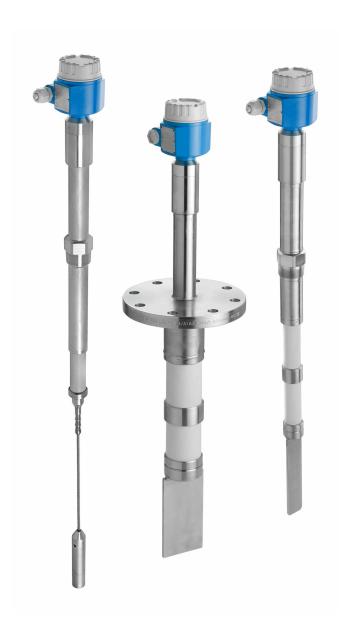
Válido a partir da versão

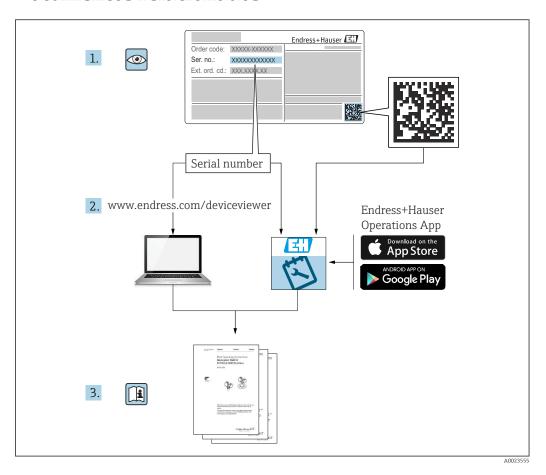
V 01.00.zz


Products

Instruções de operação

Solicap S FTI77

Capacitância


Chave de nível pontual robusta para aplicações com sólidos e temperaturas muito altas

Documentos relacionados Solicap S FTI77

Documentos relacionados

Solicap S FTI77 Sumário

Sumário

1	Sobre este documento	5	5	Conexão elétrica	30	
1.1 1.2	Símbolos	5 5 5 5 6	5.1	5.1.1 Equalização potencial	30 30 31 31 31	
1.3	Documentação	7	5.3		32 32 34	
2	Instruções de segurança básicas	8		5.3.4 Unidade eletrônica FEI54 Ca e CC	2.6	
2.1	Uso indicado	8 8		com saída a relé	36 37	
2.3 2.4	Segurança da operação	8 8 8		5.3.6 Unidade eletrônica FEI57S PFM5.3.7 Unidade eletrônica FEI58 NAMUR	38 39	
2.5	Segurança do produto	8	5.4	Verificação pós conexão	40	
3	Recebimento e identificação do			Opções de operação	41	
	produto	9	6.1	Interface humana e elementos de exibição para FEI51, FEI52, FEI54, FEI55 4		
3.1 3.2		9 9 9	6.2	Interface humana e elementos de exibição para FEI53, FEI57S	42	
3.3	3.2.2 Endereço do fabricante	9		para FEI58	43	
			7	Comissionamento	45	
4	,	.0	7.1	Instalação e verificação da função	45	
4.1	 4.1.1 Observações gerais e precauções 1 4.1.2 Instalação do sensor	.0 .0 .1 .3 .5 .6	7.2	7.2.5 Redefinir: Calibração e ajuste do ponto de comutação	45 45 46 47 48	
4.2	Condições de medição	20		7.2.6 © Configuração do ajuste do ponto de comutação	51	
4.3	Instruções de instalação	21		pontos e do modo de incrustação 7.2.8 T Configuração do atraso de		
4.4	Sonda com invólucro separado	23		comutação	54 55 57	
	4.4.2 Suporte de parede	24 25		7.2.11 Restauração dos ajustes de fábrica7.2.12	61	
4.5	4.4.5 Encurtamento do cabo de conexão 2	25 26 28		(EEPROM) do sensor		

Sumário Solicap S FTI77

7.3	Comissionamento com unidades eletrônicas FEI53 ou FEI57S	65
	7.3.1 Configuração da resposta do alarme se a faixa de medição for excedida7.3.2 Configuração da faixa de medição	66 66
7 /	7.3.3 Sinais de saída	67
7.4	Comissionamento com a unidade eletrônica FEI58	68
	7.4.1 Teclas de função A, B, C	68 69
	7.4.3 Configuração do ajuste do ponto de	
	comutação	71
	comutação	71 72
	7.4.6 Exibir a situação da calibração	72
	7.4.7 Exibição do código de diagnóstico	73
	7.4.8 Tecla de teste C	73 74
8	Diagnóstico e localização de falhas .	75
8.1	Ativação do diagnóstico de falhas FEI51,	
8.2	FEI52, FEI54 e FEI55	75 77
8.3	Ativação do diagnóstico de falhas FEI58	77
8.4	Histórico do firmware	78
9	Manutenção	80
9.1	Limpeza externa	80
9.2 9.3	Limpeza da sonda	80 80
10	Reparo	81
10.1	Notas gerais	81
10.2 10.3	Peças de reposição	81 81
10.4	Substituição	82
10.5	Devolução	82
10.6	Descarte	82 82
	10.6.2 Descarte do medidor	82
11	Acessórios	84
11.1 11.2	Tampa de proteção contra o tempo Conjunto de vedação para invólucro de aço	84
11 7	inoxidável	84
11.3	Para-raios	84 84
	11.3.2 HAW569	84
11.4	Adaptador da flange	84
12	Dados técnicos	85
12.1	Entrada	85 85

12.2	Saida .		85
	12.2.1	Comportamento do comutador	85
	12.2.2	Comportamento de ativação	85
	12.2.3	Modo de segurança contra falhas	85
	12.2.4	Isolamento galvânico	86
12.3	Caracte	rísticas de desempenho	86
	12.3.1	Efeito da temperatura ambiente	86
	12.3.2	Sinal de entrada	86
12.4	Condiçã	Ses de operação: Ambiente	86
	12.4.1	Faixa de temperatura ambiente	86
	12.4.2	Classe climática	86
	12.4.3	Temperatura de armazenamento	86
	12.4.4	Resistência contra vibração	86
	12.4.5	Resistência a choques	87
	12.4.6	Limpeza	87
	12.4.7	Grau de proteção	87
	12.4.8	Compatibilidade eletromagnética	
		(EMC)	88
12.5	Condiçã	ões de operação: Processo	88
	12.5.1	Faixa de temperatura do processo	88
	12.5.2	Faixa de pressão do processo	90
,			
India	'e		91

Solicap S FTI77 Sobre este documento

1 Sobre este documento

1.1 Função do documento

Estas Instruções de Operação contêm todas as informações necessárias nas diversas fases do ciclo de vida do equipamento: da identificação do produto, recebimento e armazenamento à instalação, conexão, operação e comissionamento até a localização de falhas, manutenção e descarte.

1.2 Símbolos

1.2.1 Símbolos de segurança

A PERIGO

Este símbolo alerta sobre uma situação perigosa. Se esta situação não for evitada, poderão ocorrer ferimentos sérios ou fatais.

A ATENÇÃO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em sérios danos ou até morte.

▲ CUIDADO

Este símbolo alerta sobre uma situação perigosa. A falha em evitar esta situação pode resultar em danos pequenos ou médios.

AVISO

Este símbolo contém informações sobre procedimentos e outros dados que não resultam em danos pessoais.

1.2.2 Símbolos elétricos

Corrente alternada

Corrente contínua e corrente alternada

Corrente contínua

Conexão de aterramento

Um terminal aterrado que, pelo conhecimento do operador, está aterrado através de um sistema de aterramento.

Aterramento de proteção (PE)

Terminais de terra devem ser conectados ao terra antes de estabelecer quaisquer outras conexões.

Os terminais de terra são localizados dentro e fora do equipamento:

- Terminal interno de terra: conecta o aterramento de proteção à rede elétrica.
- Terminal de terra externo: conecta o equipamento ao sistema de aterramento da fábrica.

1.2.3 Símbolos de ferramentas

Chave Phillips

Sobre este documento Solicap S FTI77

Chave de fenda

Chave de fenda Torx

Chave Allen

Chave de boca

1.2.4 Símbolos para determinados tipos de informações e gráficos

✓ Permitido

Procedimentos, processos ou ações que são permitidos

✓ ✓ Preferido

Procedimentos, processos ou ações que são recomendados

Proibido

Procedimentos, processos ou ações que são proibidos

Dica

Indica informação adicional

Consulte a documentação

Consulte a página

Referência ao gráfico

Aviso ou etapa individual a ser observada

1., 2., 3.

Série de etapas

┕►

Resultado de uma etapa

Ajuda em casos de problema

Inspeção visual

Operação através da ferramenta de operação

Parâmetro protegido contra gravação

1, 2, 3, ...

Números de itens

A, B, C, ...

Visualizações

Área classificada

Indica a área classificada

🔉 Área segura (área não classificada)

Indica a área não classificada

<u>∧</u> → **I** Instruções de segurança

Observe as instruções de segurança contidas nas instruções de operação correspondentes

Solicap S FTI77 Sobre este documento

Resistência à temperatura dos cabos de conexão

Especifica o valor mínimo da resistência à temperatura dos cabos de conexão

LED apagado

LED aceso

LED pisca

1.3 Documentação

Todos os documentos disponíveis podem ser baixados usando:

- o número de série do equipamento (ver a primeira página para descrição) ou
- o código da matriz de dados do equipamento (ver a primeira página para descrição) ou
- a área "Downloads" do website www.endress.com

1.3.1 Documentação adicional dependente do equipamento

Os documentos adicionais são fornecidos de acordo com a versão do equipamento pedido: sempre siga as instruções à risca na documentação complementar. A documentação complementar é parte integrante da documentação do equipamento.

2 Instruções de segurança básicas

2.1 Especificações para o pessoal

O pessoal deverá atender as seguintes especificações a fim de executar as tarefas necessárias:

- ▶ Estar treinado e qualificado para realizar funções e tarefas específicas.
- ► Estar autorizado pelo dono ou operador da planta para executar tarefas específicas.
- ► Estar familiarizado com as regulamentações federais ou nacionais.
- ► Ter lido e entendido as instruções no manual e na documentação suplementar.
- ▶ Seguir as instruções e estar em conformidade com as condições.

2.2 Uso indicado

Solicap S FTI77 é uma chave de nível pontual robusta para a detecção capacitiva de sólidos a granel e pode ser usada em processos com temperaturas de até $400 \, ^{\circ}\text{C}$ (752 $^{\circ}\text{F}$).

2.3 Segurança no local de trabalho

Ao trabalhar no e com o equipamento:

 Usar o equipamento de proteção exigido de acordo com as regulamentações federais ou nacionais.

2.4 Segurança da operação

Ao executar a configuração, testar e fazer o trabalho de manutenção no equipamento, deverão ser implantadas medidas de supervisão alternativas para garantir a segurança da operação e a segurança de processo.

2.4.1 Áreas a prova de explosão

Ao usar o sistema de medição em áreas Ex, é necessário observar as normas e regulamentações nacionais aplicáveis. A documentação Ex separada, parte integrante desta documentação, é fornecida com o equipamento. Os procedimentos de instalação, os dados de conexão e as instruções de segurança que ela contém devem ser observados.

- Certifique-se de que a equipe técnica tenha treinamento adequado.
- Deve-se observar as especificações de medição especial e aquelas relacionadas à segurança para os pontos de medição.

2.5 Segurança do produto

Este medidor foi projetado em conformidade com as boas práticas de engenharia para satisfazer os requisitos de segurança mais avançados, foi testado e deixou a fábrica em condições seguras de operação.

Atende as normas gerais de segurança e aos requisitos legais. Ele está em conformidade com as diretrizes da CE listadas na declaração de conformidade da CE específicas do equipamento. A Endress+Hauser confirma este fato fixando a identificação CE no equipamento.

3 Recebimento e identificação do produto

3.1 Recebimento

Verifique se a embalagem ou o conteúdo está danificado. Verifique se os produtos entregues estão completos e compare o escopo de entrega com as informações de seu pedido.

3.2 Identificação do produto

3.2.1 Etiqueta de identificação

Diferentes etiquetas de identificação são usadas dependendo da versão do equipamento.

As etiquetas de identificação contêm as sequintes informações:

- Nome do fabricante e nome do equipamento
- Endereço do proprietário do certificado e país de fabricação
- Código de pedido e número de série
- Dados técnicos
- Informação específica da aprovação

Compare os dados na etiqueta de identificação com seu pedido.

3.2.2 Endereço do fabricante

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Alemanha

Local de fabricação: consulte a etiqueta de identificação.

3.3 Armazenamento e transporte

Para armazenamento e transporte, embale o equipamento e proteja-o contra impactos. A embalagem original oferece a melhor proteção. A temperatura de armazenamento permitida é -50 para +85 °C (-58 para +185 °F).

4 Instalação

4.1 Requisitos de instalação

4.1.1 Observações gerais e precauções

AVISO

Enchimento do silo.

▶ O fluxo do enchimento não deve ser direcionado diretamente na sonda.

AVISO

Ângulo do fluxo de material.

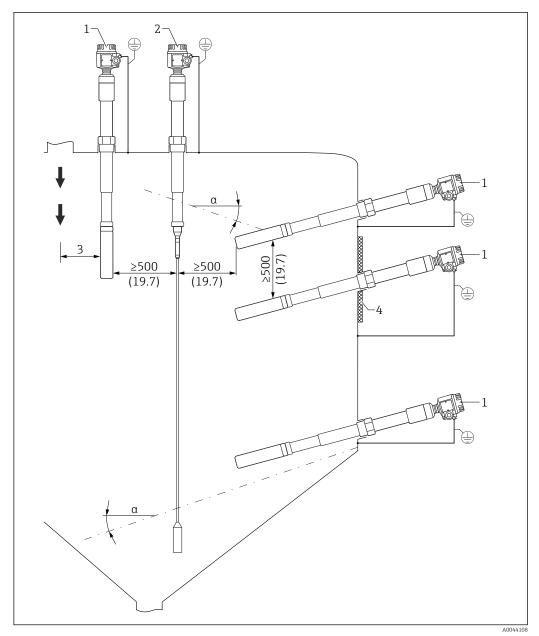
► Tome cuidado com o ângulo esperado do fluxo do material e com o funil de saída ao determinar o local de instalação do comprimento da haste da sonda.

AVISO

Distância entre sondas.

▶ A distância mínima de 500 mm (19.7 in) entre as sondas deve ser observada.

AVISO


Acoplamento roscado para instalação.

▶ O acoplamento roscado deve ser o mais curto possível. Podem ocorrer condensações ou resíduos de produto em um acoplamento roscado longo, interferindo com a operação correta da sonda.

AVISO

Isolamento de calor

- ► Para evitar exceder a temperatura permitida do invólucro do Solicap S, isole a parede externa do silo.
- ► Para evitar a condensação e reduzir incrustações na área do acoplamento roscado isole a parede do silo.

🖪 1 Exemplos de instalação. Unidade de medida mm (in)

- α Ângulo da inclinação
- 1 FTI77 sonda espada
- 2 FTI77 haste flexível
- 3 Distância do ponto de carregamento
- 4 Isolamento de calor

4.1.2 Instalação do sensor

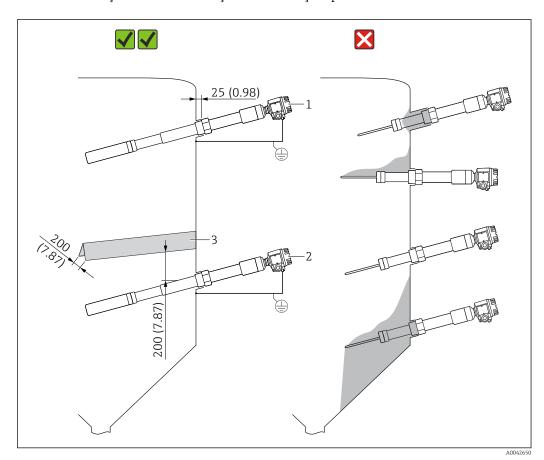
O Solicap S FTI77 com a sonda espada pode ser instalado na posição vertical ou horizontal. O Solicap S FTI77 com a haste flexível somente pode ser instalado na posição vertical.

AVISO

Instalar a sonda na área da cortina de carregamento pode causar a operação incorreta do equipamento!

► Instale a sonda longe da cortina de carregamento.

AVISO


Instalar a sonda espada na posição paralela pode causar a operação incorreta do equipamento!

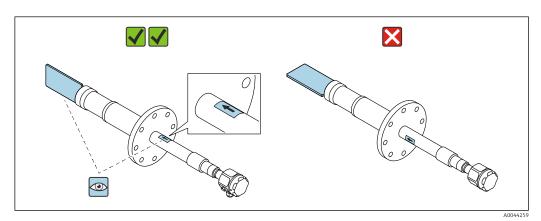
► Instale a sonda espada com a extremidade estreita posicionada para cima.

AVISO

A sonda não pode encostar na parede metálica do recipiente!

- ► Certifique-se de que a sonda está isolada da parede de metal do recipiente.
- Para determinar o local de instalação e o comprimento da sonda, observe o ângulo esperado do fluxo de material ou do funil de saída.
 - O acoplamento roscado deve ser o mais curto possível. Podem ocorrer condensações ou resíduos de produto em um acoplamento roscado longo, interferindo com a operação correta da sonda.
 - No caso de altas temperaturas no silo, isole a parede do silo para evitar exceder a temperatura no invólucro da sonda. O isolamento de calor também evita a condensação e reduz a formação de incrustações próximo à união roscada no silo.

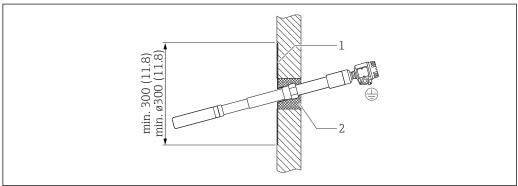
- 2 Exemplos de instalação lateral. Unidade de medida mm (in)
- 1 Para detecção de limite de nível máximo
- 2 Para detecção de nível pontual mínimo
- 3 A tampa protetora protege a espada da sonda do colapso de montículos ou de tensão mecânica no fluxo de saída


4.1.3 Instalação da sonda espada FTI77

Alinhamento da sonda espada em posição horizontal

AVISO

Instalar a sonda na posição incorreta da espada pode causar a operação incorreta do equipamento ou danos à sonda!

