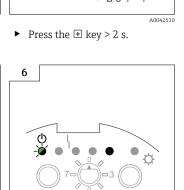
An upload transfers the saved data from the sensor DAT (EEPROM) to the electronic insert. The electronic insert does not have to be configured any more, and the device is then operational.


Download

A download transfers the saved data from the electronic insert to the sensor DAT (EEPROM).


Downloading the data

- Set the function switch to position 8.
- Press the \Box key > 2 s.



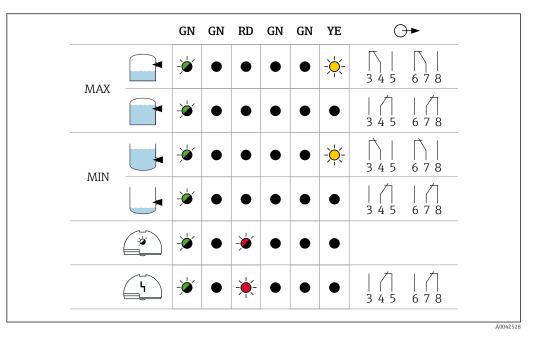
Uploading the data

A0043662 • Set the function switch to position 1.

A0042511

A0043637

7.2.13 Output signals


Output signal FEI51

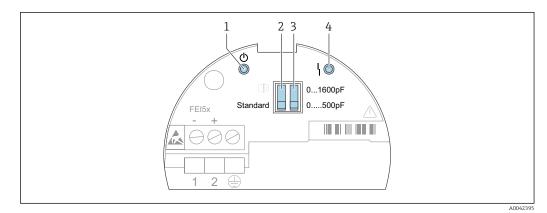
		GN	GN	RD	GN	GN	YE	↔
MAX		-)	•	•	•	•	-×–	L+13+
MAX		-)	•	•	•	•	•	13
MINI		-)	•	•	•	•	-兴-	L+13+
MIN		-)	•	•	•	•	•	13
	->	-)	•	-)	•	•	•	<u>1</u> _ <u>I_</u> /<3,8 mA
	L L	-)	•	-)	•	•	•	[]
		1		1			1	1

Output signal FEI52

		GN	GN	RD	GN	GN	YE	↔
MAY		-``	•	•	•	•	-×	$L+1 \xrightarrow{I_L} 3+$
MAX		-)	•	•	•	•	•	<u>1</u> * 3
N (TN)		-)	•	•	•	•	-××-	L+ 1
MIN		-)	•	•	•	•	•	<u>1</u> * 3
	-×	-)	•	-)	•	•	•	1 <u>I_/R</u> +3
	L L	-)	•		•	•	•	<u>1</u> 3

Output signal FEI54

Output signal FEI55

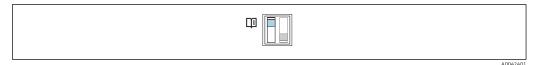

			GN	GN	RD	GN	GN	YE	\bigcirc
	MAY		-)	•	•	•	•	-×	+ 2 ~16 mA + 1
	MAX		-)	•	•	•	•	•	+ 2 ~8 mA 1
-	MINI		-)	•	•	•	•	-兴-	+ 2 ~16 mA 1
	MIN		-)	•	•	•	•	•	+ 2 ~8 mA 1
_		->	-)	•	-)	•	•	•	+ 2 ~8/16 mA + 1
_		<u> </u>	-)	•	-``	•	•	•	+ 2 < 3.6 mA
									A004252

7.3 Commissioning with electronic inserts FEI53 or FEI57S

This chapter describes the process for commissioning the device with electronic insert versions FEI53 and FEI57S.

The measuring system is not operational until you have carried out a calibration at the switching unit.

For information on how to carry out the calibration, refer to the documentation for the Nivotester switching device: FTC325 3-Wire, FTC325 PFM.


🗟 40 FEI53 and FEI57S human interface

- 1 Green LED operational status
- 2 Standard or alarm DIP switch
- 3 Measuring range DIP switch
- 4 Red LED fault

7.3.1 Setting the alarm response if the measuring range is exceeded The functions of the DIP switches:

Standard
A0042400

41 Standard: if the measuring range is exceeded no alarm is output

• 42 Alarm: if the measuring range is exceeded an alarm is output

With this setting, is possible to determine the alarm response of the measuring system when the measuring range is exceeded. It is possible to switch the alarm on or off if the measuring range is exceeded.

