Gültig seit Version 01.05 (Geräte-Firmware)

Betriebsanleitung JT33 TDLAS-Gasanalysator

Inhaltsverzeichnis

1	Einführung5
1.1	Funktion des Dokuments5
1.2	Symbole5
1.3	Zugehörige Dokumentation6
1.4	Konformität mit US-amerikanischen Exportvorschriften6
1.5	Eingetragene Marken6
1.6	Herstelleradresse6
2	Sicherheit7
2.1	Qualifikation des Personals7
2.2	Potenzielle Risiken für das Personal8
2.3	Produktsicherheit9
2.4	Gerätespezifische IT-Sicherheit10
3	Produktbeschreibung12
3.1	Funktionsweise von TDLAS- Gasanalysatoren12
3.2	JT33 TDLAS-Gasanalysatorsystem12
3.3	Probenaufbereitungssystem13
3.4	Produktidentifizierung14
3.5	Geräteetiketten14
3.6	Symbole auf dem Gerät15
4	Montage16
4.1	Montage der Heizmanschette16
4.2	Analysator anheben und bewegen17
4.3	Analysator montieren18
4.4	Anzeigemodul drehen20
4.5	Chassiserde und Erdanschlüsse21
4.6	Elektrische Anschlüsse22
4.7	Gasanschlüsse34
4.8	Kit zur metrischen Konvertierung35
4.9	Validierungsgas anschließen36
4.10	Geräteeinstellungen37
4.11	Schutzart IP66 sicherstellen42

5	Bedienoptionen43
5.1	Übersicht zu Bedienoptionen43
5.2	Aufbau und Funktionsweise des Bedienmenüs44
5.3	Vor-Ort-Bedienung46
5.4	Zugriff auf das Bedienmenü über das Gerätedisplay46
5.5	Bedienelemente52
5.6	Zugriff auf das Bedienmenü über den Webbrowser57
5.7	Fernbedienung mit Modbus63
6	Modbus-Kommunikation 65
6.1	Übersicht zu Gerätebeschreibungsdateien . 65
6.2	Funktionscodes für Modbus-RS485 und Modbus-TCP65
6.3	Reaktionszeit66
6.4	Modbus Data Map66
6.5	Modbus-Register67
7	Inbetriebnahme68
7.1	Sprache68
7.2	Messgerät konfigurieren68
7.3	Messstellenbezeichnung definieren69
7.4	Analyttyp einstellen69
7.5	Messkalibrierung auswählen69
7.6	Systemeinheiten einstellen70
7.7	Peak Tracking einstellen71
7.8	Rampenabgleich einstellen71
7.9	Kommunikationsschnittstelle konfigurieren72
7.10	Stromeingang konfigurieren74
7.13	Stromausgang konfigurieren75
7.12	Schaltausgang konfigurieren77
7.13	Relaisausgang konfigurieren78
7.14	Gerätedisplay konfigurieren79
7.15	Erweiterte Einstellungen81
7.16	S Außerbetriebnahme89

8	Betrieb90
8.1	Messwerte auslesen90
8.2	Datenprotokollierung anzeigen 93
8.3	Messgerät an die Prozessbedingungen anpassen95
8.4	Simulation98
8.5	Schutz der Einstellungen vor unbefugtem Zugriff99
9	Validierungsmethoden102
9.1	Manuelle Validierung102
9.2	Automatische Validierung103
10	Verifikation, Diagnose und Fehlerbehebung106
10.1	Diagnoseinformationen durch LEDs 106
10.2	Diagnoseinformationen auf dem Gerätedisplay107
10.3	Diagnoseinformation im Webbrowser 110
10.4	Diagnoseinformationen über die Kommunikationsschnittstelle111
10.5	Diagnoseverhalten anpassen111
10.6	Übersicht Diagnoseinformationen112
10.7	Anstehende Diagnoseereignisse117
10.8	Ereignislogbuch118
10.9	Messgerät zurücksetzen120
10.1	0 Geräteinformationen120
10.1	1 Signalalarme121
10.1	2 Protokollspezifische Daten123
10.1	3 Allgemeine Störungsbehebungen124

11 W	artung/Service	127
11.1	Reinigung und Dekontaminierung	127
11.2	Wäscher warten	127
11.3	Ersatzteile	130
11.4	Fehlerbehebung/Reparatur	130
11.5	Intermittierender Betrieb	143
11.6	Verpackung, Versand und Lagerung	143
11.7	Servicekontakt	144
11.8	Vor der Kontaktaufnahme mit dem Service	144
11.9	Rücksendung ans Werk	144
11.10	Haftungsausschluss	145
11.11	Gewährleistung	145
	echnische Daten und eichnungen	146
12.1	SCS-Schema	
12.2	Elektrische und Kommunikationsanschlüsse	
12.3	Anwendungsdaten	151
12.4	Physische Spezifikationen	152
12.5	Bereichsklassifizierung	152
12.6	Unterstützte Bedientools	152
12.7	Webserver	153
12.8	HistoROM-Datenmanagement	153
12.9	Datensicherung	153
12.10	Manuelle Datenübertragung	154
12.11	Automatische Ereignisliste	154
12.12	Manuelle Datenprotokollierung	154
12.13	Diagnosefunktionalitäten	154
12.14	Heartbeat Technology	155
12.15	Erweiterte Heartbeat Verification mit Validierung	155

1 Einführung

1.1 Funktion des Dokuments

Diese Betriebsanleitung enthält Informationen, die erforderlich sind, um den JT33 TDLAS-Gasanalysator zu montieren und zu betreiben. Es ist daher entscheidend, die einzelnen Kapitel dieses Handbuchs genau durchzulesen, um sicherzustellen, dass der Analysator wie spezifiziert arbeitet.

1.2 Symbole

1.2.1 Warnmeldungen

Struktur des Hinweises	Bedeutung	
WARNUNG Ursache (/Folgen) Folgen der Missachtung (wenn zutreffend) ► Abhilfemaßnahme	Dieses Symbol macht auf eine gefährliche Situation aufmerksam. Wird die gefährliche Situation nicht vermieden, kann dies zu schweren Verletzungen gegebenenfalls mit Todesfolge führen.	
✓ VORSICHT Ursache (/Folgen) Folgen der Missachtung (wenn zutreffend) ► Abhilfemaßnahme	Dieses Symbol macht auf eine gefährliche Situation aufmerksam. Wird die gefährliche Situation nicht vermieden, kann dies zu leichten oder mittelschweren Verletzungen führen.	
HINWEIS Ursache/Situation Folgen der Missachtung (wenn zutreffend) Maßnahme/Hinweis	Dieses Symbol macht auf Situationen aufmerksam, die zu Sachschäden führen können.	

1.2.2 Warn- und Gefahrensymbole

Symbol	Beschreibung
Ą	Das Symbol für Hochspannung macht den Benutzer darauf aufmerksam, dass ein ausreichend hohes elektrisches Potenzial vorliegt, um Verletzungen oder Sachschäden zu verursachen. In manchen Industriebereichen bezieht sich der Begriff Hochspannung auf Spannungen oberhalb eines bestimmten Schwellenwerts. Betriebsmittel und Leiter, die hohe Spannungen führen, erfordern besondere Sicherheitsanforderungen und Vorgehensweisen.
*	Das Symbol für Laserstrahlung macht den Benutzer darauf aufmerksam, dass bei der Verwendung des Systems die Gefahr besteht, schädlicher sichtbarer Laserstrahlung ausgesetzt zu werden. Bei dem Laser handelt es sich um ein Strahlungsprodukt der Klasse 1.
⟨£x⟩	Die Ex-Kennzeichnung signalisiert den zuständigen Behörden und Endbenutzern in Europa, dass das Produkt die ATEX-Richtlinie für Explosionsschutz erfüllt.

1.2.3 Informationssymbole

Symbol	Bedeutung
\checkmark	Zulässig: Verfahren, Prozesse oder Handlungen, die zulässig sind
X	Verboten: Verfahren, Prozesse oder Handlungen, die verboten sind
i	Tipp: Kennzeichnet zusätzliche Informationen
1	Verweis auf die Dokumentation
	Verweis auf Seite
	Verweis auf Abbildung
>	Hinweis oder einzelner Schritt, der zu beachten ist
1., 2., 3	Schrittfolge
L.	Ergebnis eines Handlungsschritts

1.2.4 Kommunikationsspezifische Symbole

Symbol	Beschreibung
	LED Die Leuchtdiode leuchtet nicht
<u> </u>	LED Die Leuchtdiode leuchtet
×	LED Die Leuchtdiode blinkt

1.3 Zugehörige Dokumentation

Alle Dokumentationen sind verfügbar:

- Auf dem mitgelieferten Mediengerät (nicht bei allen Geräteausführungen Bestandteil des Lieferumfangs)
- Auf der Endress+Hauser mobile App: www.endress.com/supporting-tools
- Im Download-Bereich der Endress+Hauser Website: www.endress.com/downloads

Das vorliegende Dokument ist wesentlicher Bestandteil dieses Dokumentationspakets, das Folgendes umfasst:

Teilenummer	Dokumenttyp	Beschreibung
GP01198C	Beschreibung der Geräteparameter	Referenz zu Parametern mit detaillierter Erläuterung jedes einzelnen Parameters des Betriebsmenüs
KA01655C	Kurzanleitung	Kurzanleitung zur Standardmontage und Inbetriebnahme des Geräts
SD02912C	Sonderdokumentation Heartbeat Technology	Referenz für die Nutzung der im Messgerät integrierten Heartbeat Technology
SD03032C	Sonderdokumentation Webserver	Referenz für den Einsatz des im Messgerät integrierten Webservers
SD03286C	Validierung von TDLAS- Gasanalysatoren	Referenz für geeignete Verfahren zur Validierung von TDLAS-Gasanalysatoren
TI01722C	Technische Information	Technische Daten des Geräts mit Übersicht der zugehörigen Modelle
XA03137C	Sicherheitshinweise	Anforderungen für die Montage oder den Betrieb des Analysators in Bezug auf die Sicherheit von Personal oder Ausrüstung
EX310000056	Kontrollzeichnung	Zeichnungen und Anforderungen an JT33 Feldschnittstellenanschlüsse

1.4 Konformität mit US-amerikanischen Exportvorschriften

Die Richtlinien von Endress+Hauser entsprechen strikt den US-Exportkontrollgesetzen, wie auf der Webseite des Bureau of Industry and Security des US-Handelsministeriums dargelegt.

1.5 Eingetragene Marken

Modbus®

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

1.6 Herstelleradresse

Endress+Hauser 11027 Arrow Route Rancho Cucamonga, CA 91730 USA

www.endress.com

2 Sicherheit

Jeder ab Werk ausgelieferte Analysator wird von Sicherheitshinweisen und der Dokumentation begleitet, die der Zuständige oder Bediener des Betriebsmittels für Einbau und Wartung des Geräts benötigt.

▲ WARNUNG

Von den Technikern wird erwartet, dass sie geschult sind und alle Sicherheitsprotokolle befolgen, die vom Kunden in Übereinstimmung mit der Gefahrenklassifizierung des Bereichs festgelegt wurden, um den Analysator zu warten oder zu bedienen.

▶ Dies kann unter anderem Protokolle zur Überwachung giftiger und brennbarer Gase, Verfahren zur Verriegelung/Kennzeichnung (Lockout/Tagout), Anforderungen an die persönliche Schutzausrüstung (PSA), Genehmigungen für Heißarbeiten und andere Vorsichtsmaßnahmen umfassen, die Sicherheitsbedenken im Zusammenhang mit der Verwendung und dem Betrieb von Prozessanlagen in Gefahrenbereichen betreffen.

Das manuelle Prüfventil von Endress+Hauser funktioniert mit allen Schlössern und Verriegelungsbügeln, die einen Bügeldurchmesser von weniger als 9 mm (0,35 in) und eine Mindestlänge von 15,24 mm (0,6 in) für den geraden Abschnitt des Bügels haben. Wenn eine Verriegelungsschließe am Ventil angebracht wird, muss diese einen Durchmesser von mindestens 38,1 mm (1,5 in) haben. Die Verriegelungsschließen mit einem Durchmesser von 25,4 mm (1 in) funktionieren bei dieser Ausführung nicht.

Wenn das Ventil verriegelt ist, kann das Probenaufbereitungssystem nur den Prozessstrom messen. Um die Validierungsleitung zu aktivieren, muss das Schloss entfernt und der Griff um 180° gedreht werden, um das Ventil zu öffnen.

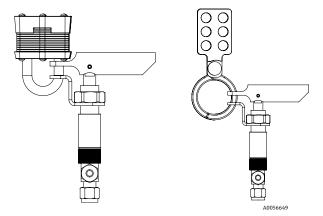


Abbildung 1. JT33 TDLAS Verriegelung/Kennzeichnung (Lockout/Tagout)

2.1 Qualifikation des Personals

Das Personal muss für Montage, elektrische Installation, Inbetriebnahme und Wartung des Geräts die nachfolgenden Bedingungen erfüllen. Dazu gehört unter anderem:

- Entsprechend qualifiziert für die von ihnen ausgeführte Rolle und Aufgaben
- Es versteht die allgemeinen Prinzipien und Arten von Schutzvorrichtungen und Kennzeichnungen
- Es versteht die Aspekte des Gerätedesigns, die das Schutzkonzept beeinflussen
- Es versteht den Inhalt der Zertifikate und von relevanten Teilen der IEC 60079-14
- Es verfügt über ein allgemeines Verständnis der Prüf-und Wartungsanforderungen der IEC 60079-17
- Es ist vertraut mit den Verfahren bei der Auswahl und Montage der in der IEC 60079-14 genannten Ausrüstung
- Es versteht die zusätzliche Wichtigkeit von Arbeitsgenehmigungssystemen und einer sicheren Isolierung in Bezug auf den Explosionsschutz
- Es Ist vertraut mit nationalen und lokalen Vorschriften und Richtlinien, wie ATEX/IECEx/UKEX und cCSAus
- Es Ist vertraut mit Verriegelungs-/Kennzeichnungsverfahren (Lockout/Tagout), Überwachungsprotokollen für giftige Gase und mit der persönlichen Schutzausrüstung

Das Personal muss außerdem seine Kompetenz in folgenden Bereichen nachweisen können:

- Verwendung der Dokumentation
- Erstellung von Dokumentationen in Pr

 üfberichten
- Praktische Fähigkeiten, die für die Vorbereitung und Durchführung der einschlägigen Schutzkonzepte erforderlich sind
- Verwendung und Erstellung von Montageprotokollen

WARNUNG

Die Verwendung anderer Komponenten ist unzulässig.

▶ Der Austausch von Komponenten kann die Eigensicherheit beeinträchtigen und die EX-d-Einstufung für nicht eigensichere Baugruppen verändern.

2.2 Potenzielle Risiken für das Personal

Dieses Kapitel erläutert die Maßnahmen, die zu ergreifen sind, wenn es während oder vor Servicearbeiten am Analysator zu Gefährdungssituationen kommt. Es ist nicht möglich, alle potenziellen Gefahren in diesem Dokument aufzuführen. Der Benutzer ist dafür verantwortlich, bei der Wartung des Analysators mögliche Gefahren zu erkennen und zu minimieren.

HINWEIS

- ▶ Von den Technikern wird erwartet, dass sie geschult sind und alle Sicherheitsprotokolle befolgen, die vom Kunden in Übereinstimmung mit der Gefahrenklassifizierung des Bereichs für die Wartung oder den Betrieb des Analysators und des MAC-Controllers festgelegt wurden.
- ▶ Dies kann unter anderem Protokolle zur Überwachung giftiger und brennbarer Gase, Verfahren zur Verriegelung/Kennzeichnung (Lockout/Tagout), Anforderungen an die Verwendung von persönlicher Schutzausrüstung, Genehmigungen für Heißarbeiten und andere Vorsichtsmaßnahmen umfassen, die Sicherheitsbedenken im Zusammenhang mit der Verwendung und dem Betrieb von Prozessausrüstung in Gefahrenbereichen betreffen.

2.2.1 Stromschlaggefahr

MARNUNG

- ▶ Diese Maßnahme ergreifen, bevor irgendwelche Wartungsarbeiten durchgeführt werden, die Arbeiten in der Nähe der Netzspannungsversorgung oder die das Abziehen von Kabeln oder Trennen von anderen elektrischen Komponenten erforderlich machen.
- 1. Stromzufuhr zum Analysator am externen Netzschalter abschalten.
- 2. Ausschließlich Werkzeuge mit einer Sicherheitseinstufung zum Schutz vor unbeabsichtigtem Kontakt mit Spannungen von bis zu 1000 V (IEC 900, ASTF-F1505-04, VDE 0682/201) verwenden.

2.2.2 Lasersicherheit

Das JT33-Spektrometer ist ein Produkt der Laserklasse 1, das keine Gefährdung für Gerätebetreiber darstellt. Der im Inneren der Analysatorsteuereinheit befindliche Laser ist als Klasse 3R eingestuft und kann zu Schäden am Auge führen, wenn direkt in den Strahl geblickt wird.

WARNUNG

▶ Vor Servicearbeiten immer die Stromzufuhr zum Analysator abschalten. Wenn bei der Wartung ein Flammenweg beschädigt wird, muss dieser ausgetauscht werden, bevor das Gerät wieder mit Strom versorgt wird.

2.3 Produktsicherheit

Der J33 TDLAS-Gasanalysator ist nach dem Stand der Technik und guter Ingenieurspraxis betriebssicher gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Das Gerät erfüllt die allgemeinen Sicherheitsanforderungen und gesetzlichen Auflagen. Darüber hinaus ist es konform zu den EU-Richtlinien, die in der gerätespezifischen EU-Konformitätserklärung aufgelistet sind. Mit der Anbringung des CE-Zeichens auf dem Analysatorsystem bestätigt Endress+Hauser diesen Sachverhalt.

2.3.1 Allgemein

- Alle Hinweise auf Warnaufklebern beachten und befolgen, um eine Beschädigung des Geräts zu vermeiden.
- Das Gerät nicht außerhalb der spezifizierten elektrischen, thermischen und mechanischen Parameter betreiben.
- Das Gerät nur in Medien verwenden, in denen die benetzten Materialien ausreichend haltbar sind.
- Veränderungen am Gerät können den Explosionsschutz beeinträchtigen und dürfen nur von Personal durchgeführt werden, das von Endress+Hauser entsprechend autorisiert wurde.
- Um die Einstufung in Verschmutzungsgrad 2 beizubehalten, ist sicherzustellen, dass während der Wartung keine Fremdkörper (fest, flüssig oder gasförmig) in das MAC- oder Steuerungsgehäuse gelangen.
- Die Steuereinheit nur öffnen, wenn folgende Bedingungen erfüllt sind:
 - Eine explosionsfähige Atmosphäre ist nicht vorhanden.
 - Alle technischen Daten des Geräts werden eingehalten. Siehe Typenschild.
 - Das Gerät steht nicht unter Spannung.
- In explosionsgefährdeten Bereichen ist Folgendes zu beachten:
 - Keine elektrischen Anschlüsse trennen, während das Gerät unter Spannung steht.
 - Anschlussklemmenraumdeckel oder MAC-Abdeckung nicht unter Spannung öffnen. Dies gilt auch dann, wenn es sich bei dem Bereich um einen bekanntermaßen explosionsgefährdeten Bereich handelt.
- Leitung des Steuerungskreislaufs gemäß Canadian Electrical Code (CEC) bzw. National Electrical Code (NEC) anschließen. Hierzu eine verschraubte Kabelführung oder andere Verkabelungsverfahren gemäß Artikel 501 bis 505 und/oder IEC 60079-14 verwenden.
- Gerät gemäß Herstellerangaben und Vorschriften installieren.
- Die feuerfesten Verbindungen dieser Geräte entsprechen nicht den in IEC/EN 60079-1 festgelegten Mindestanforderungen und dürfen nicht vom Benutzer repariert werden.

2.3.2 Allgemeiner Druck

Das System wurde mit angemessenen Sicherheitsreserven entworfen und geprüft, um sicherzustellen, dass es unter normalen Betriebsbedingungen, zu denen Temperatur, Druck und Gasgehalt gehören, sicher ist. Der Betreiber ist dafür verantwortlich, dass das System ausgeschaltet wird, wenn diese Bedingungen nicht mehr eingehalten werden können.

2.3.3 Dichtungen des JT33 Analysators

Der optische Kopf der Analysatorschnittstellen ist über ein Fenster und einen Drucktransducer in der Zellenrohrbaugruppe mit dem Prozessmedium in Kontakt. Das Fenster und der Druckumformer sind die Hauptdichtungen des Geräts. Die Baugruppe des ISEM-Schnittstellenmoduls ist die Sekundärdichtung des Analysators, die den Transmitterkopf vom optischen Kopf trennt. Der JT33 umfasst zwar weitere Dichtungen, um zu verhindern, dass das Prozessmedium in die elektrische Verschaltung eindringen kann, allerdings gilt, falls eine der primären Dichtungen ausfallen sollte, nur das ISEM-Schnittstellenmodul als sekundäre Dichtung.

Das Transmittergehäuse des JT33 Analysators ist für Klasse I, Abschnitt 1 zertifiziert und verfügt über einen werkseitig abgedichteten Anschlussklemmenraum, sodass keine externen Dichtungen erforderlich sind. Die werkseitige Dichtung ist nur dann erforderlich, wenn das Gerät in Umgebungstemperaturen von $-40\,^{\circ}\text{C}$ ($-40\,^{\circ}\text{F}$) oder niedriger eingesetzt wird.

Alle optischen Köpfe für die JT33 Analysatorsysteme wurden als Geräte mit doppelter Dichtung ohne Druckentlastungsfunktion ("Dual Seal without Annunciation") eingestuft. Zum maximalen Betriebsdruck siehe Angaben auf dem Typenschild.

MAC-Gehäuseeingänge erfordern je nach Anwendung entweder eine Barriereverschraubung oder eine Kabelkanalabdichtung und müssen sich innerhalb von 127 mm (5 in) des MAC-Gehäuses befinden.

Für Klasse I Zone 1 sind Montagedichtungen innerhalb von 51 mm (2 in) vom Transmittergehäuse des Analysators erforderlich. Wenn der JT33-Analysator ein beheiztes Gehäuse umfasst, muss eine geeignete, zertifizierte Gerätedichtung innerhalb von 127 mm (5 in) von der äußeren Wand des MAC-Gehäuses montiert werden.

2.3.4 Elektrostatische Entladung

Die Pulverbeschichtung und das Klebeetikett sind nicht leitend und können unter bestimmten extremen Bedingungen eine zündfähige elektrostatische Entladung hervorrufen. Der Benutzer muss sicherstellen, dass das Gerät nicht an einem Ort montiert wird, an dem es äußeren Bedingungen (z. B. Hochdruckdampf) ausgesetzt ist, die zu einer elektrostatischen Aufladung auf nicht leitenden Oberflächen führen können. Das Gerät nur mit einem feuchten Tuch reinigen.

2.3.5 Chemische Verträglichkeit

Niemals Vinylacetat, Aceton oder andere organische Lösungsmittel zum Reinigen des Analysatorgehäuses oder der Etiketten verwenden.

2.3.6 Canadian Registration Number (CRN)

Zusätzlich zu den oben aufgeführten Anforderungen an die allgemeine Drucksicherheit muss durch Verwendung von CRN-zugelassenen Komponenten die Canadian Registration Number (CRN) beibehalten werden, ohne dass das Probenaufbereitungssystem (SCS) oder der Analysator modifiziert werden.

2.3.7 IT-Sicherheit

Unsere Gewährleistung ist nur dann gültig, wenn das Gerät gemäß der Betriebsanleitung montiert und eingesetzt wird. Das Gerät verfügt über Sicherheitsmechanismen, um es gegen eine versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen, die das Gerät und dessen Datentransfer zusätzlich schützen, sind gemäß den Sicherheitsstandards des Betreibers vom Betreiber selbst zu implementieren.

2.4 Gerätespezifische IT-Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät einige spezifische Funktionen. Diese Funktionen sind durch den Benutzer konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Eine Übersicht der wichtigsten Funktionen ist im Folgenden beschrieben.

Funktion/Schnittstelle	Werkseinstellung	Empfehlung
Schreibschutz über Hardware- Schreibschutzschalter	Nicht aktiviert	Individuell nach Risikoabschätzung
Zugangscode (Gilt auch für Webserver-Login)	Nicht aktiviert (0000)	Bei der Inbetriebnahme einen individuellen Zugangscode vergeben.
WLAN (Bestelloption in Anzeigemodul)	Aktiviert	Individuell nach Risikoabschätzung
WLAN-Sicherheitsmodus	Aktiviert (WPA2-PSK)	Nicht verändern.
WLAN-Passphrase (Passwort)	Seriennummer	Bei Inbetriebnahme eine individuelle WLAN-Passphrase vergeben.
WLAN-Modus	Zugangspunkt	Individuell nach Risikoabschätzung
Webserver	Aktiviert	Individuell nach Risikoabschätzung
Serviceschnittstelle CDI-RJ45	_	Individuell nach Risikoabschätzung

2.4.1 Vor Zugriff mittels Hardwareschreibschutz schützen

Der Schreibzugriff auf die Parameter des Geräts über das Gerätedisplay und den Webbrowser kann mithilfe eines Schreibschutzschalters (DIP-Schalter auf der Rückseite des Motherboards) deaktiviert werden. Bei aktiviertem Hardwareschreibschutz ist nur Lesezugriff auf die Parameter möglich.

Der Hardwareschreibschutz ist im Auslieferungszustand deaktiviert. Siehe Abschnitt *Schreibschutzschalter* $verwenden \rightarrow \boxminus$.

2.4.2 Vor Zugriff mittels Passwort schützen

Um den Schreibzugriff auf die Parameter des Geräts oder den Zugriff auf das Gerät über die WLAN-Schnittstelle zu schützen, stehen unterschiedliche Passwörter zur Verfügung.

- Benutzerspezifischer Zugangscode. Schreibzugriff auf die Geräteparameter über das Gerätedisplay oder den Webbrowser schützen. Die Zugangsberechtigung ist mit einem benutzerspezifischen Zugangscode eindeutig definiert.
- **WLAN-Passphrase.** Der Netzwerkschlüssel über die WLAN-Schnittstelle schützt eine Verbindung zwischen einer Bedieneinheit (z. B. Notebook oder Tablet) und dem Gerät. Dies kann optional bestellt werden.
- Infrastruktur-Modus. Bei Betrieb im Infrastruktur-Modus entspricht der WLAN-Passphrase die betreiberseitig konfigurierte WLAN-Passphrase.

2.4.3 Benutzerspezifischer Zugangscode

Der Schreibzugriff auf die Geräteparameter über das Gerätedisplay und den Webbrowser kann durch einen anpassbaren, benutzerspezifischen Zugangscode geschützt werden. Siehe *Schreibschutz mit Zugangscode* $\rightarrow \triangleq$. Im Auslieferungszustand besitzt das Gerät keinen Zugangscode. Dies entspricht dem Wert: **0000** (offen).

2.4.4 Zugriff über den Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser bedient und konfiguriert werden. Siehe *Zugriff auf das Bedienmenü über den Webbrowser*→ 🖹. Die Verbindung erfolgt über die Serviceschnittstelle (CDI-RJ45), den Anschluss für die TCP/IP-Signalübertragung (RJ45-Stecker) oder die WLAN-Schnittstelle.

Der Webserver ist bei Auslieferung des Geräts aktiviert. Über den Parameter **web server functionality** kann der Webserver bei Bedarf deaktiviert werden (z. B. nach der Inbetriebnahme).

Der JT33 TDLAS-Gasanalysator und die Statusinformationen können auf der Anmeldeseite ausgeblendet werden, um einen unbefugten Zugriff auf die Informationen zu verhindern.

2.4.5 Zugriff über die Serviceschnittstelle

Über die Serviceschnittstelle (CDI-RJ45) kann auf das Gerät zugegriffen werden. Aufgrund gerätespezifischer Funktionen ist ein sicherer Betrieb des Geräts in einem Netzwerk gewährleistet.

HINWEIS

▶ Der Anschluss an die Serviceschnittstelle (CDI-RJ45) ist nur geschultem Personal und nur vorübergehend zum Zweck von Tests, Reparaturen oder Überholungen der Ausrüstung gestattet und dies nur dann, wenn der Bereich, in dem die Ausrüstung montiert werden soll, als ungefährlich bekannt ist.

Es wird empfohlen die einschlägigen Industrienormen und Richtlinien einzuhalten, die von nationalen und internationalen Sicherheitsausschüssen verfasst wurden, wie beispielsweise IEC/ISA62443 oder IEEE. Hierzu zählen sowohl organisatorische Sicherheitsmaßnahmen wie die Vergabe von Zugriffsberechtigungen als auch technische Maßnahmen wie zum Beispiel eine Netzwerksegmentierung.

3 Produktbeschreibung

3.1 Funktionsweise von TDLAS-Gasanalysatoren

Die Funktion Differential TDLAS sorgt in den JT33 TDLAS-Gasanalysatoren für die Spurenmessung niedriger Konzentrationen von Schwefelwasserstoff (H_2S). Bei dieser Technologie wird ein Spektrum von einem anderen abgezogen. Ein trockenes Spektrum, die Reaktion einer Probe, wenn das Analyt von Interesse vollständig entfernt wurde, wird vom nassen Spektrum, der Reaktion der Probe, wenn das Analyt vorhanden ist, subtrahiert. Was verbleibt, ist ein Spektrum des reinen Analyts. Diese Technologie wird für die Messung von sehr geringen Konzentrationen oder Messungen im Spurenbereich verwendet und ist auch dann nützlich, wenn sich die Hintergrundmatrix mit der Zeit verändert.

3.2 JT33 TDLAS-Gasanalysatorsystem

Der JT33 TDLAS-Gasanalysator für Spurenmessungen verfügt über spezielle Funktionen zur Abschwächung und Messung von Analyten. Es handelt sich um eine schlüsselfertige Baugruppe, die mit vorzertifizierter Ausrüstung konfiguriert ist, einschließlich Heizung, Magnetventilen, Wäschern, Filter, Absperrventilen, Gehäuse und einem SCS. Das SCS ermöglicht eine präzisere Kontrolle des Probengases, bevor es durch das Spektrometer strömt.