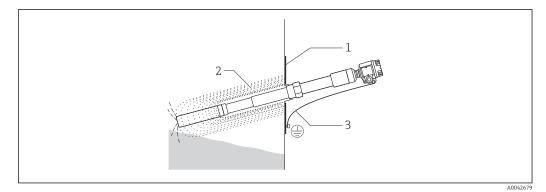

► Instale a sonda de forma que a etiqueta de marcação esteja para cima. A marcação da seta mostra a posição da extremidade da espada.

■ 3 Posição de instalação apropriada

Instalação da sonda em um silo com paredes de concreto

A placa de aço aterrada forma o contraeletrodo. O isolamento de calor evita a condensação e portanto incrustações na placa de aço.

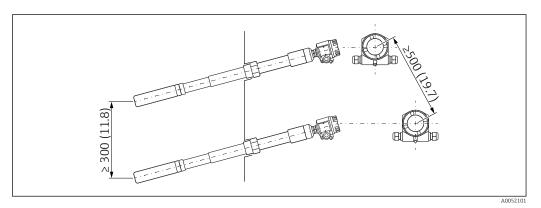
A004267


- \blacksquare 4 Sonda instalada em uma parede de concreto. Unidade de medida mm (in)
- 1 Chapa de metal com soquete roscado
- 2 Isolamento de calor

Instalação da sonda em um silo com paredes de plástico

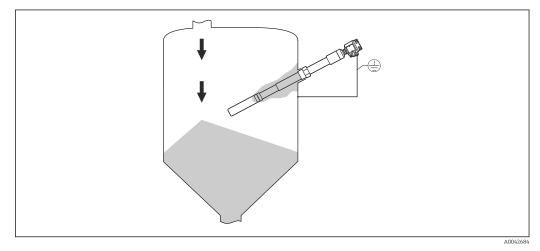
Quando a sonda é instalada no silo com paredes de plástico, uma chapa metálica deve ser fixada ao exterior do silo como um contra eletrodo. A placa pode ter o formato quadrado ou redondo.

As dimensões da placa são:


- quadrado aproximado de 500 mm (19.7 in) de cada lado ou redondo Ø500 mm (19.7 in) para parede fina com baixa constante dielétrica
- quadrado aproximado de 700 mm (27.6 in) de cada lado ou redondo Ø700 mm (27.6 in) para parede espessa com alta constante dielétrica

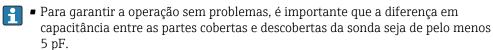
■ 5 Sonda instalada em uma parede de plástico

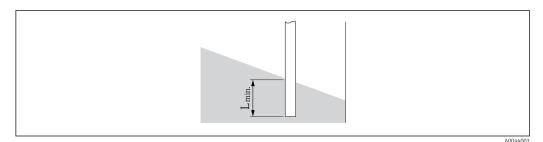
- 1 Chapa metálica
- 2 Campo elétrico HF
- 3 Conexão à fase terra


As distâncias mínimas exigidas podem ser alcançadas por meio da instalação deslocada.

■ 6 Para pequenas diferenças de nível

Compensação ativa de incrustação


Para evitar as distorções de medição provenientes do acúmulo de material na sonda espada, utilize a função de compensação ativa de incrustação. A limpeza a espada não é mais necessária.

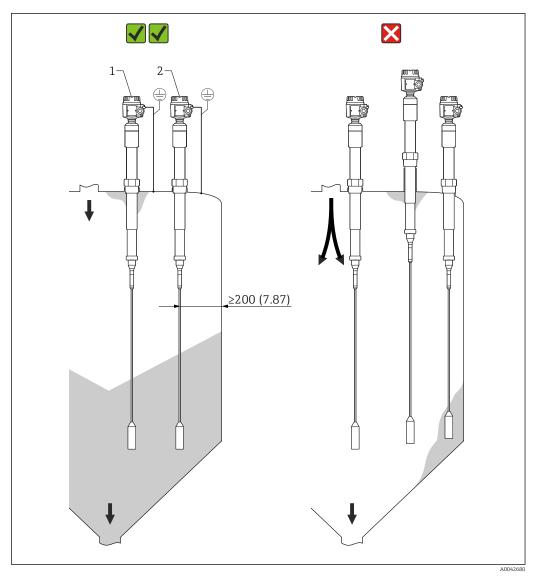

Acúmulo de material na sonda

4.1.4 Comprimento da sonda e cobertura mínima

Tolerâncias de comprimento da sonda → TI01561F.

 Se você não conhece a constante dielétrica do material, entre em contato com a assistência técnica da E+H.

■ 8 A cobertura mínima da sonda


L_{min} Cobertura mínima da sonda

Preste atenção à dependência entre a constante dielétrica relativa ϵ_r e a quantidade mínima da haste da sonda que deve ser coberta.

Comprimento mínimo da haste da sonda (L_{min}) que precisa ser coberto

- 25 mm (0.98 in) para produto eletricamente condutor
- 100 mm (3.94 in) para produto não condutor $\varepsilon_r > 10$
- 200 mm (7.87 in) para produto não condutor $\varepsilon_r > 5$ para 10
- 500 mm (19.7 in) para produto não condutor $\varepsilon_r > 2$ para 5

4.1.5 Instalação da haste flexível FTI77

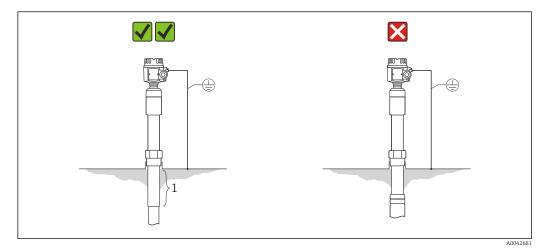
■ 9 Exemplos de instalação da sonda de cabo

- 1 FTI77 com comprimento inativo no caso de condensação e acúmulo de material no teto do silo
- 2 FTI77 instalado na distância correta da parede do silo, entrada e saída de material

Instalação da sonda no teto do silo

Certifique-se de que o teto do silo possua uma construção suficientemente estável. Altas forças tênseis podem ocorrer quando o material está sendo extraído, especialmente no caso de sólidos pesados e em pó que têm a tendência de formar incrustações.

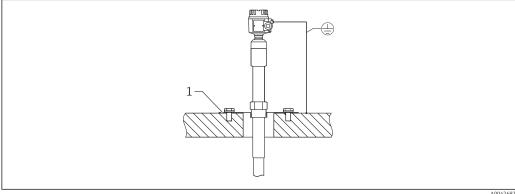
Sólidos abrasivos


Em silos com sólidos extremamente abrasivos, use o Solicap S FTI77 apenas para detecção máxima.

Distância entre hastes flexíveis

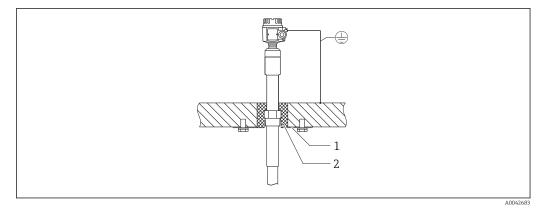
A distância mínima entre hastes flexíveis é de 500 mm (19.7 in). Isso também se aplica ao instalar diversas unidades de Solicap S em silos adjacentes com paredes não condutoras.

Instalação da sonda no caso de condensação


No caso de condensação utilize apenas sondas com comprimento inativo. O comprimento inativa evita a umidade e a formação de incrustações entre a parte ativa da sonda e o teto do silo.

■ 10 Silo com paredes condutoras

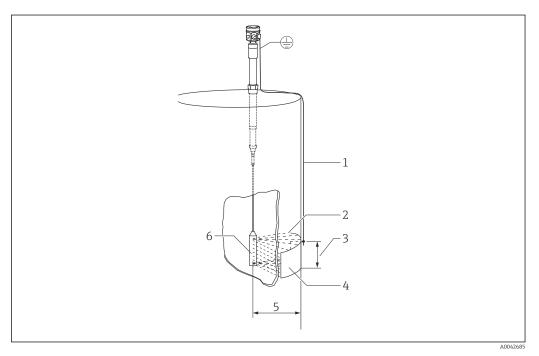
Comprimento inativo


Para reduzir o efeito da condensação e incrustações, o acoplamento roscado deve se projetar para dentro do silo. O comprimento máximo do acoplamento roscado é de 25 mm (0.98 in).

■ 11 Silo com paredes de concreto

Placa de aço conectada ao aço de reforço

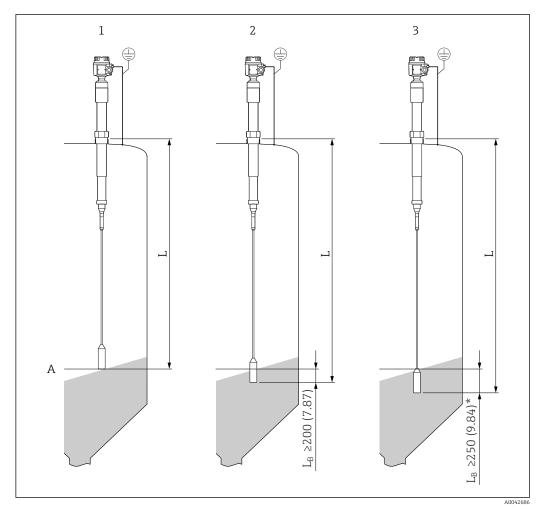
O isolamento de calor reduz a condensação e portanto incrustações na placa de aço.



12 Silo com paredes de concreto

- 1 Placa de aço
- 2 Isolamento de calor

Instalação da sonda em um tanque não condutor

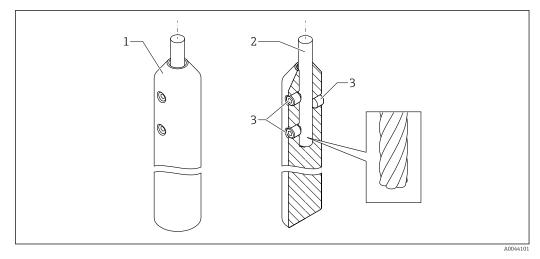

Ao instalar em um silo feito de concreto, um contraeletrodo deve ser instalado no exterior do silo na mesma altura que o peso de tensionamento. O comprimento da extremidade do contraeletrodo deve ser aproximadamente o mesmo comprimento que a distância entre o peso de tensionamento e a parede do silo.

■ 13 Instalação da sonda em tanques de plástico

- 1 Conexão à fase terra
- 2 Campo elétrico HF
- 3 Área de superfície por ex. $1 m^2 (10.7 \text{ ft}^2)$
- 4 Contraeletrodo de metal
- 5 Distância de 1 m (3.3 ft)
- Peso

4.1.6 Faixa de comprimentos do sensor

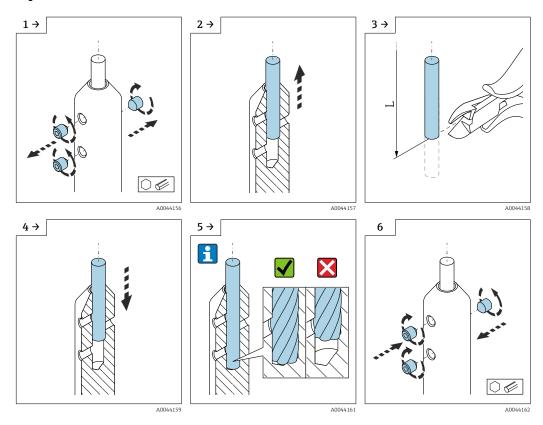
🖻 14 Comprimento do cabo de acordo com o material. Unidade de medida mm (in)


*L*_B Comprimento coberto

- 1 Comprimento da haste flexível (L) para sólidos eletricamente condutores, por ex. carvão
- 2 Comprimento da haste flexível (L) para sólidos com alta constante dielétrica, por ex. sal grosso
- 3 Comprimento da haste flexível (L) para sólidos com baixa constante dielétrica, por ex. grãos secos

O comprimento coberto (L_B) deve ser 5 % maior que a distância entre o teto do tanque e o nível limite, e não deve ser menor que 250 mm (9.84 in) para sólidos não condutores com uma constante dielétrica baixa (ϵ_r).

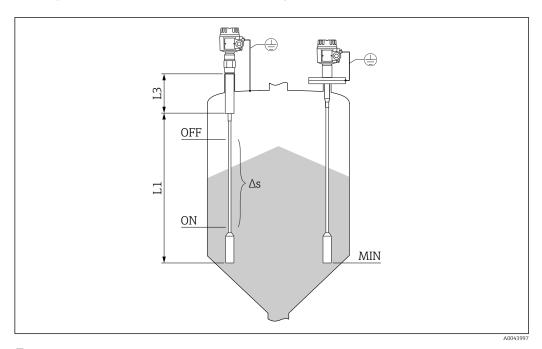
4.1.7 Encurtamento da haste flexível


Ambas as versões das hastes flexíveis podem ser encurtadas. O peso deve ser removido da haste flexível primeiro.

🖪 15 🛮 Visão geral do peso de tensionamento

- 1 O peso de tensionamento
- 2 A haste flexivel
- 3 Os parafusos de travamento

O procedimento de encurtamento da haste flexível



4.2 Condições de medição

Ao instalar em um bocal, use o comprimento inativo L3. As sondas de haste flexível podem ser utilizadas para controlar um transportador helicoidal (modo Δs). O valor de ativação e o valor de desativação são determinados pela calibração de vazio e cheio. As sondas parcialmente isoladas só são adequadas para sólidos não condutores.

- DK > 10: faixa de medição até 4 m (13 ft)
- 5 < DK < 10: faixa de medição até 12 m (39 ft)
- 2 < DK < 5: faixa de medição até 20 m (66 ft)

A variação mínima da capacitância para a detecção do nível pontual deve ser ≥ 5 pF.

■ 16 Condições de medição

L1 Comprimento ativo

L3 Comprimento inativo

 Δs Controle de dois pontos

MIN Nível de medição mínimo

4.2.1 Comprimento mínimo da sonda para o meio não condutor $< 1 \, \mu \text{S/cm}$

O comprimento mínimo da sonda pode ser calculado usando a fórmula:

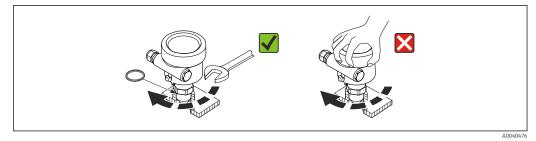
$$l_{\min} = \frac{\Delta C_{\min}}{C_{s} \cdot (\varepsilon_{r} - 1)}$$

A004020

L _{min} comprimento mínimo da sonda	
ΔC_{min}	5 pF
C _s	capacitância da sonda no ar
$\epsilon_{ m r}$	constante dielétrica relativa, por exemplo, para grãos secos = 3,0

4.3 Instruções de instalação

AVISO


Não danifique o isolamento da sonda durante a instalação!

▶ Verifique o isolamento da haste.

AVISO

Não rosqueie a sonda usando o invólucro da sonda!

▶ Use uma chave de boca para rosquear a sonda.

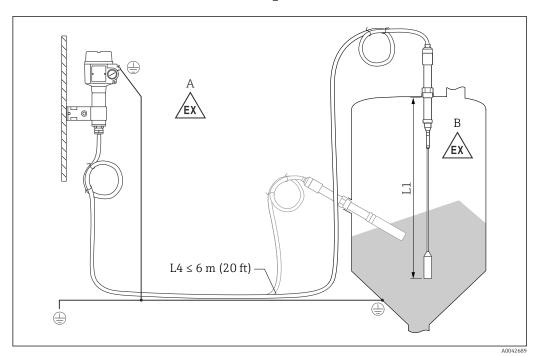
Instalação correta da sonda

4.3.1 Alinhamento do invólucro

O invólucro pode ser girado 270 ° para alinhas a entrada para cabos. Para evitar a penetração de umidade, passe o cabo de conexão para baixo na frente do prensa-cabo e prenda-o com uma braçadeira. Isso é especialmente recomendado para a instalação externa.

Alinhamento do invólucro

- Afrouxe o parafuso de fixação.
- Alinhe o invólucro na posição necessária.
- Aperte o parafuso de fixação com torque
 1 Nm (0.74 lbf ft).
- O parafuso de fixação para alinhamento do invólucro tipo T13 está localizado no compartimento de componentes eletrônicos.


4.3.2 Vedação do invólucro da sonda

Certifique-se de que a tampa esteja vedada. A água não pode entrar no equipamento durante a instalação, conexão e configuração. Vede sempre a tampa do invólucro e as entradas para cabo de forma segura.

O anel O-ring na tampa do invólucro é enviado com uma cobertura lubrificante especial já aplicada. Desta forma, a tampa pode ser vedada e a rosca de alumínio não será apertada no desparafusamento.

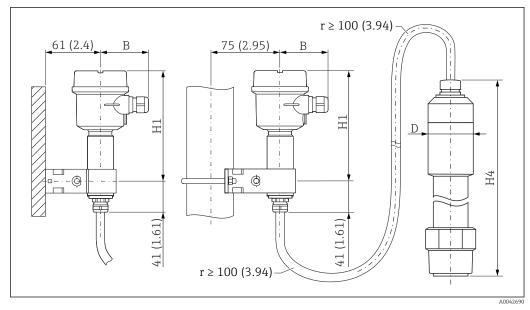
Nunca use graxa à base de óleo mineral pois ela destrói o anel O-ring.

4.4 Sonda com invólucro separado

🖪 18 Conexão da sonda e invólucro separado

- A Zona explosiva 1
- B Zona explosiva 0
- L1 Comprimento da haste: máx. 19.7 m (65 ft)
- L4 Comprimento do cabo

O comprimento máximo do cabo L4 e da haste L1 não podem exceder 20 m (66 ft).