All other settings concerning the alarm response have to be configured on the respective Nivotester switching device.

7.3.2 Setting the measuring range

The functions of the DIP switches:

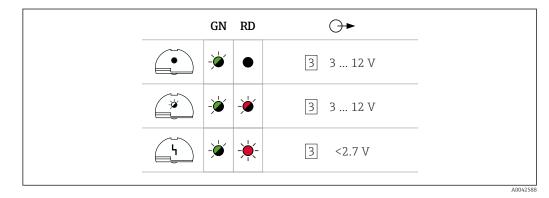
0500pF

E 43 Measuring range: the measuring range is between 0 to 500 pF. Span: the span is between 0 to 500 pF

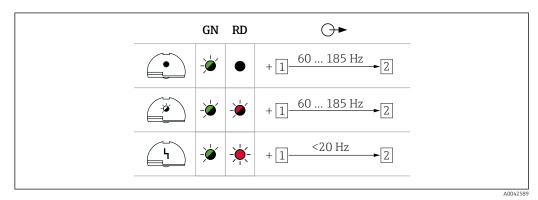
01600pF	
004	042403

 \blacksquare 44 Measuring range: the measuring range is between 5 to 1 600 pF. Span: the span is between 5 to 1 600 pF

The choice of measuring range (0 to 500 pF and 0 to 1600 pF) depends on the function of the probe. If the probe is used as a point level switch, you can retain the factory setting of 0 to 500 pF.


If the probe is used for two-point control, the following settings are recommended for vertical installation:

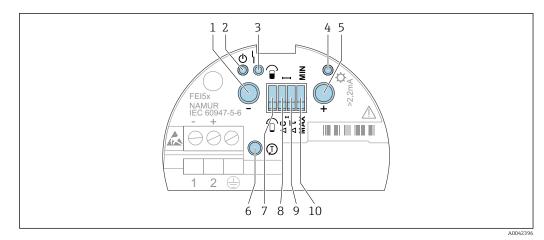
- measuring range from 0 to 500 pF for probe lengths up to 1 m (3.3 ft)
- measuring range from 0 to 1600 pF for probe lengths up to 4 m (13 ft)


All other settings must be made on the respective Nivotester switching device.

7.3.3 Output signals

Output signal FEI53

Output signal FEI57S


7.4 Commissioning with the electronic insert FEI58

This chapter describes the process of commissioning the device with electronic insert FEI58.

The measuring system is not operational until you have carried out a calibration.

Additional functions associated with the switching unit are described in the documentation for the switching unit, e.g. Nivotester FTC325N.

🖻 45 🛛 FEI58 human interface

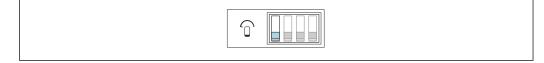
- 1 Function key A
- 2 Green LED operational status
- 3 Red LED fault
- 4 Yellow LED switching state
- 5 Function key B
- 6 Test key
- 7 Calibration DIP switch
- 8 Switch point SIP switch
- 9 Delay DIP switch
- 10 Fail-safe mode DIP switch

7.4.1 Function keys A, B, C

To prevent unintentional operation of the device, wait for approximately 2 s after the keys were pressed, to elapse before the system evaluates and executes a function commanded when a key is pressed (keys A and B). Test key C disconnects the power supply immediately.

Both keys (A and B) have to be pressed simultaneously to trigger switch-point adjustment.

Function key


- Key A: displays diagnostic code
- Key B: displays calibration situation
- Test key C: disconnects the transmitter from the switching unit
- Keys A and B pressed during:
 - operation perform calibration
 - startup delete calibration points

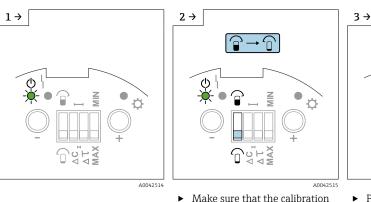
7.4.2 Performing calibration

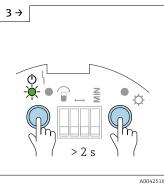
An empty and full calibration provides the greatest possible operational security. This is highly recommended for critical applications.

The empty and full calibration measures the capacitance values of the probes when the tank is full and when it is empty. For example: if the measured capacitance value of the empty calibration is 50 pF and that of the full calibration is 100 pF, the average capacitance value, 75 pF is stored as the switch-point.