Das System besteht aus einer Messzelle, einem eigensicheren optischen Kopf und einer Elektronikbaugruppenplattform in einem vorzertifizierten, flammensicheren Gehäuse. Die Zelle ist ein abgedichtetes Rohr, durch das das
Gasgemisch strömt. Die Zelle verfügt über einen Gaseinlass und einen Gasauslass. Am oberen Ende des Rohrs
befindet sich ein Fenster, durch das ein Infrarot-Laserstrahl geleitet wird, der von internen Spiegeln reflektiert wird.
Bei dieser Anordnung kommt das Gasgemisch nicht mit dem Laser oder anderen optoelektronischen Bauteilen in
Kontakt. In der Zellenbaugruppe werden Druck- und in einigen Fällen Temperatursensoren eingesetzt, um die
Auswirkungen von Druck- und Temperaturänderungen im Gas auszugleichen.

Differenzsystem für Schwefelwasserstoff (H₂S)

Der JT33 TDLAS-Gasanalysator für Spurenschwefelwasserstoff (H₂S) von Endress+Hauser verfügt über ein Differential TDLAS-System. Die Abbildung unten zeigt die Frontansicht eines Proben-Analysators für H₂S.

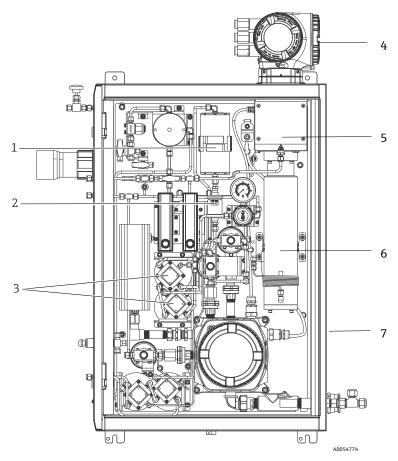


Abbildung 2. J22 TDLAS Gasanalysator mit SCS im Gehäuse, mit Heizung

Nr.	Name
1	Wäscher
2	Wäscheranzeige
3	Magnetventile zur Differenzmessung
4	Steuereinheit
5	Gehäusebaugruppe optischer Kopf
6	Messhohlraum
7	Probensystem in einem Gehäuse

3.3 Probenaufbereitungssystem

3.3.1 Übersicht

Ein Probenaufbereitungssystem (SCS) in Verbindung mit dem JT33 TDLAS-Gasanalysator wurde speziell dafür entwickelt, einen Probenstrom zu liefern, der für den Strom des Prozesssystems zum Zeitpunkt der Probenahme repräsentativ ist. Analysatoren sind für den Einsatz mit extraktiven Gasprobenentnahmestationen konzipiert.

3.3.2 Wäscher

Üblicherweise leiten diese Geräte den Strom entweder direkt in den Messhohlraum oder zum Wäscher vor der Messzelle, um Schwefelwasserstoffmoleküle zu entfernen. Wenn es direkt in den Messhohlraum geleitet und ein Spektrum aufgenommen wird, spricht man von einem "nassen" Spektrum. Wenn ein Spektrum bei gerichtetem Strahl gemessen wird, wird das erste Spektrum als "trockenes" Spektrum bezeichnet, da der zu messende Analyt entfernt wurde.

Die Analysatorsteuerung zieht das trockene Spektrum vom nassen Spektrum ab, und die Konzentration des Spurenschwefelwasserstoffs wird gemessen. Bevor ein neues trockenes Spektrum erfasst wird, wird das gleiche trockene Spektrum in der Regel 10 bis 30 Minuten lang verwendet, je nachdem, welche Logik in die Steuerung einprogrammiert wurde. Bei den automatischen Ventilen, die dafür zuständig sind, dass der Probenstrom entweder in den Wäscher geleitet wird oder den Wäscher umgeht, handelt es sich um elektrische oder pneumatisch betriebene Ventile.

3.4 Produktidentifizierung

Folgende Möglichkeiten stehen zur Identifizierung des Messgeräts zur Verfügung:

- Typenschildangaben
- Bestellcode (Order code) mit Aufschlüsselung der Analysatormerkmale auf dem Lieferschein

Eine Übersicht über den Umfang der zugehörigen Technischen Dokumentation befindet sich im Abschnitt Zugehörige Dokumentation $\rightarrow \triangleq$.

3.5 Geräteetiketten

3.5.1 Typenschild

Auf den Etiketten sind analysatorspezifische Informationen, Genehmigungen und Warnhinweise aufgeführt (auf der Abbildung unten nicht ausgefüllt).

Warnhinweis: Der Warnhinweis **NICHT IN EXPLOSIONSGEFÄHRDETEN BEREICHEN ÖFFNEN** ist auf allen Typenschildern angebracht.

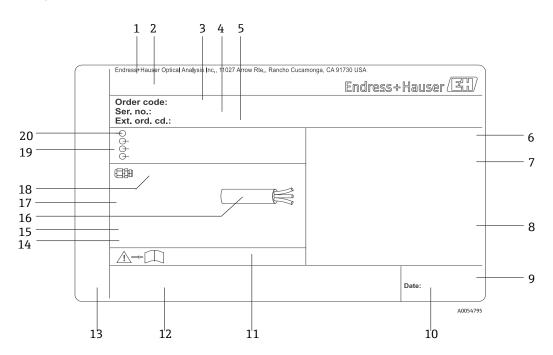


Abbildung 3. Typenschildvorlage für JT33 TDLAS-Gasanalysator

Nr.	Beschreibung
1	Herstellername und -standort
2	Produktname
3	Bestellcode (Order code)
4	Seriennummer (SN)

Nr.	Beschreibung
11	Dokumentnummer sicherheitsrelevanter Zusatzdokumentation
12	Raum für Zulassungszeichen (z. B. CE-Zeichen)
13	Raum für Schutzart des Anschluss- und Elektronikraums bei Einsatz im explosions- gefährdeten Bereich
14	Platz für zusätzliche Hinweise (bestimmte Produkte)

5	Erweiterter Bestellcode	15	Zulässiger Temperaturbereich für Kabel
6	Schutzart	16	Zulässige Umgebungstemperatur (Ta)
7	Genehmigungen für den Einsatz in Gefahren- bereichen, Zertifikatsnummern und Warnhinweise	17	Informationen zur Kabelverschraubung
8	Elektrische Anschlusswerte: verfügbare Ein- und Ausgänge	18	Kabeleinführung
9	2D-Matrixcode (mit Seriennummer)	19	Verfügbare Ein- und Ausgänge Versorgungsspannung
10	Herstellungsdatum: Jahr-Monat	20	Elektrische Anschlusswerte: Versorgungsspannung

3.5.2 Bestellcode

Der Analysator kann unter Verwendung des entsprechenden Bestellcodes, der auf dem Typenschild in der vorherigen Abbildung zu finden ist, nachbestellt werden.

Erweiterter Bestellcode

Es werden immer der komplette erweiterte Bestellcode inklusive Analysatormodell (Produktwurzel) und grundlegende Spezifikationen (obligatorische Merkmale) aufgeführt. Eine Beschreibung der verfügbaren Funktionen und Optionen befindet sich auf der Produktseite des JT33 auf Endress.com.

3.6 Symbole auf dem Gerät

3.6.1 Elektrische Symbole

Symbol	Beschreibung
	Schutzerde (PE) Dieses Symbol kennzeichnet eine Klemme, die aus Sicherheitsgründen mit leitfähigen Teilen des Geräts verbunden und dazu gedacht ist, an ein externes Schutzerdesystem angeschlossen zu werden.

3.6.2 Informationssymbole

Symbol	Beschreibung
$\triangle \!\!\! \! = \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Dieses Symbol bezieht sich auf die technische Dokumentation für weitere Informationen.

3.6.3 Warnsymbole

Symbol	Beschreibung
*	Das Symbol für Laserstrahlung macht den Benutzer darauf aufmerksam, dass bei der Verwendung des Systems die Gefahr besteht, schädlicher sichtbarer Laserstrahlung ausgesetzt zu werden. Bei dem Laser handelt es sich um ein Strahlungsprodukt der Klasse 1.

3.6.4 Etiketten auf der Steuereinheit

POWER Nicht unter Spannung offen Do not open when energized Ne pas ouvrir sous tension

Stromversorgung vor dem Zugriff auf die Geräte abschalten, um Schäden am Analysator zu verhindern.

Warning: DO NOT OPEN IN EXPLOSIVE ATMOSPHERE Attention: NE PAS OUVRIR EN ATMOSPHERE EXPLOSIVE

Beim Öffnen des Analysatorgehäuses vorsichtig vorgehen, um Verletzungen zu vermeiden.

4 Montage

Für Sicherheitsanforderungen und Hinweise siehe Sicherheit $\rightarrow \square$.

Informationen zu Umweltschutz- und Verdrahtungsanforderungen siehe *Technische Daten* $\rightarrow \triangleq$.

Werkzeuge und Befestigungsmaterialien

- T20-Torxschraubendreher
- 24-mm-Gabelschlüssel
- 3-mm-Schlitzschraubendreher
- Kreuzschlitzschraubendreher Nr. 2
- 1.5-mm-Sechskantschraubendreher
- 3-mm-Sechskantschraubendreher
- Maßband
- Filzschreiber
- Wasserwaage
- Nahtlose Edelstahlrohre (elektropoliert), 6 mm (¼ in) Außendurchmesser x 0,9 mm (0,035 in) werden empfohlen.

4.1 Montage der Heizmanschette

Optional ist eine Heizmanschette für den JT33 TDLAS-Gasanalysator mit Gehäuse verfügbar. Um den Versand zu vereinfachen, wurde die Heizmanschette möglicherweise im Werk abmontiert. Zum Montieren der Heizmanschette die nachstehenden Anleitungen befolgen.

Werkzeuge und Befestigungsmaterialien

- Durchführung
- Geschmierter O-Ring
- Heizmanschette

Heizmanschette montieren

- 1. Die entsprechende Öffnung an der Außenseite des Probenaufbereitungssystems suchen.
- 2. Gehäusetür des Probenaufbereitungssystems öffnen und die Durchführung soweit in die Öffnung einführen, bis die Basis bündig mit der Innenwand des Gehäuses ist.
- 3. Den geschmierten O-Ring auf die Gewindedurchführung auf der Außenseite des Gehäuses setzen, bis er bündig mit der Außenwand ist.

HINWEIS

- ▶ Vor Montage sicherstellen, dass das Schmiermittel des O-Rings keine Verunreinigungen aufweist.
- 4. Den Gewindestecker von der Innenseite des Gehäuses aus halten, die Manschette auf die Durchführung setzen und im Uhrzeigersinn handfest anziehen.
- 5. Die 2-Zoll-Kunststoff-Heizmanschette mit einem Drehmoment bis 7 Nm (63 lb-in) festziehen.

HINWEIS

▶ Nicht zu fest anziehen. Die Manschettenbaugruppe kann brechen.

4.2 Analysator anheben und bewegen

Der JT 33 Analysator wiegt bis zu 102,5 kg und wird in einer Holzkiste ausgeliefert. Wegen der Größe und des Gewichts empfiehlt Endress+Hauser für das Anheben und Bewegen des Analysators für die Montage folgende Vorgehensweise.

Ausrüstung/Materialien

- Kran oder Gabelstapler mit Hubhaken
- Wagenheber oder Scherenheber
- Vier 25 mm (1 in) breite Endlos-Ratschengurte mit einer Mindestbelastbarkeit von jeweils 500 kg (1100 lb).
- Lappen

HINWEIS

- ▶ Wenn die Ratschen an den horizontalen Gurten zu fest angezogen werden, kann das Gehäuse beschädigt werden. Die horizontalen Gurte müssen fest genug angelegt werden, um die vertikalen Gurte in Position zu halten, aber nicht zu fest.
- ▶ Um Kratzer zu vermeiden, Lappen an den Stellen anbringen, an denen die Ratschen das Gehäuse berühren.
- 1. Die Kiste so nah wie möglich an den endgültigen Montageort bringen.
- 2. Während sich der Analysator noch in der Kiste befindet, die Spanngurte der Route 2 vertikal auf jeder Seite des Analysators anbringen. Darauf achten, dass die Gurte unter der Abdeckung und außerhalb der unteren Befestigungslaschen ausgerichtet sind, wie in der Abbildung unten dargestellt.
- 3. Die beiden Gurte oben am Analysator zusammenführen, sodass genug Spielraum bleibt, um den Hebehaken durch die Gurte zu führen.
- 4. Den dritten Gurt horizontal am unteren Ende des Gehäuses anbringen, indem er über und unter den vertikalen Gurten geführt wird. Den vierten Gurt horizontal am oberen Ende des Gehäuses anbringen, indem er über und unter den vertikalen Gurten in einem entgegengesetzten Muster zum dritten Gurt geführt wird.
- 5. Den Analysator mit Kran oder Gabelstapler aus der Kiste heben.
- 6. Den Analysator auf einen Transportwagen oder eine Scherenhebebühne stellen und die Gurte entfernen, um die Montage abzuschließen.
 - Falls erforderlich, kann die Montage mithilfe des Krans oder Gabelstaplers und der Spanngurte abgeschlossen werden.

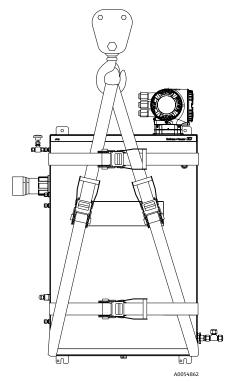


Abbildung 4. JT33 Analysator mit Ratschengurten zum Anheben und Bewegen

4.3 Analysator montieren

Der Analysator kann an der Wand montiert werden. Das Gerät ist bei der Montage so zu positionieren, dass benachbarte Geräte problemlos bedient werden können. Alle unten angegebenen vertikalen Abmessungen beziehen sich auf die Mittellinie der oberen Montagebohrung. Alle horizontalen Abmessungen werden von der Rückseite der Montageplatte gemessen, die mit der Wand in Kontakt steht.

4.3.1 Montagemaße

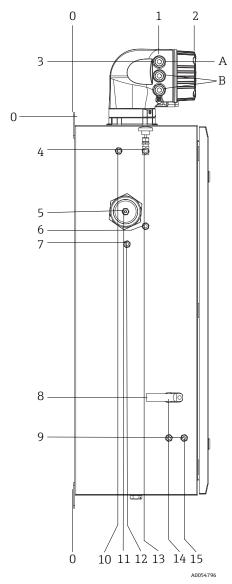


Abbildung 5. Montagemaße: Seitenansicht

Nr.	Von Ecke 0, mm (in)	Nr.	Von Ecke 0, mm (in)	Nr.	Beschreibung
1	213 (8)	9	789 (31)	0	Oberer Montageort
2	304 (12)	10	112 (4)	Α	Eingang Stromversorgung
3	141 (6)	11	129 (5)	В	Ausgang Kommunikation
4	79 (3)	12	133 (5)		
5	229 (9)	13	179 (7)		
6	265 (10)	14	237 (9)		
7	310 (12)	15	275 (11)		
8	689 (27)			-	

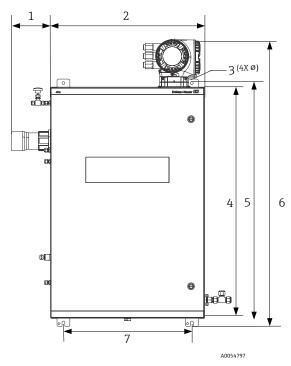


Abbildung 6. Montagemaße: Vorderansicht

Nr.	mm (in)	Nr.	mm (in)
1	155 (6)	5	946 (37)
2	610 (24)	6	1134 (44)
3	11 (0.4)	7	508 (20)
4	914 (36)		

4.3.2 Wandmontage

HINWEIS

Der JT33 TDLAS-Gasanalysator ist für den Betrieb innerhalb des angegebenen Umgebungstemperaturbereichs ausgelegt. Intensive Sonneneinstrahlung in einigen Bereichen kann dazu führen, dass die Temperatur im Inneren des Analysators die spezifizierte Umgebungstemperatur überschreitet.

- ► Falls der Analysator im Freien montiert wird, empfiehlt sich daher das Anbringen eines Sonnenschutzes oder Sonnendachs.
- ▶ Die zur Montage des JT33 TDLAS-Gasanalysators verwendeten Befestigungsmaterialien müssen darauf ausgelegt sein, das Vierfache des Gerätegewichts zu tragen, das je nach Konfiguration ca. 89,9 kg bis 102,5 kg beträgt.

Benötigte Befestigungsmaterialien (nicht mitgeliefert)

- Befestigungsmaterialien
- Federmuttern, wenn auf Unistrut montiert
- Maschinenschrauben und -muttern müssen der Größe der Montagebohrung entsprechen

Zur Montage des Gehäuses

- 1. Die beiden unteren Montageschrauben am Montagerahmen oder an der Wand montieren. Bolzen nicht vollständig anziehen. Einen Spalt von etwa 10 mm (0,4 in) lassen, um die Befestigungslaschen des Analysators auf die unteren Schrauben zu schieben.
- 2. Den Analysator mit der entsprechenden Montageausrüstung vorsichtig anheben. Siehe Abschnitt Analysator anheben und bewegen $\rightarrow \boxminus$.
- 3. Den Analysator auf die unteren Schrauben setzen, indem die geschlitzten Montagelaschen auf die Bolzen geschoben werden. Das Gewicht des Analysators weiterhin mit der Montageausrüstung abstützen.

Abbildung 7. Geschlitzte Bodenbefestigungslaschen des Gehäuses

4. Den Analysator zum Montagerahmen oder zur Wand neigen, um die beiden oberen Schrauben auszurichten und zu sichern.

Abbildung 8. Obere Befestigungslaschen des Gehäuses

5. Alle vier Schrauben festziehen und anschließend die Montageausrüstung entfernen.

4.4 Anzeigemodul drehen

Das Anzeigemodul kann für eine optimale Les- und Bedienbarkeit gedreht werden.

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Anzeigemodul in die gewünschte Position drehen: max. $8 \times 45^{\circ}$ in jede Richtung.

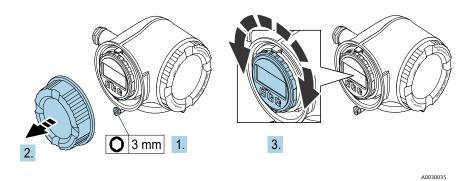


Abbildung 9. Anzeigemodul drehen

- 4. Anschlussklemmenraumdeckel aufschrauben.
- 5. Sicherungskralle des Anschlussklemmenraumdeckels anbringen.

4.5 Chassiserde und Erdanschlüsse

Vor dem Anschließen der elektrischen Signalverbindung oder der Netzstromversorgung immer erst die Schutzerde und Chassiserde anschließen.

- Schutzerde und Chassiserde müssen mindestens die gleiche Größe wie die stromführenden Leiter aufweisen. Das gilt auch für die Heizung im SCS.
- Schutzerde und Chassiserde müssen angeschlossen bleiben, bis die gesamte übrige Verdrahtung entfernt ist.
- Die Strombelastbarkeit des Schutzleiters muss mindestens identisch mit der der Stromversorgungleitung sein.
- Die Erdverbindung/Chassiserdung muss einen Querschnitt von mindestens 6 mm² (10 AWG) aufweisen.

Schutzleiter

Analysator: 2,1 mm² (14 AWG)

• Gehäuse: 6 mm² (10 AWG)

Der Erdungswiderstand muss weniger als 1 Ω betragen.

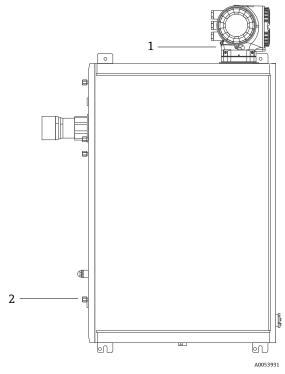


Abbildung 10. Erdanschlüsse

Nr.	Name
1	Schutzleiterschraube, M6 x 1,0 x 8 mm, ISO-4762
2	Erdungsbolzen, M6 x 1,0 x 20 mm

4.6 Elektrische Anschlüsse

WARNUNG

Gefährliche Spannung und Gefahr von elektrischen Schlägen

Vor dem Öffnen des Elektronikgehäuses und bevor irgendwelche Anschlüsse vorgenommen werden, immer zuerst die Versorgungsspannung zum System ausschalten und trennen.

Die für die Montage zuständige Person ist dafür verantwortlich, alle lokalen Montagerichtlinien einzuhalten.

- ▶ Die Feldverdrahtung (Spannungsversorgung und Signal) ist mithilfe der Verdrahtungsverfahren vorzunehmen, die gemäß Canadian Electrical Code (CEC) Anhang J, National Electric Code (NEC) Artikel 501 oder 505 und IEC 60079-14 für explosionsgefährdete Bereiche zulässig sind.
- ► Ausschließlich Kupferleiter verwenden.
- Für Modelle des JT33 TDLAS-Gasanalysators mit SCS, das in einem Gehäuse montiert ist, ist die innere Ummantelung des Versorgungskabels für den Heizungskreislauf mit thermoplastischem, wärmehärtendem oder elastomerischem Material zu ummanteln. Das Material muss rund und kompakt sein. Jede Einbettung oder Ummantelung muss aus extrudiertem Material bestehen. Füllstoffe, falls vorhanden, dürfen nicht hygroskopisch sein.
- ▶ Die Kabellänge muss mindestens 3 m (9.8 ft) betragen.

4.6.1 Elektrische Anschlüsse des Analysators

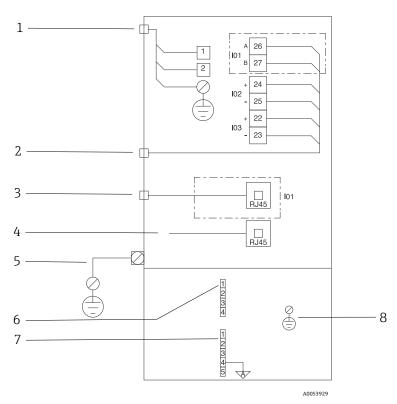


Abbildung 11. Elektrische Anschlüsse JT33 Analysator

Nr.	Beschreibung
	JT33 Steuereinheit
1	Wechselspannung 100 V bis 240 V \pm 10 % Gleichspannung 24 V \pm 20 % 1 = Phase 2 = Neutral Das Kabel für den Erdungsanschluss (für Phase, Neutralleiter und Erde) hat 14 AWG oder mehr. Der Querschnitt des Kabels ist \geq 2,1 mm ² .

Nr.	Beschreibung
2	Datenschnittstellen E/A-Optionen: Modbus-RTU Ausgänge: Strom, Status, Relais Eingänge: Strom, Status Die Klemmen 26 und 27 werden nur für Modbus-RTU (RS485) verwendet.
3	Alternative Datenschnittstellen 10/100 Ethernet (optional), Netzwerkoption Modbus-TCP Für Modbus-TCP werden die Klemmen 26 und 27 durch einen RJ45-Stecker ersetzt.
4	Service-Port Der interne Anschluss ist nur vorübergehend für geschultes Personal für Tests, Reparaturen oder Überholungen der Ausrüstung zugänglich und nur, wenn der Bereich, in dem die Ausrüstung installiert ist, als ungefährlich bekannt ist.
5	Proline-Kopf Muss 14 AWG oder größer sein. Der Querschnitt des Kabels ist \geq 2,1 mm 2 .
	Optischer Kopf
6	Durchflussschalter-Anschluss (1 bis 4) = Anschluss J6. Siehe Zeichnung EX3100000056. 1 = Durchflussschalterleitung 2 = Analog Masse 3 = kein Anschluss 4 = kein Anschluss
7	RS485-MAC-Kommunikationsleitungen (1 bis 5) = Stecker J7. Siehe Zeichnung EX3100000056. Der Stecker J7 wird nur von Endress+Hauser verwendet. Nicht zur Installation oder für die Kundenanbindung verwenden. 1 = negative eigensichere Leitung 2 = positive eigensichere Leitung 3 = kein Anschluss 4 = Verbindung zur analogen Erdung am Gehäuse des optischen Kopfs (OHE) und zur Abschirmung des RS485-Kabelsatzes 5 = kein Anschluss
8	Interne Erdung der Abdeckung des optischen Kopfs

4.6.2 Elektrische Anschlüsse MAC

Die zertifizierte Ausrüstung mit Messzubehör-Steuereinheit (MAC) verfügt über ein Ex-d-Gehäuse, das für die Aufnahme einer einzelnen Leiterplattenbaugruppe und eines Netzteils ausgelegt ist. Es wird unabhängig vom ISEM mit Strom versorgt und bietet die Möglichkeit für eigensichere und nicht eigensichere Ein- und Ausgänge.

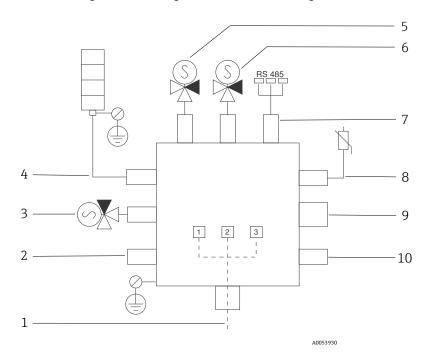


Abbildung 12. MAC-Gehäuse für Geräte/Sensorpositionene

Nr.	Beschreibung				
1	Stromversorgung durch Kunden Wechselstrom 100 V bis 240 V ±10 % 50/60 HZ, maximal 275 W Gleichstrom 24 V ±10 %, maximal 67 W				
	Nr.	Option Wechselspannung 100 V bis 240 V	Option Gleich- spannung 24 V		
	1	Stromführend	+24 V		
	2	Neutral main	-24 V		
	3	Haupterde	offen		
2	Derzeit nicht verwendet				
3	Validierungsmagnetventil				
4	Heizung des Probenaufbereitungssystems				
5	Zellen-/Wäscher-Magnetventil 2				
6	Zellen-/Wäscher-Magnetventil 1				
7	RS485-Kommunikation Eigensichere OHE-RS485-Schnittstelle, die über ein Kabel mit der OHE- Platine im Gehäuse des optischen Kopfs verbunden ist, Integrator von Endress+Hauser				
8	Probenaufbereitungssystem Thermistor				
9	Derzeit nicht verwendet				
10	Derzeit nicht verwendet				

4.6.3 Externe Kabeleinführungspunkte

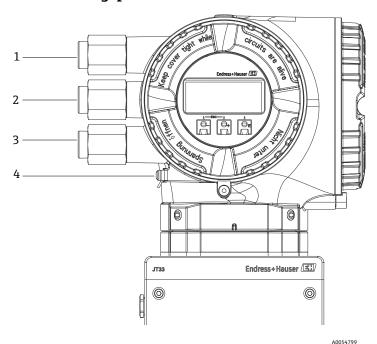


Abbildung 13. Verschraubte Kabeleinführungen

#	Beschreibung
1	Kabeleinführung für Versorgungsspannung
2	Kabeleinführung für Signalübertragung; I/O1 oder Modbus-RS485, oder Ethernet-Netzwerkverbindung (RJ45)
3	Kabeleinführung für Signalübertragung; I/O2, I/O3
4	Schutzerde

4.6.4 Modbus-RS485 anschließen

Klemmenabdeckung öffnen

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Laschen der Anzeigemodulhalterung zusammendrücken.
- 4. Anzeigemodulhalterung abziehen.

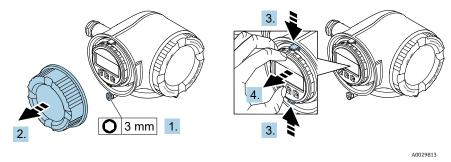


Abbildung 14. Anzeigemodulhalterung entfernen

- 5. Halterung am Rand des Elektronikraums aufstecken.
- 6. Klemmenabdeckung aufklappen.

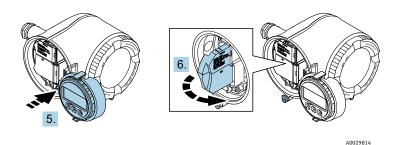


Abbildung 15. Klemmenabdeckung öffnen

Kabel anschließen

1. Kabel durch die Kabeleinführung schieben. Um Dichtheit zu gewährleisten, Dichtungsring nicht aus der Kabeleinführung entfernen.

HINWEIS

- ▶ Die Temperatur des Gasanalysators kann an der Kabeleinführung und Verzweigungsstelle 67 °C (153 °F) bei 60 °C (140 °F) Umgebungstemperatur erreichen. Dies ist bei der Auswahl der Feldverdrahtungs- und Kabeleinführungsvorrichtungen zu berücksichtigen.
- 2. Kabel und Kabelenden abisolieren. Bei mehradrigen Kabeln zusätzlich Aderendhülsen anbringen.
- 3. Schutzleiter anschließen.

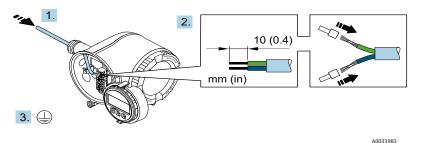


Abbildung 16. Anschlussleitung und Schutzleiter anschließen

- 4. Kabel gemäß **Klemmenbelegung des Signalkabels** anschließen. Die gerätespezifische Klemmenbelegung ist auf einem Aufkleber in der Klemmenabdeckung dokumentiert.
- 5. Kabelverschraubungen fest anziehen.
 - 🕒 Damit ist der Vorgang zum Anschließen der Kabel abgeschlossen.
 - Step 5 entfällt bei CSA-zertifizierten Produkten. Zur Erfüllung von CEC- und NEC-Anforderungen wird anstelle von Kabelverschraubungen eine Kabelführung verwendet.

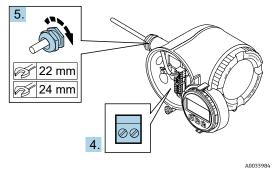
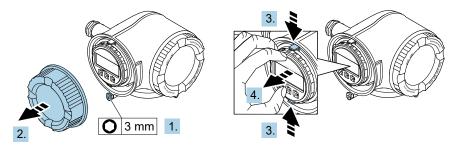


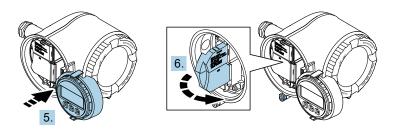
Abbildung 17. Kabel anschließen und Verschraubungen anziehen


- 6. Klemmenabdeckung schließen.
- 7. Anzeigemodulhalterung im Elektronikraum aufstecken.
- 8. Anschlussklemmenraumdeckel aufschrauben.
- 9. Sicherungskralle des Anschlussklemmenraumdeckels befestigen.