- O comprimento máximo do cabo entre a sonda e o invólucro separado é 19.7 m (65 ft).
- O comprimento de cabo necessário deve ser indicado no processo de pedido de um Liquicap M com invólucro separado.
- Se a conexão do cabo precisar ser encurtada ou passada por uma parede, ela deverá ser separada da conexão de processo.

4.4.1 Alturas de extensão: invólucro separado

O cabo tem:

- um raio de curvatura mínimo de $r \ge 100$ mm (3.94 in)
- Ø 10.5 mm (0.14 in)
- camisa externa feita de silicone, resistente a entalhe

Lado do invólucro: montagem em parede, montagem na tubulação e lado do sensor. Unidade de medida mm (in)

Valores dos parâmetros: 1)

Parâmetro B

- Invólucro de poliéster (F16): 76 mm (2.99 in)
- invólucro de aço inoxidável (F15): 64 mm (2.52 in)
- invólucro de alumínio (F17): 65 mm (2.56 in)

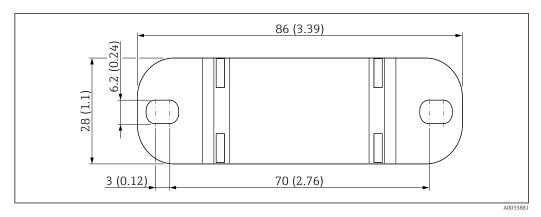
Parâmetro H1

- Invólucro de poliéster (F16): 172 mm (6.77 in)
- invólucro de aço inoxidável (F15): 166 mm (6.54 in)
- invólucro de alumínio (F17): 177 mm (6.97 in)

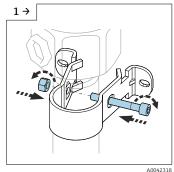
Parâmetro D

Ø50 mm (1.97 in)

Parâmetro H4


330 mm (13 in)

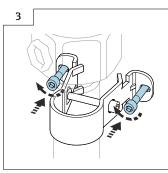
4.4.2 Suporte de parede

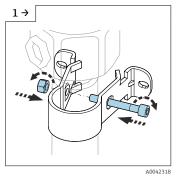

- O suporte de parede é parte do escopo de entrega.
- Para que o suporte de parede seja usado como gabarito de furação, o suporte deve primeiro ser aparafusado ao invólucro separado.
- A distância entre os furos é reduzida parafusando-o no invólucro separado.

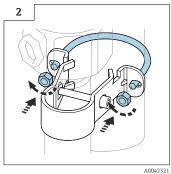
¹⁾ Veja os parâmetros nas figuras:



🗷 20 Visão geral do suporte de parede. Unidade de medida mm (in)


4.4.3 Montagem em parede

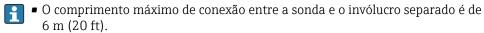

 Marque a distância entre os furos na parede antes de furar.


 Parafuse o invólucro separado na parede.

4.4.4 Montagem na tubulação

🙌 O diâmetro máximo da tubulação é 50.8 mm (2 in).

► Aparafuse o suporte de parede no tubo.

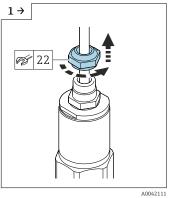

 Parafuse o invólucro separado no tubo.

4.4.5 Encurtamento do cabo de conexão

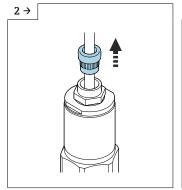
AVISO

Risco de dano às conexões e ao cabo.

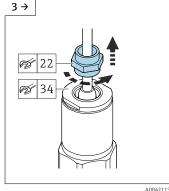
Certifique-se de que nem o cabo de conexão nem a sonda gire juntamente com o parafuso!

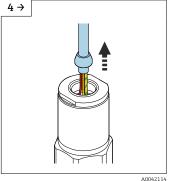


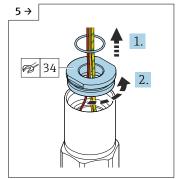
- Ao solicitar um equipamento com um invólucro separado, é necessário especificar o comprimento desejado.
- Recomendamos reutilizar os fios com os terminais de anel no caso de encurtamento do cabo de conexão.
 - A fim de evitar o risco de curto-circuito quando os fios não são reutilizados, as conexões dos novos terminais de anel instaladas devem ser isoladas com uma luva de termo-retrátil.
 - Use tubos termo-retráteis em todas as juntas soldadas.

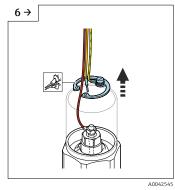

Se a conexão do cabo precisar ser encurtada ou passada por uma parede, ela deverá ser separada da conexão de processo.

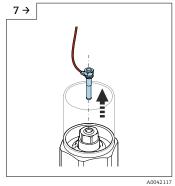
Sonda sem compensação ativa de incrustação

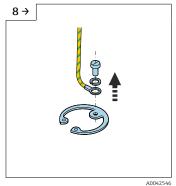

Desconexão do cabo de conexão

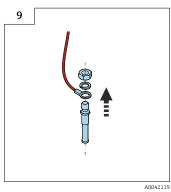

 Afrouxe o parafuso com uma chave de boca AF22.

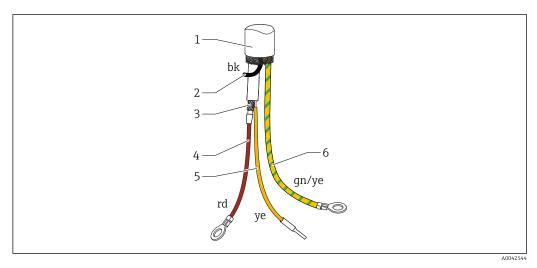

 Puxe a vedação da unidade eletrônica para fora do prensacabos.


► Bloqueie o disco adaptador com a chave de boca AF34 e afrouxe o prensa-cabos com a chave de boca AF22.


► Puxe o cabo com o cone.

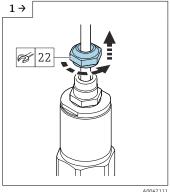

 Remova a vedação e afrouxe o disco adaptador com a chave de boca AF34.


► Remova o anel retentor com pinças para anel retentor.

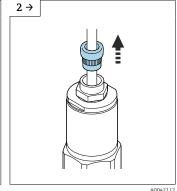

 Remova o conector da lâmina do soquete.

 Afrouxe o parafuso para desconectar o cabo amareloverde.

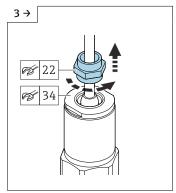
► Afrouxe a porca (M4) do conector da lâmina.

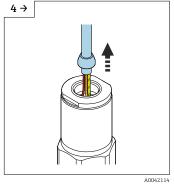


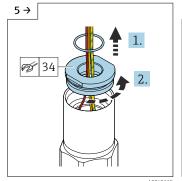
■ 21 Conexões do cabo

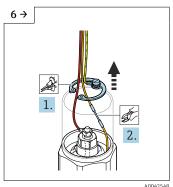

- 1 Blindagem externa (não necessário)
- 2 Fio preto (bk) (não necessário)
- 3 Cabo coaxial com núcleo central e blindagem
- 4 Solde o fio vermelho (rd) com o núcleo central do cabo coaxial (sonda)
- 5 Fio isolado (ye) com a luva termorretrátil
- 6 Fio amarelo e verde (gn/ye) com um terminal de anel

Sonda com compensação ativa de incrustação

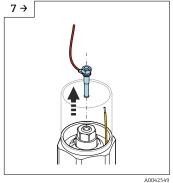

Desconexão do cabo de conexão

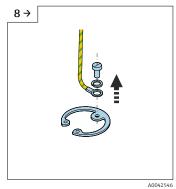

 Afrouxe o parafuso com uma chave de boca AF22.



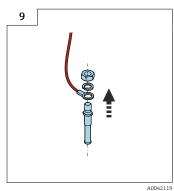

 Puxe a vedação da unidade eletrônica para fora do prensacabos.

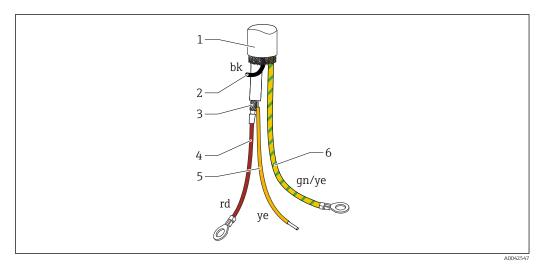
► Bloqueie o disco adaptador com a chave de boca AF34 e afrouxe o prensa-cabos com a chave de boca AF22.




▶ Puxe o cabo com o cone.

 Remova a vedação e afrouxe o disco adaptador com a chave de boca AF34.


 Remova o anel retentor com pinças para anel retentor e corte o cabo amarelo.


Remova o conector da lâmina do soquete.

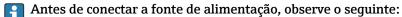
 Afrouxe o parafuso para desconectar o cabo amarelovordo

 Afrouxe a porca (M4) do conector da lâmina.

■ 22 Conexões do cabo

- 1 Blindagem externa (não necessário)
- 2 Fio preto (bk) (não necessário)
- 3 Cabo coaxial com núcleo central como blindagem
- 4 Solde o fio vermelho (rd) com o núcleo central do cabo coaxial (sonda)
- 5 Solde o fio com a blindagem do cabo coaxial (terra) amarelo (ye)
- 6 Fio amarelo e verde (gn/ye) com um terminal de anel

4.5 Verificação pós instalação


Após instalar o medidor, execute os seguintes testes:

☐ Inspecione visualmente observando se há danos.

☐ Certifique-se de que o equipamento atende as especificações no ponto de medição em relação à temperatura e pressão do processo, temperatura ambiente, faixa de medição.
☐ Certifique-se de que a conexão de processo foi apertada com o torque de aperto.
☐ Verifique se os pontos de medição estão identificados corretamente.
☐ Certifique-se de que o equipamento está devidamente protegido contra precipitação e luz solar direta.

Conexão elétrica Solicap S FTI77

5 Conexão elétrica

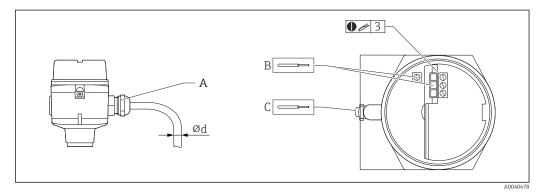
- a fonte de alimentação deve corresponder aos dados especificados na etiqueta de identificação
- desligue a fonte de alimentação antes de conectar o equipamento
- conecte a equalização potencial ao terminal de terra no sensor
- Ao usar a sonda em áreas classificadas, as normas nacionais relevantes e as informações nas instruções de segurança (XA) devem ser observadas.

Utilize apenas os prensa-cabos especificados.

5.1 Especificações de conexão

5.1.1 Equalização potencial

▲ PERIGO


Risco de explosão!

 Conecte o cabo da tela somente no lado do sensor no caso de instalação da sonda em áreas Ex!

Conecte a equalização potencial ao terminal de terra externo do invólucro (T13, F13, F16, F17, F27). No caso do invólucro de aço inoxidável F15, o terminal de terra também pode estar localizado no invólucro. Consulte a documentação separada sobre aplicações em áreas classificadas para mais instruções de segurança.

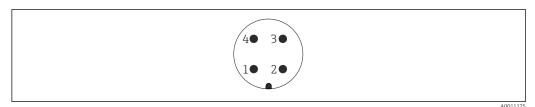
5.1.2 Especificação do cabo

Conecte as unidades eletrônicas usando cabos de instrumentos disponíveis comercialmente. Se uma equalização potencial estiver presente e forem usados cabos de instrumento blindados, conecte a blindagem nos dois lados para otimizar o efeito de blindagem.

23 Conexão da sonda e da unidade eletrônica

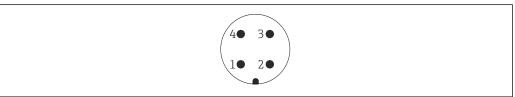
- A Entrada para cabo
- B Conexões da unidade eletrônica: tamanho máx. do cabo 2.5 mm 2 (14 AWG).
- C A conexão de aterramento na parte externa do invólucro, tamanho máx. do cabo 4 mm² (12 AWG).
- Ød Diâmetro do cabo

Entradas para cabo


- Latão niquelado: Ød = 7 para 10.5 mm (0.28 para 0.41 in)
- Material sintético: Ød = 5 para 10 mm (0.2 para 0.38 in)
- Aço inoxidável: Ød = 7 para 12 mm (0.28 para 0.47 in)

Solicap S FTI77 Conexão elétrica

5.1.3 Conector


Para a versão com um conector M12, o invólucro não precisa ser aberto para conectar-se à linha do sinal.

Pinagem para o conector M12

🛮 24 Conector M12 com unidade eletrônica de 2 fios FEI55, FEI57, FEI58, FEI57C

- 1 Potencial positivo
- 2 Não usado
- 3 Potencial negativo
- 4 Terra

A0011175

■ 25 Conector M12 com unidade eletrônica de 3 fios FEI52, FEI53

- 1 Potencial positivo
- 2 Não usado
- 3 Potencial negativo
- 4 Sinal / carga externa

5.1.4 Entrada para cabo

Prensa-cabo

M20x1.5 para Ex d apenas entrada para cabos M20 Dois prensa-cabos estão inclusos no escopo de entrega.

Entrada para cabo

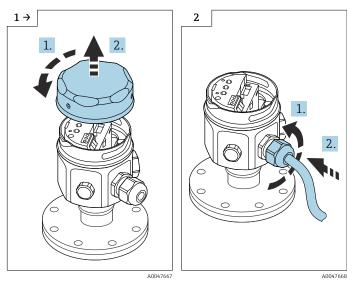
- G½
- NPT½
- NPT¾

5.2 Ligação elétrica e conexão

5.2.1 Equipamento de conexão

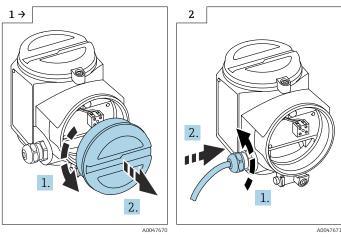
Dependendo da proteção contra explosão, o compartimento de conexão está disponível nas seguintes variações:

Proteção padrão, proteção Ex ia


- Invólucro de poliéster F16
- invólucro de aço inoxidável F15
- invólucro de alumínio F17
- invólucro de alumínio F13 vedação de processo com estanqueidade de gás
- invólucro de alumínio T13, com o compartimento de conexão separado

Conexão elétrica Solicap S FTI77

Proteção Ex d, vedação de processo com estanqueidade de gás


- invólucro de alumínio F13 vedação de processo com estanqueidade de gás
- invólucro de alumínio T13, com o compartimento de conexão separado

Conexão da unidade eletrônica à fonte de alimentação:

- ► Desrosqueie e remova a tampa do invólucro.
- lacksquare Solte o prensa-cabo.
- ► Insira o cabo.

Conexão da unidade eletrônica à fonte de alimentação instalada no invólucro T13:

- ► Desrosqueie e remova a tampa do invólucro.
- ► Solte o prensa-cabo.
- ► Insira o cabo.
- Terminal de parafuso para sessão transversal do condutor de 0.5 para 2.5 mm.

5.3 Conexão do medidor

5.3.1 Unidade eletrônica FEI51 2 fios CA

Conecte a unidade eletrônica em série com uma carga externa.

Solicap S FTI77 Conexão elétrica

Fonte de alimentação

- Tensão de alimentação: 19 para 253 V_{AC}
- Consumo de energia: < 1.5 W
- Consumo de corrente residual: < 3.8 mA
- Proteção contra curto-circuito: categoria de sobretensão II

Sinal em alarme

Sinal de saída em casos de queda de energia ou sensor danificado: < 3.8 mA

Carga conectável

- Para relés com uma potência de retenção/potência nominal mínima:
 - > 2.5 VA a 253 V_{AC} (10 mA)
 - > 0.5 VA a 24 V_{AC} (20 mA)
- Os relés com menor potência de retenção ou potência nominal podem ser operados usando um módulo RC conectado em paralelo.
- Para relés com uma potência de retenção/potência nominal máxima:
 - \bullet < 89 VA a 253 V_{AC}
 - < 8.4 VA a 24 V_{AC}
- Queda de tensão no FEI51: máximo 12 V
- Corrente residual com tiristor bloqueado: máximo 3.8 mA
- Carga comutada diretamente no circuito da fonte de alimentação por meio do tiristor.
- Não lique a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🖺 41. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI51

- I.1 Cabo da fase L1
- Cabo neutro
- PΕ Cabo de aterramento
- carga externa
- 1. Conecte o FEI51 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Coloque a seletora de função na posição 1.
- 4. Lique a tensão de alimentação.

Conexão elétrica Solicap S FTI77

5.3.2 Unidade eletrônica FEI52 CC PNP

A conexão CC de três fios deve, sempre que possível, ser conectada da sequinte forma:

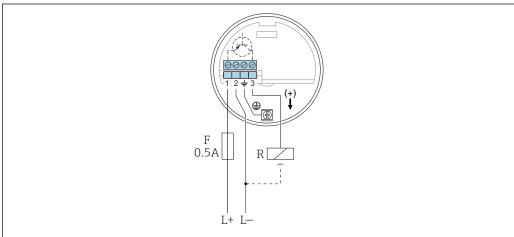
- a controladores lógicos programáveis (CLPs)
- a módulos DI de acordo com a EN 61131-2

Um sinal positivo está presente na saída comutada do sistema eletrônico (PNP).