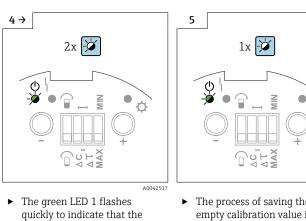
Calibration DIP switch:

46 The probe is uncovered during calibration

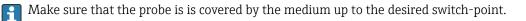

A0042404

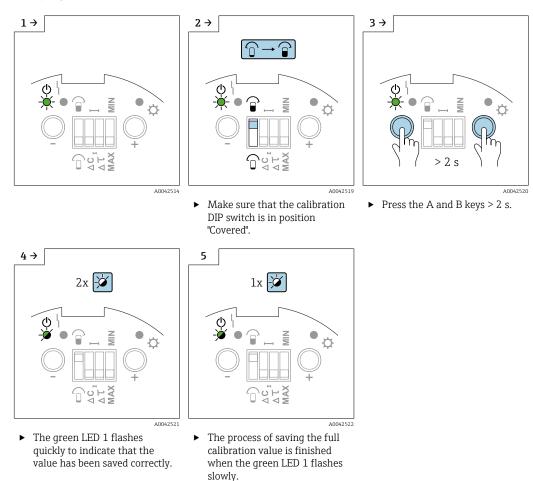

The probe is covered during calibration 🛃 47

A Make sure that the probe is not covered with product.


Carrying out empty calibration

• Make sure that the calibration DIP switch is in position "Uncovered".

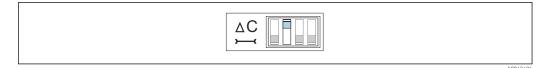

Press the A and B keys > 2 s.


- value has been saved correctly.
- ▶ The process of saving the empty calibration value is finished when the green LED 1 flashes slowly.

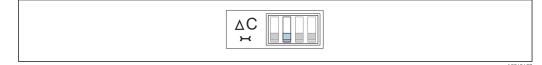
Ċ

A0042518

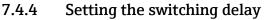
Carrying out full calibration


7.4.3 Setting the switch point adjustment

If only one calibration (empty or full) was carried out, and if buildup forms on the rope probe while the probe is in operation, the device may no longer respond to changes in level. A switch point adjustment compensates for this condition and ensures that you obtain a constant switch point again.


For media that do not have a tendency to buildup, we recommend a setting of 2 pF, as the probe is most sensitive to changes in level at this setting.

For media with heavy buildup, it is recommended to use the probes with active buildup compensation with the setting of 10 pF.


Switch point adjustment:

🖻 49 🛛 2 pF

NOTICE

The tank can overflow if the switching delay is set for too long.

```
_____
```

The switching delay causes the device to signal the point level after a delay. This is useful in tanks with turbulent medium surfaces caused by the filling process or by collapsing mounds. Ensure that the filling of the tank does not end until the probe is continuously covered by the medium.

A switching delay that is too short can cause the filling process to be restarted as soon as the medium surface settles.

Switching delay:

A0042408

🖻 50 5 s

|--|

🖻 51 1 s

7.4.5 MIN and MAX fail-save mode

By selecting the fail-save mode correctly, you ensure that the output always operates safely with the quiescent current.

Minimum fail-save mode (MIN)

The output switches if the switch point is undershot (rope uncovered), a fault occurs or the line voltage fails.

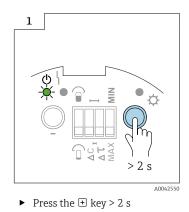
Maximum fail-save mode (MAX)

The output switches if the switch point is exceeded (rope covered), a fault occurs or the line voltage fails.

Fail-safe mode:

|--|

If the output switches safety-oriented when the probe is uncovered. It can be used in cases such as dry run protection and pump protection.

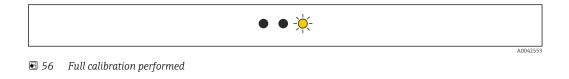

|--|

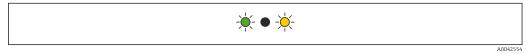
If the output switches safety-oriented when the probe is covered. It can be used in cases such as overfill protection.

7.4.6 Display calibration situation

Use this function to see what calibrations have been performed on the device. The calibration situation is indicated by the three LEDs.