4.6.5 Modbus-TCP anschließen

Zusätzlich zur Verbindung des Geräts über Modbus-TCP und die verfügbaren Ein-/Ausgänge ist auch eine Verbindung zum Analysator über die Serviceschnittstelle (CDI-RJ45) möglich. Verbindung zum Analysator über die Serviceschnittstelle (CDI-RJ45) herstellen Siehe Abschnitt $Verbindung zum Analysator über die Serviceschnittstelle (CDI-RJ45) \rightarrow \blacksquare$.

Klemmenabdeckung öffnen


- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Laschen der Anzeigemodulhalterung zusammendrücken.
- 4. Anzeigemodulhalterung abziehen.

Δ0029813

Abbildung 18. Anzeigemodulhalterung entfernen

- 5. Halterung am Rand des Elektronikraums aufstecken.
- 6. Klemmenabdeckung aufklappen.

A0029814

Abbildung 19. Klemmenabdeckung öffnen

Kabel anschließen

- 1. Kabel durch die Kabeleinführung schieben. Um Dichtheit zu gewährleisten, Dichtungsring nicht aus der Kabeleinführung entfernen.
- 2. Kabel und Kabelenden abisolieren und an RJ45-Stecker anschließen.
- 3. Schutzleiter anschließen.
- 4. RJ45-Stecker einstecken.
- 5. Kabelverschraubungen fest anziehen.
 - ► Damit ist der Modbus-TCP-Verbindungsprozess abgeschlossen.

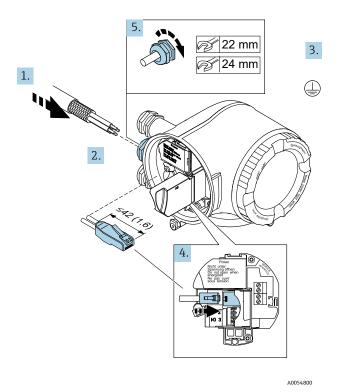


Abbildung 20. RJ45-Kabel anschließen

- 6. Klemmenabdeckung schließen.
- 7. Anzeigemodulhalterung im Elektronikraum aufstecken.
- 8. Anschlussklemmenraumdeckel aufschrauben.
- 9. Sicherungskralle des Anschlussklemmenraumdeckels befestigen.

4.6.6 Versorgungsspannung und zusätzliche Eingänge/Ausgänge anschließen

▲ WARNUNG

Die Temperatur des Gasanalysators kann an der Kabeleinführung und Verzweigungsstelle 67 °C (153 °F) bei 60 °C (140 °F) Umgebungstemperatur erreichen.

- ▶ Diese Temperaturen sind bei der Auswahl der Feldverdrahtungs- und Kabeleinführungsvorrichtungen zu berücksichtigen.
- ▶ Die Elektronikhauptbaugruppe ist durch eine Überstrom-Schutzeinrichtung in der Gebäudeinstallation, die für 10 A oder weniger ausgelegt ist, zu schützen.
- 1. Kabel durch die Kabeleinführung schieben. Um Dichtheit zu gewährleisten, Dichtungsring nicht aus der Kabeleinführung entfernen.
- 2. Kabel und Kabelenden abisolieren. Bei mehradrigen Kabeln zusätzlich Aderendhülsen anbringen.
- 3. Schutzleiter anschließen.

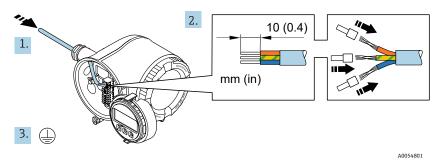


Abbildung 21. Anschlussleitung und Schutzleiter anschließen

- 4. Kabel gemäß Klemmenbelegung anschließen: Signalkabelklemmenbelegung oder Versorgungsspannungsklemmenbelegung.
- Die gerätespezifische Klemmenbelegung ist auf einem Aufkleber in der Klemmenabdeckung dokumentiert.
 - Nachfolgend einige Anschlussbeispiele:

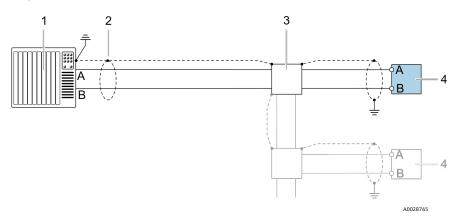


Abbildung 22. Anschlussbeispiel für Modbus-RS485, nicht explosionsgefährdeter Bereich und Zone 2/Div. 2

Nr.	Name
1	Steuerungssystem, wie beispielsweise SPS
2	Kabelschirm einseitig vorhanden. Der Kabelschirm ist an beiden Enden zu erden, um die PMC-Anforderungen zu erfüllen. Kabelspezifikationen beachten.
3	Verteilerbox
4	Transmitter

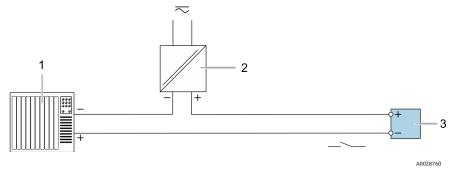


Abbildung 23. Anschlussbeispiel für Schaltausgang, passiv

Nr.	Name
1	Automatisierungssystem mit Schalteingang, z. B. SPS mit einem 10-k Ω -Pull-up- oder Pull-down-Widerstand
2	Stromversorgung
3	Transmitter

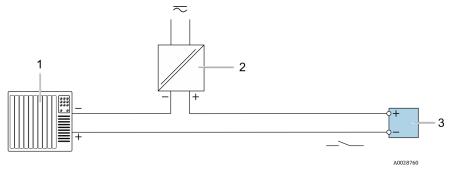


Abbildung 24. Anschlussbeispiel für Schaltausgang, passiv

Nr.	Name
1	Automatisierungssystem mit Relaiseingang, wie SPS
2	Stromversorgung
3	Transmitter

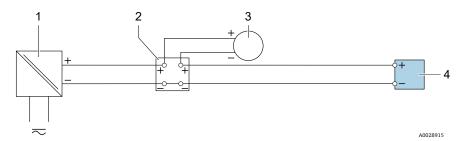


Abbildung 25. Anschlussbeispiel für 4-bis-20-mA-Stromeingang

Nr.	Name
1	Stromversorgung
2	Klemmenkasten
3	Externes Messgerät beispielsweise für Druck oder Temperatur
4	Transmitter

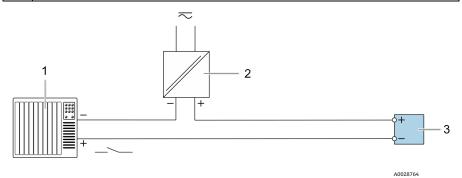


Abbildung 26. Anschlussbeispiel für Statuseingang

Nr.	Name
1	Automatisierungssystem mit Statusausgang, wie SPS
2	Stromversorgung
3	Transmitter

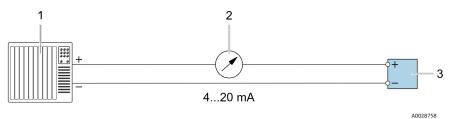


Abbildung 27. Anschlussbeispiel für Stromausgang 4-20 mA, aktiv

Nr.	Name
1	Automatisierungssystem mit Stromausgang, wie SPS
2	Analoges Anzeigeinstrument: maximale Last beachten
3	Transmitter

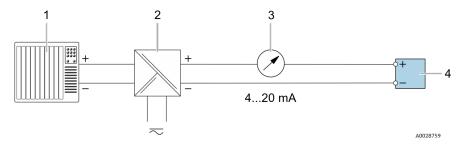


Abbildung 28. Anschlussbeispiel für Stromausgang 4-20 mA, passiv

Nr.	Name
1	Automatisierungssystem mit Stromeingang, wie SPS
2	Aktive Barriere für die Stromversorgung, z. B. RN221N
3	Analoges Anzeigeinstrument: maximale Last beachten
4	Transmitter

- 5. Kabelverschraubungen fest anziehen.
 - └ Damit ist der Vorgang zum Anschließen der Kabel abgeschlossen.
- 6. Klemmenabdeckung schließen.
- 7. Anzeigemodulhalterung im Elektronikraum aufstecken.
- 8. Anschlussklemmenraumdeckel aufschrauben.
- 9. Sicherungskralle des Anschlussklemmenraumdeckels befestigen.
- Für den CSA-zertifizierten Gasanalysator ist für den Netzanschluss eine Kabelführung zu verwenden. Für das ATEX-zertifizierte Modell ist ein gepanzertes Kabel aus Stahldraht oder Drahtgeflecht erforderlich.

4.6.7 Kabel entfernen

- 1. Um ein Kabel aus der Klemme zu entfernen, mit einem Schlitzschraubendreher auf den Schlitz zwischen den beiden Klemmenlöchern drücken.
- 2. Gleichzeitig das Kabelende aus der Klemme ziehen.

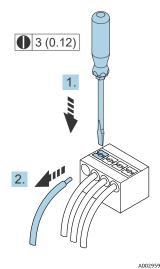


Abbildung 29. Kabel entfernen. Maßeinheit: mm (in)

Nach der Montage aller Leitungen und Kabel für die Zusammenschaltung sicherstellen, dass verbleibende Kabelführungen oder Kabeleingänge mit zertifiziertem Zubehör gemäß beabsichtigtem Einsatz des Produkts verschlossen werden.

▲ WARNUNG

• Gegebenenfalls sind gemäß lokalen Vorschriften für die Anwendung (CSA oder Ex d IP66) spezifische Kabelführungsdichtungen und Kabelverschraubungen zu verwenden.

4.6.8 Steuereinheit an ein Netzwerk anschließen

In diesem Kapitel werden nur die grundsätzlichen Anschlussmöglichkeiten für eine Einbindung des Geräts in ein Netzwerk dargestellt. Informationen zum korrekten Anschluss der Steuereinheit siehe *Modbus-RS485 anschließen* → 🖺.

4.6.9 Anschluss über die Serviceschnittstelle

Der Gasanalysator verfügt über einen Anschluss an die Serviceschnittstelle (CDI-RJ45).

HINWEIS

• Der Anschluss an die Serviceschnittstelle (CDI-RJ45) ist nur geschultem Personal und nur vorübergehend zum Zweck von Tests, Reparaturen oder Überholung der Ausrüstung gestattet und dies nur dann, wenn der Bereich, in dem die Ausrüstung installiert werden soll, als ungefährlich bekannt ist.

Beim Anschluss Folgendes beachten:

- Empfohlenes Kabel: CAT 5e, CAT 6 oder CAT 7, mit geschirmtem Steckverbinder
- Maximale Kabeldicke: 6 mm (¼ in)
- Länge des Steckers inklusive Knickschutz: 42 mm (1,7 in)
- Biegeradius: 5 x Kabeldicke

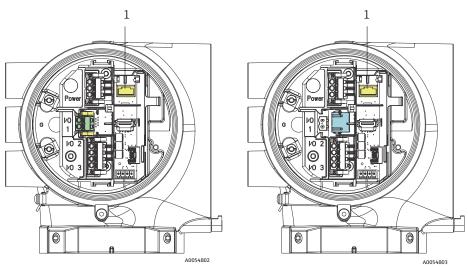


Abbildung 30. Serviceschnittstelle CDI-RJ45 (1) Anschlüsse für I/O1 mit Modbus-RTU/RS485/2-Draht (links) und Modbus-TCP/Ethernet/RJ45 (rechts)

4.6.10 Durchflussschalter anschließen

Der JT33 Analysator kann mit einem variablen Durchflussmesser angeboten werden, der mit einer optionalen mechanischen Anzeige und einem Reed-Kontakt ausgestattet ist, um den Volumenstrom von brennbaren und nicht brennbaren Gasen zu messen.

HINWEIS

- Die Montage muss gemäß dem National Electrical Code NFPA 70, Artikel 500 bis 505, ANSI/ISA-RP12.06.01, IEC 60079-14 und dem Canadian Electrical Code (CEC) Anhang J für Kanada erfolgen.
- In eigensicheren Stromkreisen dürfen nur isolierte Kabel verwendet werden, deren Isolierung einer dielektrischen Prüfung von mindestens 500 V Wechselspannung oder 750 V Gleichspannung standhält.
- Die Temperatureinstufung von Anschlüssen, Kabelverschraubungen und Feldkabeln, die sowohl von der Umgebungstemperatur als auch von der Betriebstemperatur beeinflusst werden, muss für eine Temperatur von mindestens 75 °C (167 °F) geeignet sein.

Zum Anschließen des Durchflussschalters ein geschirmtes Verbindungskabel verwenden, dessen Schirm an die Masse des zugehörigen FM-zugelassenen Betriebsmittels angeschlossen ist.

WARNUNG

• Das Schwebekörper-Durchflussmessgerät mit beschichteten Teilen ist so zu montieren und zu warten, dass das Risiko einer elektrostatischen Entladung minimiert wird.

4.6.11 Verschraubte Kabeleinführungen

HINWEIS

 Auf alle Kabelführungen mit Gewindeanschlüssen ist ein Gewindeschmiermittel aufzutragen. Es empfiehlt sich die Verwendung von Syntheso Glep1 oder einem äquivalenten Schmiermittel auf allen Schraubgewinden der Kabelführung.

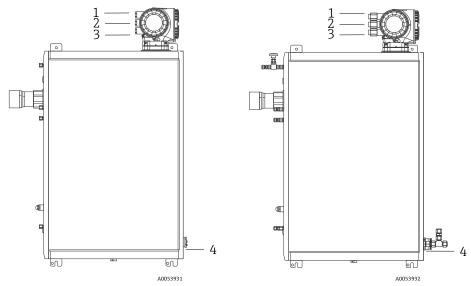


Abbildung 31. JT33-Gewindeeingänge an ATEX- (links) und CSA-Analysatorbaugruppen (rechts)

Kabelein- führung	Beschreibung	ATEX, IECEx, UKEx	cCSAus
1	Stromversorgung Steuereinheit	Steckbuchse M20 x 1,5	½-Zoll-NPTF
2	Modbus- Stromversorgung	Steckbuchse M20 x 1,5	½-Zoll-NPTF
3	Zwei konfigurierbare Ein-/Ausgänge	Steckbuchse M20 x 1,5	½-Zoll-NPTF
4	MAC-Stromversorgung	Stecker M25 x 1,5 (mit Barriere)	¾-Zoll- NPTM

Die Gewindeabmessungen für die Panel-Konfiguration sind dieselben wie für das oben gezeigte geschlossene Probensystem.

4.6.12 Anschluss der Terminierung der Heizmanschette

Der JT33 wurde für eine externe Terminierung der Heizung konzipiert. Hierzu muss die Verkabelung der Heizung während der Montage in einer Schleife zurück und aus der Heizmanschette herausgeführt werden.

Terminierung der Heizung anschließen

- 1. Isolierte Leitung mit Heizung und Leitung für den Probentransport identifizieren.
- 2. Isolierung zurückschneiden, bis:
 - 76 cm (30 in) der Heizleitung ragen heraus
 - 15,2 cm (6 in) des Rohrs ragen heraus

- 3. Wärmeschrumpfendkappe auf die Heizleitung, die Leitung und die isolierte Leitung setzen. Endkappe erhitzen, um eine Dichtung zu bilden.
- 4. Isolierte Leitung in der Heizmanschette montieren und den Heizdraht durch die Manschette zurückführen. Den vom Lieferanten angegebenen Biegeradius für den Heizdraht einhalten.
- 5. Nachdem die Leitung montiert und der Wärmeschrumpfschlauch zurück und aus der Heizmanschette herausgeführt wurde, Hitze auf die Manschette einwirken lassen, um eine Dichtung zu erzielen.
- 6. Heizdrahtisolierung kürzen und die vom Lieferanten empfohlene Anschlussbox montieren, um die Heizung mit Strom zu versorgen.

4.7 Gasanschlüsse

Sobald überprüft wurde, dass der JT33 TDLAS-Gasanalysator funktionsfähig und der Analysatorstromkreis stromlos ist, können die Probenzufuhr- und Probenrückfuhrleitungen angeschlossen werden. Gegebenenfalls die Druckentlastungsentlüftung, die Validierungsquelle und die Spülgasleitungen anschließen. Alle Arbeiten sind von Technikern auszuführen, die über die entsprechende Qualifikation für Pneumatikleitungen verfügen.

WARNUNG

Prozessproben können Gefahrstoffe in potenziell brandfördernden oder toxischen Konzentrationen enthalten.

- Das Personal sollte vor der Montage des Probenentnahmesystems die physischen Eigenschaften der Probenzusammensetzung und die notwendigen Sicherheitsvorkehrungen genau kennen und verstehen.
- ► In der Messzelle 6,89 barg (100 psig) nicht überschreiten. Anderenfalls kann es zu einer Beschädigung der Messzelle kommen.

Es wird empfohlen, elektropolierte, nahtlose Edelstahlrohre mit einem Außendurchmesser von 6 mm oder ¼ Zoll (je nach Bestelloption) zu verwenden.

Probenzuleitung anschließen

- 1. Vor dem Anschließen der Probenzuleitung sicherstellen, dass folgende Bedingungen erfüllt sind:
 - a. Die Probensonde ist korrekt am Prozessprobenhahn montiert und das Absperrventil der Probensonde ist geschlossen.
 - b. Die Station zur Reduzierung des Felddrucks ist ordnungsgemäß an der Probensonde montiert und der Druckregler an der Station zur Reduzierung des Felddrucks ist geschlossen (Einstellknopf vollständig gegen den Uhrzeigersinn gedreht).

▲ WARNUNG

Die Prozessprobe kann am Probenhahn einen hohen Druck aufweisen.

- ▶ Bei der Bedienung des Absperrventils der Probensonde und des Druckreglers zur Reduzierung des Felddrucks extrem vorsichtig vorgehen.
- ► Alle Ventile, Regler, Schalter etc. sind gemäß den vor Ort geltenden Vorgehensweisen zum Absperren/Kennzeichnen (Lockout/Tagout) zu betreiben.
- ▶ Den korrekten Montagevorgang in der Anleitung des Probensondenherstellers nachlesen.
- c. Die Überdruckventil-Entlüftungsleitung ist ordnungsgemäß von der Station zur Reduzierung des Felddrucks zur Niederdruckfackel oder zum Anschluss der atmosphärischen Entlüftung montiert.
- 2. Die geeignete Rohrstrecke von der Station zur Reduzierung des Felddrucks bis zum Probenentnahmesystem bestimmen.
- 3. Edelstahlrohre von der Station zur Reduzierung des Felddrucks bis zum Probenzufuhranschluss des Probenentnahmesystems verlegen.
- 4. Rohre mit industriellen Biegevorrichtungen biegen und Passform der Rohre prüfen, um sicherzustellen, dass Rohre und Armaturen genau sitzen.
- 5. Rohrenden komplett entgraten.
- 6. Vor dem Herstellen der Verbindung die Leitung 10 bis 15 Sekunden lang mit sauberem, trockenem Stickstoff oder
- 7. Probenzufuhrleitung an das Probenentnahmesystem anschließen. Hierzu eine Klemmverschraubung 6 mm (¼ in) für Edelstahlrohre (je nach Bestellkonfiguration) verwenden.
- 8. Alle neuen Rohrverschraubungen zunächst fingerfest und dann mit einem Schraubenschlüssel um 1¼ Umdrehungen fester anziehen. Bei Verbindungen mit zuvor aufgepressten Klemmringen die Mutter in die zuvor hochgezogene Position schrauben und dann mit einem Schraubenschlüssel leicht anziehen. Das Rohr nach Bedarf an geeigneten Tragkonstruktionen sichern.

9. Alle Anschlüsse mit einem Leckdetektor auf Gaslecks untersuchen.

Probenrückleitungen anschließen

1. Sicherstellen, dass das Absperrventil der Niederdruckfackel oder der atmosphärischen Entlüftung geschlossen ist.

MARNUNG

- ► Alle Ventile, Regler, Schalter etc. sind gemäß den vor Ort geltenden Vorgehensweisen zum Absperren/Kennzeichnen (Lockout/Tagout) zu betreiben.
- 2. Geeignete Rohrstrecke vom Probenentnahmesystem zur Niederdruckfackel oder atmosphärischen Entlüftung bestimmen.
- 3. Edelstahlrohre vom Probenrückführanschluss des Probenentnahmesystems bis zur Niederdruckfackel oder atmosphärischen Entlüftung verlegen.
- 4. Rohre mit industriellen Biegevorrichtungen biegen und Passform der Rohre prüfen, um sicherzustellen, dass Rohre und Armaturen genau sitzen.
- 5. Rohrenden komplett entgraten.
- 6. Vor dem Herstellen der Verbindung die Leitung 10 bis 15 Sekunden lang mit sauberem, trockenem Stickstoff oder Luft ausblasen.
- 7. Probenzufuhrleitung an das Probenentnahmesystem anschließen. Hierzu eine Klemmverschraubung 6 mm (¼ in) für Edelstahlrohre (je nach Bestellkonfiguration) verwenden.
- 8. Alle neuen Rohrverschraubungen zunächst fingerfest und dann mit einem Schraubenschlüssel um 1¼ Umdrehungen fester anziehen. Bei Verbindungen mit zuvor aufgepressten Klemmringen die Mutter in die zuvor hochgezogene Position schrauben und dann mit einem Schraubenschlüssel leicht anziehen. Das Rohr nach Bedarf an geeigneten Tragkonstruktionen sichern.
- 9. Alle Anschlüsse mit einem Leckdetektor auf Gaslecks untersuchen.

4.8 Kit zur metrischen Konvertierung

Ein Kit zur metrischen Konvertierung des Probenentnahmesystems konvertiert die Armaturen mit Zollmaß des Analysatorsystems in metrische (mm) Armaturen. Dieses Kit gehört zum Lieferumfang des JT33 TDLAS-Gasanalysators und umfasst folgende Teile:

Menge	Beschreibung
6	Satz mit Klemmringen, ¼-Zoll-Rohrverschraubung
1	Satz mit Klemmringen, ½-Zoll-Rohrverschraubung
6	Rohrmutter, ¼-Zoll-Rohrverschraubung, Edelstahl 316
1	Rohrmutter, ½-Zoll-Rohrverschraubung, Edelstahl 316
6	6-mm-Rohrarmatur x ¼-Zoll-Rohrstutzen, Edelstahl 316
1	12-mm-Rohrarmatur x ½-Zoll-Rohrstutzen, Edelstahl 316

Benötigtes Werkzeug

- 7/8-Zoll-Gabelschlüssel
- 5/16-Zoll-Gabelschlüssel für Stabilisierungsadapter
- Filzschreiber
- Spaltprüflehre

Montage

- 1. Entweder die Armatur mit 6 mm (¼ in) oder mit 12 mm (½ in) auswählen.
- 2. Rohradapter in die Rohrarmatur einführen. Sicherstellen, dass der Rohradapter fest auf der Schulter des Rohrarmaturrumpfs sitzt und die Mutter fingerfest angezogen ist.
- 3. Mutter an der Position 6:00 markieren.
- 4. Den Armaturrumpf ruhig halten und die Rohrmutter mit 1¼ Umdrehungen bis Position 9:00 anziehen.
- 5. Eine Spaltprüflehre zwischen Mutter und Rumpf setzen. Wenn sich die Lehre in den Spalt einführen lässt, ist ein weiteres Festziehen notwendig.

HINWEIS

► Siehe Swagelock-Herstelleranleitungen.

4.9 Validierungsgas anschließen

HINWEIS

 In der Messzelle 6,89 barg (100 psig) nicht überschreiten. Anderenfalls kann es zu einer Beschädigung der Messzelle kommen.

Anschluss des Validierungsgases vorbereiten

Vor dem Anschließen des Validierungsgases muss die geeignete Rohrstrecke von der vom Kunden bereitgestellten Validierungsgasquelle zum SCS identifiziert werden.

Validierungsgas anschließen

- 1. Edelstahlrohrleitungen von der Validierungsgasquelle (auf den spezifizierten Druck reguliert) zum Zufuhranschluss verlegen, der mit "Validation Gas" beschriftet ist.
- 2. Edelstahlrohrleitungen vorbereiten:
 - Rohrleitungen mit Biegemaschinen von Industriequalität biegen.
 - Passform der Leitungen überprüfen, um einen korrekten Sitz zwischen den Rohrleitungen und Armaturen sicherzustellen.
 - Rohrenden entgraten.
- 3. Vor dem Anschließen Leitungen 10 bis 15 Sekunden lang mit sauberem, trockenem Stickstoff oder Luft ausblasen.
- 4. Leitung der Validierungsgasquelle mithilfe der mitgelieferten ¼-Zoll-Edelstahl-Klemmverschraubungen am SCS anschließen.
- 5. Armaturen sichern und festziehen:
 - Alle neuen Rohrverschraubungen zunächst fingerfest und dann mit einem Schraubenschlüssel um 1¼ Umdrehungen fester anziehen.
 - Bei Verbindungen mit zuvor aufgepressten Klemmringen die Mutter in die zuvor hochgezogene Position schrauben und dann mit einem Schraubenschlüssel leicht anziehen.
 - Das Rohr nach Bedarf an geeigneten Tragkonstruktionen sichern.
- 6. Alle Anschlüsse mit einem flüssigen Lecksuchmittel auf Gaslecks untersuchen.
- 7. Vorgang für weitere Validierungsgase wiederholen (wenn zutreffend).

4.10 Geräteeinstellungen

Beim Inbetriebnahmevorgang des Geräts folgende Abbildung beachten.

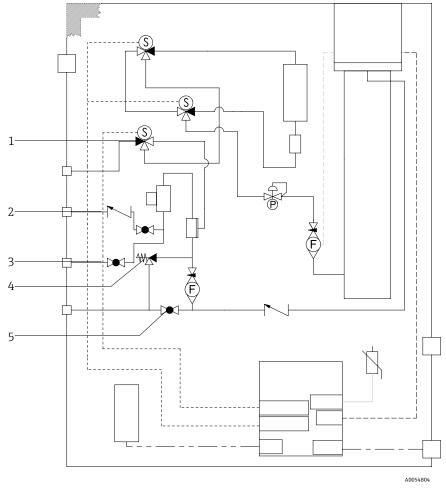


Abbildung 32. Ventilpositionen

Nr.	Beschreibung	
1	Validierungsventil	
2	Probenspülung	
3	Probenventil	
4	Überdruckventil	
5	Systemabsperrventil	

Bei Systemen mit der optionalen Spülung des Probenahmesystemgehäuses vor dem Start eine Spülung durchführen. Siehe Abschnitt *Gehäusespülung* → ≜.

- 1. Gehäusetür öffnen.
- 2. Das Manometer auf 69 bis 103 kPag (10 bis 14.9 psig) einstellen.
- 3. Durchflussrate auf 3 l/min einstellen und aus Sicherheitsgründen das System mindestens 10 Minuten lang spülen, bis der angezeigte Feuchtewert unterhalb eines akzeptablen Fehlerniveaus liegt.
- 4. Probenzufuhrventil so einstellen, dass Gas strömt.
- 5. Validierungs-/Probengas auf Öffnen stellen.
- 6. Sicherstellen, dass sich die Einstellungen des Manometers und der Durchflussrate nicht geändert haben. Gegebenenfalls Anpassungen vornehmen.

▲ WARNUNG

- Die Einstellung von 172 kPa (25 psig) auf dem Manometer nicht überschreiten. Der Betriebsdruck muss 103 kPa (14.9 psig) betragen.
- 310 kPa (45 psig) an der Druckminderungsstation nicht überschreiten.
- Für CRN-Systeme: Die Einstellung von 103 kPa (14.9 psig) auf dem Manometer nicht überschreiten.
- 7. Bypass-Durchflussmessgerät auf den Sollwert einstellen, dann Analysator-Durchflussmessgerät mithilfe des Prozessgases auf maximal erwarteten Gegendruck justieren.
- Durchfluss justieren, wenn sich die Gaszusammensetzung oder der Gegendruck ändert.
- 8. Gehäusetür schließen.

4.10.1 Durchflussschalter einstellen

Der Durchflussschalter ist werkseitig auf 2,5 SLPM eingestellt und sollte bei der Montage keine Justierung benötigen. Um den Durchflussschalter zu überprüfen oder zurückzusetzen, ist jedoch das folgende Verfahren anzuwenden:

- 1. Mit einem Multimeter im Durchgangsmodus die roten und braunen Kabel prüfen.
- 2. Die Durchflussrate auf ein Minimum von 2,5 SLPM einstellen und die Reed-Patrone bewegen, bis ein Durchgang festgestellt wird. Auf Alarm 904 achten. Siehe Abschnitt Übersicht Diagnoseinformationen *□*.

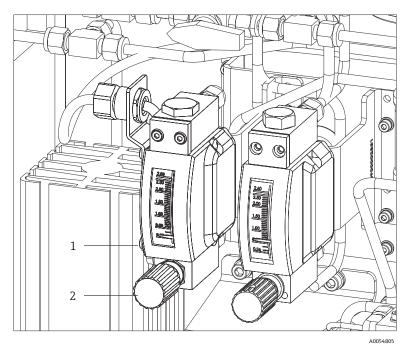


Abbildung 33. Justierung des Durchflussschalters

Nr.	Name	
1	Einstellung des Nadelventils	
2	Einstellmutter	

- 3. Mutter auf dem Durchflussschalter lösen.
- 4. Reed-Kartusche auf den gewünschten Wert einstellen, mindestens 2,5 SLPM, bis der Alarm aktiviert wird.
- 5. Durchfluss auf eine gewünschte Durchflussrate zwischen 2,5 und 3 SLPM einstellen. Der Alarm sollte damit behoben werden und den Status ändern.
- 6. Mutter sichern.
- Im Normalbetrieb besteht für den Alarm eine Verzögerung von 60 Sekunden.