Fonte de alimentação

- Tensão de alimentação: 10 para 55 V_{DC}
- Ondulação: máxima 1.7 V, 0 para 400 Hz
- Consumo de corrente: < 20 mA
- Consumo de energia sem carga: máximo 0.9 W
- Consumo de energia com carga total (350 mA): 1.6 W
- Proteção de polaridade reversa: sim
- Tensão de separação: 3.7 kV
- Categoria de sobretensão: II

Sinal em alarme


Sinal de saída em caso de falha de energia ou falha do equipamento: : I_R < 100 μA

Carga conectável

- Carqa comutada através do transistor e conexão PNP separada: máximo 55 V
- Corrente de carqa: máx. 350 mA proteção cíclica contra sobrecarga e curto-circuito
- Corrente residual: < 100 µA com o transistor bloqueado
- Carga de capacitância:
 - máximo 0.5 µF a 55 V
 - máximo 1 µF a 24 V
- Tensão residual: < 3 V para transistor comutado

Não ligue a tensão de alimentação até que esteja familiarizado com as funções do equipamento conforme descrito na seção "Opções de operação" → 🖺 41. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI52

A004238

- L+ Entrada de potência +
- L- Entrada de potência -
- F Fusivel
- R Carga externa: $I_{m\acute{a}x}$ =350 mA, $U_{m\acute{a}x}$ = 55 V_{DC}
- 1. Conecte o FEI52 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Coloque a seletora de função na posição 1.
- 4. Ligue a tensão de alimentação.

Solicap S FTI77 Conexão elétrica

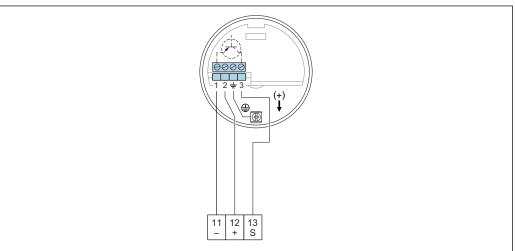
5.3.3 Unidade eletrônica FEI53 de 3 fios

A conexão CC de 3 fios é usada em conjunto com o equipamento de comutação Nivotester FTC325 3 FIOS da Endress+Hauser. O sinal de comunicação do equipamento de comutação opera a 3 para $12~V_{DC}$.

O modo de segurança (MIN) / (MAX) e o ajuste do nível pontual são configurados no Nivotester.

Fonte de alimentação

- lacktriangle Tensão de alimentação: 14.5 V_{DC}
- Consumo de corrente: < 15 mA
- Consumo de energia: máximo 230 mW
- Proteção de polaridade reversa: sim
- Tensão de separação: 0.5 kV


Sinal em alarme

Tensão no terminal 3 oposto ao terminal 1: < 2.7 V

Carga conectável

- contatos do relé flutuante na unidade de comutação Nivotester FTC325 3 FIOS conectada
- para a capacidade de carga do contato, consulte os dados técnicos do equipamento de comutação
- Não ligue a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🖺 42. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI53

A0042389

- 11 Terminal negativo no Nivotester FTC325
- 12 Terminal positivo no Nivotester FTC325
- S Terminal de sinal no Nivotester FTC325
- 1. Conecte o FEI53 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Coloque a seletora de função na posição 1.
- 4. Ligue a tensão de alimentação.

Conexão elétrica Solicap S FTI77

5.3.4 Unidade eletrônica FEI54 Ca e CC com saída a relé

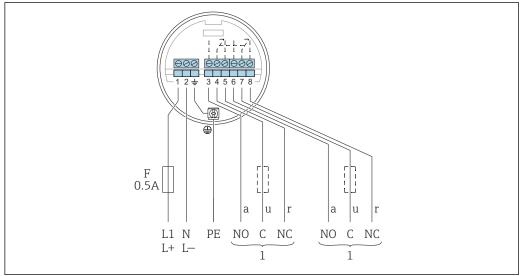
A conexão de tensão universal com saída de relé (DPDT) opera em duas faixas de tensão diferentes (CA e CC).

Ao conectar equipamentos com alta indutância, use um sistema de supressão de faíscas para proteger os contatos do relé.

Fonte de alimentação

- Tensão de alimentação:
 - 19 para 253 V_{AC}, 50 para 60 Hz
 - 19 para 55 V_{DC}
- Consumo de energia: 1.6 W
- Proteção de polaridade reversa: sim
- Tensão de separação: 3.7 kV
- Categoria de sobretensão: II

Sinal em alarme


Sinal de saída em caso de falha de energia ou falha do equipamento: relé desenergizado

Carga conectável

- Cargas comutadas através de 2 contatos de comutação flutuantes (DPDT)
- valores máximos (CA):
 - I_{máx.} = 6 A
 - $U_{\text{máx.}} = 253 \text{ V}_{\text{AC}}$
 - $P_{\text{máx}} = 1500 \text{ VA em } \cos \varphi = 1$
 - $P_{\text{máx}} = 750 \text{ VA em } \cos \phi > 0.7$
- valores máximos (CC):
 - $I_{\text{máx}} = 6 \text{ A a } 30 \text{ V}_{\text{DC}}$
 - $I_{\text{máx}} = 0.2 \text{ A a } 125 \text{ V}_{\text{DC}}$
- O seguinte se aplica ao conectar um circuito funcional de baixa tensão com isolamento duplo conforme IEC 1010: a soma das tensões da saída do relé e da fonte de alimentação é no máximo300 V
- Não ligue a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🖺 41. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI54

Solicap S FTI77 Conexão elétrica

- Fusível
- L1 Terminal de fase (CA)
- L+ Terminal positivo (CC)
- Terminal neutro (CA)
- Terminal negativo (CC)
- PE Cabo de aterramento
- Consulte também a carga conectável
- 1. Conecte o FEI51 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Coloque a seletora de função na posição 1.
- 4. Lique a tensão de alimentação.

5.3.5 Unidade eletrônica FEI55 SIL2 / SIL3

A conexão CC de dois fios deve, sempre que possível, ser conectada da sequinte forma:

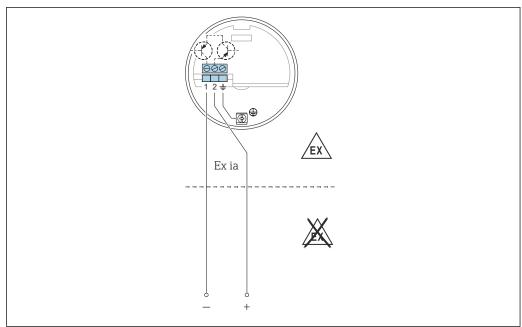
- a controladores lógicos programáveis (CLPs)
- a módulos AI 4 para 20 mA conforme EN 61131-2

O sinal de nível pontual é enviado através de um salto de sinal de saída de 8 para 16 mA.

Fonte de alimentação

- Tensão de alimentação: 11 para 36 V_{DC}
- Consumo de energia: < 600 mW
- Proteção de polaridade reversa: sim
- Tensão de separação: 0.5 kV

Sinal em alarme


Sinal de saída em caso de falha de energia ou falha do equipamento: < 3.6 mA

Carga conectável

- U_{máx}.
 - \blacksquare 11 para 36 V_{DC} para área não classificada e Ex ia
 - 14.4 para 30 V_{DC} para Ex d
- I_{máx.} = 16 mA
- Não lique a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🖺 41. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI55

Conexão elétrica Solicap S FTI77

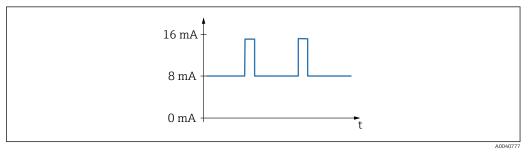
A0042391

- 1. Conecte o FEI51 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Coloque a seletora de função na posição 1.
- 4. Ligue a tensão de alimentação.

Segurança funcional (SIL) (nível de integridade de segurança)

A unidade eletrônica FEI55 atende aos requisitos de SIL2 ou SIL3 de acordo com a IEC 61508, IEC 61511-1 e pode ser usada nos sistemas de segurança com os requisitos correspondentes.

Uma descrição exata dos requisitos em termos de segurança funcional pode ser encontrada no documento FY01076F.


5.3.6 Unidade eletrônica FEI57S PFM

A conexão CC de dois fios é usada em conjunto com o seguinte equipamento de comutação Nivotester da Endress+Hauser:

FTC325 PFM

O sinal PFM está entre 17 para 185 Hz.

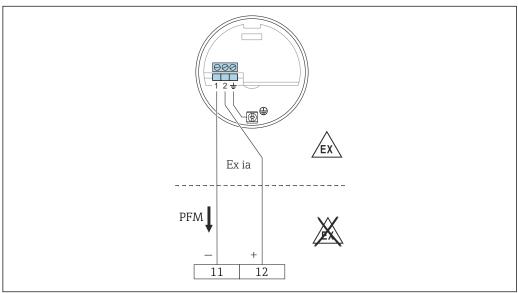
O modo de segurança (MIN) / (MAX) e o ajuste do nível pontual são configurados no Nivotester.

🖸 26 Frequência: 17 para 185 Hz

Solicap S FTI77 Conexão elétrica

Fonte de alimentação

- Tensão de alimentação: 9.5 para 12.5 V_{DC}
- Consumo de energia: < 150 mW
- Proteção de polaridade reversa: sim
- Tensão de separação: 0.5 kV


Sinal de saída

PFM 17 para 185 Hz

Carga conectável

- Contatos do relé flutuante na unidade de comutação Nivotester conectada: FTC325 PFM
- para a capacidade de carga do contato, consulte os dados técnicos do equipamento de comutação
- Não ligue a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🗎 42. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI57S

A005014

- 11 Terminal negativo no Nivotester FTC325
- 12 Terminal positivo no Nivotester FTC325
- 1. Conecte o FEI51 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Ligue a fonte de alimentação.

5.3.7 Unidade eletrônica FEI58 NAMUR

Conexão de dois fios para uma unidade de comutação separada de acordo com as especificações NAMUR (IEC 60947-5-6), por ex., Nivotester FTL325N da Endress+Hauser.

Alteração no sinal de saída de corrente alta para baixa no caso de detecção de nível pontual.

Função adicional: tecla de teste na unidade eletrônica.

Pressione a tecla para interromper a conexão com o amplificador de isolamento.

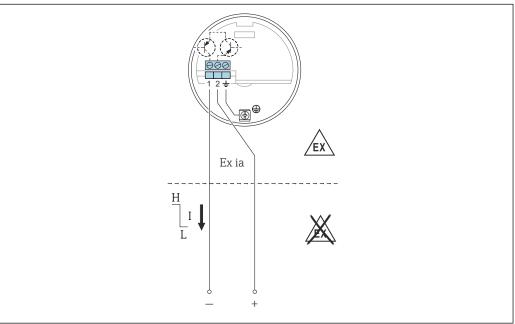
No caso de operação Ex d, a função adicional só pode ser usada se o invólucro não estiver exposto a uma atmosfera explosiva.

Ao conectar-se ao Multiplexer: defina 3 s como o tempo de ciclo, no mínimo.

Conexão elétrica Solicap S FTI77

Fonte de alimentação

- Consumo de energia:
 - < 6 mW a I < 1 mA
 - < 38 mW a I = 2.2 para 4 mA
- Dados de conexão da interface: IEC 60947-5-6


Sinal em alarme

Sinal de saída em caso de sensor danificado: < 1.0 mA

Carga conectável

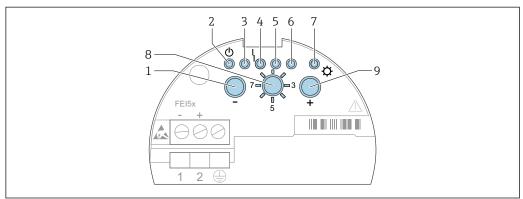
- Dados técnicos do amplificador de isolamento conectado conforme IEC 60947-5-6 (NAMUR)
- Conexão também a amplificadores de isolamento que possuem circuitos de segurança especiais I > 3.0 mA
- Não ligue a tensão de alimentação até que tenha aprendido sobre as funções do equipamento, conforme descrito na seção "Opções de operação" → 🗎 43. Isso garantirá que você não acione acidentalmente nenhum processo ao ligar a tensão de alimentação.

Conexão do FEI58

A0042393

- 🖪 27 💮 Os terminais devem ser conectados ao amplificador de isolamento (NAMUR) IEC 60947-5-6
- 1. Conecte o FEI51 de acordo com o esquema.
- 2. Aperte o prensa-cabo.
- 3. Ligue a tensão de alimentação.

5.4 Verificação pós conexão


Após a ligação elétrica do medidor, execute os seguintes testes:

- $\hfill\Box$ Certifique-se de que o esquema de ligação elétrica está correto.
- \square Certifique-se de que o prensa-cabo está vedado.
- ☐ Certifique-se de que a tampa do invólucro está totalmente rosqueada.
- ☐ Certifique-se de que o equipamento está operacional e o LED verde pisca ao ligar o equipamento.

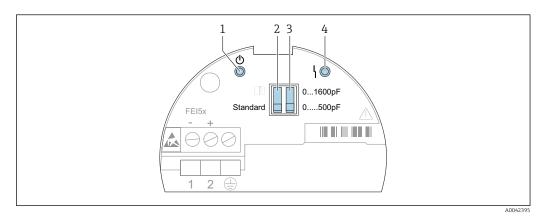
Solicap S FTI77 Opções de operação

6 Opções de operação

6.1 Interface humana e elementos de exibição para FEI51, FEI52, FEI54, FEI55

A0042394

- 🛮 28 Interface humana FEI51, FEI52, FEI54, FEI55
- l Tecla 🖃
- 2 LED verde status operacional
- 3 LED verde
- 4 LED vermelho erro
- 5 LED verde
- 6 LED verde
- 7 LED amarelo estado de comutação
- 8 Seletora de modo
- 9 Tecla Œ
- 1. Operação selecione para operação normal
- 2. Restaurar configurações de fábrica:
 - ▶ pressione 🖃 e 🛨 por 20 s para restaurar as configurações de fábrica
- 3. Calibração
 - pressione □ para configurar a calibração de vazio pressione ⊕ para configurar a calibração de cheio pressione □ e ⊕ por 10 s para redefinir a calibração e o ajuste do ponto de comutação
- 4. Ajuste do ponto de comutação
 - □ pressione □ para diminuir o ponto de comutação pressione 団 para aumentar o ponto de comutação
- 5. Modos de medição
- 6. Atraso de comutação
 - ressione □ para diminuir o atraso pressione ⊡ para aumentar o atraso
- Autoteste
 - ► pressione 🖃 e 🛨 para ativar o autoteste
- 8. Configuração do modo de segurança MIN/MAX ou do modo SIL
 - pressione □ para o mínimo
 pressione ⊕ para o máximo
 pressione □ e ⊕ para bloquear ou desbloquear o modo SIL

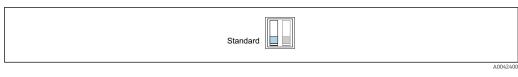

Opções de operação Solicap S FTI77

- 9. Upload do DAT (EEPROM)do sensor
 - Pressione para fazer o download
 Pressione para fazer o upload

6.2 Interface humana e elementos de exibição para FEI53, FEI57S

As unidades eletrônicas FEI53 e FEI57S são usadas em conjunto com equipamentos de comutação Nivotester.

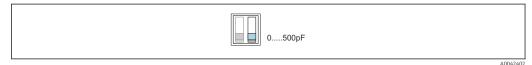
Uma descrição da interface humana e dos elementos de exibição do equipamento de comutação Nivotester é fornecida na documentação que acompanha o equipamento.



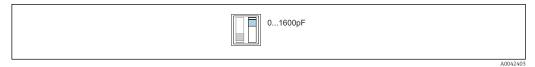
■ 29 Interface humana FEI53 e FEI57S

- 1 LED verde status operacional
- 2 Minisseletora padrão ou de alarme
- 3 Minisseletora da faixa de medição
- 4 LED vermelho erro

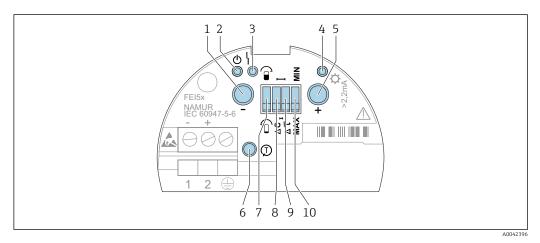
O status operacional do equipamento é indicado por LEDs na unidade eletrônica e fornece informações sobre a prontidão operacional e, quando aplicável, o tipo de falha.


Funções das minisseletoras:

30 Padrão: se a faixa de medição for excedida, nenhum alarme será emitido



🛮 31 💮 Alarme: se a faixa de medição for excedida, um alarme será emitido


🖲 32 🛮 Faixa de medição: a faixa de medição está entre 0 para 500 pF. Span: o span está entre 0 para 500 pF

Solicap S FTI77 Opções de operação

🛮 33 💮 Faixa de medição: a faixa de medição está entre 5 para 1 600 pF. Span: o span está entre 5 para 1 600 pF

6.3 Interface humana e elementos de exibição para FEI58

■ 34 Interface humana FEI58

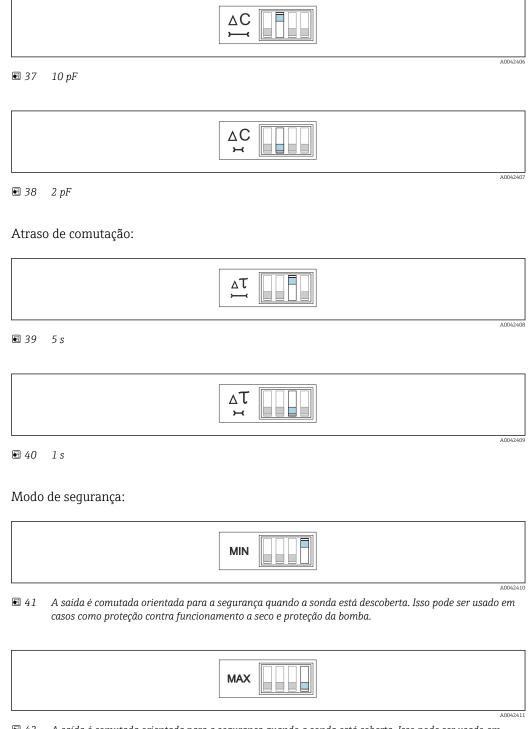
- 1 Tecla de função A
- 2 LED verde status operacional
- 3 LED vermelho erro
- 4 LED amarelo estado de comutação
- 5 Tecla de função B
- 6 Tecla de teste
- 7 Minisseletora de calibração
- 8 Minisseletora do ponto de comutação
- 9 Minisseletora de atraso
- 10 Minisseletora do modo de segurança


Funções das minisseletoras

Minisseletora de calibração:

A0042404

35 A sonda está coberta durante a calibração



Auus

🛮 36 🔝 A sonda está descoberta durante a calibração

Ajuste do ponto de comutação:

Opções de operação Solicap S FTI77

A saída é comutada orientada para a segurança quando a sonda está coberta. Isso pode ser usado em casos como proteção contra transbordamento.