Displaying calibration situation





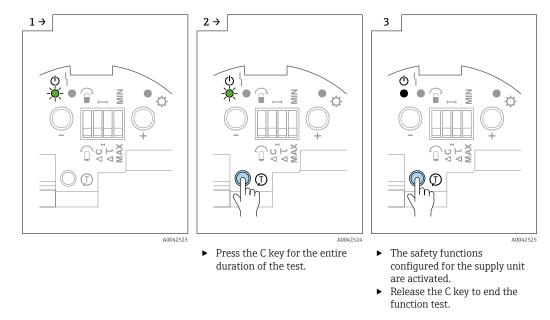
■ 54 No calibration

■ 55 Empty calibration performed

■ 57 Empty and full calibration performed

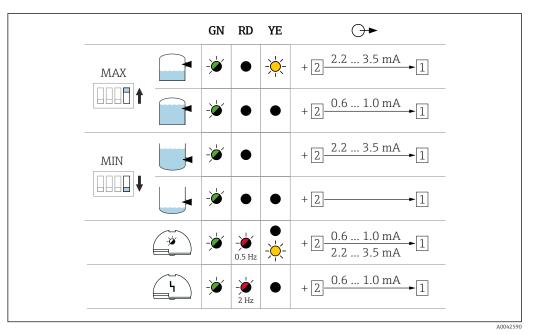
7.4.7 Displaying the diagnostic code

This function makes it possible to interpret faults using the three LEDs. If the system detects more than one fault, the fault with the highest priority is shown on the display.


More information is provided in the section "Fault diagnostics" $\rightarrow \square$ 72.

7.4.8 Test key C

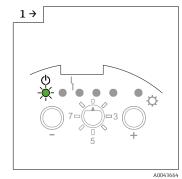
This test can be used to activate safety-specific measures in the plant like the alarms!

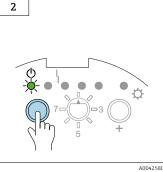

Pressing test key C disconnects the supply voltage. If the power supply is disconnected, a supply unit like Nivotester FTC325N reacts that the alarm relay outputs an error and appropriate responses are triggered in any slave devices connected.

To perform the function test:

7.4.9 Output signals

Output signal FEI58


8 Diagnostics and troubleshooting


- In the event of faults during commissioning or operation of the device, you can carry out fault diagnostics on the electronic insert. This function is supported by the electronic inserts FEI51, FEI52, FEI54, FEI55.
- The electronic inserts FEI53, FEI57S and FEI58 signal two types of faults:
 - the red LED flashes faults that can be rectified
 - the red LED is lit continuously faults that cannot be rectified

8.1 Activating fault diagnostics FEI51, FEI52, FEI54 and FEI55

The diagnostics provide information about the operating status of the device. The results of the diagnostics are displayed by LEDs. If the diagnostics detect multiple faults, these are shown according to their priority. A serious fault (e.g. priority 3) is always displayed before a less serious fault (e.g. priority 5).

Activating fault diagnostics

- Make sure the function switch
 President position 1.
 - ▶ Press the ⊡ key.

No fault

Internal fault - priority 1

Replace the electronic insert

The calibration point or points are outside the measuring range - priority 2

Recalibrate

The calibration points have been accidentally interchanged - priority 3

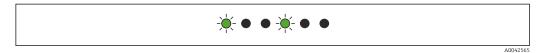
A004255

Recalibrate

The calibration point is too close to the measuring range limit - priority 4

Reduce the switch-point or select a new installation location

No calibration has yet been carried out - priority 5


Carry out empty and full calibration

The DC PNP output is overloaded (FEI52) - priority 6

Reduce the connected load

The capacitance change from "Probe not covered" to "Probe covered" is too small - priority 7

Contact Endress+Hauser Service

Sensor DAT (EEPROM) data are invalid - priority 8

A0042566

Carry out download from the electronic insert

The probe is not detected, the connection to the sensor DAT (EEPROM) could not be established - priority 9

A0042567

The probe type is not compatible

The measured temperature is outside the permitted temperature range - priority 10

Operate the device in the specified temperature range only

8.2 Fault diagnostics FEI53 and FEI57S

The device does not switch

Check the connection and the supply voltage

Alarm LED flashes

The ambient temperature of the electronics is outside the permitted range or the connection to the probe is interrupted

8.3 Activating fault diagnostics FEI58

This function makes it possible to interpret faults using the three LEDs. If the system has detected more than one fault, the fault with the highest priority is shown on the display.