Optionen für die Stromzusammensetzung

- Für alle Tabellen zur Stromzusammensetzung mit Ausnahme von Tabelle 61 (Wasserstoffrecycling) wird der Durchflussmesser in Luft mit einer Dichte von 1,293 kg/m³, einer Viskosität von 0,01844 mPas bei 20 °C und einem Druck von 1 bara (absolut) kalibriert.
- Für die Stromzusammensetzung des Stroms in Tabelle 61 wird der Durchflussmesser in Wasserstoff mit einer Dichte von 0,08378 kg/m³, einer Viskosität von 0,0088 mPas, einer Temperatur von 20 °C und einem Druck von 1 bara kalibriert.

4.10.2 Analysatoradresse einstellen

Je nach Feldbus funktioniert die Hardware-Adressierung unterschiedlich:

- Modbus-RS485 verwendet eine Geräteadresse
- Modbus-TCP verwendet eine IP-Adresse

Hardware-Adressierung für Modbus-RS485

Die Geräteadresse muss immer für einen Modbus-Server konfiguriert werden. Gültige Geräteadressen liegen im Bereich von 1 bis 247. Wurde eine Adresse nicht korrekt konfiguriert, erkennt der Modbus-Client das Messgerät nicht. Alle Messgeräte werden mit der Geräteadresse 247 und mit dem Adressmode "Softwareadressierung" ausgeliefert.

In einem Modbus-RS485-Netzwerk kann jede Adresse nur einmal vergeben werden. Wenn alle DIP-Schalter auf ON oder OFF stehen, ist die gesamte Hardware-Adressierung AUS.

Modbus-Geräteadressbereich	1 bis 247
Adressierungsmodus	Softwareadressierung: Alle DIP-Schalter der Hardware-Adressierung stehen auf OFF.

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Die gewünschte Geräteadresse mithilfe der DIP-Schalter im Anschlussklemmenraum einstellen.

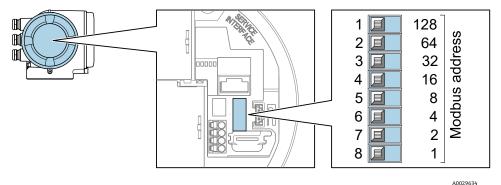


Abbildung 34. DIP-Schalter für Modbus-Adresse

- 4. Die Änderung der Geräteadresse wird nach 10 Sekunden wirksam.
- 5. Anschlussklemmenraumdeckel wieder aufsetzen und Sicherungskralle anbringen.

Abschlusswiderstand aktivieren

Um eine fehlerhafte Kommunikationsübertragung aufgrund von Impedanzfehlanpassungen zu vermeiden, muss das Modbus-RS485-Kabel am Anfang und Ende des Bussegments ordnungsgemäß terminiert werden.

• DIP-Schalter 3 auf **ON** stellen.

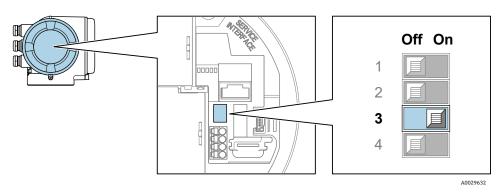


Abbildung 35. Auswahl der DIP-Schalterstellung OFF/ON zur Aktivierung des Terminierungswiderstands

Hardware-Adressierung für Modbus-TCP

Die IP-Adresse des JT33 kann über DIP-Schalter konfiguriert werden.

Adressierungsdaten

Die IP-Adresse und Konfigurationsoptionen sind nachfolgend aufgeführt:

1. Oktett	2. Oktett	3. Oktett	4. Oktett
192.	168.	1.	XXX

Die Oktetts 1, 2 und 3 können nur über die Software-Adressierung konfiguriert werden. Oktett 4 kann über die Software- und Hardware-Adressierung konfiguriert werden.

IP-Adressbereich	1 bis 254 (Oktett 4)
IP-Adresse Broadcast	255
Adressierungsart ab Werk	Softwareadressierung: Alle DIP-Schalter der Hardware-Adressierung stehen auf OFF.
IP-Adresse ab Werk	DHCP-Server aktiv

Softwareadressierung: Die IP-Adresse wird über den Parameter IP-Adresse eingegeben. Weitere Informationen befinden sich im Abschnitt Beschreibung der Geräteparameter für J22 und JT33 TDLAS-Gasanalysatoren(GP01198C).

IP-Adresse einstellen

WARNUNG

Stromschlaggefahr bei Öffnen des Steuerungsgehäuses.

- Vor Öffnen des Steuerungsgehäuses Gerät zuerst von der Netzstromversorgung trennen.
- 🚹 Die Standard-IP-Adresse darf **nicht** aktiviert sein.

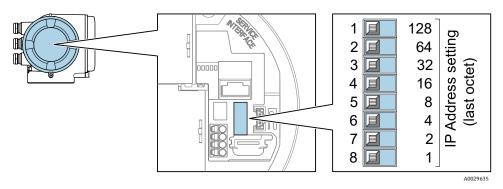


Abbildung 36. DIP-Schalter zum Einstellen der IP-Adresse

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Gewünschte IP-Adresse über die entsprechenden DIP-Schalter auf dem I/O-Elektronikmodul einstellen.
- 4. Anschlussklemmenraumdeckel wieder aufsetzen und Sicherungskralle anbringen.
- 5. Gerät wieder an die Stromversorgung anschließen.
 - → Die konfigurierte Geräteadresse wird verwendet, sobald das Gerät neu gestartet wird.

4.10.3 Standard-IP-Adresse über DIP-Schalter aktivieren

Ab Werk ist die DHCP-Funktion im Gerät aktiviert. Damit erwartet das Gerät die Zuweisung einer IP-Adresse durch das Netzwerk. Diese Funktion kann deaktiviert und das Gerät mithilfe der DIP-Schalter auf die Standard-IP-Adresse 192.168.1.212 eingestellt werden.

WARNUNG

Stromschlaggefahr bei Öffnen des Steuerungsgehäuses.

• Vor Öffnen des Steuerungsgehäuses Gerät zuerst von der Netzstromversorgung trennen.

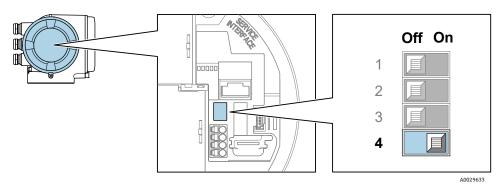


Abbildung 37. OFF/ON-DIP-Schalter für die Standard-IP-Adresse

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben und, wenn notwendig, Gerätedisplay vom Hauptelektronikmodul trennen.
- 3. DIP-Schalter-Nummer 4 auf dem I/O-Elektronikmodul von OFF auf ON setzen.
- 4. Anschlussklemmenraumdeckel wieder aufsetzen und Sicherungskralle anbringen.
- 5. Gerät wieder an die Stromversorgung anschließen.
 - └─ Die Standard-IP-Adresse wird verwendet, sobald das Gerät neu gestartet wird.

4.11 Schutzart IP66 sicherstellen

Das Messgerät erfüllt alle Anforderungen für Schutzart IP66, Type 4X-Gehäuse. Um die Schutzart IP66, Type 4X-Gehäuse zu gewährleisten, folgende Schritte nach dem elektrischen Anschluss durchführen:

- 1. Prüfen, ob die Gehäusedichtungen sauber sind und korrekt angebracht wurden.
- 2. Dichtungen trocknen und reinigen und gegebenenfalls austauschen.
- 3. Alle Gehäuseschrauben und Schraubenabdeckungen anziehen.
- 4. Kabelverschraubungen fest anziehen.
- 5. Das Kabel so verlegen, dass es vor dem Kabeleingang/Wasserabscheider nach unten verläuft, um sicherzustellen, dass keine Feuchtigkeit in die Kabeleinführung eindringt.
- 🚺 Sicherstellen, dass der erforderliche Mindestbiegeradius des Kabels eingehalten wird.

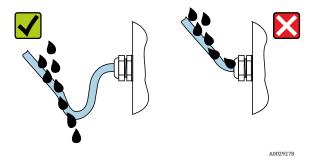


Abbildung 38. Schutzart IP66 sicherstellen

6. Nicht benutzte Kabeleinführungen mit Blindstopfen verschließen.

5 Bedienoptionen

5.1 Übersicht zu Bedienoptionen

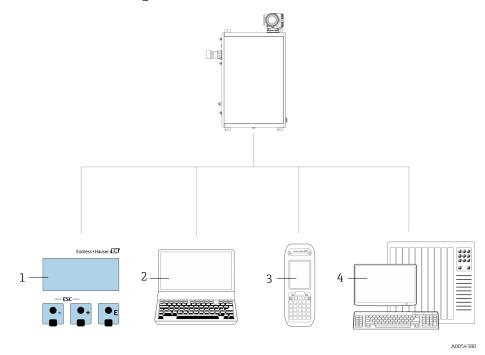


Abbildung 39. Bedienoptionen

Nr.	Name	
1	Vor-Ort-Bedienung via Anzeigemodul	
2	Computer mit Web-Browser, beispielsweise Internet Explorer	
3	Mobiles Gerät, wie beispielsweise ein Mobiltelefon oder Tablet, das im Netzwerk verwendet wird, um auf den Webserver oder Modbus zuzugreifen	
4	Steuerungssystem, wie beispielsweise SPS	

5.2 Aufbau und Funktionsweise des Bedienmenüs

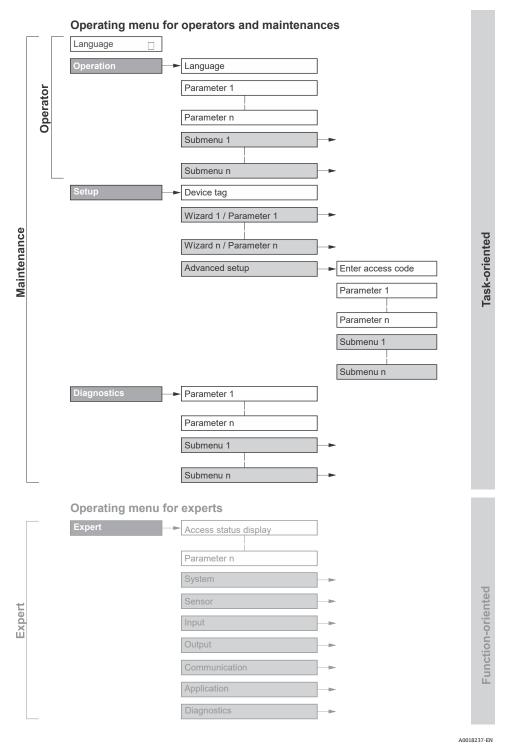


Abbildung 40. Schematischer Aufbau des Bedienmenüs

5.2.1 Bedienerrollen

Die einzelnen Abschnitte des Bedienmenüs sind bestimmten Anwenderrollen zugeordnet (Bediener, Wartungsverantwortlicher etc.). Zu jeder Benutzerrolle gehören typische Aufgaben im Gerätelebenszyklus.

Funktionstechnische Rolle/Menü		Benutzerrolle und Aufgaben	Inhalt/Bedeutung
Task- ausgerichtet	Display Language	Rolle Operator, Maintenance Aufgaben während des Betriebs	Festlegen der BedienspracheFestlegen der Webserver-Bediensprache
	Operation • Konfiguration der Betriebsanzeige • Messwerte auslesen		 Einstellen der Betriebsanzeige, beispielsweise das Anzeigeformat
	Setup	Wartung Inbetriebnahme Konfiguration der Messung Konfiguration der Ein- und Ausgänge Konfiguration der Kommunikations-schnittstelle	 Wizards zur schnellen Inbetriebnahme Einstellen der Systemmaßeinheiten Konfiguration der Kommunikationsschnittstelle Anzeige I/O-Konfiguration Konfiguration der Ein-und Ausgänge Konfiguration der Betriebsanzeige Festlegen des Ausgangsverhaltens Advanced Setup Für eine individuellere Konfiguration der Messung: Anpassung an spezielle Messbedingungen Verwaltung: Zugangscode definieren, Messgerät zurücksetzen
	Diagnostics	Wartung Fehlerbehebung Diagnose und Behebung von Prozess- und Gerätefehlern Messwertsimulation	Enthält alle Parameter zur Fehlererkennung und Analyse von Prozessfehlern Diagnostic list: Enthält bis zu fünf aktuell anstehende Fehlermeldungen Event logbook: Enthält Ereignismeldungen, die aufgetreten sind Device information: Enthält Informationen zur Identifizierung des Geräts Measured values: Enthält alle aktuellen Messwerte Untermenü Data logging: Speicherung und Visualisierung von Messwerten Heartbeat Technology: Überprüfung der Gerätefunktionalität auf Anforderung und Dokumentation der Verifizierungsergebnisse Simulation: Dient zur Simulation von Messwerten oder Ausgangswerten
Funktions- orientiert	Expert	Aufgaben, die detailliertes Wissen über die Funktion des Geräts erfordern Inbetriebnahme von Messungen unter schwierigen Bedingungen Optimale Anpassung der Messung an schwierige Bedingungen Fehlerdiagnose in schwierigen Fällen Detaillierte Konfiguration der Kommunikations- schnittstelle	 Enthält alle Parameter des Geräts. Dieses Menü ist nach den Funktionsblöcken des Geräts aufgebaut: System: Enthält alle übergeordneten Geräteparameter, die weder die Messung noch die Kommunikationsschnittstelle betreffen. Sensor: Konfiguration der Messung Output: Konfiguration der analogen Strom- und Schaltausgänge. Input: Konfiguration der analogen Stromeingänge. Communication: Konfiguration der digitalen Kommunikationsschnittstelle und des Webservers Diagnostics: Fehlererkennung und Analyse von Prozess- und Gerätefehlern sowie Gerätesimulation und Heartbeat Technology

5.3 Vor-Ort-Bedienung

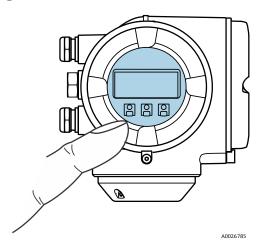


Abbildung 41. Bedienung mit Touch Control

Anzeigeelemente

- 4-zeilige, beleuchtete, grafische Anzeige
- Hintergrundbeleuchtung Weiß, schaltet bei Gerätefehlern auf Rot
- Anzeige für die Darstellung von Messgrößen und Statusgrößen individuell konfigurierbar
- Zulässige Umgebungstemperatur für die Anzeige: −20 bis 60 °C (−4 bis 140 °F)

 Die Lesbarkeit des Displays kann bei Temperaturen außerhalb des Temperaturbereichs beeinträchtigt sein.

Bedienelemente

- Bedienung von außen ohne Öffnen des Gehäuses mittels Touch Control (3 optische Tasten): 🕀, 🖃
- Bedienelemente auch in den verschiedenen Ex-Zonen zugänglich

5.4 Zugriff auf das Bedienmenü über das Gerätedisplay

5.4.1 Betriebsanzeige

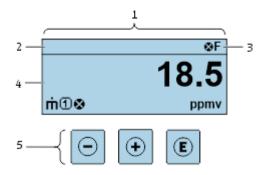


Abbildung 42. Betriebsanzeige

A005480

Nr.	Name	
1	Betriebsanzeige	
2	Gerätebezeichnung	
3	Statusbereich	
4	Anzeigebereich für Messwerte (4-zeilig)	
5	Bedienelemente → 🖺	

Statusbereich

Im Statusbereich der Betriebsanzeige erscheinen rechts oben folgende Symbole:

- Statussignale → \(\bigsigma \)
 - F: Fehler
 - C: Funktionsprüfung
 - S: Außerhalb der Spezifikation
 - M: Wartung erforderlich
- - o Alarm
 - o Marnhinweis
- 🗓 Verriegelt: Das Gerät ist von der Hardware aus gesperrt
- Kommunikation: Die Kommunikation über Fernbedienung ist aktiv

Anzeigebereich

Im Anzeigebereich sind jedem Messwert bestimmte Symbolarten zur näheren Erläuterung vorangestellt.

	Messgröße	Messkanalnummer	Diagnoseverhalten
	\downarrow	\downarrow	V
Beispiel:	\odot	1	<u>^</u>

Erfolgt aufgrund eines Diagnoseereignisses, Berechnungsfehlers oder einer fehlerhaften Parameterkonfiguration

Messgrößen

Symbol	Bedeutung		
Ω	Temperatur		
_	Taupunkttemperatur		
	Ausgang		
	Die Messkanalnummer gibt an, welcher der Ausgänge dargestellt wird.		
σ	Konzentration		
р	Druck		

Diagnoseverhalten

i

Die Anzahl und das Anzeigeformat der Messwerte können über den Parameter **Format display** konfiguriert werden. Siehe Abschnitt *Gerätedisplay konfigurieren* $\rightarrow \triangleq$.

5.4.2 Navigationsansicht

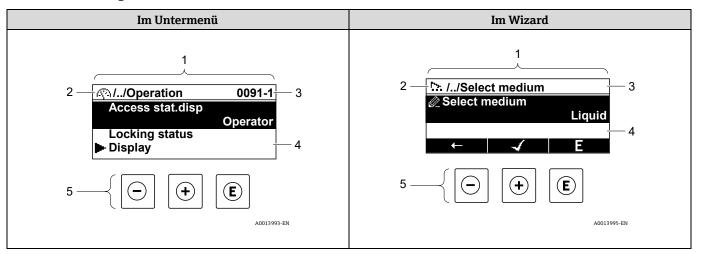
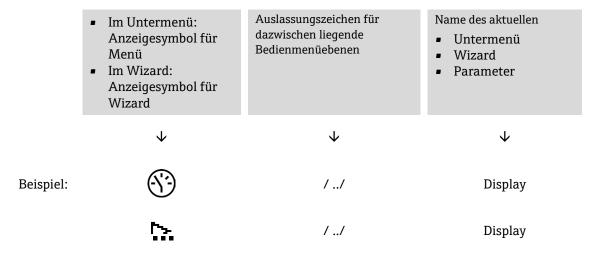



Abbildung 43. Navigationsansicht

Nr.	Name	
1	Navigationsansicht	
2	Navigationspfad zur aktuellen Position	
3	Statusbereich	
4	Anzeigebereich für die Navigation	
5	Bedienelemente → 🖺	

Navigationspfad

Der Navigationspfad – in der Navigieransicht links oben angezeigt – besteht aus folgenden Elementen:

Statusbereich

Im Statusbereich der Navigieransicht rechts oben erscheint:

- Im Untermenü: Wenn ein Diagnoseereignis vorliegt: Diagnoseverhalten und Statussignal.
- Im Wizard: Wenn ein Diagnoseereignis vorliegt: Diagnoseverhalten und Statussignal.

Anzeigebereich

Symbol	Bedeutung			
₹	Operation ■ Im Menü neben der Auswahl Operation ■ Links im Navigationspfad im Menü Operation			
٦	Setup Im Menü neben der Auswahl Setup Links im Navigationspfad im Menü Setup			
ප ු	Diagnostics ■ Im Menü neben der Auswahl Diagnostics ■ Links im Navigationspfad im Menü Diagnostics			
≟ c	Expert Im Menü neben der Auswahl Expert Links im Navigationspfad im Menü Expert			
•	Untermenü			
1>	Wizard			
<u> </u>	Parameter innerhalb eines Wizards Für Parameter in Untermenüs gibt es kein Anzeigesymbol.			
û	Parameter verriegelt. Zeigt vor einem Parameternamen an, dass der Parameter durch eines der folgenden Verfahren gesperrt ist: Benutzerspezifischer Zugangscode Hardware-Schreibschutzschalter			

Wizard-Bedienung

Symbol	Bedeutung
←	Wechselt zum vorherigen Parameter
√	Bestätigt den Parameterwert und wechselt auf den nächsten Parameter
E	Öffnet die Editieransicht des Parameters

5.4.3 Editieransicht

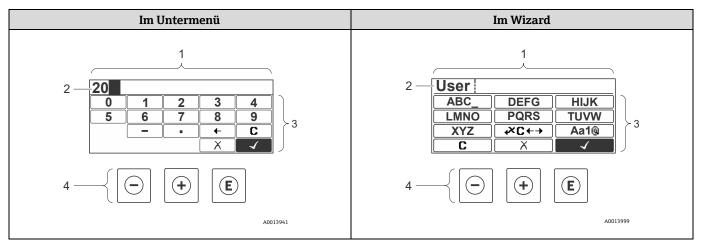


Abbildung 44. Editieransicht im Untermenü und im Wizard

Nr.	Name
1	Editieransicht
2	Anzeigebereich der eingegeben Werte
3	Eingabemaske
4	Bedienelemente → 🖺

Eingabemaske

In der Eingabemaske des Zahlen- und Texteditors stehen folgende Eingabe- und Bediensymbole zur Verfügung:

Zahleneditor

Symbol	Bedeutung
0	Auswahl der Ziffern von 0 bis 9
9	
	Fügt Dezimaltrennzeichen an der Eingabeposition ein
_	Fügt Minuszeichen an der Eingabeposition ein
4	Bestätigt die Auswahl
+	Verschiebt die Eingabeposition um eine Position nach links
X	Beendet die Eingabe ohne die Änderungen zu übernehmen
C	Löscht alle eingegebenen Zeichen

Texteditor

Symbol	Bedeutung
(Aa1@)	Umschalten Groß- oder Kleinbuchstaben Eingabe von Zahlen Eingabe von Sonderzeichen
ABC_ XYZ	Auswahl von Großbuchstaben A bis Z
abc _ xyz	Auswahl von Kleinbuchstaben a bis z
 ~& _	Auswahl von Sonderzeichen
4	Bestätigt die Auswahl
4×c←→	Wechselt zur Auswahl der Korrekturtools
X	Beendet die Eingabe ohne die Änderungen zu übernehmen
С	Löscht alle eingegebenen Zeichen

Symbol	Bedeutung
C	Löscht alle eingegebenen Zeichen
→	Verschiebt die Eingabeposition um eine Position nach rechts
€	Verschiebt die Eingabeposition um eine Position nach links
₽X	Löscht ein Zeichen links von der Eingabeposition

5.5 Bedienelemente

Symbol	Bedeutung
Θ	Minus-Taste In einem Menü oder Untermenü: Verschiebt die Auswahlleiste in einer Auswahlliste nach oben In einem Wizard: Bestätigt den Parameterwert und geht zum vorherigen Parameter In einem Text- und Zahleneditor: Bewegt in der Eingabemaske den Auswahlbalken nach links (rückwärts).
	Plus-Taste In einem Menü oder Untermenü: Verschiebt die Auswahlleiste in einer Auswahlliste nach unten In einem Wizard: Bestätigt den Parameterwert und geht zum nächsten Parameter In einem Text- und Zahleneditor: Bewegt die Auswahlleiste in einem Eingabebildschirm nach rechts.
E	Eingabetaste Betriebsanzeige: Kurzer Tastendruck: Öffnet das Bedienmenü Durch Drücken der Taste für zwei Sekunden öffnet sich das Kontextmenü Kurzer Tastendruck in einem Menü, Untermenü: Öffnet das ausgewählte Menü, Untermenü oder den Parameter Startet den Wizard Schließt den Hilfetext des Parameters, wenn ein Hilfetext geöffnet ist Taste für zwei Sekunden drücken für Parameter: Öffnet den Hilfetext zur Funktion des Parameters, falls vorhanden In einem Wizard: Öffnet die Editieransicht des Parameters Kurzer Tastendruck in einem Text- und Zahleneditor: Öffnet die ausgewählte Gruppe Führt die ausgewählte Aktion aus Taste für zwei Sekunden drücken bestätigt den editierten Parameterwert
○+⊕	Escape-Tastenkombination, gleichzeitiges Drücken der Tasten Kurzer Tastendruck in einem Menü, Untermenü: Die aktuelle Menüebene wird verlassen und Wechsel zur nächsten höheren Ebene Schließt den Hilfetext des Parameters, wenn ein Hilfetext geöffnet ist Tasten für zwei Sekunden drücken Rückkehr zur Betriebsanzeige in die Home-Position In einem Wizard: Verlässt den Wizard und wechselt zur nächsten höheren Ebene In einem Text-und Zahleneditor: Schließt den Text- oder Zahleneditor ohne Änderungen zu übernehmen
-+E	Minus-/Eingabetaste-Tastenkombination, Tasten gleichzeitig drücken Verringert den Kontrast für eine hellere Einstellung
+ E	Plus-/Eingabetaste-Tastenkombination, Tasten gleichzeitig drücken und gedrückt halten Erhöht den Kontrast für eine dunklere Einstellung
⊕+⊕+ ©	Minus-/Plus-/Eingabetaste-Tastenkombination, Tasten gleichzeitig drücken In der Betriebsanzeige: Aktiviert oder deaktiviert die Tastenverriegelung, nur Anzeigemodul SD02

5.5.1 Kontextmenü aufrufen

Mithilfe des Kontextmenüs kann der Benutzer schnell und direkt aus der Betriebsanzeige folgende Menüs aufrufen:

- Setup
- Data backup
- Simulation

Kontextmenü aufrufen und schließen

Der Benutzer befindet sich in der Betriebsanzeige.

- 1. 🗉 2 Sekunden lang drücken.
 - ► Das Kontextmenü öffnet sich.

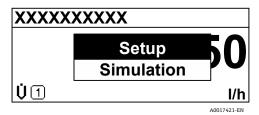


Abbildung 45. Kontextmenü

- 2. Gleichzeitig □ + ± drücken.
 - └ Das Kontextmenü wird geschlossen und die Betriebsanzeige erscheint.

Menü über Kontextmenü aufrufen

- 1. Kontextmenü öffnen.
- 2. Mit ± zum gewünschten Menü navigieren.
- 3. Mit 🗉 die Auswahl bestätigen.
 - └ Das gewählte Menü öffnet sich.

5.5.2 Navigieren und auswählen

Zur Navigation im Bedienmenü dienen verschiedene Bedienelemente. Dabei erscheint der Navigationspfad links in der Kopfzeile. Vor den einzelnen Menüs werden Symbole angezeigt. Diese Symbole erscheinen auch in der Kopfzeile während der Navigation. Das nachfolgende Beispiel gibt einen Überblick über den Navigationspfad.

XXXXXXXX 20.50 0104-1 Main menu 1. **E** Display/operat. ✓ Setup Main menu 2. Display/operat **⊮** Setup া / ../Display/operat 0091-1 Access stat.disp 3. Locking status Display 🖓 / ../Display/operat. Locking status 4. ጭ / ../Display 5. E Contrast display Display intervall ্ব / ../Format display 0098-1 √ 1 value, max. Bargr. + 1 value 2 values Val. large+2val. 🕅 / ../Format display 0098-1 √ 1 value, max. Bargr. + 1 value 7. Val. large+2val. XXXXXXXX 10.50 8. mΑ Θ \oplus 2800

Beispiel: Anzahl der angezeigten Messwerte auf zwei Werte einstellen

Abbildung 46. Anzahl der angezeigten Messwerte auf zwei Werte einstellen

5.5.3 Hilfetext aufrufen

Für einige Parameter stehen Hilfetexte zur Verfügung, die der Benutzer aus der Navigationsansicht heraus aufrufen kann. Diese beschreiben kurz die Funktion des Parameters und unterstützen damit eine schnelle und sichere Inbetriebnahme.

Öffnen und Schließen des Hilfetextes

Der Benutzer befindet sich in der Navigationsansicht und der Markierungsbalken steht auf einem Parameter.

- 1. E 2 Sekunden lang drücken.
 - ► Der Hilfetext zum markierten Parameter öffnet sich.

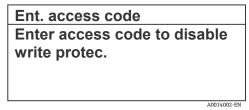


Abbildung 47. Hilfetext für Parameter Enter access code

- 2. Gleichzeitig ⊡ + ± drücken.
 - → Der Hilfetext schließt sich.

5.5.4 Parameter ändern

Eine Beschreibung der Editieransicht bestehend aus Text und numerischen Editoren mit Symbolen, befindet sich im Abschnitt Editieransicht → 🖹.

Beispiel: Messstellenbezeichnung im Parameter Tag description von 001-FT-101 in 001-FT-102 abändern

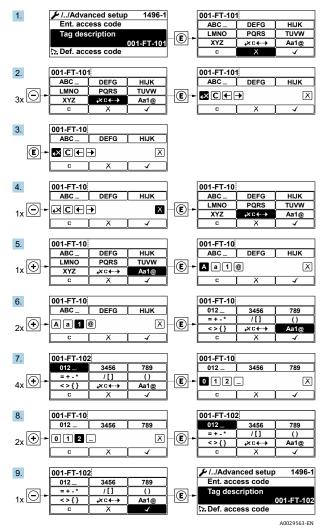
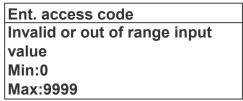



Abbildung 48. Ändern der Messstellenbezeichnung im Parameter Tag description

Wenn der eingegebene Wert außerhalb des zulässigen Wertebereichs liegt, wird eine Meldung ausgegeben.

A0014049-E

Abbildung 49. Der eingegebene Wert liegt außerhalb des zulässigen Wertebereichs

5.5.5 Benutzerrollen und ihre Zugriffsrechte

Die beiden Benutzerrollen Operator und Maintenance erhalten unterschiedlichen Schreibzugriff auf die Parameter, wenn der Kunde einen benutzerspezifischen Zugangscode definiert. Dadurch wird die Gerätekonfiguration durch das Gerätedisplay vor unbefugtem Zugriff geschützt. Siehe Abschnitt Einstellungen vor unbefugtem Zugriff schützen $\rightarrow \square$.

Berechtigung zum Zugriff auf Parameter: Benutzerrolle Operator

Status Zugangscode	Lesezugriff	Schreibzugriff
Es wurde kein Zugangscode definiert, Werkseinstellung	V	V
Nach Definition eines Zugangscodes	V	1

Berechtigung zum Zugriff auf Parameter: Benutzerrolle Maintenance

Status Zugangscode	Lesezugriff	Schreibzugriff
Es wurde kein Zugangscode definiert, Werkseinstellung	V	V
Nach Definition eines Zugangscodes	V	√ ²

Der Parameter **Access status** zeigt an, mit welcher Benutzerrolle der Benutzer aktuell angemeldet ist. Navigationspfad: Operation → Access status.

5.5.6 Schreibschutz über Zugangscode deaktivieren

Wenn auf dem Gerätedisplay vor einem Parameter das Symbol 6 erscheint, ist der Parameter durch einen benutzerspezifischen Zugangscode schreibgeschützt und sein Wert momentan über die Vor-Ort-Bedienung nicht änderbar. Siehe Abschnitt Schreibschutz mit Zugangscode $\rightarrow \textcircled{6}$.