Tecla de função

- Tecla A: exibe o código de diagnóstico
- Tecla B: exibe a situação da calibração
- Tecla de teste: desconecta o transmissor da unidade de comutação
- Teclas A e B pressionadas durante:
 - a operação: executar a calibração
 - a inicialização: excluir pontos de calibração

Comissionamento 7

7.1 Instalação e verificação da função

Antes de iniciar seu ponto de medição, certifique-se de que a verificação pós-instalação e a verificação final foram concluídas:

- consulte o capítulo "Verificação pós-instalação" → 🖺 28

7.2 Comissionamento das unidades eletrônicas FEI51, FEI52, FEI54 e FEI55

- Pevido à primeira inicialização do equipamento, a saída está em um status de segurança. Isso é sinalizado pelo LED amarelo piscando.
- O equipamento não estará operacional até que você tenha realizado uma calibração. Para obter o máximo de segurança operacional, realize uma calibração de vazio e cheio. Isso é altamente recomendado para aplicações críticas.

Consulte os subcapítulos a seguir para informações sobre como realizar a calibração.

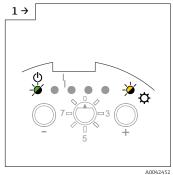
Configuração da faixa de medição → 🖺 45.

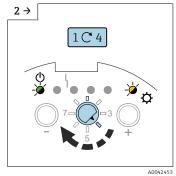
Realização da calibração de vazio → 🖺 46.

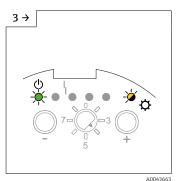
Realização da calibração de cheio → 🖺 47.

Realização da calibração de vazio e cheio → 🖺 48.

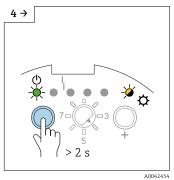
Opções de operação $\rightarrow \triangleq 41$.

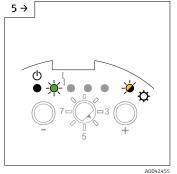

- O LED 7 amarelo:
 - pisca rapidamente se a calibração ou o ponto de comutação não estiverem configurados
 - exibe o status de comutação de acordo com a aplicação selecionada e o modo de segurança

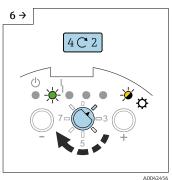

7.2.1 Configuração da faixa de medição


- A escolha da faixa de medição (0 para 500 pF e 0 para 1600 pF) depende da função da sonda.
 - Se a sonda for usada como uma chave de nível pontual, é possível manter a configuração de fábrica de 0 para 500 pF
 - Se a sonda for usada para controle de dois pontos, as seguintes configurações são recomendadas para instalação vertical:
 - faixa de medição de 0 para 500 pF para comprimentos da sonda de até 1 m (3.3 ft)
 - faixa de medição de 0 para 1600 pF para comprimentos da sonda de até 10 m (33 ft)

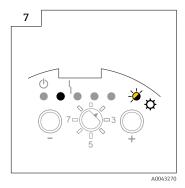
As sondas parcialmente isoladas são adequadas apenas para sólidos não condutores.


Para configurar a faixa para 0 para 1600 pF:



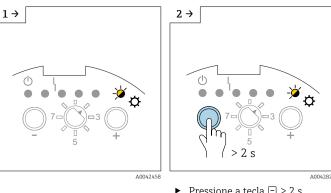


► Coloque a seletora de função na posição 4.



▶ Pressione a tecla \Box > 2 s.

► Coloque a seletora de função na posição 2.

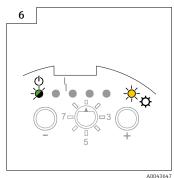

7.2.2 🗓 Realização da calibração de vazio

- A calibração de vazio armazena o valor de capacitância da sonda quando o tanque está vazio. Se o valor da capacitância medida for, por exemplo, 50 pF (calibração vazia), um limite de comutação de 2 pF será adicionado a esse valor. Nesse caso, o valor da capacitância do ponto de comutação seria 52 pF.
- O limite de comutação depende do valor definido para o ajuste do ponto de comutação $\Rightarrow \stackrel{ riangle}{\Rightarrow} 51$.

Realização da calibração de vazio

Certifique-se de que a sonda não esteja coberta pelo produto.

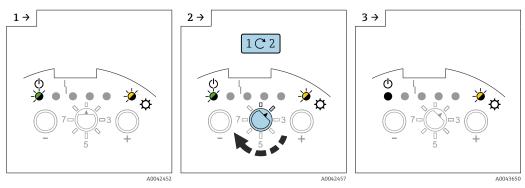
Para realizar uma calibração de vazio, configure primeiro a faixa de medição → 🖺 45.


3 →

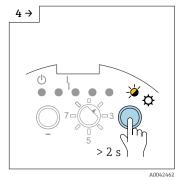
▶ Pressione a tecla 🖃 > 2 s.

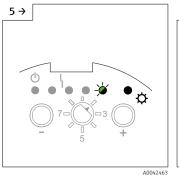
Solte a tecla ⊡ quando o LED 1 verde começar a piscar.

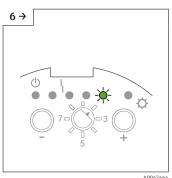
5 → 2 C 1


▶ O processo de salvar a calibração de vazio está concluído. O LED 1 verde se acende.

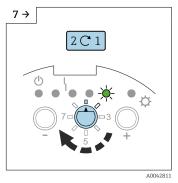
► Coloque a seletora de função na posição 1.

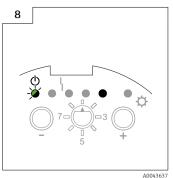

7.2.3 Realização da calibração de cheio


- A calibração de cheio mede o valor de capacitância da sonda quando o tanque está cheio. Se o valor da capacitância medida for, por exemplo, 100 pF (calibração cheia), um limite de comutação de 2 pF será subtraído desse valor. O valor da capacitância do ponto de comutação é, portanto, 98 pF.
- O limite de comutação depende do valor definido para o ajuste do ponto de comutação → ■ 51.
- Certifique-se de que a sonda esteja coberta pelo meio até o ponto de comutação desejado.


Para realizar a calibração de cheio

Coloque a seletora de função na posição 2.



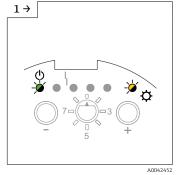


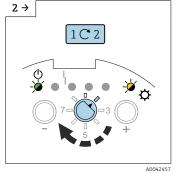
► Pressione a tecla ± > 2 s.

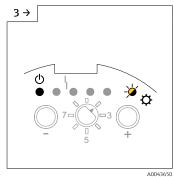
 O processo de salvar a calibração de cheio estará concluído quando o LED verde 5 se acender.

 Coloque a seletora de função na posição 1.

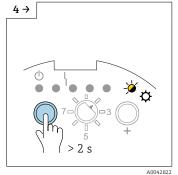
7.2.4 Realização da calibração de vazio e cheio

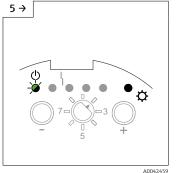

- Uma calibração de vazio e cheio oferece a maior segurança operacional possível. Isso é altamente recomendado para aplicações críticas.
- A calibração de vazio e cheio mede os valores de capacitância das sondas quando o tanque está cheio e quando está vazio. Por exemplo: se o valor da capacitância medida da calibração de vazio for 50 pF e o da calibração de cheio for 100 pF, o valor médio da capacitância de 75 pF será armazenado como o ponto de comutação.

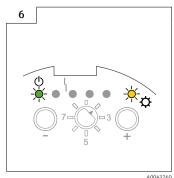

Calibração de vazio


Certifique-se de que a sonda não esteja coberta pelo produto.

Configuração da calibração de vazio

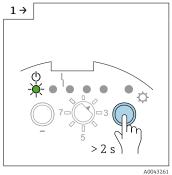

Para realizar uma calibração de vazio:

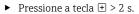


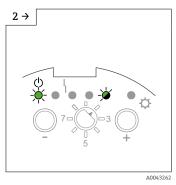


 Coloque a seletora de função na posição 2.

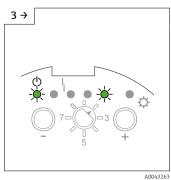
▶ Pressione a tecla \Box > 2 s.

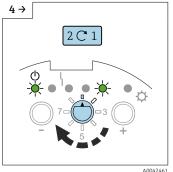

► Solte a tecla □ quando o LED 1 verde começar a piscar.

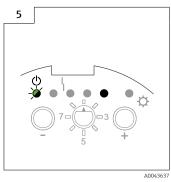

 O processo de salvar a calibração de vazio estará concluído quando o LED 1 verde se acender.


Calibração de cheio

Certifique-se de que a sonda esteja coberta pelo meio até o ponto de comutação desejado.

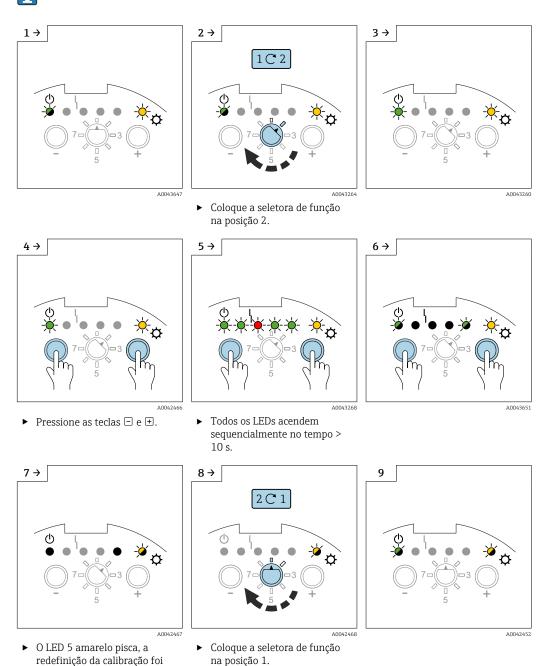

Realização da calibração de cheio




► Solte a tecla 🛨 quando o LED 5 verde começar a piscar.

► O processo de salvar a calibração de cheio estará concluído quando o LED verde 5 se acender.

► Coloque a seletora de função na posição 1.



Endress+Hauser 49

7.2.5 Redefinir: Calibração e ajuste do ponto de comutação

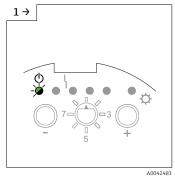
Redefinição da calibração ou do deslocamento do ponto de comutação (todas as outras configurações permanecem inalteradas)

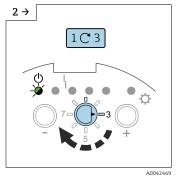
😭 O ajuste do ponto de comutação é redefinido para a configuração de fábrica de 2 pF.

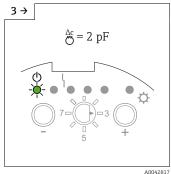
O equipamento não estará operacional até que você tenha realizado uma nova calibração.

50 Endress+Hauser

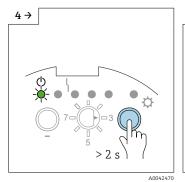
realizada e salva.

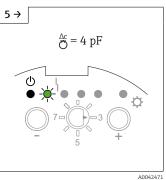

7.2.6 💍 Configuração do ajuste do ponto de comutação

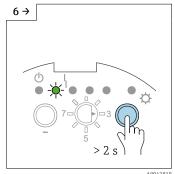

- Se apenas uma calibração (vazio ou cheio) foi realizada, e se houver incrustação na haste rígida enquanto a sonda estiver em operação, o equipamento não poderá mais responder às mudanças de nível. Um ajuste do ponto de comutação (por ex., 4 pF, 8 pF, 16 pF, 32 pF) compensa essa condição e garante que você obtenha um ponto de comutação constante novamente.
- Para meios que não têm tendência a se acumular, recomendamos uma configuração de 2 pF, pois a sonda é mais sensível a mudanças de nível nessa configuração.
- Para mídias com muita incrustação (por ex., gesso), recomendamos o uso de sondas com compensação ativa de incrustação.
- Um ajuste do ponto de comutação só pode ser realizado se uma calibração de cheio ou vazio tiver sido feita primeiro.
- O ajuste do ponto de comutação é desativado se você ligar o controle de dois pontos $\Rightarrow \triangleq 52$.


Configuração do ajuste do ponto de comutação

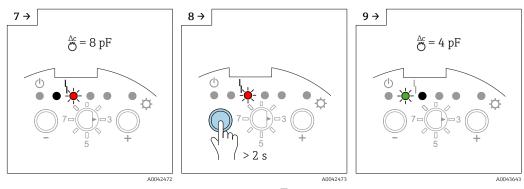
A configuração de fábrica é 2 pF.


Para ajustar o ponto de comutação:

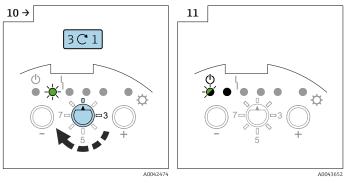


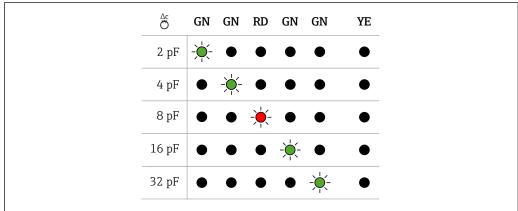


 Coloque a seletora de função na posição 3.



▶ Pressione a tecla ± > 2 s para aumentar o valor.




► Pressione a tecla ± > 2 s para aumentar o valor.

Pressione a tecla □ > 2 s para diminuir o valor.

 Coloque a seletora de função na posição 1.

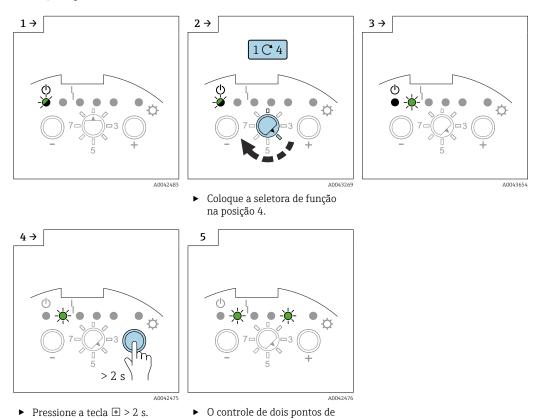
■ 43 Sequência de LEDs referente ao valor da capacitância do ponto de comutação

7.2.7 As Configuração do controle de dois pontos e do modo de incrustação

É possível usar a haste rígida de uma sonda totalmente isolada e instalada verticalmente para controle de bomba como um controle de dois pontos. Os pontos de comutação da calibração de vazio e cheio ativam, por exemplo, uma unidade de transporte.

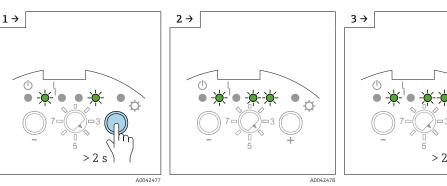
Para usar o controle de dois pontos:

- execute a calibração vazio e cheio


Para ativar o controle de dois pontos (modo Δ s), o ajuste do ponto de comutação é desativado. Os pontos de comutação correspondem aos pontos de calibração.

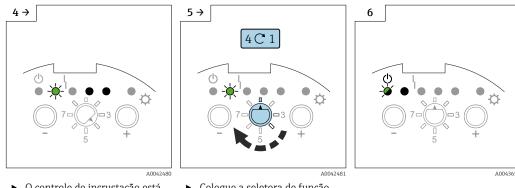
52 Endress+Hauser

A004252


> O "Modo de incrustação" garante que um ponto de comutação seguro seja emitido mesmo que a sonda não esteja totalmente liberada do meio condutor (> 1000 μS/cm). Depósitos ou incrustações na haste rígida são compensados.

Configuração do controle de dois pontos

▶ O controle de dois pontos de incrustação está ativado.


Configuração do controle de incrustação

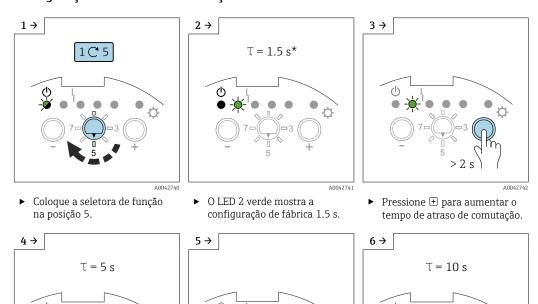
► Pressione a tecla ± > 2 s.

▶ O controle de incrustação está ativado.

▶ Pressione a tecla ± > 2 s.

 O controle de incrustação está desligado. Coloque a seletora de função na posição 1.

7.2.8 T Configuração do atraso de comutação

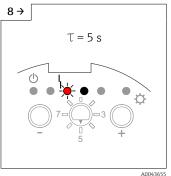

AVISO

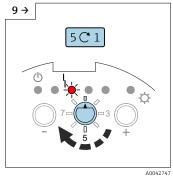
O tanque pode transbordar se o atraso de comutação for configurado como um tempo muito longo.

▶

- O atraso de comutação faz com que o equipamento sinalize o nível pontual após um atraso. Isso é muito útil em tanques com superfícies turbulentas do meio causadas, por exemplo, pelo processo de enchimento ou pelo desmoronamento de montes. Ao fazer isso, você garante que o enchimento do tanque não termine até que a sonda esteja continuamente coberta pelo meio.
- Um atraso de comutação muito curto pode, por exemplo, fazer com que o processo de enchimento seja reiniciado assim que a superfície do meio assentar.