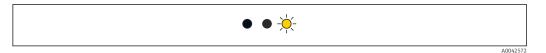
To display the diagnostic code:

1
> 2 s
A0056585

No fault

Internal fault - priority 1

The device is defective


The calibration point is too close to the measuring range limit - priority 2

🛃 58

Reduce the switch-point or select a new installation location

Calibration points have been accidentally interchanged - priority 3

Perform uncovered calibration with the probe uncovered, and covered calibration with the probe covered

No calibration has yet been carried out - priority 4

Carry out empty and full calibration

The change in capacitance from uncovered probe to covered probe is too small - $\ensuremath{\mathsf{priority}}\xspace5$

The capacitance change between the uncovered and covered probe must be higher than 2 $\ensuremath{\text{pF}}$


Probe not detected - priority 6

☑ 59 Probe not detected

Connect the probe

The measured temperature is outside the permitted range - priority 7

■ 60 *The measured temperature is outside the permitted range*

The device can be operated in the specified temperature range only

8.4 Firmware history

FEI51

- Release date: 10/2007
- Software version: V 01.00.zz
- Software change: original software

FEI52

- Release date: 07/2006
- Software version: V 01.00.zz
- Software change: original software

FEI53

- Release date: 07/2006
- Software version: V 01.00.zz
- Software change: original software

FEI54

- Release date: 07/2006
- Software version: V 01.00.zz
- Software change: original software

FEI55

- Release date: 11/2008
- Software version: V 02.00.zz
- Software change: extended to include SIL functionality

FEI57S

- Release date: 07/2006
- Software version: V 01.00.zz
- Software change: original software

FEI58

- Release date: 01/2010
- Software version: V 01.00.zz
- Software change: original software

9 Maintenance

No special maintenance work is required.

9.1 External cleaning

Do not use a corrosive or aggressive cleaning agent to clean the housing surface and seals.

9.2 Cleaning the probe

Depending on the application, buildup of contamination or soiling can form on the probe rope. A high level of material buildup can affect the measurement result.

The regular cleaning of the probe rope is recommended if the medium tends to create a high level of buildup.

Make sure that the insulation of the probe rope is not damaged if hosing down or during mechanical cleaning.

Make sure that the probe rope insulation is resistant to cleaning agents.

9.3 Seals

The process seals of the sensor must be replaced periodically, especially when using molded aseptic seals! The intervals between seal replacement depend on the frequency of the cleaning cycles and on the fluid and cleaning temperature.

9.4 Endress+Hauser services

Endress+Hauser offers a wide range of services.

Your Endress+Hauser Sales Center can provide detailed information on the services.

10 Repair

10.1 General notes

The Endress+Hauser repair and conversion concept provides the following:

- The measuring devices have a modular design
- Spare parts are grouped into logical kits with the associated Installation Instructions
- Repairs are carried out by Endress+Hauser Service or by appropriately trained customers
- Certified devices can only be converted to other certified devices by Endress+Hauser Service or at the factory

10.2 Spare parts

Find spare parts

Check whether it is possible to use the spare part for the measuring device.

1. Launch the Endress+Hauser Device Viewer via a web browser: www.endress.com/deviceviewer

- 2. Enter the order code or the product root in the respective field.
 - Once the order code or the product root has been entered, all the suitable spare parts are listed.

The product status is displayed.

Available drawings of the spare parts are displayed.

- 3. Locate the order code of the spare part set (on the product label on the package).
 - ↦ NOTE!

The order code of the spare part set (on the product label on the package) can differ from the production number (on the label directly on the spare part)!

- 4. Check whether the order code of the spare part set appears in the list of the spare parts displayed:
 - YES: The spare part set may be used for the measuring device.
 NO: The spare part set may not be used for the measuring device.
 If you have any questions please contact your Endress+Hauser Service organization.
- 5. On the **Spare parts** tab click the PDF symbol in the **MH** column.
 - The Installation Instructions attached to the listed spare part are opened as a PDF file and can also be saved as a PDF file.
- 6. Click one of the drawings shown on the **Spare part drawings** tab.
 - └ The corresponding exploded drawing is opened as a PDF file and can also be saved as a PDF file.

10.3 Repairing Ex-certified devices

If repairing Ex-certified devices remember that:

- Ex-certified devices may only be repaired by experienced and skilled staff or by Endress+Hauser Service
- observe all applicable standards, certificates, national Ex-area regulations and all Safety Instructions (XA)
- use only genuine spare parts from Endress+Hauser
- note the device designation on the nameplate to order the spare parts
- replace the component by the same type
- carry out the replacing in accordance with the instructions

- carry out the individual test for the device
- change the device only with a device certificated by Endress+Hauser
- report every change and repair of the device

10.4 Replacement

After replacing a probe or the electronic insert, the calibration values must be transferred to the replacement device.