Der Parameterschreibschutz via Vor-Ort-Bedienung kann durch Eingabe des benutzerspezifischen Zugangscodes im Parameter **Enter access code** über die jeweilige Zugriffsoption deaktiviert werden.

- 1. Nach Drücken von 🗉 erscheint die Eingabeaufforderung für den Zugangscode.
- 2. Zugangscode eingeben.
 - ightharpoonup Das Symbol $lap{\ \ \, }$ vor den Parametern verschwindet. Alle zuvor schreibgeschützten Parameter sind nun freigegeben.

5.5.7 Tastatursperre aktivieren und deaktiveren

Über die Tastatursperre lässt sich der Zugriff auf das gesamte Bedienmenü in der Vor-Ort-Bedienung sperren. Ein Navigieren durch das Bedienmenü oder ein Ändern der Werte von einzelnen Parametern ist damit nicht mehr möglich. Der Benutzer kann nur die Messwerte auf der Betriebsanzeige ablesen.

Vor-Ort-Bedienung mit Touch Control

Die Tastatursperre wird über ein Kontextmenü ein- und ausgeschaltet.

56

¹ Bestimmte Parameter sind trotz des definierten Zugangscodes immer änderbar und damit vom Schreibschutz ausgenommen, da sie die Messung nicht beeinflussen. Siehe Abschnitt *Schreibschutz mit Zugangscode* → 🖺.

² Bei Eingabe eines falschen Zugangscodes erhält der Benutzer die Zugriffsrechte der Benutzerrolle Operator.

Tastatursperre aktivieren

Die Tastatursperre wird automatisch aktiviert wenn Folgendes vorliegt:

- Bei jedem Neustart des Geräts
- Wenn das Gerät länger als eine Minute in der Messwertanzeige nicht bedient wurde
- 1. Das Gerät befindet sich in der Messwertanzeige.
 - E mindestens 2 Sekunden lang drücken.
 - └ Es wird ein Kontextmenü angezeigt.
- 2. Im Kontextmenü Keylock on auswählen.
 - □ Die Tastatursperre ist aktiviert.
- Versucht der Benutzer auf das Bedienmenü zuzugreifen, während die Tastatursperre aktiviert ist, erscheint die Meldung **Keylock on.**

Tastatursperre deaktivieren

- 1. Bei aktivierter Tastatursperre:
 - E mindestens 2 Sekunden lang drücken.
 - └ Es wird ein Kontextmenü angezeigt.
- 2. Im Kontextmenü **Keylock off** auswählen.
 - ► Die Tastatursperre ist deaktiviert.

5.6 Zugriff auf das Bedienmenü über den Webbrowser

Dank des integrierten Webservers kann das Gerät über die Serviceschnittstelle (CDI-RJ45) und einen Webbrowser bedient, konfiguriert und für die Modbus-TCP-Signalübertragung angeschlossen werden. Der Aufbau des Bedienmenüs ist dabei derselbe wie beim Gerätedisplay. Neben den Messwerten werden auch Statusinformationen zum Gerät angezeigt, wodurch der Benutzer den Gerätezustand überwachen kann. Zusätzlich können die Daten vom Messgerät verwaltet und die Netzwerkparameter eingestellt werden.

5.6.1 Computeranforderungen

5.6.1.1 Computerhardware

210.1.1. Compater natural c		
II double	Schnittstelle	
Hardware	CDI-RJ45	
Schnittstelle	Der Computer muss über eine RJ45-Schnittstelle verfügen.	
Anschluss	Standard-Ethernet-Kabel mit RJ45-Stecker.	
Bildschirm	Empfohlene Größe: ≥ 12 Zoll, je nach Bildschirmauflösung	

5.6.1.2 Computersoftware

Software	Schnittstelle
Software	CDI-RJ45
Empfohlene Betriebssysteme	 Microsoft Windows 7 oder höher Mobile Betriebssysteme iOS Android
Einsetzbare Webbrowser	 Microsoft Internet Explorer 8 oder höher Microsoft Edge Mozilla Firefox Google Chrome Safari

5.6.1.3 Computereinstellungen

F2	Schnittstelle	
Einstellungen	CDI-RJ45	
Benutzerrechte	Für die Anpassung der IP-Adresse, der Subnetzmaske usw. sind entsprechende Benutzerrechte, beispielsweise Administratorrechte, für TCP/IP- und Proxy-Server-Einstellungen erforderlich.	
Proxy-Server-Einstellungen im Webbrowser	Die Einstellung des Webbrowsers Proxy-Server für Ihr LAN verwenden muss deaktiviert sein.	
JavaScript	JavaScript muss aktiviert sein. Ist JavaScript nicht aktivierbar, http://192.168.1.212/basic.html in der Adresszeile des Webbrowsers eingeben. Eine voll funktionsfähige, aber vereinfachte Darstellung der Bedienmenüstruktur im Webbrowser startet. Bei Installation einer neue Firmware-Version: Um eine korrekte Darstellung zu ermöglichen, den Zwischenspeicher (Cache) des Webbrowsers unter Internetoptionen löschen.	
Netzwerkverbindungen	Es sollten nur die aktiven Netzwerkverbindungen zum Messgerät genutzt werden.	
	Alle weiteren Netzwerkverbindungen wie z.B. WLAN ausschalten.	Alle weiteren Netzwerkverbindungen ausschalten.

•

Bei Verbindungsproblemen siehe Abschnitt Verifikation, $Diagnose\ und\ Fehlerbehebung
ightarrow binom{\triangle}{B}$.

Messgerät

Einstellungen	Schnittstelle	
Einstellungen	CDI-RJ45	
Messgerät	Das Messgerät verfügt über eine RJ45-Schnittstelle.	
Webserver	Webserver muss aktiviert sein, Werkseinstellung: ON. Weitere Informationen enthält der Abschnitt Webserver deaktivieren $\rightarrow \ \ \ \ \ \ \ \$	

Fingtellungen	Schnittstelle		
Einstellungen	CDI-RJ45		
IP-Adresse	 Wenn die IP-Adresse des Geräts nicht bekannt ist, Folgendes ausführen: Die IP-Adresse kann über die Vor-Ort-Bedienung ausgelesen werden: Diagnostics → Device information → IP address Die Kommunikation mit dem Webserver kann über die Standard-IP-Adresse 192.168.1.212 hergestellt werden. Die DHCP-Funktion ist im Gerät werkseitig aktiviert. Mit anderen Worten, das Gerät erwartet eine IP-Adresse, die vom Netzwerk zugewiesen werden soll. Diese Funktion kann deaktiviert werden und das Gerät kann auf die Standard-IP-Adresse 192.168.1.212 eingestellt werden: Dazu DIP-Schalter-Nummer 4 von OFF auf ON setzen. Siehe Abschnitt Analysatoradresse einstellen → □ 		

5.6.2 Verbindung zum Analysator über die Serviceschnittstelle (CDI-RJ45) herstellen

Messgerät vorbereiten

- 1. Sicherungskralle des Anschlussklemmenraumdeckels lösen.
- 2. Anschlussklemmenraumdeckel abschrauben.
- 3. Anzeigemodul abheben und neben dem Gehäuse der Steuerung ablegen. Dann die transparente Schutzabdeckung des RJ45-Steckers öffnen.
- 4. Computer über das standardmäßige Ethernet-Verbindungskabel an den RJ45-Stecker anschließen.

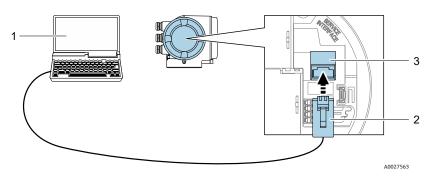


Abbildung 50. Anschluss über CDI-RJ45

Nr.	Name
1	Computer mit Webbrowser für den Zugriff auf den integrierten Webserver des Geräts
2	Standard-Ethernet-Verbindungskabel mit RJ45-Stecker
3	Serviceschnittstelle (CDI-RJ45) des Messgeräts mit Zugriff auf integrierten Webserver

Internet-Protokoll des Computers konfigurieren

Das Messgerät arbeitet ab Werk mit dem Dynamic Host Configuration Protocol (DHCP). Die IP-Adresse des Messgeräts wird vom Automatisierungssystem/DHCP-Server automatisch zugewiesen.

Die IP-Adresse kann dem Messgerät auf unterschiedliche Weise zugeordnet werden:

- **Dynamic Host Configuration Protocol (DHCP), Werkseinstellung:** Die IP-Adresse wird dem Messgerät vom Automatisierungssystem/DHCP-Server automatisch zugewiesen.
- Die IP-Adresse wird mit DIP-Schaltern eingestellt. Siehe Abschnitt Standard-IP-Adresse über DIP-Schalter aktivieren → □.
- Softwareadressierung: Die IP-Adresse wird über den Parameter IP address eingegeben.
- **DIP-Schalter für Standard-IP-Adresse:** Zum Aufbau der Netzwerkverbindung über die Serviceschnittstelle (CDI-RJ45) wird die fest zugewiesene IP-Adresse 192.168.1.212 verwendet.

Die folgenden Angaben beziehen sich auf die Standard-Ethernet-Einstellungen des Geräts:

- 1. Messgerät einschalten.
- 3. Wird keine zweite Netzwerkkarte verwendet, alle Anwendungen auf dem Notebook schließen.
 - └ Anwendungen, die Internet oder ein Netzwerk erfordern, wie beispielsweise E-Mail-Anwendungen, SAP-Anwendungen oder Internet-Browser.
- 4. Alle offenen Internet-Browser schließen.
- 5. Eigenschaften des Internet Protocol (TCP/IP) wie in der Tabelle unten definiert konfigurieren:
- Nur eine Serviceschnittstelle (CDI-RJ45 Serviceschnittstelle) aktivieren
- Falls eine gleichzeitige Kommunikation erforderlich ist: Verschiedene IP-Adressbereiche konfigurieren, beispielsweise 192.168.0.1 und 192.168.1.212 (CDI-RJ45-Service-Schnittstelle).

IP-Adresse des Geräts (Werkseinstellung): 192.168.1.212

IP-Adresse 192.168.1.XXX; für XXX sind alle Ziffernfolgen möglich, außer: 0, 212 und 255 \rightarrow z. B 192.168.1.213	
Subnet-Maske	255.255.255.0
Standard-Gateway	192.168.1.212 oder Zellen leer lassen

HINWEIS

• Gleichzeitigen Zugriff auf das Messgerät über die Serviceschnittstelle (CDI-RJ45) vermeiden. Es könnte ein Netzwerkkonflikt entstehen.

5.6.3 Webbrowser starten

- 1. Webbrowser auf dem Computer starten.
- 2. IP-Adresse des Webservers in der Adresszeile des Webbrowsers eingeben: 192.168.1.212
 - ► Die Login-Seite wird angezeigt.

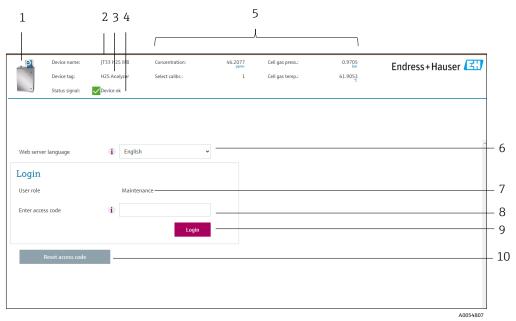


Abbildung 51. Login-Seite

Nr.	Beschreibung	Nr.	Beschreibung
1	Gerätebild	6	Bediensprache
2	Gerätename	7	Benutzerrolle
3	Gerätebezeichnung	8	Zugangscode
4	Statussignal	9	Login
5	Aktuelle Messwerte	10	Zugangscode zurücksetzen → 🖺

Wenn keine Anmeldeseite angezeigt wird oder die Seite unvollständig ist, siehe Abschnitt Verifikation, Diagnose $und Fehlerbehebung <math>\rightarrow \square$.

5.6.4 Anmelden

- 1. Gewünschte Bediensprache für den Webbrowser wählen.
- $\hbox{$2$.} \ \ Benutzerspezifischen Zugangscode eingeben. } \\ 0000$
 - Es handelt sich um den werkseitigen Zugangscode, der vom Kunden geändert werden kann.
- 3. Eingabe mit **OK** bestätigen.
- Wenn 10 Minuten lang keine Aktion durchgeführt wird, springt der Webbrowser automatisch zur Login-Webseite zurück.

5.6.5 Bedienoberfläche

Abbildung 52. Bedienoberfläche des Webbrowsers

Nr.	Beschreibung
1	Funktionszeile
2	Bediensprache
3	Navigationsbereich

Kopfzeile

In der Kopfzeile erscheinen folgende Informationen:

- Gerätebezeichnung
- Gerätestatus mit Statussignal. Siehe Abschnitt *Statussignale* → 🗎
- Aktuelle Messwerte

Funktionszeile

Funktionen	Bedeutung		
Measured values	Anzeige der Messwerte vom Messgerät		
Menu	Zugriff auf das Bedienmenü vom Messgerät aus Die Struktur des Bedienmenüs entspricht der Struktur des Gerätedisplays		
Device status	Anzeige der aktuell anstehenden Diagnosemeldungen, gelistet nach ihrer Priorität		
Data management	 Datenaustausch zwischen Computer und Messgerät Konfiguration vom Messgerät laden: XML-Format, Konfiguration speichern Konfiguration im Messgerät speichern: XML-Format, Konfiguration wiederherstellen Ereignisliste als CSV-Datei exportieren Parametereinstellungen als CSV-Datei exportieren und Dokumentation der Messstellenkonfiguration erstellen Heartbeat Verification-Log als PDF-Datei exportieren (nur verfügbar mit Anwendungspaket Heartbeat Verification) Protokolldateien der SD-Karte als CSV-Datei exportieren Flashen einer Firmware-Version 		
Network configuration	Konfiguration und Überprüfung aller notwendigen Parameter für den Verbindungsaufbau zum Messgerät Netzwerkeinstellungen wie IP-Adresse, MAC-Adresse Geräteinformation wie Seriennummer, Firmware-Version		
Logout	Beenden des Bedienvorgangs und Aufruf der Anmeldeseite		

Navigationsbereich

Wenn eine Funktion in der Funktionszeile ausgewählt wird, öffnen sich im Navigationsbereich die entsprechenden Untermenüs. Der Benutzer kann nun durch die Menüstruktur navigieren.

Arbeitsbereich

Abhängig von der gewählten Funktion und ihren Untermenüs können in diesem Bereich verschiedene Aktionen durchgeführt werden:

- Parameter einstellen
- Messwerte auslesen
- Hilfetext aufrufen
- Up-/Download starten

5.6.6 Webserver deaktivieren

Der Webserver des Messgeräts kann mithilfe des Parameters **Web server functionality** je nach Bedarf ein- und ausgeschaltet werden.

Navigation Menü Expert → Communication → Web server

Parameterübersicht mit Kurzbeschreibung

Parameter	Beschreibung	Auswahl	Werkseinstellung
Web server functionality	Webserver ein- und ausschalten	Off On	On

Funktionsumfang des Parameters Web server functionality

Option	Beschreibung
Off	Der Webserver ist komplett deaktiviert.Port 80 ist gesperrt.
On	 Die komplette Webserver-Funktionalität steht zur Verfügung. JavaScript wird genutzt. Das Passwort wird verschlüsselt übertragen. Eine Änderung des Passworts wird ebenfalls verschlüsselt übertragen.

Webserver aktivieren

Ist der Webserver deaktiviert, kann er nur über das Gerätedisplay und den Parameter Web server functionality erneut aktiviert werden.

5.6.7 Abmelden

Vor dem Abmelden mit der Funktion **Data management** eine Datensicherung durchführen.

- 1. In der Funktionszeile Logout auswählen.
 - └ Der Startbildschirm mit dem Anmeldefeld öffnet sich.
- 2. Webbrowser schließen.
- 3. Wenn sie nicht mehr benötigt werden, die geänderten Eigenschaften des Internetprotokolls (TCP/IP) zurücksetzen. Siehe Abschnitt *Funktionscodes Modbus-RS485 und Modbus-TCP* → ⊜.
- Wurde die Kommunikation mit dem Webserver über die standardmäßige IP-Adresse 192.168.1.212 hergestellt, muss DIP-Schalter Nr. 10 von **ON** auf **OFF** zurückgesetzt werden. Danach ist die IP-Adresse des Geräts wieder aktiv für die Netzwerkkommunikation.

5.7 Fernbedienung mit Modbus

5.7.1 Analysator über Modbus-RS485 Protokoll anschließen

Diese Kommunikationsschnittstelle ist über Modbus-RTU over RS485 verfügbar.

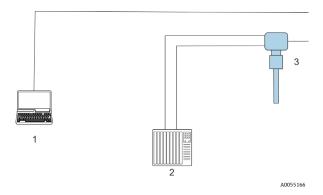


Abbildung 53. Anschluss über Modbus-RTU und über RS485-Protokoll

Nr.	Beschreibung
1	Computer mit Webbrowser für den temporären Zugriff auf den Webserver für Einstellungen und Diagnose
2	Automatisierungs-/Steuerungssystem wie beispielsweise SPS
3	JT33 TDLAS-Gasanalysator

5.7.2 Analysator über Modbus-TCP anschließen

Diese Kommunikationsschnittstelle ist über das Modbus-TCP/IP-Netzwerk verfügbar: Sterntopologie.

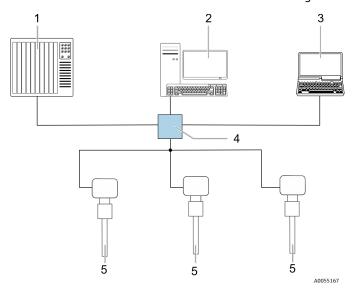


Abbildung 54. Anschluss über Modbus-TCP-Protokoll

Nr.	Beschreibung
1	Automatisierungs-/Steuerungssystem wie beispielsweise SPS
2	Workstation für Messbetrieb
3	Computer mit Webbrowser für den Zugriff auf den integrierten Webserver des Geräts
4	Ethernet Switch
5	JT33 TDLAS-Gasanalysator

6 Modbus-Kommunikation

6.1 Übersicht zu Gerätebeschreibungsdateien

Aktuelle Versionsdaten des Geräts.

Firmwareversion	01.05	 Auf Titelseite der Betriebsanleitung Diagnostics → Device information → Firmware version
Freigabedatum Firmware-Version	09.2024	

6.2 Funktionscodes für Modbus-RS485 und Modbus-TCP

Mit dem Funktionscode wird festgelegt, welche Lese- oder Schreibaktion über das Modbus-Protokoll ausgeführt wird. Das Messgerät unterstützt folgende Funktionscodes:

Code	Name	Beschreibung	Anwendungsbereich
03	Read holding register	Der Client liest ein oder mehrere Modbus-Register aus dem Gerät aus. Mit einem Telegramm lassen sich maximal 125 aufeinanderfolgende Register lesen: 1 Register = 2 Byte. Das Messgerät unterscheidet nicht zwischen den Funktionscodes 03 und 04. Diese Codes ergeben das gleiche Ergebnis.	Geräteparameter mit Lese- und Schreibzugriff lesen
04	Read input register	Der Client liest ein oder mehrere Modbus-Register aus dem Gerät aus. Mit einem Telegramm lassen sich maximal 125 aufeinanderfolgende Register lesen: 1 Register = 2 Byte. Das Messgerät unterscheidet nicht zwischen den Funktionscodes 03 und 04. Diese Codes ergeben das gleiche Ergebnis.	Geräteparameter mit Lesezugriff lesen
06	Write single registers	Der Client schreibt einen neuen Wert in ein Modbus-Register des Messgeräts. Mit Funktionscode 16 können über nur ein Telegramm mehrere Register beschrieben werden.	Beschreiben von nur einem Geräteparameter
08	Diagnostics	Der Client prüft die Kommunikationsverbindung zum Messgerät. Folgende Diagnosecodes werden unterstützt: Unterfunktion 00 = Rückgabe von Abfragedaten, für Loopback- Test Unterfunktion 02 = Rückgabe des Diagnoseregisters	
16	Write multiple registers	Der Client schreibt einen neuen Wert in mehrere Modbus-Register des Geräts. Mit einem Telegramm lassen sich maximal 120 aufeinanderfolgende Register beschreiben. Wenn die gewünschten Geräteparameter nicht als Gruppe verfügbar sind und trotzdem über ein einzelnes Telegramm angesprochen werden müssen, die Modbus-Data Map verwenden Siehe Abschnitt Modbus Data Map →	Write multiple device parameters
23	Read/Write multiple registers	Der Client liest und schreibt maximal 118 Modbus-Register des Messgeräts gleichzeitig mit einem Telegramm. Der Schreibzugriff wird vor dem Lesezugriff ausgeführt.	Write and read multiple device parameters

Broadcast Messages sind nur mit den Funktionscodes 06, 16 und 23 zulässig.

6.3 Reaktionszeit

Die Zeit, in der das Messgerät auf das Anforderungstelegramm (Request) des Modbus-Client anspricht, beträgt typischerweise 3 bis 5 ms.

6.4 Modbus Data Map

Funktion der Modbus Data Map

Das Gerät verfügt über einen speziellen Speicherbereich, die Modbus Data Map, für maximal 16 Geräteparameter. Dadurch können Benutzer mehrere Geräteparameter über Modbus-RS485 oder Modbus-TCP abrufen und nicht nur einzelne Geräteparameter oder eine Gruppe aufeinanderfolgender Geräteparameter. Modbus-TCP/IP-Clients und - Server hören und empfangen Modbus-Daten über Port 502.

Die Gruppierung von Geräteparametern ist flexibel, und der Modbus-Client kann gleichzeitig mit einem einzigen Anforderungstelegramm den gesamten Datenblock lesen oder in ihn schreiben.

Aufbau der Modbus Data Map

Die Modbus Data Map besteht aus zwei Datensätzen:

- **Scan-Liste, Konfigurierungsbereich:** Die zu gruppierenden Geräteparameter werden in einer Liste definiert, indem ihre Modbus-RS485- oder Modbus-TCP-Registeradressen in die Liste eingetragen werden.
- **Datenbereich:** Das Messgerät liest die in der Scan-Liste eingetragenen Registeradressen zyklisch aus und schreibt die zugehörigen Gerätedaten in den Datenbereich.

6.4.1 Konfiguration der Scan-Liste

Bei der Konfiguration müssen die zu gruppierenden Modbus-RS485- oder Modbus-TCP-Registeradressen der Geräteparameter in die Scan-Liste eingetragen werden. Dabei sind folgende grundlegende Anforderungen der Scan-Liste zu beachten:

Max. Einträge	16 Geräteparameter
Unterstützte Geräteparameter	Unterstützt werden nur Parameter mit folgenden Eigenschaften: Zugriffsart: Lese- oder Schreibzugriff Datentyp: Float (Gleitpunkt) oder Integer (Ganzzahl)

Konfiguration der Scan-Liste über Modbus-RS485 oder Modbus-TCP

Erfolgt über die Registeradressen 5001 bis 5016

Scan-Liste

Nr.	Modbus-RS485- oder Modbus-TCP- Register	Datentyp	Konfigurationsregister
0	Register 0 der Scan-Liste	Integer	Register 0 der Scan-Liste
		Integer	
15	Register 15 der Scan-Liste	Integer	Register 15 der Scan-Liste

6.4.2 Auslesen von Daten über Modbus-RS485 oder Modbus-TCP

Der Modbus-Client greift auf den Datenbereich der Modbus Data Map zu, um die aktuellen Werte der in der Scan-Liste definierten Geräteparameter auszulesen.

Client-Zugriff auf Datenbereich	Von Registeradressen 5051 bis 5081
---------------------------------	------------------------------------

Datenbereich

Geräteparameterwert	Modbus-RS485- oder Modbus-TCP-Register	Datentyp ³	Zugriff ⁴
Inhalt von Register 0 der Scan- Liste	5051	Integer/Float	Read/Write
Inhalt von Register 1 der Scan- Liste	5053	Integer/Float	Read/Write
Inhalt von Register der Scan- Liste			
Inhalt von Register 15 der Scan- Liste	5081	Integer/Float	Read/Write

6.5 Modbus-Register

Parameter	Register	Datentyp	Zugriff	Bereich
Concentration	9455 bis 9456	Float	Read	Gleitkommazahl mit Vorzeichen
Cell gas temperature	21854 bis 21855	Float	Read	Gleitkommazahl mit Vorzeichen
Cell gas pressure	25216 bis 25217	Float	Read	Gleitkommazahl mit Vorzeichen
Diagnostic service ID	2732	Integer	Read	0 bis 65535
Diagnostic number	6801	Integer	Read	0 bis 65535
Diagnostic Status signal	2075	Integer	Read	0: OK 1: Fehler (F) 2: Funktionsprüfung (C) 8: Außerhalb der Spezifikation (S) 4: Wartungsbedarf (M) 16: 32: Nicht kategorisiert
Diagnostic string	6821 bis 6830	Zeichenkette	Read	Diagnostic number, Service ID und Status Signal
Pipeline Pressure	9483 bis 9484	Float	Read/Write	0 bis 500 bar Schreibzugriff auf diesen Wert, wenn Modus Pipeline pressure = External value
Validierung starten	30015	Integer	Read/Write	0: Abbrechen, 1: Start

 $^{^{\}rm 3}$ Der Datentyp hängt von den in der Scan-Liste eingetragenen Geräteparametern ab.

Endress+Hauser 67

-

⁴ Der Datenzugriff hängt von den in der Scan Liste eingetragenen Geräteparametern ab. Unterstützt der eingegebene Geräteparameter den Lese-und Schreibzugriff, kann auch vom Datenbereich aus auf den Parameter zugegriffen werden.

7 Inbetriebnahme

7.1 Sprache

Werkseinstellung: English

7.2 Messgerät konfigurieren

Das Menü **Setup** mit seinen geführten Wizards enthält alle Parameter, die für den Standard-Messbetrieb benötigt werden.

Navigation zum Menü Setup

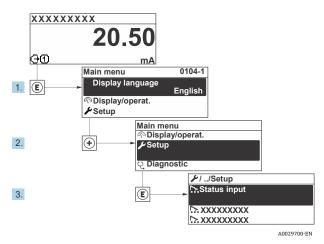
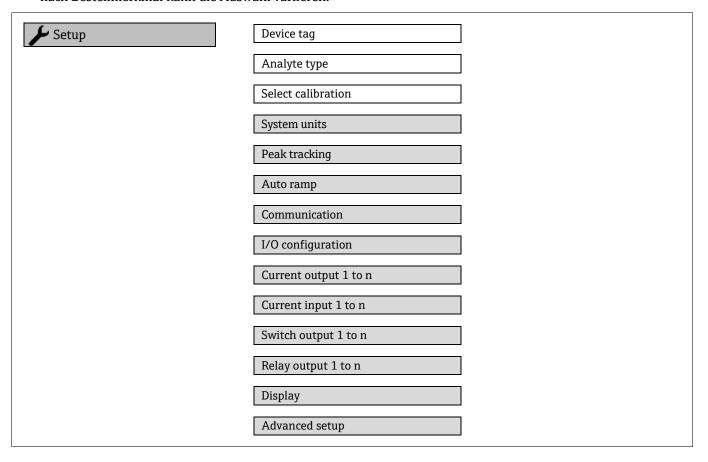



Abbildung 55. Beispiel Gerätedisplay

Abhängig von der Geräteausführung sind nicht alle Untermenüs und Parameter in jedem Gerät verfügbar. Je nach Bestellmerkmal kann die Auswahl variieren.

7.3 Messstellenbezeichnung definieren

Um die Messstelle innerhalb der Anlage schnell identifizieren zu können, kann mithilfe von Parameter **Device Tag** eine eindeutige Bezeichnung eingegeben und damit die Werkseinstellung geändert werden.

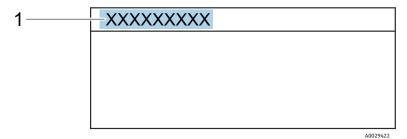


Abbildung 56. Kopfzeile der Betriebsanzeige mit Messstellenbezeichnung (1)

Navigation Menü Setup → Device tag

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Device tag	Eingabe der Bezeichnung für die Messstelle.	Max. 32 Zeichen wie Ziffern oder Sonderzeichen (z. B. @, %, /)	H ₂ S-Analysator

7.4 Analyttyp einstellen

Legt den vom Analysator gemessenen Analyttyp fest.

Navigation Menü Setup → Analyte type

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Analyte type	Das vom Analysator gemessene Analyt.	_	H ₂ S

7.5 Messkalibrierung auswählen

Auswahl der für das Gerät zu messenden Kalibrierung.

Navigation Menü Setup → Select calibration

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Select calibration	Auswahl der benutzerdefinierten Kalibrierung für die Messung. In den meisten Fällen handelt es sich um folgende Kalibrierungen: 1. Prozessstrom gemäß der vom Kunden bestellten Stromzusammensetzung 2. Methan- oder Stickstoffhintergrund für Validierungsgas ⁵ 3. Nicht verwendet 4. Nicht verwendet	1234	1

Endress+Hauser 69

-

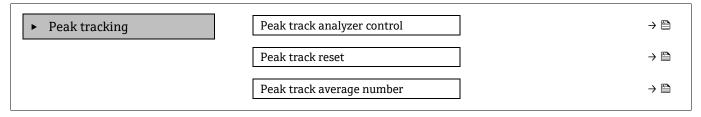
⁵ Das Validierungsgas wird durch die für Merkmal 70 ausgewählte Gaszusammensetzung bestimmt. Wenn der Analysator für Erdgas eingerichtet ist, ist Methan der Hintergrund. Für alle anderen Ströme ist es Stickstoff.

7.6 Systemeinheiten einstellen

Im Untermenü **System units** können die Einheiten für alle Messwerte eingestellt werden.

Abhängig von der Geräteausführung sind nicht alle Untermenüs und Parameter in jedem Gerät verfügbar. Je nach Bestellmerkmal kann die Auswahl variieren.