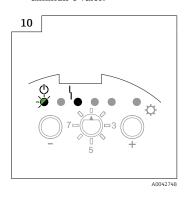
Configuração do atraso de comutação

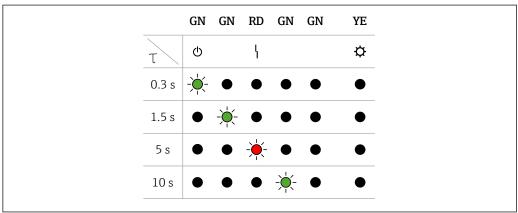



► Pressione 🛨 para aumentar o tempo de atraso de comutação.

54 Endress+Hauser

A0042743





▶ Pressione a tecla 🖃 para diminuir o valor.

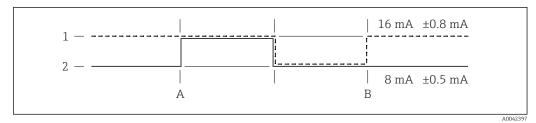
Coloque a seletora de função na posição 1.

Sequência de LEDs referente ao valor do atraso de comutação.

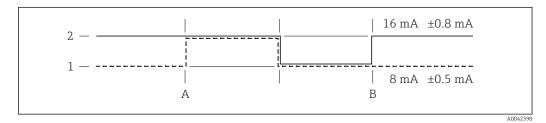
7.2.9 ① Ativação do autoteste

AVISO

Funcionamento acidental do processo!

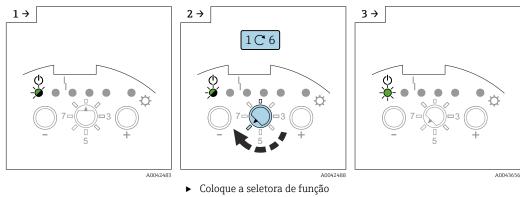

Isso pode resultar, por exemplo, no transbordamento do tanque.

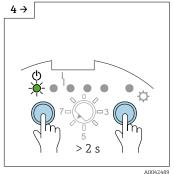
► Certifique-se de não ativar acidentalmente nenhum processo com o autoteste!


O autoteste simula estados de comutação:

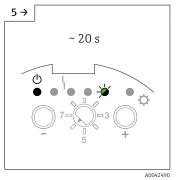
■ sonda descoberta ■ sonda coberta

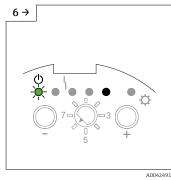
Isso lhe permite verificar se os equipamentos conectados são ativados corretamente.

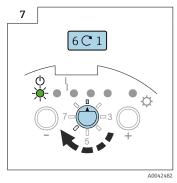

- 45 Ponto inicial coberto
- Segurança MIN
- 2 Segurança MAX
- Ponto INICIAL do teste funcional Α
- Ponto FINAL do teste funcional


₽ 46 Ponto inicial descoberto

- 1 Segurança MIN
- 2 Segurança MAX
- Ponto INICIAL do teste funcional Α
- В Ponto FINAL do teste funcional


Ativação do autoteste


na posição 6.


► Pressione as teclas 🖃 e 🛨 > 2 s.

▶ O LED 5 verde pisca por 20 s

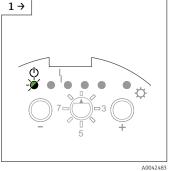
O teste é concluído quando o LED 1 verde se acende.

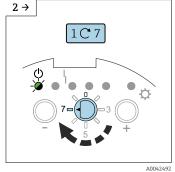
► Coloque a seletora de função na posição 1.

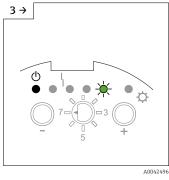
7.2.10 Configuração do modo de segurança MIN, MAX e SIL

A função do modo SIL só está disponível em conjunto com a unidade eletrônica FEI55. Ao selecionar o modo de segurança corretamente, você garante que a saída sempre opere com segurança com a corrente quiescente.

Modo de segurança de mínimo (MIN)

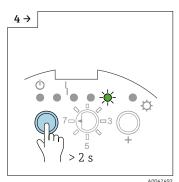

A saída é comutada se o ponto de comutação não for atingido (sonda descoberta), se ocorrer uma falha ou a se tensão da linha falhar.

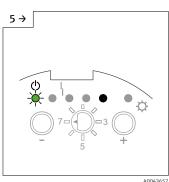

Modo de segurança de máximo (MAX)


A saída é comutada se o ponto de comutação for excedido (sonda coberta), se ocorrer uma falha ou a se tensão da linha falhar.

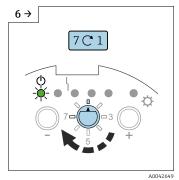
Configuração do modo de segurança MIN:

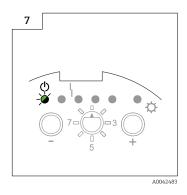
A configuração de fábrica é definida para o modo de segurança MAX.

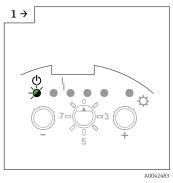


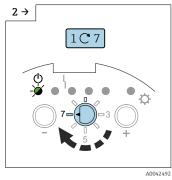


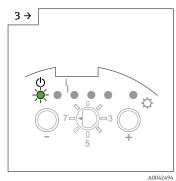
 Coloque a seletora de função na posição 7.

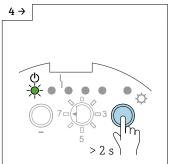

 O LED 5 verde mostra a configuração de fábrica.


 Pressione a tecla = > 2 s para definir o modo de segurança MIN.

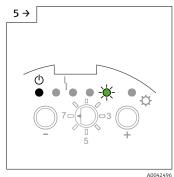

 O modo de segurança MIN está configurado.

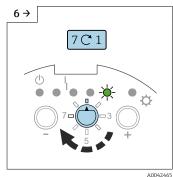


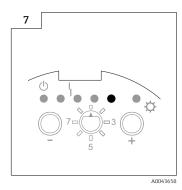

 Coloque a seletora de função na posição 1.


Configuração do modo de segurança MAX:

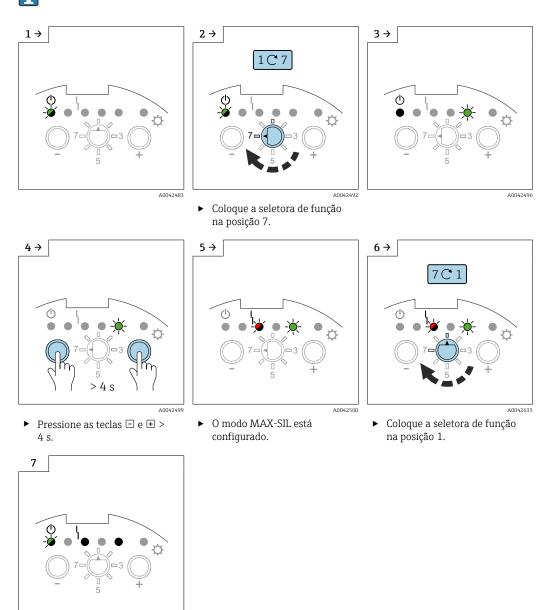


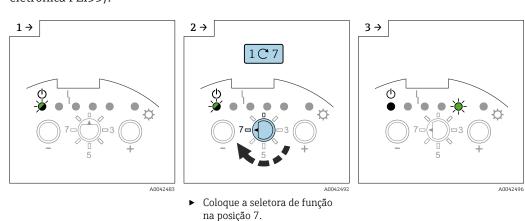


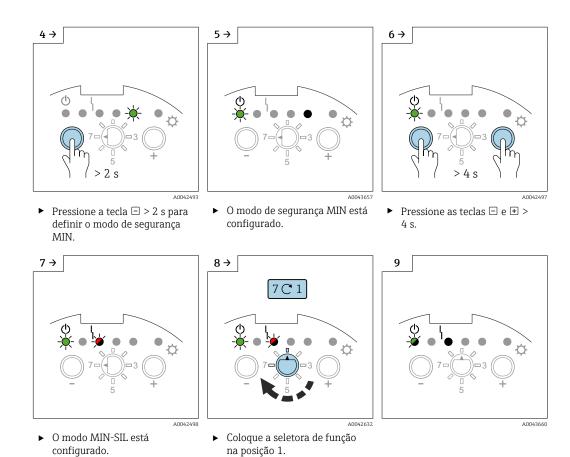

 Coloque a seletora de função na posição 7.



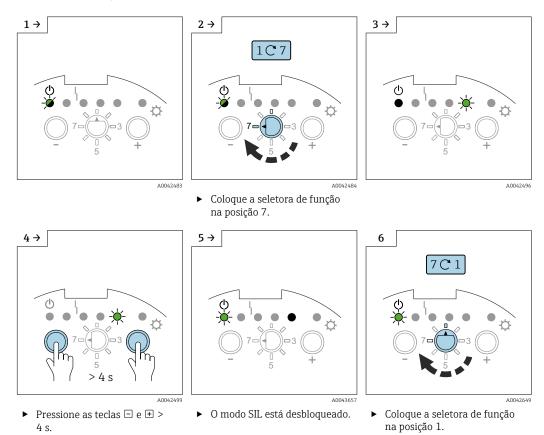
 O modo de segurança MAX está configurado.


► Coloque a seletora de função na posição 1.

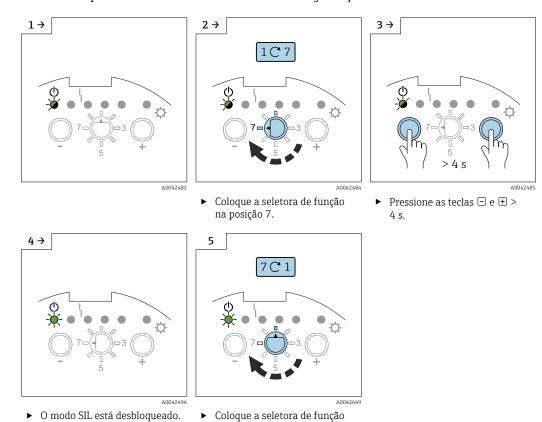

O bloqueio no "modo Lock SIL" ativa a mensagem de falha na saída de corrente (I<3.6 mA) e é sinalizado pelo LED 4 vermelho.


Configuração do modo de segurança MAX e bloqueio do modo SIL:

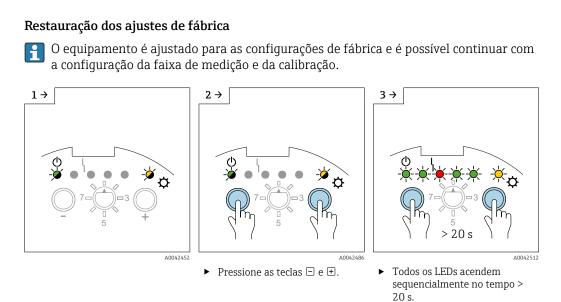
A configuração de fábrica é definida para o modo MIN-SIL.

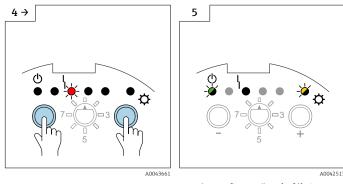


Para definir o modo de segurança MIN e bloquear o modo SIL (somente com a unidade eletrônica FEI55):



Para desbloquear o modo SIL e definir o modo de segurança MAX (somente com a unidade eletrônica FEI55):


Para desbloquear o modo SIL e definir o modo de segurança MIN:



7.2.11 Restauração dos ajustes de fábrica

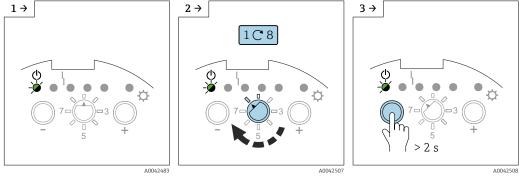
- Essa função permite restaurar as configurações de fábrica. Isso é particularmente útil se o equipamento já tiver sido calibrado uma vez e, por exemplo, houver uma mudança fundamental no meio no tanque.
- Depois de restaurar as configurações de fábrica, você deve repetir a calibração.

na posição 1.

 As configurações de fábrica foram restauradas com êxito.

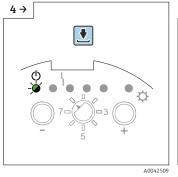
7.2.12 Fazer upload ou download do DAT (EEPROM) do sensor

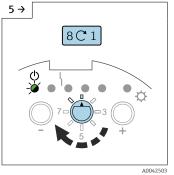
- As configurações específicas do cliente da unidade eletrônica (por ex., calibração de vazio e cheio, ajuste do ponto de comutação) são armazenadas automaticamente no DAT (EEPROM) do sensor e na unidade eletrônica.
- O DAT (EEPROM) do sensor é atualizado automaticamente sempre que um parâmetro é alterado na unidade eletrônica.
- Se estiver substituindo a unidade eletrônica, todos os dados serão transferidos para a unidade eletrônica usando um upload manual. Nenhuma configuração adicional é necessária.
- Após a instalação da unidade eletrônica, o download manual deve ser realizado para transferir as configurações específicas do cliente da unidade eletrônica.

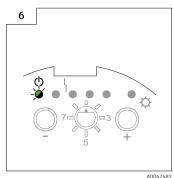

Upload

Um upload transfere os dados salvos do DAT (EEPROM) do sensor para a unidade eletrônica. A unidade eletrônica não precisa mais ser configurada, e o equipamento está então operacional.

Download

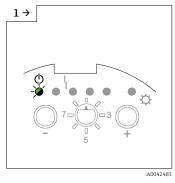

Um download transfere os dados salvos na unidade eletrônica para o DAT (EEPROM) do sensor

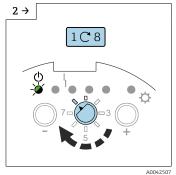

Download dos dados

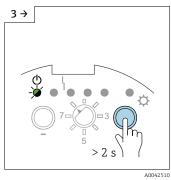


 Coloque a seletora de função na posição 8.

▶ Pressione a tecla \Box > 2 s.

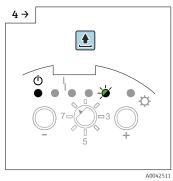


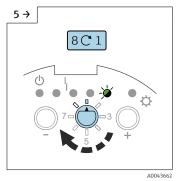


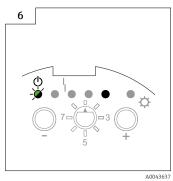


► Coloque a seletora de função na posição 1.

Upload dos dados

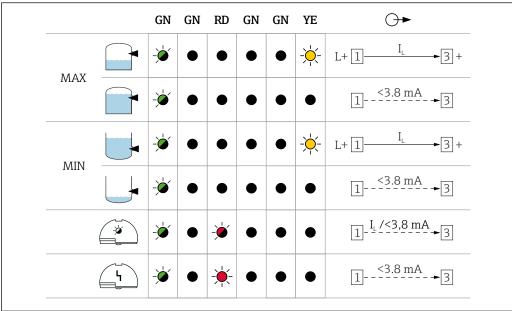




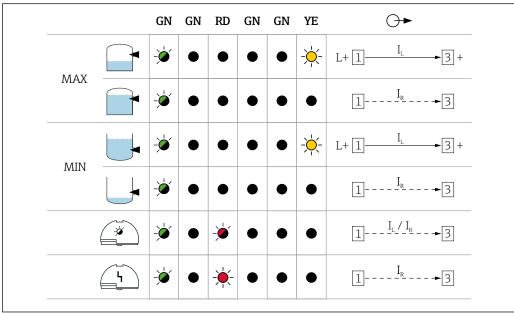


► Coloque a seletora de função na posição 8.

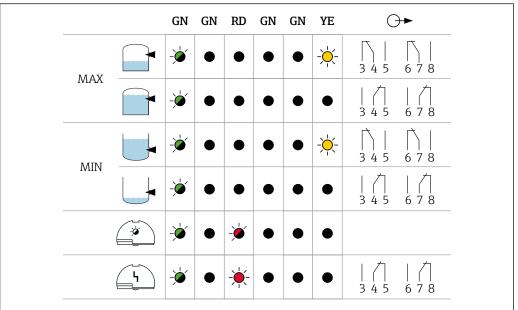
▶ Pressione a tecla \pm > 2 s.



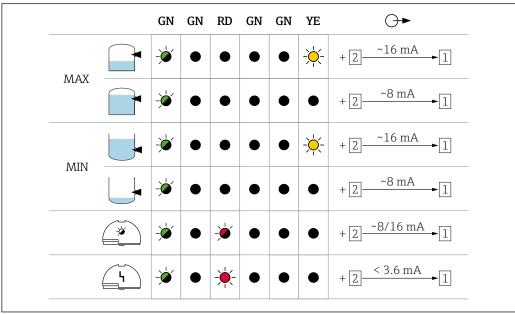
► Coloque a seletora de função na posição 1.


7.2.13 Sinais de saída

Sinal de saída FEI51


A0042586

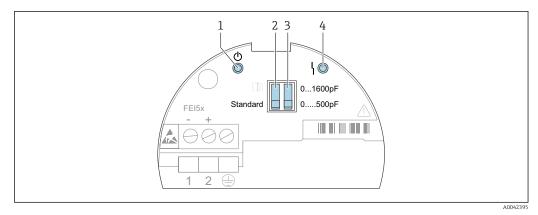
Sinal de saída FEI52


A0042587

Sinal de saída FEI54

A0042528

Sinal de saída FEI55

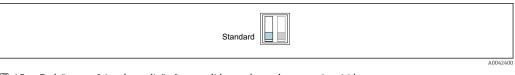

A0042529

7.3 Comissionamento com unidades eletrônicas FEI53 ou FEI57S

Este capítulo descreve o processo de comissionamento do equipamento com as versões de unidade eletrônica FEI53 e FEI57S.

O sistema de medição não estará operacional até que você tenha realizado uma calibração na unidade de comutação.

Para obter informações sobre como realizar a calibração, consulte a documentação do equipamento de comutação Nivotester: FTC325 3 fios, FTC325 PFM.