Options:

- if the probe is replaced, the calibration values in the electronic insert can be transferred to the sensor DAT (EEPROM) module via a manual download
- if the electronic insert is replaced, the calibration values of the sensor DAT (EEPROM) module can be transferred to the electronics via a manual upload

It is possible to restart the device without having to carry out a new calibration.

10.5 Return

The requirements for safe device return can vary depending on the device type and national legislation.

- 1. Refer to the website for more information: http://www.endress.com/support/return-material
- 2. Return the device if repairs or a factory calibration are required, or if the wrong device was ordered or delivered.

10.6 Disposal

10.6.1 Removing the measuring device

1. Switch off the device.

WARNING

Danger to personnel from process conditions.

- Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids.
- 2. Carry out the mounting and connection steps from the "Mounting the measuring device" and "Connecting the measuring device" sections in reverse order. Observe the safety instructions.

10.6.2 Disposing of the measuring device

WARNING

Danger to personnel and environment from fluids that are hazardous to health.

Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- Observe valid federal or national regulations.
- Ensure proper separation and reuse of the device components.

11 Accessories

11.1 Protective cover

Protective cover for F13, F17 and F27 housing (without display) order number: 71040497

Protective cover for F16 housing order number: 71127760

11.2 Seal set for stainless steel housing

Seal set for stainless steel housing F15 with 5 sealing rings Part number: 52028179

11.3 Surge arresters

11.3.1 HAW562

• For supply lines: BA00302K.

For signal lines: BA00303K.

11.3.2 HAW569

For signal lines in field housing: BA00304K.
 For signal and a signal signa

• For signal or supply lines in field housing: BA00305K.

11.4 Technical information

Nivotester FTC325

TI00380F

12 Technical data

12.1 Input

12.1.1 Measuring range

Measuring frequency

500 kHz

- Span
- $\Delta C = 5$ to 1600 pF
- FEI58
- $\Delta C = 5$ to 500 pF

Final capacitance

 $C_E = maximum \ 1 \ 600 \ pF$

Adjustable initial capacitance

- range 1 factory setting
- $C_{A} = 5 \text{ to } 500 \text{ pF}$
- range 2 not avaliable with FEI58 $C_A = 5$ to 1600 pF

12.2 Output

12.2.1 Switch behavior

Binary or Δs operation.

The pump control is not possible with FEI58.

12.2.2 Switch-on behaviour

When the power supply is switched on, the switching status of the outputs corresponds to the signal on the alarm.

The correct switch condition is reached after a maximum of 3 s.

12.2.3 Fail-safe mode

Minimum and maximum quiescent current safety can be switched at the electronic insert $^{2)}\xspace$

MIN

Minimum safety: the output switches safety-oriented when the probe is uncovered $^{3)}$ (signal on alarm).

MAX

Maximum safety: the output switches safety-oriented when the probe is covered ⁴ (signal on alarm).

²⁾ For FEI53 and FEI57S only on the associated Nivotester: FTC325.

³⁾ E.g. for dry running protection and pump protection.

⁴⁾ E.g. for use with overfill protection.

12.2.4 Galvanic isolation

FEI51 and FEI52

between the rope probe and power supply

FEI54

between the rope probe, power supply and load

FEI53, FEI55, FEI57S and FEI58

see connected switching device ⁵⁾

12.3 Performance characteristics

According to DIN 61298-2

- Uncertainty: maximum ±0.3 %
- Non-repeatability: maximum ±0.1 %

12.3.1 Ambient temperature effect

Electronic insert

< 0.06 % per 10 K related to the full-scale value

Separate housing

capacitance change of connecting cable per meter 0.15 pF per 10 K

12.4 Operating conditions: Environment

12.4.1 Ambient temperature range

- F16 housing: -40 to +70 °C (-40 to +158 °F)
- remaining housing: -50 to +70 °C (-58 to +158 °F)
- observe derating
- use a protective cover, when operating outdoors

12.4.2 Climate class

DIN EN 60068-2-38/IEC 68-2-38: Z/AD check

12.4.3 Vibration resistance

DIN EN 60068-2-64/IEC 68-2-64: 20 to 2000 Hz, 0.01 g²/Hz

12.4.4 Shock resistance

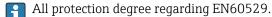
DIN EN 60068-2-27/IEC 68-2-27: 30 g acceleration

12.4.5 Cleaning

Housing:

Make sure that the housing surface and seals are resistant to cleaning agents.