Navigation Menü Setup → System units


► System units	Concentration unit	
	Temperature unit	
	Pressure unit	
	Length unit	
	Date/time format	

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Concentration unit	Legt die Anzeigeeinheit für die Konzentration fest. Die ausgewählte Einheit gilt für die Konzentration.	 ppmv ppbv % vol lb/MMscf mg/sm3 gr/100 scf mg/Nm3 user conc. 	■ ppmv
Temperature unit	Auswahl der Einheit für die Temperaturdifferenz. Die gewählte Einheit gilt für die Standardabweichung der Zellgastemperatur.	■ °C ■ °K ■ °F ■ °R	Anwendungsspezifisch C F
Pressure unit	Auswahl der Einheit für den Prozessdruck. Die ausgewählte Einheit gilt für den Zellgasdruck.	 MPa a MPa g kPa a kPa g Pa a Pa g bar bar g mbar mBarg psig a psig g 	Anwendungsspezifisch mbar a psig a
Length unit	Legt die Anzeigeeinheit für die Länge fest. Die ausgewählte Einheit gilt für die Zellenlänge.	 m ft in mm μm 	m
Date/time format	Stellt die Anzeigeeinheit für das Datum-/Uhrzeitformat ein.	 dd.mm.yy hh:mm dd.mm.yy hh:mm am/pm mm/dd/yy hh:mm mm/dd/yy hh:mm am/pm 	dd.mm.yy hh:mm

7.7 Peak Tracking einstellen

Das Untermenü **Peak tracking** steuert das Software-Dienstprogramm, das den Laser-Scan auf der Absorptionsspitze zentriert hält. Unter bestimmten Umständen kann sich die Peak-Tracking-Funktion irrtümlich auf die falsche Spitze ausrichten. Wenn der Systemalarm angezeigt wird, muss die Peak-Tracking-Funktion zurückgesetzt werden.

Navigation Menü Setup → Peak Tracking

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Peak track analyzer control	_	Stellt die Peak-Tracking-Funktion auf Off oder On.	Off On	Off
Peak track reset	Wird verwendet, wenn oben Peak Tracking eingestellt wurde.	Setzt das Peak Tracking zurück.	OffReset	Off
Peak track average number	Wird verwendet, wenn oben Peak Tracking eingestellt wurde.	Legt die Anzahl der Messungen fest, bevor eine Peak-Tracking- Justierung vorgenommen wird.	Positive Ganzzahl	10

7.8 Rampenabgleich einstellen

Das Untermenü **Ramp adjustment** steuert das Programm, das den Laser scan in der richtigen Breite hält. Unter bestimmten Umständen kann die Funktion zum Rampenabgleich aus dem Takt geraten. Wenn der Systemalarm angezeigt wird, muss die Funktion zum Rampenabgleich zurückgesetzt werden.

Navigation Setup menu → Ramp adjustment

► Ramp adjustment	Ramp adj control
	Ramp adj reset

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Ramp adjustment analyzer control	_	Setzt den Rampenabgleich auf Off oder On.	OffOn	Off
Ramp adjustment reset	Wird verwendet, wenn der Rampenabgleich eingeschaltet ist	Zurücksetzen des Rampenabgleichs	OffReset	Off

7.9 Kommunikationsschnittstelle konfigurieren

Das Untermenü **Communication** führt systematisch durch alle Parameter, die für die Auswahl und Einstellung der Kommunikationsschnittstelle konfiguriert werden müssen.

Navigation Menü Setup → Communication

► Communication	Bus address ⁶	
	Baudrate ⁶	
	Data trans. mode ⁶	
	Parity ⁶	
	Byte order ⁷	
	Prio. IP address ⁸	
	Inactivity timeout ⁸	
	Max connections ⁸	
	Failure mode ⁷	

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Bus address	Nur Modbus-RS485	Geräteadresse eingeben.	1 bis 247	247
Baudrate	Modbus-RS485- Gerät	Einstellen der Datenübertragungsgeschwindigkeit.	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD 	19200 BAUD
Data trans. mode	Modbus-RS485- Gerät	Legt den Datenübertragungsmodus fest.	ASCII RTU	RTU

 $^{^6}$ Nur Modbus-RS485

 $^{^{7}}$ Sowohl Modbus-RS485 als auch TCP

⁸ Nur Modbus-TCP

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Parity	Modbus-RS485- Gerät	Parität-Bits wählen.	Auswahlliste ASCII O = Option Even 1 = Option Odd Auswahlliste RTU- Option O = Option Even 1 = Option Odd 2 = Option None/1 Stop Bit 3 = Option None/2 Stop Bits	Even
Byte order	Sowohl Modbus- RS485 als auch Modbus-TCP	Übertragungsreihenfolge der Bytes wählen.	■ 0-1-2-3 ■ 3-2-1-0 ■ 1-0-3-2 ■ 2-3-0-1	1-0-3-2
Prio. IP address	Modbus-TCP-Gerät	Die IP-Adresse, für die Verbindungen vom Prioritätspool akzeptiert werden.	IP address	0.0.0.0
Inactivity timeout	Modbus-TCP-Gerät	Zeit, bis eine Verbindung aufgrund von Inaktivität beendet werden kann. Eine Einstellung von Null bedeutet kein Timeout.	0 bis 99 Sekunden	0 Sekunden
Max connections	Modbus-TCP-Gerät	Maximale Anzahl gleichzeitiger Verbindungen. Prioritätspoolverbindungen haben Vorrang und werden nie zurückgewiesen, was dazu führt, dass die älteste Verbindung beendet wird.	1 bis 4	4
Failure mode	Sowohl Modbus- RS485 als auch Modbus-TCP	Über die Modbus-Kommunikation festlegen, wie Messwerte bei Auftreten einer Diagnosemeldung ausgegeben werden sollen. Not a Num = NaN	_	_

7.10 Stromeingang konfigurieren

Der Wizard **Current input** leitet den Benutzer systematisch durch alle Parameter, die zur Konfiguration des Stromeingangs eingestellt werden müssen.

Navigation Menü Setup → Current input

► Current input 1 to n	Current span	
	Terminal number	
	Signal mode	
	0/4 mA value	
	20 mA value	
	Failure mode	
	Failure current	

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Current span	_	Auswahl des Strombereichs für die Prozesswertausgabe und das Alarmsignal für oberen/unteren Füllstand.	 420 mA 420 mA NE 420 mA US 020 mA 	Anwendungsspezifisch 420 mA NE 420 mA US
Terminal number	_	Zeigt die Klemmen- nummern an, die vom Stromeingangsmodul verwendet werden.	 Nicht verwendet 24-25 (I/O 2) 22-23 (I/O 3) 	
Signal mode	Das Messgerät ist nicht für den Einsatz im Ex-Bereich mit Schutzart Ex-i zugelassen.	Auswahl des Signalmodus für den Stromeingang.	PassiveActive	Passive
0/4 mA value	_	Wert für 4 mA-Strom eingeben.	Gleitkommazahl mit Vorzeichen	Anwendungsspezifisch mbar a psig a
20 mA value	_	Wert für 20 mA-Strom eingeben.	Gleitkommazahl mit Vorzeichen	Anwendungsspezifisch mbar a psig a
Failure mode	_	Eingangsverhalten im Alarmzustand definieren.	AlarmLetzter gültiger WertDefinierter Wert	Alarm
Failure current	Im Parameter Failure mode ist die Option Defined value ausgewählt.	Den Wert eingeben, der vom Gerät verwendet werden soll, wenn kein Eingangswert vom externen Gerät vorliegt.	Gleitkommazahl mit Vorzeichen	0

7.11 Stromausgang konfigurieren

Der Wizard **Current output** leitet den Benutzer systematisch durch alle Parameter, die zur Konfiguration des Stromausgangs eingestellt werden müssen.

Navigation Menü Setup → Current output

► Current output 1 to n	Pro.var. outp	
	Terminal number	
	Current range output	
	Signal mode	
	Lower range value output	
	Upper range value output	
	Damping current	
	Fixed current	
	Fail.behav.out	
	Failure current	

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Pro.var. outp	_	Auswahl der Prozess- größe für den Stromausgang.	OffConcentrationCell gas temperature	Concentration
Terminal number	_	Zeigt die Klemmen- nummern an, die vom Stromausgangsmodul verwendet werden.	 Nicht verwendet 24-25 (I/O 2) 22-23 (I/O 3) 	_
Current range output	_	Auswahl des Strombereichs für die Prozesswertausgabe und das Alarmsignal für oberen/ unteren Füllstand.	 420 mA NE 420 mA US 420 mA 020 mA Fixed Value 	Zulassungsspezifisch: 420 mA NE 420 mA US
Signal mode	_	Auswahl des Signal- modus für den Stromausgang.	Passive Active	Passive
Lower range value output	Im Parameter Current span ist eine der folgenden Optionen ausgewählt 420 mA NE 420 mA US 420 mA 020 mA	Wert für 4 mA-Strom eingeben.	Gleitkommazahl mit Vorzeichen	0 ppmv

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Upper range value output	Im Parameter Current span ist eine der folgenden Optionen ausgewählt 420 mA NE 420 mA US 420 mA 020 mA	Wert für 20 mA- Strom eingeben.	Gleitkommazahl mit Vorzeichen	Abhängig vom Kalibrierbereich
Damping current	Im Parameter Current span ist eine der folgenden Optionen ausgewählt 420 mA NE 420 mA US 420 mA 020 mA	Einstellen der Reaktionszeit des Ausgangssignals bei Messwert- schwankungen.	0.0 bis 999.9 Sekunden	0 Sekunden
Fixed current	Im Parameter Current span ist die Option Fixed current ausgewählt.		0 bis 22.5 mA	22.5 mA
Fail.behav.out	Im Parameter Current span ist eine der folgenden Optionen ausgewählt 420 mA NE 420 mA US 420 mA 020 mA	Definition des Ausgangsverhaltens im Alarmzustand.	 Min. Max. Letzter gültiger Wert Aktueller Wert Fester Wert 	Max.
Failure current	Im Parameter Failure mode ist die Option Defined value ausgewählt.	Stromausgangswert im Alarmzustand eingeben.	0 bis 22.5 mA	22.5 mA

7.12 Schaltausgang konfigurieren

Der Wizard **Switch Output** führt systematisch durch alle Parameter, die für die Konfiguration des gewählten Ausgangstyps eingestellt werden können.

Navigation Menü Setup → Switch output

► Switch output 1 to n	Operating mode	
	Terminal number	
	Signal mode	
	Switch output function	
	Assign diagnostic behavior	
	Assign limit	
	Assign status	
	Switch-on value	
	Switch-off value	
	Switch-on delay	
	Switch-off delay	
	Invert output signal	

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Operating mode	_	Definition des Ausgangs als Schaltausgang.	Switch	Switch
Terminal number	_	Zeigt die Klemmennummern an, die vom Schaltausgangsmodul verwendet werden.	 Nicht verwendet 24-25 (I/O 2) 22-23 (I/O 3) 	_
Signal mode	_	Auswahl des Signalmodus für den Schaltausgang.	PassiveActivePassive NE	Passive
Switch output function		Auswahl der Funktion für den Schaltausgang.	 Off On Diagnostic behavior Limit Status 	Diagnostic behavior
Assign diagnostic behavior	Im Parameter Switch output function ist die Option Diagnostic behavior ausgewählt.	Diagnoseverhalten für Schaltausgang auswählen.	AlarmAlarm or warningWarning	Alarm
Assign limit	Im Parameter Switch output function ist die Option Limit ausgewählt.	Auswahl der Prozessgröße für die Grenzwertfunktion.	OffConcentration	Off

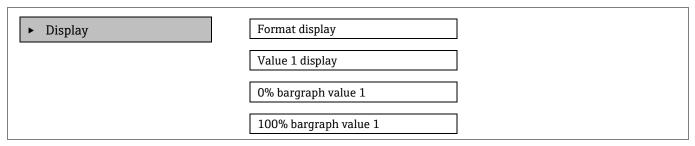
Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
			 Dew point 1⁹ Dew point 2⁹ 	
Assign status	Die Option Status ist im Parameter Switch output function ausgewählt.	Auswahl des Gerätestatus für den Schaltausgang.	OffValidation control	Off
Switch-on value	Im Parameter Switch output function ist die Option Limit ausgewählt.	Messwert für den Einschaltpunkt eingeben.	Gleitkommazahl mit Vorzeichen	0 ppmv
Switch-off value	Im Parameter Switch output function ist die Option Limit ausgewählt.	Messwert für den Ausschalt- punkt eingeben.	Gleitkommazahl mit Vorzeichen	0 ppmv
Switch-on delay	Die Option Limit ist im Parameter Switch output function ausgewählt.	Verzögerung für Einschalten des Statusausgangs definieren.	0.0 bis 100.0 s	0.0 s
Switch-off delay	Die Option Limit ist im Parameter Switch output function ausgewählt.	Verzögerung für das Ausschalten des Statusausgangs definieren.	0.0 bis 100.0 s	0.0 s
Invert output signal	_	Invertieren des Ausgangssignals.	■ No ■ Yes	No

7.13 Relaisausgang konfigurieren

Der Wizard **Relay output** führt systematisch durch alle Parameter, die für die Konfiguration des Relaisausgangs eingestellt werden müssen.

Navigation Menü Setup \rightarrow Relay output 1 to n

► Relay output 1 to n	Relay output function
	Terminal number
	Assign limit
	Assign diagnostic behavior
	Assign status
	Switch-off value
	Switch-on value
	Switch-off delay
	Switch-on delay
	Failure mode


 $^{^{9}}$ Optionen können von anderen Parametereinstellungen abhängig sein.

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Relay output function	_	Auswahl der Funktion für den Relaisausgang.	ClosedOpenDiagnostic behaviorLimitStatus	Diagnostic behavior
Terminal number	_	Zeigt die Klemmennummern an, die vom Relaisausgangs- modul verwendet werden.	 Nicht verwendet 24-25 (I/O 2) 22-23 (I/O 3) 	_
Assign limit	Im Parameter Relay output function ist die Option Limit ausgewählt.	Prozessgröße für Grenz- wertfunktion auswählen.	OffConcentration	Off
Assign diagnostic behavior	Im Parameter Relay output function ist die Funktion Diagnostic behavior ausgewählt.	Diagnoseverhalten für Schaltausgang auswählen.	AlarmAlarm or warningWarning	Alarm
Assign status	Im Parameter Relay output function ist die Option Digital Output ausgewählt.	Auswahl des Gerätestatus für den Schaltausgang.	OffValidation control	Off
Switch-off value	Im Parameter Relay output function ist die Option Limit ausgewählt.	Messwert für den Ausschaltpunkt eingeben.	Gleitkommazahl mit Vorzeichen	0 ppmv
Switch-on value	Im Parameter Relay output function ist die Option Limit ausgewählt.	Messwert für den Einschaltpunkt eingeben.	Gleitkommazahl mit Vorzeichen	0 ppmv
Switch-off delay	Im Parameter Relay output function ist die Option Limit ausgewählt.	Verzögerung für das Ausschalten des Statusausgangs definieren.	0.0 bis 100.0 s	0.0 s
Switch-on delay	Im Parameter Relay output function ist die Option Limit ausgewählt.	Verzögerung für Einschalten des Statusausgangs definieren.	0.0 bis 100.0 s	0.0 s
Failure mode	_	Definition des Ausgangsverhaltens im Alarmzustand.	Actual statusOpenClosed	Open

7.14 Gerätedisplay konfigurieren

Der Wizard **Display** führt systematisch durch alle Parameter, die für die Konfiguration des Gerätedisplays eingestellt werden können.

Navigation Menü Setup → Display

Value 2 display

Value 3 display

0% bargraph value 3

100% bargraph value 3

Value 4 display

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Format display	Ein Gerätedisplay ist vorhanden.	Auswahl, wie die Messwerte auf dem Gerätedisplay ausgegeben werden sollen.	 1 value, max. size 1 bargraph + 1 value 2 values 1 value large + 2 values 4 values 	1 value, max. size
Value 1 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf der Anzeige ausgegeben werden soll.	 Concentration Cell gas pressure Cell gas temperature 	Concentration
0% bargraph value 1	Ein Gerätedisplay ist vorhanden.	Eingabe eines 0%- Werts für die Balkenanzeige	Gleitkommazahl mit Vorzeichen	0 ppmv
100% bargraph value 1	Ein Gerätedisplay ist vorhanden.	Eingabe eines 100%- Werts für die Balkenanzeige	Gleitkommazahl mit Vorzeichen	Abhängig vom Kalibrierbereich
Value 2 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	NoneConcentrationCell gas pressureCell gas temperature	Dewpoint 1
Value 3 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	Für die Auswahlliste siehe Parameter Value 2 display	Cell gas pressure
0% bargraph value 3	Im Parameter Value 3 display wurde eine Auswahl getroffen.	Wert 0% für Balkenanzeige eingeben.	Gleitkommazahl mit Vorzeichen	700 mbar a
100% bargraph value 3	Im Parameter Value 3 display wurde eine Auswahl getroffen.	Wert 100% für Balkenanzeige eingeben.	Gleitkommazahl mit Vorzeichen	1700 mbar a
Value 4 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	Für die Auswahlliste siehe Parameter Value 2 display	Cell gas temperature

7.15 Erweiterte Einstellungen

Das Untermenü **Advanced Setup** mit seinen Untermenüs enthält Parameter für spezifische Einstellungen.

Navigation zum Untermenü Advanced Setup

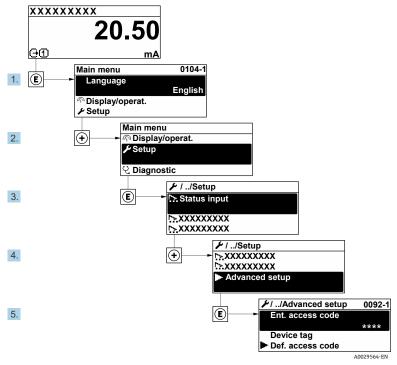
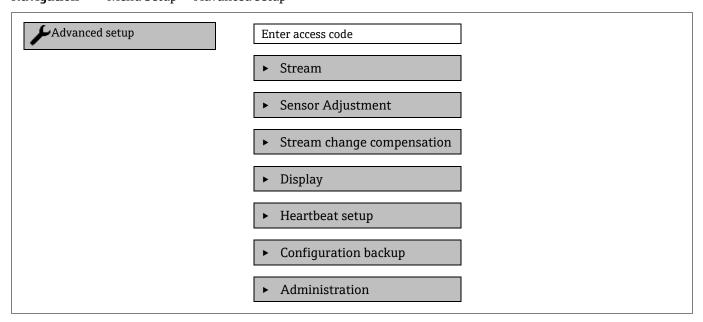
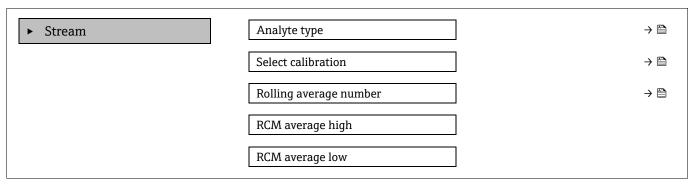



Abbildung 57. Navigation zum Menü Advanced Setup

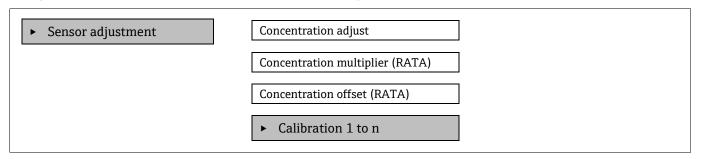
Abhängig von der Geräteausführung kann die Anzahl der Untermenüs variieren. Einige Untermenüs werden nicht in der Betriebsanleitung behandelt. Diese Untermenüs und die darunter angeordneten Parameter werden in der Sonderdokumentation zum Gerät erläutert.


Navigation Menü Setup → Advanced setup

7.15.1 Untermenü Stream

Im Untermenü Stream kann der Benutzer Parameter einstellen, die sich auf den Produktstrom beziehen, der gemessen werden soll.

Navigation Menü Setup → Advanced setup → Stream



Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Analyte type	Der vom Analysator gemessene Analyt	_	H ₂ O
Select calibration	Ändern und Einstellen der Kalibrierung	1234	1
Rolling average number	Legt die Anzahl der Messungen fest, die im laufenden Durchschnitt enthalten sind	Positive Ganzzahl	4
RCM average high	Legt die Anzahl der Messungen fest, die im Schnell-Wechsel- monitor für den hohen laufenden Durchschnitt enthalten sind	Positive Ganzzahl	300
RCM average low	Legt die Anzahl der Messungen fest, die im Schnell-Wechsel- monitor für den niedrigen laufenden Durchschnitt enthalten sind	Positive Ganzzahl	2

7.15.2 Untermenü Sensor adjustment

Das Untermenü **Sensorabgleich** enthält Parameter, die die Funktionalität des Sensors betreffen.

Navigation Menü Setup → Advanced setup → Sensor adjustment

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Concentration adjust	_	Aktiviert oder deaktiviert Justierungsfaktoren.	On Off	Off
Concentration multiplier (RATA)	Wird verwendet, wenn Concentration adjust aktiviert ist.	Faktor zur Anpassung der Steigung.	Gleitkommazahl mit Vorzeichen	1.0
Concentration offset (RATA)	Wird verwendet, wenn Concentration adjust aktiviert ist.	Faktor für Offset- Justierung.	Gleitkommazahl mit Vorzeichen	0

7.15.2.1 Untermenü Calibration 1 to n

Es stehen bis zu 4 Kalibrierungen zur Verfügung. Nur die aktive Kalibrierung wird jederzeit angezeigt.

Navigation Menü Setup → Advanced setup → Sensor adjustment → Calibration

► Calibration 1 to n	Laser midpoint default	
	Laser ramp default	
	Laser modulation amplitude default	

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Laser midpoint default	Der werkseitig eingestellte Mittelwert der aktuellen Rampe für den Laser in 2f- Spektroskopie	Positive Gleitkommazahl	Gemäß Kalibrierung
Laser ramp default	Die werkseitig eingestellte Spanne der Stromrampe für den Laser in 2 <i>f</i> -Spektroskopie	Positive Gleitkommazahl	Gemäß Kalibrierung
Laser modulation amplitude default	Die werkseitig eingestellte Amplitude der aktuellen Modulation des Lasers in 2f- Spektroskopie	Positive Gleitkommazahl	Gemäß Kalibrierung

7.15.3 Untermenü Stream change compensation calibration

Dieses Untermenü enthält Parameter, um die Justierung der Kompensation bei Änderungen im Strom zu konfigurieren. Es stehen bis zu 4 Kalibrierungen zur Verfügung. Nur die aktive Kalibrierung wird jederzeit angezeigt.

Navigation Menü Setup → Advanced setup → Stream change compensation

► Stream change compensation

Calibration 1 to n

Navigation Menü Setup \rightarrow Advanced setup \rightarrow Stream change compensation \rightarrow Calibration 1 to n

► Calibration 1 to n	Stream change compensation	
	Methane CH4	
	Ethane C2H6	
	Propane C3H8	
	IButane C4H10	
	N-Butane C4H10	
	Isopentane C5H12	
	N-Pentane C5H12	
	Neopentane C5H12	
	Hexane+ C6H14+	
	Nitrogen N2	
	Carbon dioxide CO2	
	Hydrogen sulfide H2S	
	Hydrogen H2	

In der nachstehenden Tabelle ist der Begriff **mol** eine Abkürzung für Molenbruch.

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Stream change compensation	Aktiviert oder deaktiviert die Funktion Change Compensation	On Off	Off
Methane CH ₄	Legt den Molenbruch von Methan im Trockengasgemisch fest	0.4 bis 1.0 mol	0.75 mol
Ethane C ₂ H ₆	Legt den Molenbruch von Ethan im Trockengasgemisch fest	0.0 bis 0.2 mol	0.1 mol
Propane C ₃ H ₈	Legt den Molenbruch von Propan im Trockengasgemisch fest	0.0 bis 0.15 mol	0.05 mol
IButane C ₄ H ₁₀	Legt den Molenbruch von Butan im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol
N-Butane C ₄ H ₁₀	Legt den Molenbruch von N-Butan im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol
Isopentane C ₅ H ₁₂	Legt den Molenbruch von Isopentan im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol
N-Pentane C₅H ₁₂	Legt den Molenbruch von N-Pentan im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol
Neopentane C₅H ₁₂	Legt den Molenbruch des Neopentans im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol
Hexane+ C ₆ H ₁₄ +	Legt den Molenbruch von Hexan+ im Trockengasgemisch fest	0.0 bis 0.1 mol	0 mol

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Nitrogen N ₂	Legt den Molenbruch von Stickstoff im Trockengasgemisch fest	0.0 bis 0.55 mol	0 mol
Carbon dioxide CO ₂	Legt den Molenbruch von Kohlendioxid im Trockengas- gemisch fest	0.0 bis 0.3 mol	0.1 mol
Hydrogen sulfide H ₂ S	Legt den Molenbruch von Schwefelwasserstoff im Trockengasgemisch fest	0.0 bis 0.05 mol	0 mol
Hydrogen H ₂	Legt den Molenbruch von Wasserstoff im Trockengasgemisch fest	0.0 bis 0.2 mol	0 mol

7.15.4 Untermenü Additional display configurations

Im Untermenü **Display** können alle Parameter rund um die Konfiguration des Gerätedisplays eingestellt werden.

Navigation Menü Setup → Advanced setup → Display

Navigation Menu Setup → Adva	
► Display	Format display
	Value 1 display
	0% bargraph value 1
	100% bargraph value 1
	Decimal places 1
	Value 2 display
	Decimal places 2
	Value 3 display
	0% bargraph value 3
	100% bargraph value 3
	Decimal places 3
	Value 4 display
	Decimal places 4
	Display language
	Display interval
	Display damping
	Header
	Header text
	Separator
	Backlight

Parameter	Voraussetzung	Beschreibung	Benutzereingabe	Werkseinstellung
Format display	Ein Gerätedisplay ist vorhanden.	Auswahl, wie die Messwerte auf dem Gerätedisplay ausgegeben werden sollen.	 1 value, max. size 1 bargraph + 1 value 2 values 1 value large + 2 values 4 values 	1 value, max. size
Value 1 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf der Anzeige ausgegeben werden soll.	ConcentrationCell gas pressureCell gas temperature	Concentration
0% bargraph value 1	Ein Gerätedisplay ist vorhanden.	Eingabe eines 0%-Werts für die Balkenanzeige	Gleitkommazahl mit Vorzeichen	0 ppmv
100% bargraph value 1	Ein Gerätedisplay ist vorhanden.	Eingabe eines 100%-Werts für die Balkenanzeige	Gleitkommazahl mit Vorzeichen	Abhängig vom Kalibrierbereich
Decimal places 1	Im Parameter Value 1 display ist ein Messwert angegeben.	Anzahl Nachkommastellen für den Anzeigewert wählen.	 X X.X X.XX X.XXX X.XXXX 	x.xx
Value 2 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	NoneConcentrationCell gas pressureCell gas temperature	Dewpoint 1
Decimal places 2	Im Parameter Value 2 display ist ein Messwert angegeben.	Anzahl Nachkommastellen für den Anzeigewert wählen.	 X X.X X.XX X.XXX X.XXXX 	x.xx
Value 3 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	Für die Auswahlliste siehe Parameter Value 2 display	Cell gas pressure
0% bargraph value 3	Im Parameter Value 3 display wurde eine Auswahl getroffen.	Eingabe eines 0%-Werts für die Balkenanzeige.	Gleitkommazahl mit Vorzeichen	700 mbar a
100% bargraph value 3	Im Parameter Value 3 display wurde eine Auswahl getroffen.	Eingabe eines 100%-Werts für die Balkenanzeige.	Gleitkommazahl mit Vorzeichen	1700 mbar a
Decimal places 3	Im Parameter Value 3 display wurde ein Messwert festgelegt.	Anzahl Nachkommastellen für den Anzeigewert wählen.	 X X.X X.XX X.XXX X.XXXX 	x.xx
Value 4 display	Ein Gerätedisplay ist vorhanden.	Auswahl des Messwerts, der auf dem Gerätedisplay ausgegeben werden soll.	Für die Auswahlliste siehe Parameter Value 2 display	Cell gas temperature
Decimal places 4	Im Parameter Value 4 display ist ein Messwert angegeben.	Anzahl Nachkommastellen für den Anzeigewert wählen.	 X X.X X.XX X.XXX X.XXXX 	x.xx

Display language	Ein Gerätedisplay ist vorhanden.	Anzeigesprache einstellen	Auswahlliste	English
Display interval	Ein Gerätedisplay ist vorhanden.	Auf dem Gerätedisplay einstellen, wie lange Messwerte angezeigt werden sollen, wenn diese im Wechsel angezeigt werden.	1 bis 10 s	5 s
Display damping	Ein Gerätedisplay ist vorhanden.	Ansprechzeit der Anzeige auf Schwankungen im Messwert einstellen.	0.0 bis 999.9 s	0.0 s
Header	Ein Gerätedisplay ist vorhanden.	Auswahl des Texts für die Kopfzeile des Gerätedisplays.	Device tagFree text	Device tag
Header text	Im Parameter Header ist die Option Free text ausgewählt.	Text für Kopfzeile des Gerätedisplays eingeben.	Maximal 12 Zeichen (Buchstaben, Ziffern oder Sonderzeichen wie @,%, /)	
Separator	Ein Gerätedisplay ist vorhanden.	Auswahl von Trennzeichen für die Dezimaldarstellung von Zahlenwerten.	. (Punkt), (Komma)	. (Punkt)
Backlight	Eine der folgenden Bedingungen ist erfüllt: Bestellcode für "Display; operation," option F "4-line, illum.; touch control" Bestellcode für "Display; operation," option G "4-line, illum.; touch control +WLAN" Bestellcode für "Display; operation," option O "remote 4-line display, illum; 10m/30ft Kabel; touch control"	Ein- und Ausschalten der Hintergrundbeleuchtung des Gerätedisplays.	■ Disable ■ Enable	Enable

7.15.5 Untermenü Configuration management

Nach der Inbetriebnahme kann der Benutzer die aktuelle Gerätekonfiguration speichern oder die vorherige Gerätekonfiguration wiederherstellen. Dies kann über den Parameter **Configuration management** und die zugehörigen Optionen im Untermenü **Configuration backup** erfolgen.