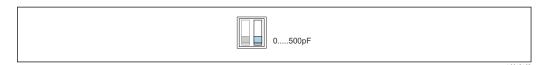
■ 47 Interface humana FEI53 e FEI57S

- 1 LED verde status operacional
- 2 Minisseletora padrão ou de alarme
- 3 Minisseletora da faixa de medição
- 4 LED vermelho erro

7.3.1 Configuração da resposta do alarme se a faixa de medição for excedida

Funções das minisseletoras:

🛮 48 Padrão: se a faixa de medição for excedida, nenhum alarme será emitido



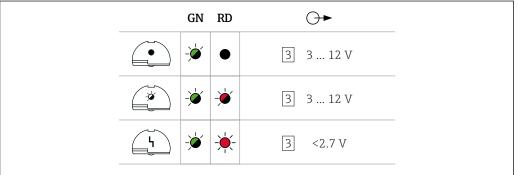
🛮 49 🛮 Alarme: se a faixa de medição for excedida, um alarme será emitido

- Com essa configuração, é possível determinar a resposta de alarme do sistema de medição quando a faixa de medição é excedida. É possível ligar ou desligar o alarme se a faixa de medição for excedida.
- Todas as outras configurações relativas à resposta do alarme devem ser configuradas no respectivo equipamento de comutação Nivotester.

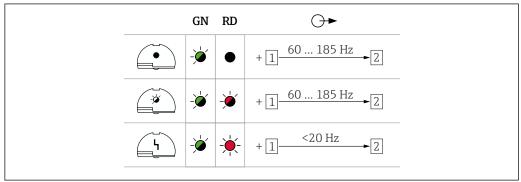
7.3.2 Configuração da faixa de medição

Funções das minisseletoras:

🗷 50 💮 Faixa de medição: a faixa de medição está entre 0 para 500 pF. Span: o span está entre 0 para 500 pF


Faixa de medição: a faixa de medição está entre 5 para 1600 pF. Span: o span está entre 5 para 1600 pF

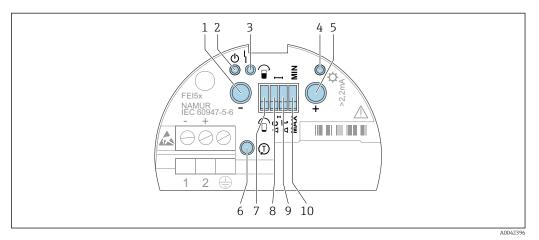
- A escolha da faixa de medição (0 para 500 pF e 0 para 1600 pF) depende da função da sonda. Se a sonda for usada como uma chave de nível pontual, é possível manter a configuração de fábrica de 0 para 500 pF.
- Se a sonda for usada para controle de dois pontos, as seguintes configurações são recomendadas para instalação vertical:
 - faixa de medição de 0 para 500 pF para comprimentos da sonda de até 1 m (3.3 ft)
 - faixa de medição de 0 para 1600 pF para comprimentos da sonda de até 4 m (13 ft)


Todas as outras configurações devem ser feitas no respectivo equipamento de comutação Nivotester.

7.3.3 Sinais de saída

Sinal de saída FEI53

Sinal de saída FEI57S



7.4 Comissionamento com a unidade eletrônica FEI58

Este capítulo descreve o processo de comissionamento do equipamento com a unidade eletrônica FEI58.

O sistema de medição não estará operacional até que você tenha realizado uma calibração.

As funções adicionais associadas à unidade de comutação são descritas na documentação da unidade de comutação, por ex., Nivotester FTC325N.

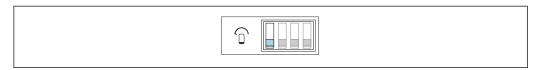
■ 52 Interface humana FEI58

- 1 Tecla A (função)
- 2 LED verde status operacional
- 3 LED vermelho erro
- 4 LED amarelo estado de comutação
- 5 Tecla B (função)
- 6 Tecla C (teste)
- 7 Minisseletora de calibração
- 8 Minisseletora do ponto de comutação
- 9 Minisseletora de atraso
- 10 Minisseletora do modo de segurança

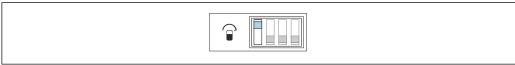
7.4.1 Teclas de função A, B, C

- Para evitar a operação não intencional do equipamento, aguarde aproximadamente 2 s após o pressionamento das teclas até que o sistema avalie e execute uma função comandada quando uma tecla for pressionada (teclas A e B). A tecla de teste C desconecta a fonte de alimentação imediatamente.
- Ambas as teclas (A e B) devem ser pressionadas simultaneamente para acionar o ajuste do ponto de comutação.

Tecla de função

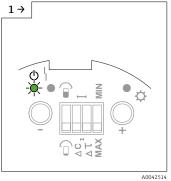

- Tecla A: exibe o código de diagnóstico
- Tecla B: exibe a situação da calibração
- Tecla de teste C: desconecta o transmissor da unidade de comutação
- Teclas A e B pressionadas durante:
 - a operação executar a calibração
 - a inicialização excluir pontos de calibração

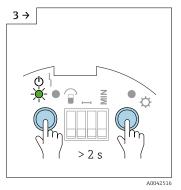
7.4.2 Realização da calibração


Uma calibração de vazio e cheio oferece a maior segurança operacional possível. Isso é altamente recomendado para aplicações críticas.

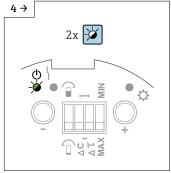
A calibração de vazio e cheio mede os valores de capacitância das sondas quando o tanque está cheio e quando está vazio. Por exemplo: se o valor da capacitância medida da calibração de vazio for 50 pF e o da calibração de cheio for 100 pF, o valor médio da capacitância de 75 pF será armazenado como o ponto de comutação.

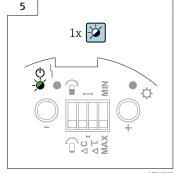
Minisseletora de calibração:


■ 53 A sonda está descoberta durante a calibração


A0042404

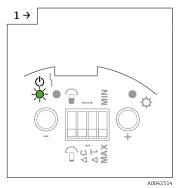
- 54 A sonda está coberta durante a calibração
- Certifique-se de que a sonda não esteja coberta pelo produto.

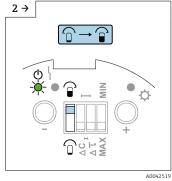

Realização da calibração de vazio

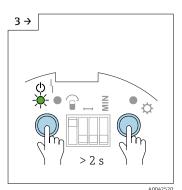


2 →

 Certifique-se de que a minisseletora de calibração esteja na posição "Uncovered" (descoberto). ▶ Pressione as teclas A e B > 2 s.

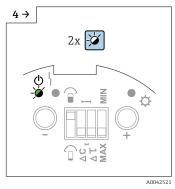


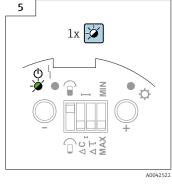



 O LED 1 verde pisca rapidamente para indicar que o valor foi salvo corretamente. O processo de salvar o valor de calibração de vazio estará concluído quando o LED 1 verde piscar lentamente.

Certifique-se de que a sonda esteja coberta pelo meio até o ponto de comutação desejado.

Realização da calibração de cheio





 Certifique-se de que a minisseletora de calibração esteja na posição "Covered" (coberto).

► Pressione as teclas A e B > 2 s.

 O LED 1 verde pisca rapidamente para indicar que o valor foi salvo corretamente.

 O processo de salvar o valor de calibração de cheio estará concluído quando o LED 1 verde piscar lentamente.

7.4.3 Configuração do ajuste do ponto de comutação

Se apenas uma calibração (vazio ou cheio) foi realizada, e se houver incrustação na haste rígida enquanto a sonda estiver em operação, o equipamento não poderá mais responder às mudanças de nível. Um ajuste do ponto de comutação compensa essa condição e garante que você obtenha um ponto de comutação constante novamente.

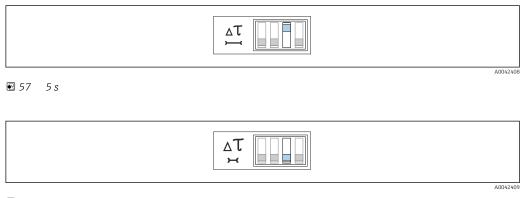
- Para meios que não têm tendência a se acumular, recomendamos uma configuração de 2 pF, pois a sonda é mais sensível a mudanças de nível nessa configuração.
- Para meios com muita incrustação, recomenda-se usar as sondas com compensação ativa de incrustação com a configuração de 10 pF.

Ajuste do ponto de comutação:

№ 55 10 pF		△C □□□□	
∆C ☐☐☐	■ 55 10 pF		A0042406
		ΔC	A0042407

№ 56 2 pF

7.4.4 Configuração do atraso de comutação


AVISO

O tanque pode transbordar se o atraso de comutação for configurado como um tempo muito longo.

▶

- O atraso de comutação faz com que o equipamento sinalize o nível pontual após um atraso. Isso é útil em tanques com superfícies turbulentas do meio causadas pelo processo de enchimento ou pelo desmoronamento de montes. Certifique-se de que o enchimento do tanque não termine até que a sonda esteja continuamente coberta pelo meio.
- Um atraso de comutação muito curto pode fazer com que o processo de enchimento seja reiniciado assim que a superfície do meio assentar.

Atraso de comutação:

№ 58 1 s

7.4.5 Modo de segurança MIN e MAX

i

Ao selecionar o modo de segurança corretamente, você garante que a saída sempre opere com segurança com a corrente quiescente.

Modo de segurança de mínimo (MIN)

A saída é comutada se o ponto de comutação não for atingido (sonda descoberta), se ocorrer uma falha ou a se tensão da linha falhar.

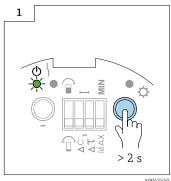
Modo de segurança de máximo (MAX)

A saída é comutada se o ponto de comutação for excedido (sonda coberta), se ocorrer uma falha ou a se tensão da linha falhar.

Modo de segurança:

A0042410

A saída é comutada orientada para a segurança quando a sonda está descoberta. Isso pode ser usado em casos como proteção contra funcionamento a seco e proteção da bomba.


A004241

A saída é comutada orientada para a segurança quando a sonda está coberta. Isso pode ser usado em casos como proteção contra transbordamento.

7.4.6 Exibir a situação da calibração

Use essa função para ver quais calibrações foram realizadas no equipamento. A situação da calibração é indicada pelos três LEDs.

Exibição da situação de calibração

A00-

► Pressione a tecla ± > 2 s

■ 61 Sem calibração

62 Calibração de vazio realizada

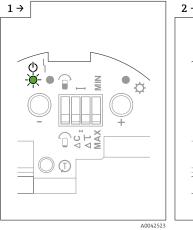
Solicap S FTI77 Comissionamento

🛮 63 Calibração de cheio realizada

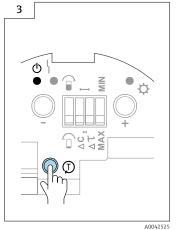
🖪 64 🛮 Calibração de vazio e cheio realizada

7.4.7 Exibição do código de diagnóstico

Essa função permite interpretar as falhas usando os três LEDs. Se o sistema detectar mais de uma falha, a falha com a prioridade mais alta será exibida no display.


Maiores informações são fornecidas na seção "Diagnóstico de falhas" → 🖺 77.

7.4.8 Tecla de teste C

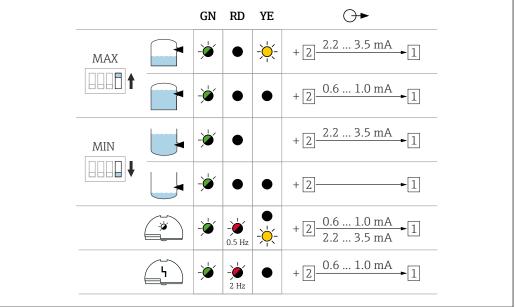

Esse teste pode ser usado para ativar medidas específicas de segurança na fábrica, como os alarmes!

Pressionar a tecla de teste C desconecta a tensão de alimentação. Se a fonte de alimentação for desconectada, uma unidade de alimentação como o Nivotester FTC325N reage ao fato de que o relé de alarme emite um erro e as respostas apropriadas são acionadas em todos os equipamentos escravos conectados.

Para realizar o teste de função:

A0042524

► Pressione a tecla C durante toda a duração do teste.


 As funções de segurança configuradas para a unidade de alimentação são ativadas.

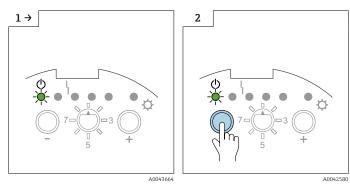
► Solte a tecla C para encerrar o teste de função.

Comissionamento Solicap S FTI77

7.4.9 Sinais de saída

Sinal de saída FEI58

A004259


8 Diagnóstico e localização de falhas

- Em caso de falhas durante o comissionamento ou operação do equipamento, é possível realizar o diagnóstico de falhas na unidade eletrônica. Essa função é suportada pelas unidades eletrônicas FEI51, FEI52, FEI54, FEI55.
- As unidades eletrônicas FEI53, FEI57S e FEI58 sinalizam dois tipos de falhas:
 - o LED vermelho pisca falhas que podem ser corrigidas
 - o LED vermelho fica aceso continuamente falhas que não podem ser corrigidas

8.1 Ativação do diagnóstico de falhas FEI51, FEI52, FEI54 e FEI55

Os diagnósticos fornecem informações sobre o status de operação do equipamento. Os resultados dos diagnósticos são exibidos por LEDs. Se o diagnóstico detectar múltiplas falhas, elas serão exibidas de acordo com a prioridade. Uma falha grave (por ex., prioridade 3) é sempre exibida antes de uma falha menos grave (por ex., prioridade 5).

Ativação do diagnóstico de falhas

► Certifique-se de que a seletora de função está na posição 1.

Sem falhas

Falha interna - prioridade 1

Substitua a unidade eletrônica

O ponto ou pontos de calibração estão fora da faixa de medição - prioridade 2

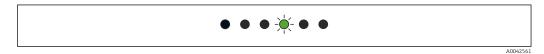
A004255

Recalibrar

Os pontos de calibração foram acidentalmente trocados - prioridade 3

Recalibrar

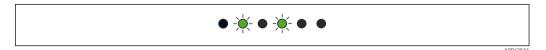
O ponto de calibração está muito próximo do limite da faixa de medição - prioridade 4


Reduza o ponto de comutação ou selecione um novo local de instalação

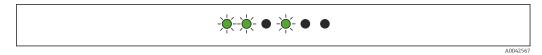
Ainda não foi realizada nenhuma calibração - prioridade 5

Realize a calibração de vazio e cheio

A saída DC PNP está sobrecarregada (FEI52) - prioridade 6


Reduzir a carga conectada

A mudança de capacitância de "Sonda não coberta" para "Sonda coberta" é muito pequena - prioridade 7


Entre em contato com a Assistência Técnica da Endress+Hauser

Os dados do DAT (EEPROM) do sensor são inválidos - prioridade 8

Realize o download a partir da unidade eletrônica

A sonda não foi detectada, a conexão com o DAT (EEPROM) do sensor não pôde ser estabelecida - prioridade 9

O tipo de sonda não é compatível

A temperatura medida está fora da faixa de temperatura permitida - prioridade 10

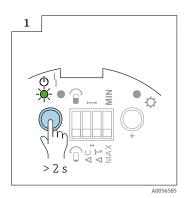
A0042568

Opere o equipamento somente dentro da faixa de temperatura especificada

8.2 Diagnóstico de falhas FEI53 e FEI57S

O equipamento não comuta

Verifique a conexão e a tensão de alimentação


O LED de alarme pisca

A temperatura ambiente dos componentes eletrônicos está fora da faixa permitida ou a conexão com a sonda foi interrompida

8.3 Ativação do diagnóstico de falhas FEI58

Essa função permite interpretar as falhas usando os três LEDs. Se o sistema detectou mais de uma falha, a falha com a prioridade mais alta será exibida no display.

Para exibir o código de diagnóstico:

► Pressione a tecla 🖃 > 2 s

Sem falhas

Falha interna - prioridade 1

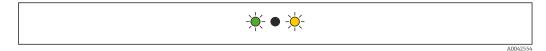
O equipamento está com defeito

O ponto de calibração está muito próximo do limite da faixa de medição - prioridade 2

₽ 65

Reduza o ponto de comutação ou selecione um novo local de instalação

Os pontos de calibração foram acidentalmente trocados - prioridade ${\tt 3}$


Realize a calibração descoberta com a sonda descoberta e a calibração coberta com a sonda coberta

Ainda não foi realizada nenhuma calibração - prioridade 4

Realize a calibração de vazio e cheio

A mudança em capacitância da sonda descoberta para a sonda coberta é muito pequena - prioridade 5

A mudança de capacitância entre a sonda descoberta e a sonda coberta deve ser maior que $2~\mathrm{pF}$

Sonda não detectada - prioridade 6

■ 66 Sonda não detectada

Conecte a sonda

A temperatura medida está fora da faixa permitida - prioridade 7

■ 67 A temperatura medida está fora da faixa permitida

O equipamento só pode ser operado dentro da faixa de temperatura especificada

8.4 Histórico do firmware

FEI51

Data de lançamento: 10/2007Versão do software: V 01.00.zz

Alteração no software: software original

FEI52

Data de lançamento: 07/2006Versão do software: V 01.00.zz

Alteração no software: software original

FEI53

Data de lançamento: 07/2006Versão do software: V 01.00.zz

Alteração no software: software original

FEI54

Data de lançamento: 07/2006Versão do software: V 01.00.zz

■ Alteração no software: software original

FEI55

Data de lançamento: 11/2008Versão do software: V 02.00.zz

• Alteração no software: ampliado para incluir a funcionalidade SIL

FEI57S

Data de lançamento: 07/2006Versão do software: V 01.00.zz

■ Alteração no software: software original

FEI58

Data de lançamento: 01/2010Versão do software: V 01.00.zz

■ Alteração no software: software original

Manutenção Solicap S FTI77

9 Manutenção

Nenhum trabalho de manutenção especial é exigido.