Probe:


Depending on the application, buildup of contamination or soiling can form on the probe. A high level of material buildup can affect the measurement result.

⁵⁾ Functional galvanic isolation in the electronic insert.

The regular cleaning of the probe is recommended if the medium tends to create a high level of buildup.

Make sure that the insulation of the probe is not damaged if hosing down or during mechanical cleaning.

12.4.6 Degree of protection

Type4X protection degree regarding NEMA250.

Polyester housing F16

Protection degree:

- IP66
- IP67
- Type4X

Stainless steel housing F15

Protection degree:

- IP66
- IP67
- Type4X

Aluminum housing F17

Protection degree:

- IP66
- IP67
- Type4X

Aluminum housing F13 with gas-tight process seal

Protection degree:

- IP66
- IP68⁶⁾
- Type4X

Stainless steel housing F27 with gas-tight process seal Protection degree:

- IP66
- IP67
- IP68⁶⁾
- Type4X

Aluminum housing T13 with gas-tight process seal and separate connection compartment (Ex d) $% \left({{\rm{T}}_{\rm{T}}} \right)$

Protection degree:

- IP66
- IP68⁶⁾
- Type4X

Separate housing

Protection degree:

- IP66
- IP68⁶⁾
- Type4X

12.4.7 Electromagnetic compatibility (EMC)

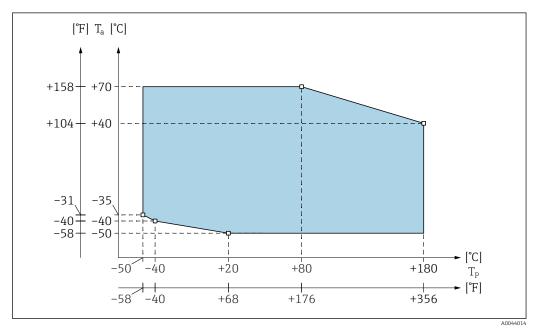
Interference emission to EN 61326, Electrical Equipment Class B. Interference immunity to EN 61326, Annex A (Industrial) and NAMUR Recommendation NE 21 (EMC).

A standard commercial instrument cable can be used.

⁶⁾ Only with M20 cable entry or $G\frac{1}{2}$ thread.

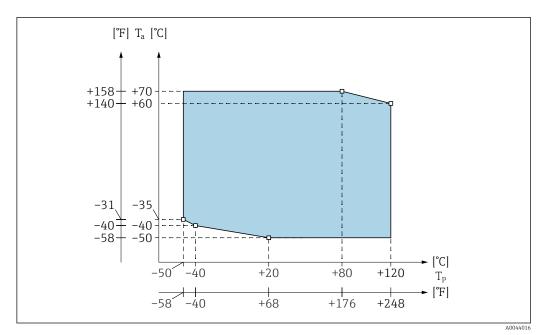
12.5 Operating conditions: Process

12.5.1 Process temperature range


The following process temperature ranges only apply for standard applications outside hazardous areas.

Regulations for use in hazardous areas are provided in the Supplementary Documentation that is available for the product and can be selected via the Product Configurator at www.endress.com.

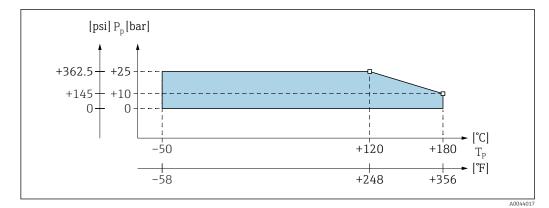
Permitted ambient temperature $T_{\rm a}$ at the housing depending on the process temperature $T_{\rm p}$ in the tank.


Rope probe

Partially insulated (PTFE)

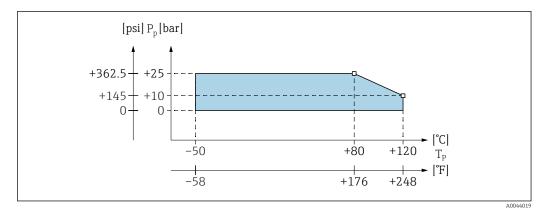
61 Process temperature range diagram: partially insulated probe

Fully insulated (PA)


62 Process temperature range diagram: fully insulated probe

12.5.2 Process pressure and temperature derating

The lowest value from the derating curves of the device and the selected flange applies. In the case of flange process connections, the maximum pressure is limited by the nominal pressure of the flange.