Navigation Menü Setup → Advanced setup → Configuration backup

► Configuration backup	Operating time	
	Last backup	
	Configuration management	
	Backup state	
	Comparison result	

Parameter	Beschreibung	Benutzeroberfläche/Benutzereingabe	Werkseinstellung
Operating time	Zeigt an, wie lange das Gerät in Betrieb ist.	Tage (d), Stunden (h), Minuten (m) und Sekunden (s)	_
Last backup	Zeigt an, wann die letzte Datensicherung im integrierten HistoROM gespeichert wurde.	Tage (d), Stunden (h), Minuten (m) und Sekunden (s)	
Configuration management	Auswahl einer Aktion zur Verwaltung der Gerätedaten im integrierten HistoROM.	 Cancel Execute backup Restore Compare Clear backup data 	Cancel
Backup state	Zeigt den Status der Datenspeicherung oder Datenwiederherstellung an.	 None Backup in progress Restoring in progress Delete in progress Compare in progress Restoring failed Backup failed 	None
Comparison result	Vergleich der aktuellen Gerätedaten mit den Daten im integrierten HistoROM.	 Settings identical Settings not identical No backup available Backup settings corrupt Check not done Dataset incompatible 	Check not done

Funktionsumfang des Parameters Configuration management

Optionen	Beschreibung
Cancel	Der Benutzer verlässt den Parameter, ohne eine Aktion auszuführen.
Execute backup	Der integrierte HistoROM speichert eine Sicherungskopie der aktuellen Gerätekonfiguration im Speicher des Geräts. Die Sicherungskopie beinhaltet die Daten der Steuereinheit des Geräts.

Restore	Die letzte Sicherungskopie mit der Gerätekonfiguration wird vom integrierten HistoROM aus dem Speicher des Geräts wiederhergestellt. Die Sicherungskopie beinhaltet die Daten der Steuereinheit des Geräts.
Compare	Die im Speicher des Geräts gesicherte Gerätekonfiguration wird mit der aktuellen, im integrierten HistoROM enthaltenen Gerätekonfiguration verglichen.
Clear backup data	Die Sicherungskopie mit der Gerätekonfiguration wird aus dem Speicher des Geräts gelöscht.

Integrierter HistoROM: Ein HistoROM ist ein nichtflüchtiger Gerätespeicher in Form eines EEPROM.

Während die Aktion durchgeführt wird, kann die Konfiguration nicht über das Gerätedisplay bearbeitet werden, und auf der Anzeige erscheint eine Meldung zum Status des Vorgangs.

7.16 Außerbetriebnahme

8 Betrieb

8.1 Messwerte auslesen

Über das Untermenü **Measured values** können alle Messwerte ausgelesen werden.

Navigation Menü Diagnostics → Measured values

► Measured values	► Measured variables
	► Input values
	► Output values

8.1.1 Untermenü Measured variables

Das Untermenü **Measured variables** enthält die Parameter für das Berechnungsergebnis der letzten Messung.

Navigation Menü Diagnostics → Measured values → Measured variables

Measured variables	Concentration	
	Call and processing	
	Cell gas pressure	
	Cell gas temperature	
	Detector reference level	
	Detector zero level	
	Peak 1 index delta	
	Peak 2 index delta	
	Teak 2 mack acrea	
	Peak 3 index delta	
	Peak 1 index delta dry	
	Feak 1 muex deita dry	
	Peak 2 index delta dry	
	Dools 2 is does dollar door	
	Peak 3 index delta dry	
	Peak track index	
	Peak track index delta	
	Midpoint delta	
	Auto ramp delta	
	Scrubber capacity remaining	
	Scrubber capacity remaining	
	Scrubber life remaining	

8.1.2 Untermenü Input values

Das Untermenü **Input values** leitet den Benutzer systematisch zu den einzelnen Eingangswerten.

Navigation Menü Diagnostics → Measured values → Input values

8.1.2.1 Untermenü Current Input 1 to n

Das **Untermenü Current Input 1 to n** enthält alle Parameter, die benötigt werden, um die aktuellen Messwerte für jeden Stromeingang anzuzeigen.

Navigation Menü Diagnostics \rightarrow Measured values \rightarrow Input values \rightarrow Current input 1 to n

► Current input 1 to n

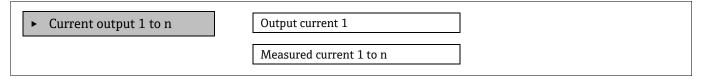
Measured values 1 to n

Measured current 1 to n

Parameter	Beschreibung	Bedienoberfläche
Measured values 1 to n	Anzeige des aktuellen Eingangswerts.	Gleitkommazahl mit Vorzeichen
Measured current 1 to n	Anzeige des aktuellen Stromwerts des Stromeingangs.	0 bis 22.5 mA

8.1.3 Untermenü Output values

Das Untermenü **Output values** enthält alle Parameter, die für die Anzeige der aktuellen Messwerte zu jedem Ausgang erforderlich sind.


 $\textbf{Navigation} \qquad \text{Menü Diagnostics} \rightarrow \text{Measured values} \rightarrow \text{Output values}$

▶ Current output 1 to n
 ▶ Switch output 1 to n
 ▶ Relay output 1 to n

8.1.3.1 Untermenü Current output 1 to n

Das Untermenü **Value current output** enthält alle Parameter, die zur Anzeige der aktuellen Messwerte für jeden Stromausgang benötigt werden.

Navigation Menü Diagnostics \rightarrow Measured values \rightarrow Output values \rightarrow Value current output 1 to n

Parameter	Beschreibung	Bedienoberfläche
Output current 1	Zeigt den aktuell berechneten Stromwert für den Stromausgang an.	3.59 bis 22.5 mA
Measured current	Zeigt den aktuell gemessenen Stromwert für den Stromausgang an.	0 bis 30 mA

8.1.3.2 Untermenü Switch output 1 to n

Das Untermenü **Switch output 1 to n** enthält alle Parameter, die zur Anzeige der aktuellen Messwerte für jeden Schaltausgang erforderlich sind.

Navigation Menü Diagnostics \rightarrow Measured values \rightarrow Output values \rightarrow Switch output 1 to n

► Switch output 1 to n Switch status 1 to n

Parameter	Voraussetzung	Beschreibung	Benutzeroberfläche/Benutzereingabe	Werkseinstellung
Switch status 1 to n	Im Parameter Operating mode ist die Option Switch ausgewählt.	Zeigt den aktuellen Zustand des Schalt- ausgangs.	Open Closed	_

8.1.3.3 Untermenü Relay output 1 to n

Das Untermenü **Relay output 1 to n** enthält alle Parameter, die zur Anzeige der aktuellen Messwerte für jeden Relaisausgang benötigt werden.

Navigation Menü Diagnostics \rightarrow Measured values \rightarrow Output values \rightarrow Relay output 1 to n

► Relay output 1 to n

Switch status

Switch cycles

Max. switch cycles number

Parameter	Beschreibung	Bedienoberfläche
Switch status	Zeigt den aktuellen Schaltzustand des Relais an	Open Closed
Switch cycles	Zeigt die Anzahl aller durchgeführten Schaltzyklen an	Positive Ganzzahl
Max. switch cycles number	Zeigt die maximale Anzahl garantierter Schaltzyklen an	Positive Ganzzahl

8.2 Datenprotokollierung anzeigen

Das Anwendungspaket Extended HistoROM ermöglicht die Anzeige des Untermenüs **Data logging**. Es enthält alle Parameter für die Messwerthistorie. Die Datenprotokollierung steht auch über den Webbrowser zur Verfügung. Siehe Abschnitt Zugriff auf das Bedienmenü über den Webbrowser $\rightarrow \square$.

Funktionsbereich:

- Es können 1000 Messwerte gespeichert werden
- Speicherkanäle
- Einstellbares Protokollintervall f
 ür die Datenprotokollierung
- Anzeige des Messwerttrends für jeden Speicherkanal in Form einer Grafik (siehe Abbildung unten)

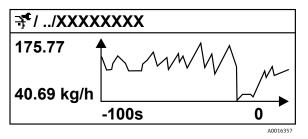


Abbildung 58. Diagramm eines Messwerttrends

Achse	Beschreibung
x	Das Diagramm zeigt, abhängig von der Anzahl der ausgewählten Kanäle, 250 bis 1000 Messwerte einer Prozessgröße an.
у	Es zeigt auch die ungefähre Messwertspanne an und passt diese kontinuierlich an die laufende Messung an.

Wenn die Länge des Protokollintervalls oder die Zuordnung der Prozessgrößen zu den Kanälen geändert wird, wird der Inhalt der Datenprotokollierung gelöscht.

Navigation Menü Diagnostics → Data logging

► Data logging	Assign channel 1 to n	
	Logging interval	
	Clear logging data	
	Data logging	
	Logging delay	
	Data logging control	
	Data logging status	
	Entire logging duration	

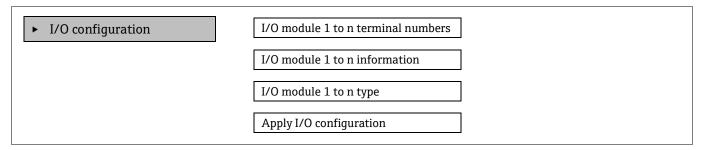
Parameter	Voraussetzung	Beschreibung	Benutzeroberfläche/Benutzereingabe	Werkseinstellung
Assign channel 1 to n	Das Anwendungspaket Extended HistoROM ist verfügbar.	Prozessgröße zum Speicherkanal zuordnen.	 Off Concentration¹⁰ Dew point 1 Dew point 2 Cell gas pressure Cell gas temperature Flow switch state Current output 1 to n 	Off
Logging interval	Das Anwendungspaket Extended HistoROM ist verfügbar.	Protokollintervall für Datenprotokollierung definieren. Dieser Wert definiert das Zeitintervall zwischen den einzelnen Datenpunkten im Speicher.	0.1 bis 999.0 s	1.0 s
Clear logging data	Das Anwendungspaket Extended HistoROM ist verfügbar.	Sämtliche Protokolldaten werden gelöscht.	CancelClear data	Cancel
Data logging		Auswahl des Verfahrens der Datenprotokollierung.	OverwritingNot overwriting	Overwriting
Logging delay	Im Parameter Data logging ist die Option Not overwriting ausgewählt.	Verzögerungszeit für die Messwertspeicherung eingeben.	0 bis 999 h	0 h
Data logging control	Im Parameter Data logging ist die Option Not overwriting ausgewählt.	Messwertprotokollierung starten und stoppen.	NoneDelete + startStop	None
Data logging status	Im Parameter Data logging ist die Option Not overwriting ausgewählt.	Zeigt den Status der Messwertprotokollierung an.	 Done Delay active Active Stopped 	Done
Entire logging duration	Im Parameter Data logging ist die Option Not overwriting ausgewählt.	Zeigt die Dauer der Protokollierung insgesamt an.	Positive Gleitkommazahl	0 s

 $^{\rm 10}$ Die Sichtbarkeit hängt von den Bestelloptionen oder Geräte
einstellungen ab.

8.3 Messgerät an die Prozessbedingungen anpassen

Der Zugriff auf diese Einstellungen erfolgt über das Menü Setup:

- Grundeinstellungen
- Verwaltungseinstellungen. Siehe Untermenü Advanced Setup im Abschnitt Verwendung von Parametern für die Geräteverwaltung $\rightarrow \boxminus$.


Navigation Menü Setup

8.3.1 Anzeigen der I/O-Konfiguration

Das Untermenü **I/O configuration** führt systematisch durch alle Parameter, in denen die Konfiguration der I/O-Module angezeigt wird.

Navigation Menü Setup → I/O configuration

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
I/O module 1 to n terminal numbers	Zeigt die Klemmennummern an, die vom I/O-Modul verwendet werden.	 Nicht verwendet 26-27 (I/O 1) 24-25 (I/O 2)¹¹ 22-23 (I/O 3)¹¹ 	-
I/O module 1 to n information	Zeigt Informationen des angeschlossenen I/O-Moduls an.	Not pluggedInvalidNot configurableConfigurable	-
I/O module 1 to n type	Zeigt den Typ des I/O-Moduls an.	 Off Current output¹² Switch output¹² 	-
Apply I/O configuration	Parametrierung des frei konfigurierbaren I/O-Moduls übernehmen.	No Yes	No

8.3.2 Verwendung von Parametern zur Verwaltung des Geräts

Das Untermenü Administration führt den Benutzer systematisch durch alle Parameter, die zur Verwaltung des Geräts verwendet werden können.

Navigation Menü Setup → Advanced setup → Administration

Device reset Administration Define access code Reset access code

8.3.2.1 Gerät zurücksetzen

Menü Setup \rightarrow Advanced setup \rightarrow Administration \rightarrow Device reset **Navigation**

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Device reset	Die Gerätekonfiguration wird entweder ganz oder teilweise auf einen definierten Zustand zurückgesetzt.	CancelRestart device	Cancel

 $^{^{11}\,\}rm Je$ nach Auslieferungszustand. $^{12}\,\rm Die$ Sichtbarkeit hängt von den Bestelloptionen oder Geräteeinstellungen ab.

8.3.2.2 Zugangscode definieren

Navigation Menü Setup → Advanced setup → Administration → Define access code

 ▶ Define access code
 Define access code

 Confirm access code

Parameter	Beschreibung	Benutzereingabe
Define access code	Schreibzugriff auf Parameter beschränken, um die Konfiguration des Geräts gegen unbeabsichtigte Änderungen zu schützen.	Maximal 16-stellige Zeichenfolge aus Ziffern, Buchstaben und Sonderzeichen
Confirm access code	Eingegebenen Zugangscode bestätigen.	Maximal 16-stellige Zeichenfolge aus Ziffern, Buchstaben und Sonderzeichen

8.3.2.3 Zugangscode zurücksetzen

Navigation Menü Setup → Advanced setup → Administration → Reset access code

► Reset access code

Operating time

Reset access code

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Operating time	Zeigt an, wie lange das Gerät in Betrieb ist.	Tage (d), Stunden (h), Minuten (m) und Sekunden (s)	_
Reset access code	Setzt den Zugangsode auf Werkseinstellungen zurück. Informationen zum Resetcode enthält der Abschnitt Servicekontakt → 🖹. Der Resetcode kann nur über den Webbrowser eingegeben werden.	Zeichenfolge aus Ziffern, Buchstaben und Sonderzeichen	0000

8.4 Simulation

Das Untermenü **Simulation** ermöglicht es dem Benutzer, ohne reale Durchflusssituation verschiedene Prozessgrößen im Prozess und im Gerätealarmmodus zu simulieren und die Downstream-Signalketten (Schaltventile oder Regelkreise) zu verifizieren.

Navigation Menü Diagnostics → Simulation

Current input 1 to n simulation

Value current input 1 to n

Current output 1 to n simulation

Current output value 1 to n

Switch output simulation 1 to n

Switch state 1 to n

Relay output 1 to n simulation

Switch state 1 to n

Device alarm simulation

Diagnostic event category

Diagnostic event simulation

Parameter	Voraussetzung	Beschreibung	Benutzeroberfläche/Benutzereingabe	Werkseinstellung
Current input 1 to n simulation	_	Simulation des Stromausgangs ein- und ausschalten.	Off On	Off
Value current input 1 to n	Im Parameter Current input 1 to n simulation ist die Option On ausgewählt.	Stromwert für Simulation eingeben.	0 bis 22.5 mA	Auf den tatsächlichen Eingangsstrom setzen, wenn die Simulation auf On eingestellt ist.
Current output 1 to n simulation	_	Simulation des Stromausgangs ein- und ausschalten.	Off On	Off
Current output value 1 to n	Im Parameter Current output 1 to n simulation ist die Option On ausgewählt.	Stromwert für Simulation eingeben.	3.59 bis 22.5 mA	3.59 mA
Switch output simulation 1 to n	Im Parameter Operating mode ist die Option Switch ausgewählt.	Simulation des Schaltausgangs ein- und ausschalten.	Off On	Off

Parameter	Voraussetzung	Beschreibung	Benutzeroberfläche/Benutzereingabe	Werkseinstellung
Switch state 1 to n	-	Auswahl des Statusausgangs für die Simulation.	OpenClosed	Open
Relay output 1 to n simulation	-	_	Off On	Off
Switch state 1 to n	Im Parameter Switch output simulation 1 to n ist die Option On ausgewählt.		OpenClosed	Open
Device alarm simulation	-	Gerätealarm ein- und ausschalten.	Off On	Off
Diagnostic event category	-	Auswahl eines Diagnoseereignisses.	SensorElectronicsConfigurationProcess	Process
Diagnostic event simulation	-	Auswahl eines Diagnoseereignisses, um dieses Ereignis zu simulieren.	 Off Auswahlliste Diagnoseereignis, abhängig von der gewählten Kategorie 	Off

8.5 Schutz der Einstellungen vor unbefugtem Zugriff

Um die Software-Konfiguration des JT33 TDLAS-Gasanalysators gegen unbeabsichtigtes oder unbefugtes Ändern zu schützen, stehen folgende Schreibschutzoptionen zur Verfügung:

- Zugriff auf Parameter mit Zugangscode schützen
- Zugriff auf Vor-Ort-Bedienung durch Sperren der Tastatur schützen. Siehe Abschnitt Tastatursperre aktivieren und deaktivieren $\rightarrow \boxminus$.
- Zugriff auf Messgerät mit Schreibschutzschalter schützen. Siehe Abschnitt Schreibschutzschalter verwenden $\rightarrow \boxminus$.

8.5.1 Schreibschutz durch Zugangscode

Durch Aktivieren des benutzerspezifischen Zugangscodes sind die Parameter für die Messgerätekonfiguration schreibgeschützt und ihre Werte können nicht länger über die Vor-Ort-Bedienung geändert werden.

Wenn der Parameterschreibschutz über einen Zugangscode aktiviert wird, kann er auch nur mit diesem Zugangscode wieder deaktiviert werden.

Die Benutzerrolle, mit der sich der Benutzer aktuell über das Gerätedisplay angemeldet hat, wird durch den Parameter Access status angezeigt. Navigationspfad: Operation \rightarrow Access status.

8.5.2 Zugangscode über Gerätedisplay definieren

- 1. Zum Parameter **Define access code** navigieren $\rightarrow \triangleq$.
- 2. Maximal 16-stellige Zeichenfolge aus Ziffern, Buchstaben und Sonderzeichen als Zugangscode festlegen.
- 3. Zugangscode im Parameter *Confirm access code* \rightarrow $\stackrel{\triangle}{=}$ erneut eingeben, um den Code zu bestätigen.
 - ► Vor allen schreibgeschützten Parametern erscheint nun das Symbol 🗈.

8.5.3 Automatische Verriegelung

Das Gerät sperrt die schreibgeschützten Parameter automatisch, wenn folgende Bedingungen vorliegen:

- Wenn im Navigations- und Editiermodus 10 Minuten lang keine Taste gedrückt wird.
- Nach 60 Sekunden, wenn der Benutzer vom Navigations- und Editiermodus zum Betriebsanzeigemodus zurückwechselt.

8.5.3.1 Parameter, die über das Gerätedisplay geändert werden können

Parameter, die die Messung nicht beeinflussen, sind vom Schreibschutz durch das Gerätedisplay ausgenommen. Es handelt sich um folgende Parameter

- Format display
- Contrast display
- Display interval

Trotz des benutzerspezifischen Zugangscodes können diese Parameter auch dann geändert werden, wenn andere Parameter gesperrt sind.

8.5.4 Zugangscode über den Webbrowser definieren

- 1. Zum Parameter **Define access code** navigieren $\rightarrow \triangleq$.
- 2. Einen 4-stelligen Zahlencode als Zugangscode definieren.
- 3. Im Parameter *Confirm access code* → 🖺 den Zugangscode erneut eingeben, um den Code zu bestätigen.
 - → Der Webbrowser wechselt zur Anmeldeseite.
- Wenn 10 Minuten lang keine Aktion durchgeführt wird, springt der Webbrowser automatisch zur Anmeldeseite zurück.
 - ► Wenn der Parameterschreibschutz über einen Zugangscode aktiviert wird, kann er auch nur mit diesem Zugangscode wieder deaktiviert werden.
 - ► Mit welcher Benutzerrolle der Benutzer aktuell beim Webbrowser angemeldet ist, wird im Parameter **Access status** angezeigt. Navigationspfad: Operation → Access status.

8.5.5 Zugangscode zurücksetzen

Wenn der benutzerspezifische Zugangscode verloren geht, kann der Code auf die Werkseinstellung zurückgesetzt werden. Dafür muss ein Resetcode eingegeben werden. Danach kann der benutzerspezifische Zugangscode neu definiert werden.

Zurücksetzen des Zugangscodes über den Webbrowser über die CDI-RJ45-Serviceschnittstelle:

- 1. Den Resetcode stellt die Endress+Hauser Serviceorganisation zur Verfügung. Siehe Abschnitt Servicekontakt $\rightarrow \triangleq$.
- 1. Zum Parameter **Reset access code** navigieren.
- 2. Resetcode eingeben.
 - → Der Zugangscode wurde auf die Werkseinstellung **0000** zurückgesetzt und kann jetzt erneut festgelegt werden.

8.5.6 Schreibschutzschalter verwenden

Im Gegensatz zum Parameterschreibschutz über einen benutzerspezifischen Zugangscode kann mit dem Schreibschutzschalter das gesamte Bedienmenü schreibgeschützt werden. Hiervon ausgenommen ist lediglich der Parameter Contrast display. Die Werkseinstellung ist AUS.

Der Schreibschutzschalter verhindert die Bearbeitung der Parameterwerte über folgende Verfahren:

- Gerätedisplay
- Modbus-RS485-Protokoll
- Modbus-TCP-Protokoll

8.5.6.1 Schreibschutzschalter einschalten

Um den Hardware-Schreibschutz zu aktivieren, wie folgt vorgehen:

Den Schreibschutzschalter (WP) Nummer 1 auf dem Hauptelektronikmodul auf die Position ON stellen.

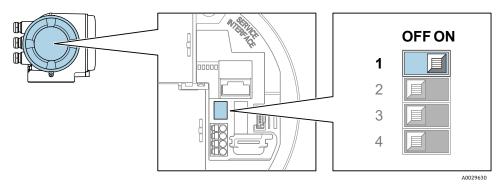


Abbildung 59. ON/OFF-DIP-Schalter für den Schreibschutz

└─ Im Parameter Locking status wird die Option Hardware locked angezeigt. Auf dem Gerätedisplay erscheint zusätzlich in der Kopfzeile der Betriebsanzeige und in der Navigieransicht vor den Parametern das டை-Symbol.

Abbildung 60. Symbol für Hardware verriegelt in der Betriebsanzeige

8.5.6.2 Schreibschutzschalter ausschalten

Um den Hardware-Schreibschutz zu deaktivieren, wie folgt vorgehen:

Den Schreibschutzschalter (WP) auf dem Hauptelektronikmodul auf die Position AUS stellen.

└─ Im Parameter Locking status wird keine Option angezeigt. Auf dem Gerätedisplay wird in der Kopfzeile der Betriebsanzeige und in der Navigieransicht das ⓓ-Symbol vor den Parametern ausgeblendet.

HINWEIS

DIP-Schalter Nummer 2 steuert Kundenübertragungsanwendungen, die in diesem Gerät nicht verwendet werden.
 Diesen Schalter

in der Position OFF stehen lassen.

8.5.7 Status der Geräteverriegelung ablesen

Aktiver Schreibschutz des Geräts: Parameter Locking status

Navigation Menü Operation → Locking status

Funktionsumfang des Parameters Locking status

Optionen	Beschreibung
None	Es gelten die Zugriffsrechte, die im Parameter Access status angezeigt werden. Sie erscheinen nur auf dem Gerätedisplay.
Hardware locked	DIP-Schalter Nr. 1 für die Hardware-Verriegelung ist auf der Leiterplatte aktiviert. Durch diese Aktion wird ein Schreibzugriff auf die Parameter, beispielsweise über das Gerätedisplay oder das Bedientool, verhindert.
Temporarily locked	Der Schreibzugriff auf die Parameter ist vorübergehend gesperrt, da auf dem Gerät interne Prozesse wie das Hoch- oder Herunterladen von Daten oder das Zurücksetzen ausgeführt werden. Nach Abschluss der internen Verarbeitung können die Parameter wieder geändert werden.

9 Validierungsmethoden

JT33 TDLAS-Gasanalysatoren von Endress+Hauser verwenden ein Validierungsverfahren zur Überprüfung der Gerätefunktionalität. Es stehen zwei Verfahren zur Verfügung: die manuelle oder die automatische Validierung. Welches Verfahren verwendet werden kann, hängt von den Bestellcodes des Analysators ab.

Die automatische Validierung beruht auf einem Kalibriergas mit einem bekannten Konzentrationswert. Die Validierung des Analysators kann automatisch mithilfe von Magnetventilen durchgeführt werden, um den Durchfluss des Validierungsgases zu steuern und das Prozessgas zu blockieren. Der Vorgang kann entweder zu einem festgelegten Zeitpunkt oder mithilfe des Startvalidierungsparameters eingeleitet werden.

Der Validierungswert der Gaskonzentration wird in den Analysator eingegeben. Die Validierungsmessung wird mit einer prozentualen Toleranz des Gaskonzentrationswerts verglichen, um zu bestimmen, ob die Validierung bestanden oder nicht bestanden wurde (Pass/Fail).

310 kPag (45 psig) am Validierungsanschluss nicht überschreiten. Anderenfalls kann es zu einer Beschädigung des Analysators kommen.

- 1. Validierungsgasdruck prüfen. Der Gasdruck kann von 207 bis 310 kPag (30 bis 45 psig) eingestellt werden.
- 2. Den mehrstufigen Druckminderer an der Gasflasche öffnen, damit Gas zum Referenzgaseinlass des Analysators strömen kann.
- 3. Nach Aufforderung die Startvalidierung über das Display oder das Webservermenü einleiten. Der JT33-Analysator folgt den Spül- und Messeinstellungen, die auf der Seite mit den Einstellungen für die Gasvalidierung programmiert sind. Die Anleitungen im Menü Heartbeat Verification befolgen.
- 4. Das Validierungsgas durch die Messzelle strömen lassen.
 - a. Wenn das gelieferte System in der manuellen Konfiguration war, langsam das 3-Wege-Ventil öffnen, damit das Validierungsgas zur Messzelle fließen kann.
 - b. Wenn das System mit der automatischen Validierungskonfiguration geliefert wurde, öffnet die Elektronik die Ventile, um die Validierungsleitung zu öffnen.
- 5. Während der Validierung den Fortschritt überwachen.
- 6. Das 3-Wege-Ventil des Referenzgases schließen, damit der Analysator zur Prozessgasmessung zurückkehren kann.
 - a. Nach Abschluss der Validierung muss das Ventil geschlossen werden, damit der Prozessstrom gemessen werden kann.
 - b. Wenn das System manuell konfiguriert ist, das Ventil nach Abschluss des Vorgangs drehen.
 - c. Wenn es sich um ein automatisches Validierungssystem handelt, schließt sich das Ventil automatisch, wenn die Messung abgeschlossen ist.
- 7. Bei entsprechender Aufforderung den Zustand des Geräts überprüfen, um festzustellen, ob die Validierung erfolgreich war oder fehlgeschlagen ist. Die Validierung war erfolgreich, wenn die Messung innerhalb des für den Analysator festgelegten Validierungsbereichs liegt.

Der Gaskonzentrationswert wird über den Webserver, über Modbus-Befehle oder die Tastatur in den JT33-Analysator eingegeben. Die Validierungsmessung wird mit einer prozentualen Toleranz des Gaskonzentrationswerts verglichen, um zu bestimmen, ob die Validierung bestanden oder nicht bestanden wurde (Pass/Fail). Die Ergebnisse der Autovalidierung können auf dem Webserver angezeigt, mit einer Validierungswarnung verknüpft und als Heartbeat Verification-Bericht gespeichert werden.

9.1 Manuelle Validierung

Um die manuelle Validierung zu verwenden, muss zunächst die Validierungsinformation in der Menüstruktur gefunden und die manuelle Validierung

ausgewählt werden. Den angezeigten Anweisungen folgen, um den Validierungsprozess zu starten.

- Das 3-Wege-Ventil so umschalten, dass das Prozessgas blockiert wird und das Validierungsgas fließen kann.
- Sicherstellen, dass das Prozessgas mindestens 5 Minuten lang (oder bis zu 30 Minuten bei Anwendungen mit < 50 ppm) aus dem System gespült wird.
- Sobald der Analysator von allen Prozessgasen befreit ist, kann die Validierung beginnen. Das Validierungsgas 30 Minuten lang durch den Analysator leiten. Weitere Informationen befinden sich im Dokument Validation of TDLAS Gas Analyzers (SD03286C).

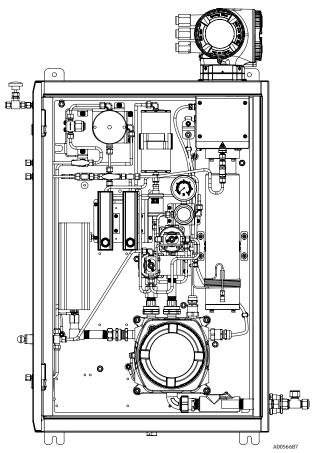


Abbildung 61 . Elektrische Differenz mit manueller 1-Punkt-Validierung

9.2 Automatische Validierung

Eine 1-Punkt-Autovalidierung ähnelt der manuellen Validierung. Das manuelle 3-Wege-Ventil wird jedoch durch elektrische oder pneumatische Magnetventile ersetzt, die sich im Analysator befinden. Da die Ventilbetätigung vom Analysator gesteuert wird, kann die Validierung über die Benutzerschnittstelle (HMI) und den Webserver gestartet werden, um automatische Routinevalidierungen in festgelegten Intervallen durchzuführen. Eine 2-Punkt-Validierung ist ebenfalls verfügbar. Dieses Validierungsdesign ähnelt der automatischen 1-Punkt-Validierung. Für eine zusätzliche Verifizierung der Messung kann jedoch ein zweiter Validierungspunkt verwendet werden. Eine 2-Punkt-Validierung ist oft eine behördliche Anforderung für Analysegeräte, die bei der Überwachung von Fackeln und bei Emissionsanwendungen

eingesetzt werden. Diese Option wird nur mit pneumatischen Magnetventilen angeboten.