9.1 Limpeza externa

Não use um agente de limpeza corrosivo ou agressivo para limpar a superfície e as vedações do invólucro.

9.2 Limpeza da sonda

Um alto grau de incrustação de material pode afetar o resultado da medição. Se o meio tende a criar um alto grau de acúmulo, recomenda-se uma limpeza regular. Ao limpar, é importante certificar-se de que o isolamento da haste da sonda não seja danificado.

9.3 Assistência técnica da Endress+Hauser

A Endress+Hauser oferece uma grande abrangência de serviços.

Sua Central de vendas Endress+Hauser pode fornecer informações detalhadas sobre os serviços.

Solicap S FTI77 Reparo

10 Reparo

10.1 Notas gerais

O conceito de reparo e conversão da Endress+Hauser considera os sequintes aspectos:

- Os medidores têm um design modular
- Peças sobressalentes são agrupadas em kits lógicos com as Instruções de Instalação associadas
- Reparos são realizados pelo Serviço da Endress+Hauser ou por clientes adequadamente treinados
- Equipamentos certificados só podem ser convertidos em outros equipamentos certificados pelo Serviço da Endress+Hauser ou na fábrica

10.2 Peças de reposição

Encontrar peças de reposição

Verifique se é possível usar a peça de reposição para o medidor.

- 1. Inicie o Visualizador de Equipamento Endress+Hauser através do navegador de rede: www.endress.com/deviceviewer
- 2. Insira o código de pedido ou a raiz do produto no respectivo campo.
 - Uma vez que o código de pedido ou a raiz do produto for inserida, são listadas todas as peças de reposição adequadas.
 - O status do produto é exibido.
 - São exibidos os desenhos disponíveis das peças de reposição.
- 3. Localize o código de pedido do conjunto de peças de reposição (na etiqueta do produto na embalagem).
 - → OBSERVAÇÃO!
 - O código de pedido do conjunto de peças de reposição (na etiqueta do produto na embalagem) pode ser diferente do número de produção (na etiqueta diretamente sobre a peça de reposição)!
- 4. Verifique se o código de pedido da conjunto de peças de reposição aparece na lista das peças de reposição exibidas:
 - SIM: O conjunto de peças de reposição pode ser usado para o medidor.

 NÃO: O conjunto de peças de reposição não pode ser usado para o medidor.

 Se houver dúvidas, entre em contato com a assistência técnica da

 Endress+Hauser.
- 5. Na quia **Peças de reposição** clique no símbolo PDF na coluna **MH**.
 - As instruções de instalação anexadas à peça de reposição listada são abertas em um arquivo PDF e também pode ser salvas como um arquivo PDF.
- 6. Clique em um dos desenhos exibidos na quia **Desenhos da peça de reposição**.
 - O desenho correspondente com vista explodida é aberto como um arquivo PDF e também pode ser salvo como um arquivo PDF.

10.3 Correção de equipamentos com certificação Ex

Se estiver fazendo a correção de equipamentos com certificação Ex, lembre-se:

- Os equipamentos com certificação Ex somente podem ser reparados por profissionais experientes e habilitados ou pela assistência técnica da Endress+Hauser
- observe todas as normas aplicáveis, certificados, regulamentações nacionais Ex área e todas as Instruções de segurança (XA)
- Use somente peças sobressalentes originais da Endress+Hauser

Reparo Solicap S FTI77

 observe a denominação do equipamento na etiqueta de identificação para solicitar peças de reposição

- substitua o componente por outro do mesmo tipo
- execute a substituição de acordo com as instruções
- execute o teste individual para o equipamento
- somente troque o equipamento por outro certificado pela Endress+Hauser
- comunique toda mudança e reparo de equipamento

10.4 Substituição

Após substituir uma sonda ou a unidade eletrônica, os valores de calibração devem ser transferidos para o equipamento substituto.

Opções:

- se a sonda for substituída, os valores de calibração na unidade eletrônica podem ser transferidos para o módulo do sensor DAT (EEPROM) através do download manual
- se a unidade eletrônica for substituída, os valores de calibração do módulo do sensor DAT (EEPROM) podem ser transferidos para os componentes eletrônicos através de um upload manual

É possível redefinir o equipamento sem executar uma nova calibração.

10.5 Devolução

As especificações para devolução segura do equipamento podem variar, dependendo do tipo do equipamento e legislação nacional.

- 1. Consulte o website para maiores informações: http://www.endress.com/support/return-material
- 2. Devolva o equipamento caso sejam necessários reparos ou calibração de fábrica ou caso o equipamento errado tenha sido solicitado ou entregue.

10.6 Descarte

10.6.1 Remoção do medidor

1. Deslique o equipamento.

▲ ATENÇÃO

Perigo às pessoas pelas condições do processo.

- Cuidado com as condições perigosas do processo como a pressão no equipamento de medição, a alta temperatura ou fluidos agressivos.
- 2. Executar as etapas de fixação e conexão das seções "Fixando o medidor" e "Conectando o medidor" na ordem inversa. Observe as instruções de segurança.

10.6.2 Descarte do medidor

AATENÇÃO

Risco para humanos e para o meio ambiente devido a fluidos que são perigosos para a saíde.

Certifique-se de que o medidor e todas as cavidades estão livres de resíduos de fluidos que são danosos à saúde ou ao meio ambiente, como substâncias que permearam por frestas ou difundiram pelo plástico.

Siga as observações seguintes durante o descarte:

▶ Observe as regulamentações federais ou nacionais.

Solicap S FTI77 Reparo

▶ Garanta a separação adequada e o reuso dos componentes do equipamento.

Acessórios Solicap S FTI77

Acessórios 11

11.1 Tampa de proteção contra o tempo

Para invólucros F13, F17 Número de pedido: 71040497

11.2 Conjunto de vedação para invólucro de aço inoxidável

Conjunto de vedação para invólucro de aço inoxidável F15 com 5 anéis de vedação Número da peça: 52028179

Para-raios 11.3

11.3.1 **HAW562**

- Para linhas de alimentação: BA00302K.
 - Para linhas de sinal: BA00303K.

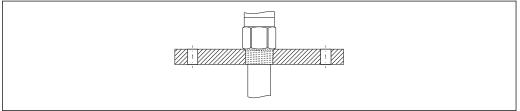
11.3.2 **HAW569**

- Para linhas de sinal no invólucro de campo: BA00304K.
 - Para linhas de sinal ou de alimentação no invólucro de campo: BA00305K.

Adaptador da flange 11.4

As versões com sonda de aço estão disponíveis para sólidos a granel de granulação fina:

- R 1½
- NPT 1½


Opcionalmente, estão disponíveis flanges adaptadores que podem ser solicitados por meio das seguintes estruturas de produtos FAU70E e FAU70A.

FAU70E

- 1233 -> DN50 PN16 A, flange EN1092-1 (DIN2527 B)
- 1433 -> DN80 PN16 A, flange EN1092-1 (DIN2527 B)
- 1533 -> DN100 PN16 A, flange EN1092-1 (DIN2527 B)

FAU70A

- 2253 -> 2" 150lbs FF, flange ANSI B16.5
- 2453 -> 3" 150lbs FF, flange ANSI B16.5
- 2553 -> 4" 150lbs FF, flange ANSI B16.5

Solicap S FTI77 Dados técnicos

12 Dados técnicos

12.1 Entrada

12.1.1 Faixa de medição

Frequência de medição

500 kHz

Span

- $\Delta C = 5 \text{ para } 1600 \text{ pF}$
- FEI58

 $\Delta C = 5 \text{ para } 500 \text{ pF}$

Capacitância final

 $C_E = m \acute{a} ximo 1600 pF$

Capacitância inicial ajustável

- faixa 1 configuração de fábrica
 - $C_A = 5 \text{ para } 500 \text{ pF}$
- faixa 2 não disponível com o FEI58
 C_A = 5 para 1600 pF

12.2 Saída

12.2.1 Comportamento do comutador

Binária ou operação Δs.

O controle de bomba não é possível com o FEI58.

12.2.2 Comportamento de ativação

Quando a fonte de alimentação é ligada, o status de saída comutada das saídas corresponde ao sinal em alarme.

A condição correta de comutação é alcançada após um máximo de 3 s.

12.2.3 Modo de segurança contra falhas

A segurança de corrente quiescente mínima e máxima pode ser alternada na unidade eletrônica $^{2)}$.

MIN

Segurança de mínimo: a saída é comutada orientada para a segurança quando a sonda está descoberta, ³⁾ (sinal em alarme).

MAX

Segurança de máximo: a saída é comutada orientada para a segurança quando a sonda é coberta $^{4)}$ (sinal em alarme).

²⁾ Para FEI53 e FEI57S, somente no Nivotester associado: FTC325.

³⁾ Por ex. para proteção contra funcionamento a seco e proteção da bomba.

⁴⁾ Por ex., para uso com proteção contra transbordamento.

Dados técnicos Solicap S FTI77

12.2.4 Isolamento galvânico

FEI51 e FEI52

entre a sonda e a fonte de alimentação

FEI54

entre a sonda, fonte de alimentação e carga

FEI53, FEI55, FEI57S e FEI58

consulte o equipamento de comutação conectado 5)

12.3 Características de desempenho

Temperatura ambiente: 20 °C (68 °F), \pm 5 °C (\pm 8 °F)

Extensão

- Faixa de medição padrão: 5 para 500 pF
- Faixa de medição estendida: 5 para 1600 pF
- Extensão para referência: 5 para 250 pF

De acordo com a norma DIN 61298-2

- Imprecisão: máxima ±0.3 %
- Não repetibilidade: máxima ±0.1 %

12.3.1 Efeito da temperatura ambiente

Unidade eletrônica

< 0.06 % a cada 10 K referente ao valor de fundo de escala

Invólucro separado

mudança na capacitância do cabo de conexão por metro 0.15 pF a cada 10 K

12.3.2 Sinal de entrada

Sonda coberta => alta capacitância

Sonda descoberta => baixa capacitância

12.4 Condições de operação: Ambiente

12.4.1 Faixa de temperatura ambiente

- Invólucro F16: −40 para +70 °C (−40 para +158 °F)
- invólucro restante: -50 para +70 °C (-58 para +158 °F)
- observe a redução da potência
- use uma tampa de proteção durante operações externas

12.4.2 Classe climática

DIN EN 60068-2-38/IEC 68-2-38: verifique Z/AD

12.4.3 Temperatura de armazenamento

-50 para +85 ℃

12.4.4 Resistência contra vibração

DIN EN 60068-2-64/IEC 68-2-64: 20 para 2 000 Hz, 0.01 g²/Hz

⁵⁾ Isolamento galvânico funcional na unidade eletrônica.

Solicap S FTI77 Dados técnicos

12.4.5 Resistência a choques

DIN EN 60068-2-27/IEC 68-2-27: aceleração 30q

12.4.6 Limpeza

Invólucro:

Certifique-se de que a superfície e vedações do invólucro sejam resistentes a agentes de limpeza.

Sonda:

Dependendo da aplicação, incrustação de contaminação ou sujeiras podem se formar na sonda. Um alto nível de incrustação de material pode afetar o resultado da medição.

Recomenda-se a limpeza regular da sonda se o meio tiver tendência a criar um alto nível de incrustação.

Certifique-se de que o isolamento da sonda não esteja danificado ao lavar usando manqueira ou durante a limpeza mecânica.

12.4.7 Grau de proteção

Todo grau de proteção em relação a EN60529.

Grau de proteção Tipo 4X em relação a NEMA250.

Invólucro de poliéster F16

Grau de proteção:

- IP66
- IP67
- Tipo 4X

Invólucro de aço inoxidável F15

Grau de proteção:

- IP66
- IP67
- Tipo 4X

invólucro de alumínio F17

Grau de proteção:

- IP66
- IP67
- Tipo 4X

Invólucro de alumínio F13 vedação de processo com estanqueidade de gás

Grau de proteção:

- IP66
- IP68 ⁶⁾
- Tipo 4X

Invólucro de aço inoxidável F27 com vedação de processo com estanqueidade de gás Grau de proteção:

- IP66
- IP67
- IP68 ⁶⁾
- Tipo 4X

⁶⁾ Somente com entrada para cabo M20 ou rosca G½.

Dados técnicos Solicap S FTI77

> Invólucro de alumínio T13 com vedação de processo com estanqueidade de gás e compartimento de conexão separado (Ex d)

Grau de proteção:

- IP66
- IP68 ⁶⁾
- Tipo 4X

Invólucro separado

Grau de proteção:

- IP66
- IP68 ⁶⁾
- Tipo 4X

12.4.8 Compatibilidade eletromagnética (EMC)

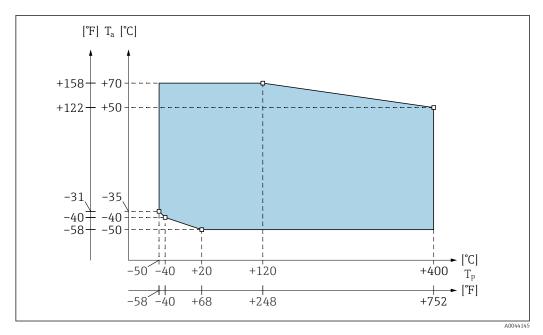
Emissão de interferência conforme EN 61326, classe de equipamento elétrico B. Imunidade a interferências conforme EN 61326, Anexo A (Industrial) e recomendação NAMUR NE 21 (EMC).

É possível usar um cabo de instrumento comercial padrão.

12.5 Condições de operação: Processo

12.5.1 Faixa de temperatura do processo

As faixas de temperatura de processo a seguir se aplicam somente a aplicações padrão fora de áreas de risco.

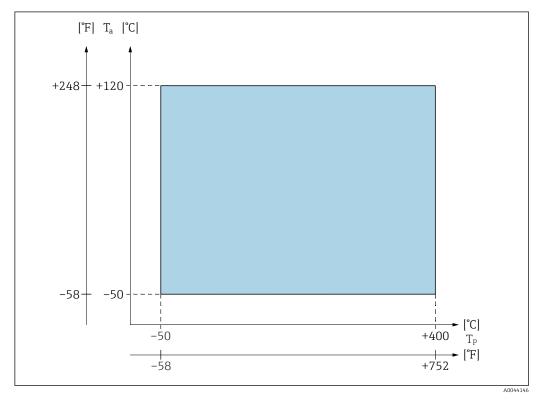

As regulamentações para uso em áreas de risco são fornecidas na documentação complementar disponível para o produto e podem ser selecionadas por meio do Configurador de produtos em www.endress.com.

Temperatura ambiente permitida T_a no invólucro dependendo da temperatura do processo T_p no tanque.

Versão compacta

Versão de espada e corda

Solicap S FTI77 Dados técnicos



1 68 Diagrama da faixa de temperatura do processo: sonda de espada e corda

- T_a Temperatura ambiente
- T_p Temperatura do processo

Versão com invólucro separado

Temperatura no invólucro separado: $-40\,^{\circ}\text{C}$ ($-40\,^{\circ}\text{F}$) $\leq T_a \leq +70\,^{\circ}\text{C}$ ($+158\,^{\circ}\text{F}$)

■ 69 Diagrama de temperatura do processo: invólucro separado

- T_a Temperatura ambiente
- T_p Temperatura do processo

Dados técnicos Solicap S FTI77

12.5.2 Faixa de pressão do processo

Faixa de pressão do processo -1 para 10 bar (-14.5 para 145 psi).

Os valores de pressão permitidos dependem do flange selecionado. No caso de temperaturas mais altas, os valores de pressão permitidos podem ser obtidos nas seguintes normas:

- pR EN 1092-1: 2005 tabela, Apêndice G2
- ASME B 16.5a Tabela -1998. 2-2.2 F316
- ASME B 16.5a Tabela -1998. 2.3.8 N10276
- JIS B 2220

Índice Solicap S FTI77

Índice

Α	Função do documento 5
Acessórios	G
Alinhamento do invólucro	_
Alturas de extensão: invólucro separado 23	Grau de proteção
Ambiente	Н
Áreas a prova de explosão	Histórico do firmware
Área explosiva	
Armazenamento	I
Assistência técnica da Endress+Hauser	Identificação CE
Reparos	Identificação do produto 9
C	Instalação
Características de desempenho	Instalação e verificação da função 45
Classe climática	Instruções de instalação
Comissionamento	Instruções de segurança básicas
Compatibilidade eletromagnética 88	Isolamento galvânico
Comportamento de ativação 85	L
Comportamento do comutador	_
Comprimento mínimo da sonda para o meio não-	Ligação elétrica e conexão
condutivo	Limpeza externa
Condições de operação	Limpeza externa
Condições de operação: Processo	M
Conector	Manutenção
Conector M12	Medidor
Conexão elétrica	Conversão
Configuração da faixa de medição 45	Descarte
Controle de dois pontos Modo de incrustação	Removendo 82
Correção de equipamentos com certificação Ex 81	Reparos
Correção de equipamentos com certificação Ex 01	Modo de segurança contra falhas
D	Montagem em parede
Dados técnicos	Montagem na tubulação 25
Declaração de conformidade 8	0
Descarte	Opções de operação
Devolução	Opçoes de operação
Diagnóstico e localização de falhas	P
e localização de falhas	Para-raios
Documentação do equipamento	Peças de reposição
Documentação adicional	_
Documento	R
Função	Realização da calibração de vazio
E	Recebimento
Efeito da temperatura ambiente	Reparo
Encurtamento do cabo de conexão	Resistência a choques
Entrada	Resistência contra vibração 86
Entrada para cabo	S
Equalização potencial	Saída
Equipamento de conexão	Segurança da operação
Especificação do cabo	Segurança do produto
Especificações de conexão	Segurança no local de trabalho
Especificações para o pessoal 8	Símbolos
Etiqueta de identificação 9	Símbolos para determinados tipos de informações e
E	gráficos
F	Sobre este documento
Faixa de medição	Sonda com invólucro separado
Faixa de temperatura ambiente 86	

Endress+Hauser

Índice Solicap S FTI77

Substituição
Γ Fransporte
V
Vedação do invólucro da sonda 22
Verificação pós conexão
Verificação pós instalação 28

www.addresses.endress.com