Rope probe

Partially insulated (PTFE)

■ 63 Process pressure and temperature derating diagram: partially insulated probe

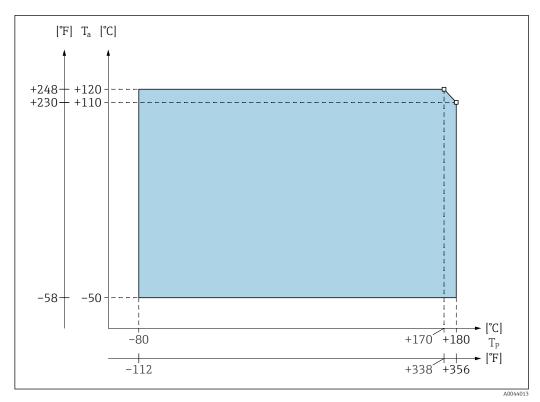
Fully insulated (PA)

64 Process pressure and temperature derating diagram: Fully insulated probe

Process pressure limits

Process pressure limits: -1 to 25 bar (-14.5 to 362.5 psi).

The lowest value from the derating curves of the device and the selected flange applies.


Refer to the following standards for the pressure values permitted at higher temperatures: • pR EN 1092-1: 2005 Table, Appendix G2

With regard to its resistance and temperature property, the material 1.4435 is identical to 1.4404 (AISI 316L) which is grouped under 13E0 in EN 1092-1 Tab. 18. The chemical make-up of the two materials can be identical.

- ASME B 16.5a 1998 Tab. 2-2.2 F316
- ASME B 16.5a 1998 Tab. 2.3.8 N10276
- JIS B 2220

12.5.3 Temperature-derating separate housing

The temperature at the separate housing must not exceed 70 °C (158 °F).

■ 65 Process pressure range diagram

T_a Ambient temperature

T_p Process temperature

The maximum connection length between the probe and the separate housing is 6 m (L4). When ordering a device with a separate housing, the desired length must be specified. If the connecting cable is to be shortened or passed through a wall, it must be separated from the process connection, see operating instructions.

Index

A

11
About this document
Accessories
Aligning the housing
Ambient temperature effect
Ambient temperature range 80

В

Basic safety instructions .	•				•		•			•	•	•	•	•	•	•	•				8
-----------------------------	---	--	--	--	---	--	---	--	--	---	---	---	---	---	---	---	---	--	--	--	---

С

3
Cable entry
Cable specification
Carrying out empty calibration
CE mark
Cleaning the probe
Climate class
Commissioning 41
Connecting requirements
Connection compartment
Connector

D

Declaration of Conformity8Degree of protection81
Device documentation
Supplementary documentation 7
Diagnostics and troubleshooting
and troubleshooting
Disposal
Document
Function
Document function

E

-
Electrical connection
Electromagnetic compatibility
Endress+Hauser services
Repair 75 Environment 80
Ex-area
Explosive area8Extension heights: separate housing19External cleaning75
F Fail-safe mode
G Galvanic isolation
I Incoming acceptance

Installation and function check41Installation instructions17

М

M12 connector
Maintenance
Measuring device
Conversion
Disposal
Removing
Repairs
Measuring range
Minimum probe length for nonconductive media 17
Mounting
Mounting requirements

N

Nameplate																																		C)
runicplate	•	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	•	•	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	-	·

0

Operating conditions	80
Operating conditions: Process	82
Operation options	37
Operational safety	. 8
Output	79

P

Performance characteristics
Pipe mounting 21
Post-connection check
Post-installation check
Potential equalization
Probe with separate housing
Product identification
Product safety
Protective cover

R

Repair	6
-	
Repairing Ex-certified devices 7	6
Replacement	7
Device components	6
Requirements for the personnel	8
Return	7

S

3	
Sealing the probe housing	8
Setting the measuring range	1
Shock resistance	0
Shortening the connecting cable	2
Spare parts	6
Storage	9
Surge arrester	8
Switch behavior	9
Switch-on behaviour	9
Symbols	5
Symbols for certain types of information and graphics .	
Т	
– Technical data	9

Technical information	
Buildup mode	48
V	
Vibration resistance	80
W Wall bracket	21

Workplace safety 8

www.addresses.endress.com