Bei der manuellen Validierung leitet der Bediener die Validierung über die Elektronik des Analysators ein. Das 3-Wege-Ventil schließt den Prozessgasfluss manuell und öffnet den Validierungsgasfluss in den Analysator.

Weitere Informationen zur automatischen Validierung sind beim örtlichen Vertriebskanal verfügbar. Detaillierte Anweisungen zur Heartbeat Technology von Endress+Hauser sind in der Sonderdokumentation J22 and JT33 TDLAS Gas Analyzers Heartbeat Verification + Monitoring application package (SD02912C) zu finden.

9.2.1 Automatische 1-Punkt-Validierung

Ein 1-Punkt-Autovalidierungsanalysator ist entweder mit einem elektrischen oder einem pneumatischen Ventil ausgestattet, das das Prozessgas automatisch auf ein Validierungsgas umschaltet. Das Einrichten des Analysators für die Verwendung eines Validierungsgases kann wie folgt erfolgen:

HINWEIS

310 kPag (45 psig) am Validierungsanschluss nicht überschreiten. Anderenfalls kann es zu einer Beschädigung des Analysators kommen.

1. Validierungsgasdruck prüfen. Der Gasdruck kann von 207 bis 310 kPag (30 bis 45 psig) eingestellt werden.

- 2. Den mehrstufigen Druckminderer an der Gasflasche öffnen, damit Gas zum Referenzgaseinlass des Analysators strömen kann.
- 3. Nach Aufforderung die Startvalidierung über das Display oder das Webservermenü einleiten. Der JT33-Analysator folgt den Spül- und Messeinstellungen, die auf der Seite mit den Einstellungen für die Gasvalidierung programmiert sind.
- 4. Bei entsprechender Aufforderung den Zustand des Geräts überprüfen, um festzustellen, ob die Validierung erfolgreich war oder fehlgeschlagen ist. Die Validierung war erfolgreich, wenn die Messung innerhalb des für den Analysator festgelegten Validierungsbereichs liegt.

9.2.2 1-Punkt-Autovalidierung, elektrisches Ventil

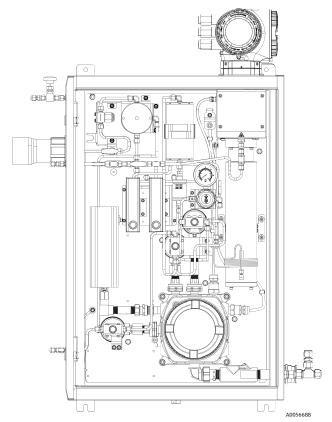


Abbildung 62. Elektrische Differenz mit 1-Punkt-Validierung

9.2.3 1-Punkt-Autovalidierung, Pneumatikventil

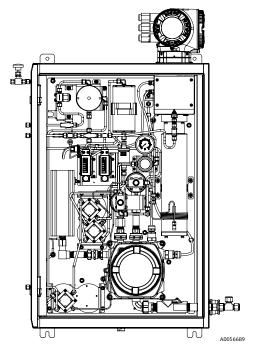


Abbildung 63. Pneumatikdifferenz bei 1-Punkt-Validierung

9.2.4 2-Punkt-Autovalidierung, Pneumatikventile

Eine 2-Punkt-Validierung ähnelt einer 1-Punkt Validierung, es werden jedoch zwei Validierungsgase eingesetzt.

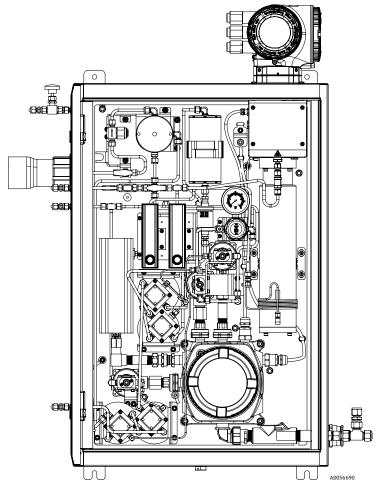


Abbildung 64. Pneumatikdifferenz bei 2-Punkt-Validierung

10 Verifikation, Diagnose und Fehlerbehebung

10.1 Diagnoseinformationen durch LEDs

10.1.1 Steuereinheit

Verschiedene LEDs in der Steuereinheit liefern Informationen zum Gerätestatus.

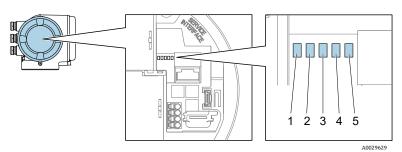


Abbildung 65. LED-Diagnoseanzeigen

Nr.	LED	Farbe	Bedeutung
1	Versorgungsspannung	Aus	Versorgungsspannung ist ausgeschaltet oder zu gering
		Grün	Versorgungsspannung ist ok
	Gerätestatus	Aus	Firmwarefehler
		Grün	Gerätestatus ist ok
		Grün blinkend	Gerät ist nicht konfiguriert
2		Rot blinkend	Im Gerät ist ein Ereignis mit dem Diagnoseverhalten Warnung aufgetreten
		Rot	Im Gerät ist ein Ereignis mit dem Diagnoseverhalten Alarm aufgetreten
		Rot blinkend/grün	Geräteneustart
3	Nicht verwendet	_	_
4	Kommunikation	Weiß	Kommunikation aktiv
		Aus	Kommunikation nicht aktiv
5	Serviceschnittstelle (CDI) aktiv	Aus	Nicht angeschlossen oder keine Verbindung hergestellt
		Gelb	Angeschlossen und Verbindung hergestellt
		Gelb blinkend	Serviceschnittstelle aktiv

10.2 Diagnoseinformationen auf dem Gerätedisplay

10.2.1 Diagnosemeldung

Störungen, die das Selbstüberwachungssystem des Messgeräts erkennt, werden als Diagnosemeldung im Wechsel mit der Betriebsanzeige angezeigt.

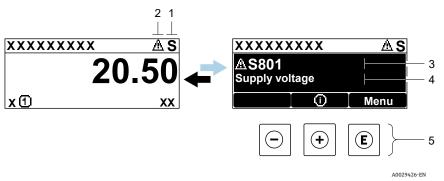


Abbildung 66. Diagnosemeldung

Nr.	Beschreibung
1	Statussignal
2	Diagnoseverhalten
3	Diagnoseverhalten mit Diagnosecode
4	Kurztext
5	Bedienelemente → 🖺

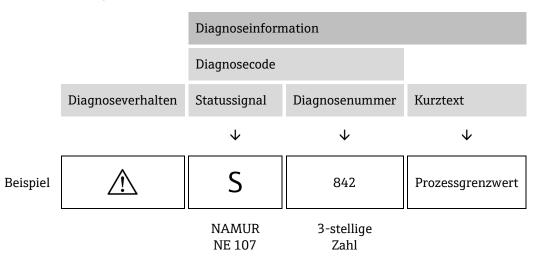
Wenn mehrere Diagnoseereignisse gleichzeitig anstehen, wird nur die Diagnosemeldung des Diagnoseereignisses mit der höchsten Priorität angezeigt.

Im Menü **Diagnostics** können weitere Diagnoseereignisse angezeigt werden, die aufgetreten sind:

- Über Parameter
- Über Untermenüs

10.2.1.1 Statussignale

Die Statussignale geben Auskunft über den Zustand und die Verlässlichkeit des Geräts, indem sie die Ursache der Diagnoseinformation oder des Diagnoseereignisses kategorisieren. Die Statussignale sind gemäß VDI/VDE 2650 und NAMUR-Empfehlung NE 107 klassifiziert.


Symbol	Bedeutung
F	Failure. Ein Gerätefehler ist aufgetreten. Der Messwert ist nicht mehr gültig.
С	Function check. Das Gerät ist im Servicemodus, wie beispielsweise während einer Simulation.
S	Out of specification. Das Gerät wird außerhalb seiner technischen Spezifikationsgrenzen betrieben, wie beispielsweise außerhalb des Prozesstemperaturbereichs.
M	Maintenance required. Wartung erforderlich. Der Messwert ist weiterhin gültig.

10.2.1.2 Diagnoseverhalten

Symbol	Bedeutung
	Alarm. Die Messung wird unterbrochen. Die Signalausgänge nehmen den definierten Alarmzustand an. Es wird eine Diagnosemeldung generiert.
<u>^</u>	Warnung. Die Messung wird fortgesetzt. Die Signalausgänge werden nicht beeinflusst. Es wird eine Diagnosemeldung generiert.

10.2.1.3 Diagnoseinformation

Mithilfe der Diagnoseinformation kann die Störung identifiziert werden. Der Kurztext hilft dabei, indem er einen Hinweis zur Störung liefert. Zusätzlich ist der Diagnoseinformation auf dem Gerätedisplay das dazugehörige Symbol für das Diagnoseverhalten vorangestellt.

10.2.1.4 Bedienelemente

Symbol	Bedeutung
\oplus	Plus-Taste. Öffnet in einem Menü oder Untermenü die Meldung mit den Abhilfemaßnahmen.
E	Eingabetaste. Öffnet in einem Menü oder Untermenü das Bedienmenü.

Abhilfemaßnahmen aufrufen

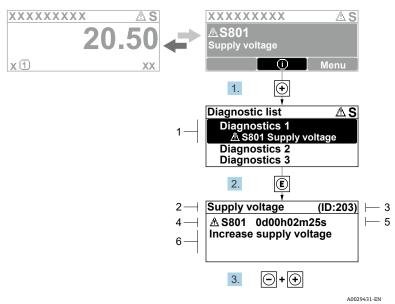


Abbildung 67. Meldung zu Abhilfemaßnahmen

Nr.	Beschreibung
1	Diagnoseinformation
2	Kurztext
3	Service-ID
4	Diagnoseverhalten mit Diagnosecode
5	Betriebszeit des Auftretens
6	Abhilfemaßnahmen

Der Benutzer befindet sich in der Diagnosemeldung.

- 1. ± drücken (①-Symbol)
 - └ Es öffnet sich das Untermenü Diagnostic list.
- 2. Das gewünschte Diagnoseereignis mit ± oder □ auswählen und 區 drücken.
 - └ Die Meldung zu den Abhilfemaßnahmen des ausgewählten Diagnoseereignisses öffnet sich.
- 3. Gleichzeitig ⊡ + ± drücken.
 - └ Die Meldung zu den Abhilfemaßnahmen wird geschlossen.

Der Benutzer befindet sich im Menü **Diagnostics** auf einem Eintrag zu einem Diagnoseereignis, beispielsweise im Untermenü **Diagnostic list** oder im Parameter **Previous diagnostics**.

- 1. 🗉 drücken.
 - └─ Die Meldung zu den Abhilfemaßnahmen des ausgewählten Diagnoseereignisses öffnet sich.
- 2. Gleichzeitig □ + ± drücken.
 - └ Die Meldung zu den Abhilfemaßnahmen wird geschlossen.

10.3 Diagnoseinformation im Webbrowser

10.3.1 Diagnosemöglichkeiten

Sämtliche vom Messgerät erkannten Störungen werden im Webbrowser angezeigt, sobald sich der Benutzer auf der Startseite angemeldet hat.

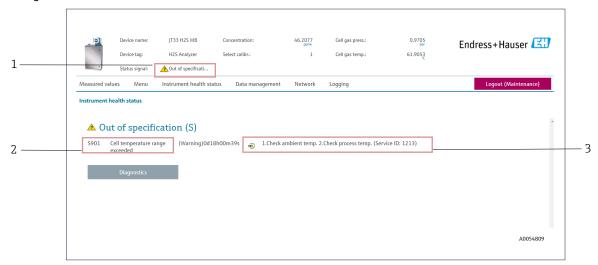


Abbildung 68. Diagnoseinformation im Webbrowser

Nr.	Name
1	Statusbereich mit Statussignal
2	Diagnoseinformationen. Siehe Abschnitt $Anstehende$ $Diagnoseereignisse \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ $
3	Behebungsmaßnahmen mit Service-ID

Darüber hinaus können im Menü Diagnostics die Diagnoseereignisse angezeigt werden, die aufgetreten sind:

- Über Parameter
- Über Untermenüs

Statussignale

Die Statussignale sind gemäß VDI/VDE 2650 und NAMUR-Empfehlung NE 107 klassifiziert.

Symbol	Bedeutung
※	Failure. Ein Gerätefehler ist aufgetreten. Der Messwert ist nicht mehr gültig.
7	Function check. Das Gerät ist im Servicemodus, wie beispielsweise während einer Simulation.
<u>^</u>	Out of specification. Das Gerät wird außerhalb seiner technischen Spezifikationsgrenzen betrieben, wie beispielsweise außerhalb des Prozesstemperaturbereichs.
	Maintenance required. Wartung erforderlich. Der Messwert ist weiterhin gültig.

10.3.2 Abhilfemaßnahmen aufrufen

Um Störungen schnell beseitigen zu können, stehen zu jedem Diagnoseereignis Abhilfemassnahmen zur Verfügung. Diese werden neben dem Diagnoseereignis mit seiner dazugehörigen Diagnoseinformation in roter Farbe angezeigt.

10.4 Diagnoseinformationen über die Kommunikationsschnittstelle

10.4.1 Diagnoseinformation auslesen

- Ab Registeradresse 6821, Datentyp = Zeichenfolge: Diagnosecode z. B. F270
- Ab Registeradresse 6801, Datentyp = Ganzzahl: Diagnosenummer z. B. 270

10.4.2 Störungsverhalten konfigurieren

Das Störungsverhalten für die Modbus-RS485- oder Modbus-TCP-Kommunikation kann im Untermenü **Communication** mithilfe von zwei Parametern konfiguriert werden.

Navigation Setup → Communication

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Failure mode	Über die Modbus-Kommunikation festlegen, wie Messwerte bei Auftreten einer Diagnosemeldung ausgegeben werden sollen. Die Auswirkung dieses Parameters hängt von der Option ab, die im Parameter Assign Diagnostic behavior ausgewählt wurde.	 NaN value Last valid value NaN = Not a Number (keine Zahl) 	NaN value

10.5 Diagnoseverhalten anpassen

Jeder Diagnoseinformation ist ab Werk ein bestimmtes Diagnoseverhalten zugeordnet. Der Benutzer kann diese Zuordnung für spezifische Diagnoseinformationen im Untermenü **Diagnostic behavior** ändern.

Navigation Expert \rightarrow Setup \rightarrow Diagnostic handling \rightarrow Diagnostic behavior

Folgende Optionen können der Diagnosenummer als Diagnoseverhalten zugeordnet werden:

Optionen	Beschreibung	
Alarm	Das Gerät unterbricht die Messung. Die Messwertausgabe über Modbus-RS485 und Modbus-TCP nimmt den definierten Alarmzustand an. Es wird eine Diagnosemeldung generiert. Die Hintergrundbeleuchtung wechselt zu Rot.	
Warning	Das Gerät misst weiter. Die Messwertausgabe von Modbus-RS485 und Modbus-TCP wird nicht beeinflusst. Es wird eine Diagnosemeldung generiert.	
Logbook entry only Das Gerät misst weiter. Die Diagnosemeldung wird nur im Untermenü Event logbook Untermer list und nicht im Wechsel mit der Betriebsanzeige angezeigt.		
Off	Das Diagnoseereignis wird ignoriert und es wird weder eine Diagnosemeldung generiert noch eingetragen.	

10.6 Übersicht Diagnoseinformationen

Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Anzahl der Diagnoseinformationen und der betroffenen Messgrößen. Bei einigen Diagnoseinformationen ist das Diagnoseverhalten veränderbar. Siehe Abschnitt $Diagnoseverhalten anpassen \rightarrow \blacksquare$.

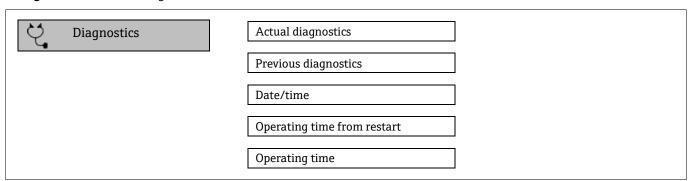
Diagnose- nummer	Kurztext	Abhilfemaßnahmen	Statussignal ab Werk	Diagnose- verhalten ab Werk		
	Diagnose des Sensors					
082	Data storage	 Modulanschlüsse prüfen. Service kontaktieren. 	F	Alarm		
083	Memory content	 Gerät neu starten. HistoROM S-DAT-Sicherung wiederherstellen. Parameter Device reset. HistoROM S-DAT austauschen. 	F	Alarm		
100	Laser off	 Gerät neu starten. Sensorelektronik austauschen. OH-Sensor austauschen. 	F	Alarm		
101	Laser off	 Warten, bis der Laser die erforderliche Temperatur erreicht hat. OH-Sensor austauschen. 	F	Alarm		
102	Laser temperature sensor faulty	 Gerät neu starten. Sensorelektronik austauschen. OH-Sensor austauschen. 	С	Warnung		
103	Laser temperature unstable	 Die Einhaltung der Umgebungstemperaturrampe sicherstellen. Sensorelektronik austauschen. OH-Sensor austauschen. 	F	Alarm		
104	Laser temperature settling	Abwarten, bis sich Lasertemperatur reguliert hat.	С	Warning		
105	Cell pressure connection defective	 Anschluss an Druckmesszelle prüfen. Druckmesszelle austauschen. 	F	Alarm		
106	Sensor (Optical Head) faulty	 Gerät neu starten. OH-Sensor austauschen. 	F	Alarm		
107	Detector zero range exceeded	 Prozess prüfen. Spektrum prüfen. 	M, C	Warnung		
108	Detector reference level range exceeded	 Prozess prüfen. Spektrum prüfen. 	M, C	Warnung		
109	Peak index @1 out of range	 Prozess prüfen. Spektrum prüfen. Peak Tracking zurücksetzen. 	F	Alarm		
110	Peak track adjustment exceeded	 Prozess prüfen. Spektrum prüfen. Peak Tracking zurücksetzen. 	F	Alarm		
111	Peak track adjustment warning	 Prozess prüfen. Spektrum prüfen. Peak Tracking zurücksetzen. 	С	Warnung		
112	Auto ramp adjustment exceeded	 Prozess prüfen. Spektrum prüfen. Auto-Rampe zurücksetzen. 	F	Alarm		

Diagnose- nummer	Kurztext	Abhilfemaßnahmen	Statussignal ab Werk	Diagnose- verhalten ab Werk
113	Auto ramp adjustment warning	 Prozess prüfen. Spektrum prüfen. Auto-Rampe überwachen. 	С	Warnung
114	Detector reference level delta rescrub exceeded	 Referenzwerte für Nass- und Trockendetektoren prüfen. Wäscher und Probenaufbereitungssystem überprüfen. 	С	Warnung
		Diagnose der Elektronik		
201	Device failure	 Gerät neu starten. Service kontaktieren. 	F	Alarm
232	Real time clock defective	Gerät neu starten Sensorelektronikmodul (SEM) austauschen	M	Warnung
242	Software incompatible	3. Software prüfen.4. Hauptelektronikmodul flashen oder austauschen.	F	Alarm
252	Modules incompatible	Elektronikmodule prüfen. Elektronikmodule austauschen.	F	Alarm
262	Sensorelektronikverbind ung fehlerhaft	Verbindungskabel zwischen Sensorelektronik (ISEM) und Hauptelektronik prüfen oder austauschen. ISEM oder Hauptelektronik prüfen oder austauschen.	F	Alarm
270	Main electronic failure	Hauptelektronikmodul austauschen.	F	Alarm
271	Main electronic failure	 Gerät neu starten. Hauptelektronikmodul austauschen. 	F	Alarm
272	Main electronic failure	 Gerät neu starten. Service kontaktieren. 	F	Alarm
273	Main electronic failure	Elektronik austauschen.	F	Alarm
275	I/O module 1 to n defective	I/O-Modul austauschen.	F	Alarm
276	I/O module 1 to n faulty	 Gerät neu starten. I/O-Modul austauschen. 	F	Alarm
283	Memory content	 Gerät zurücksetzen. Service kontaktieren. 	F	Alarm
300	Sensor electronics (ISEM) faulty	 Gerät neu starten. Sensorelektronik austauschen. 	F	Alarm
301	SD memory card error	 SD-Karte prüfen. Gerät neu starten. 	С	Warnung
302	Device verification in progress	Geräteverifikation aktiv, bitte warten.	С	Warnung
303	I/O @1 configuration changed	 I/O-Modulkonfiguration anwenden. Parameter Apply I/O configuration. Gerätebeschreibung neu laden und Verkabelung prüfen. 	M	Warnung
304	MAC electronics connection faulty	 Erdungsanschluss zwischen MAC und Proline- Gehäuse prüfen. Kommunikationskabel zwischen MAC und Elektronik des optischen Kopfs überprüfen/austauschen. MAC/ISEM-Module prüfen/austauschen. 	F	Alarm

Diagnose- nummer	Kurztext	Abhilfemaßnahmen	Statussignal ab Werk	Diagnose- verhalten ab Werk
305	Solenoid @1 trigger error	 Stromaufnahme des Magnetventils prüfen. MAC-Magnetventilanschluss prüfen/austauschen. 	F	Alarm
306	Heater temperature sensor	Anschluss des Heizungstemperatursensors prüfen/ersetzen.	F	Alarm
307	Heater connection error	1. Heizungsanschluss prüfen/austauschen.	F	Alarm
311	Electronic failure	 Gerät nicht zurücksetzen. Service kontaktieren. 	M	Warnung
330	Flash file invalid	 Firmware des Geräts aktualisieren. Gerät neu starten. 	M	Warnung
331	Firmware update failed	 Firmware des Geräts aktualisieren. Gerät neu starten. 	F	Warnung
332	Writing in HistoROM backup failed	User Interface Board Ex d/XP austauschen: Steuereinheit austauschen	F	Alarm
361	I/O module 1 to n faulty	 Gerät neu starten. Elektronikmodule prüfen. I/O-Modul oder Hauptelektronik austauschen. 	F	Alarm
372	Sensor electronics (ISEM) faulty	 Gerät neu starten. Prüfen, ob Störung erneut auftritt. ISEM ersetzen. 	F	Alarm
373	Sensor electronic (ISEM) faulty	 Daten übertragen oder Gerät zurücksetzen. Service kontaktieren. 	F	Alarm
375	I/O – 1 to n communication failed	 Gerät neu starten. Prüfen, ob Störung erneut auftritt. Modul-Rack inklusive Elektronikmodulen austauschen. 	F	Alarm
382	Data storage	 T-DAT einsetzen. T-DAT austauschen. 	F	Alarm
383	Memory content	 Gerät neu starten. T-DAT auf dem Parameter Reset device löschen. T-DAT austauschen. 	F	Alarm
387	HistoROM data faulty	Serviceorganisation kontaktieren.	F	Alarm
		Diagnose der Konfiguration / des Service		
410	Data transfer	 Verbindung prüfen. Datenübertragung wiederholen. 	F	Alarm
412	Processing download	Download aktiv, bitte warten.	С	Warnung
431	Trim 1 to n	Abgleich ausführen.	С	Warnung
436	Date/time incorrect	Einstellungen für Datum und Uhrzeit überprüfen	M	Warnung
437	Configuration incompatible	 Gerät neu starten. Service kontaktieren. 	F	Alarm
438	Dataset	 Datensatzdatei prüfen. Gerätekonfiguration prüfen. Neue Konfiguration up- und downloaden. 	М	Warnung
441	Current output 1 to n	 Prozess prüfen. Einstellungen für Stromausgang prüfen. 	S	Warnung

Diagnose- nummer	Kurztext	Abhilfemaßnahmen	Statussignal ab Werk	Diagnose- verhalten ab Werk
444	Current input 1 to n	 Prozess prüfen. Einstellungen des Stromeingangs prüfen. 	S	Warnung
484	Failure mode simulation	Simulation deaktivieren.	С	Alarm
485	Measured variable simulation	Simulation deaktivieren	С	Warnung
486	Current input 1 to n simulation	Simulation deaktivieren.	С	Warnung
491	Current output 1 to n simulation	Simulation deaktivieren.	С	Warnung
494	Switch output simulation 1 to n	Simulation Schaltausgang deaktivieren.	С	Warnung
495	Diagnostic event simulation	Simulation deaktivieren.	С	Warnung
500	Laser current out of range	 Spektrum prüfen. Peak Tracking zurücksetzen. 	M, C	Warnung
501	Stream Change Comp. (SCC) config. Faulty	 Einstellungen der Gaszusammensetzung prüfen. Summe der Gaszusammensetzung prüfen. 	С	Warnung
502	Measurement calculation timeout	 Fortschritt prüfen. Messungsberechnung prüfen. 	С	Warnung
520	I/O 1 to n hardware configuration invalid	 I/O Hardware-Konfiguration prüfen. Falsches I/O-Modul austauschen. Modul des Doppelimpulsausgangs in den korrekten Steckplatz stecken. 	F	Alarm
594	Relay output simulation	Simulation Schaltausgang deaktivieren.	С	Warnung
	<u>'</u>	Diagnose des Prozesses / der Umgebung		'
803	Current loop @1	Check wiring. I/O-Modul austauschen.	F	Alarm
832	Electronics temperature too high	Umgebungstemperatur reduzieren.	S	Warnung
833	Electronics temperature too low	Umgebungstemperatur erhöhen.	S	Warnung
900	Cell pressure range exceeded	 Prozessdruck prüfen. Prozessdruck anpassen. 	S	Warnung
901	Cell temperature range exceeded	 Umgebungstemperatur prüfen. Prozesstemperatur prüfen. 	S	Warnung
902	Spectrum clipped	 Prozess prüfen. Spektrum prüfen. 	С	Warnung
903	Validation active	 Strom von Validierung auf Prozess umschalten. Validierung deaktivieren. Gerät neu starten. 	С	Warnung
904	Switch gas valve	Gasventil umschalten und Proceed auswählen	M	Warnung

Diagnose- nummer	Kurztext	Abhilfemaßnahmen	Statussignal ab Werk	Diagnose- verhalten ab Werk	
905	Validation failed	 Validierungseinstellungen überprüfen. Validierungsgas prüfen. Diagnoseereignis zurücksetzen. 	S	Warnung	
906	Enclosure temperature spike	 Umgebungsbedingungen prüfen. Gehäuse prüfen. 	С	Warnung	
908	Cell pressure dry rescrub	 Prozess prüfen. Wäscher und Magnetventile prüfen. Durchflussweg des Probenaufbereitungssystems prüfen. 	F	Alarm	
909	Cell pressure delta rescrub	 Druck von Nass- und Trockenzellen prüfen Wäscher und Magnetventile prüfen. Durchflussweg des Probenaufbereitungssystems prüfen. 	F	Alarm	
910	Cell temperature delta rescrub	 Temperatur von Nass- und Trockenzellen prüfen. Heizung prüfen. Probenaufbereitungssystem prüfen. 	F	Alarm	
911	Detector reference level delta rescrub	 Referenzwerte für Nass- und Trockendetektoren prüfen. Gashintergrundzusammensetzung prüfen. Probenaufbereitungssystem prüfen. 	F	Alarm	
912	Fit ratio 2 rescrub	 Fit ratio-Werte prüfen. Gashintergrundzusammensetzung prüfen. 	F	Alarm	
913	Fit ratio 3 rescrub	 Fit ratio-Werte prüfen. Gashintergrundzusammensetzung prüfen. 	F	Alarm	
914	Fit residue rescrub	 Fit-Rückstandswert prüfen. Gashintergrundzusammensetzung prüfen. 	F	Alarm	
915	Peak tracking rescrub	 Prozess prüfen. Spektrum prüfen. Peak Tracking zurücksetzen. 	F	Alarm	
916	Auto ramp rescrub	 Prozess prüfen. Spektrum prüfen. Auto-Rampe zurücksetzen. 	F	Alarm	
920	Fit residue too low	 Fit-Rückstandswert prüfen. Gashintergrundzusammensetzung prüfen. 	F	Alarm	
921	Scrubber depleted	 Wäscheranzeige prüfen. Wäscher wechseln und Diagnose zurücksetzen. 	М	Warnung	
922	Scrubber protection active	 Prozesskonzentration unter Grenzwert prüfen. Neuen Wäscherzyklus manuell auslösen. 	С	Warnung	
930	Cell gas flow not detected	 Durchflussrate des Prozessgases prüfen. Durchflussschalter justieren. 	S	Warnung	

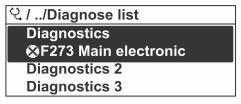

10.7 Anstehende Diagnoseereignisse

Im Menü **Diagnostics** kann der Benutzer das aktuelle und das vorherige Diagnoseereignis separat anzeigen lassen.

Das Aufrufen der Abhilfemaßnahmen zu einem Diagnoseereignis erfolgt über:

- das Gerätedisplay
- den Webbrowser
- Weitere anstehende Diagnoseereignisse können im Untermenü **Diagnostic list** angezeigt werden.

Navigation Menü Diagnostics



Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Actual diagnostics	Actual diagnostics Ein Diagnoseereignis ist aufgetreten. Zeigt das aktuell aufgetretene Diagnoseereignis zusammen mit den Diagnoseinformationen an. Wenn mehrere Meldungen gleichzeitig auftreten, wird die Meldung mit der höchsten Priorität angezeigt.		Symbol für Diagnoseverhalten, Diagnosecode und Kurztext.
Previous diagnostics	Zwei Diagnoseereignisse sind bereits aufgetreten.	Zeigt das vor dem aktuellen Diagnoseereignis zuletzt aufgetretene Diagnoseereignis zusammen mit den Diagnoseinformationen an.	Symbol für Diagnoseverhalten, Diagnosecode und Kurztext.
Date/time	-	Zeigt das aktuelle Datum / die aktuelle Uhrzeit im Analysator an	Zulassungsspezifisch: - dd.mm.yy hh:mm - mm/dd/yy hh:mm am/pm
Operating time from restart	_	Zeigt an, wie lange das Gerät seit dem letzten Neustart in Betrieb ist.	Tage (d), Stunden (h), Minuten (m) und Sekunden (s)
Operating time	_	Zeigt an, wie lange das Gerät in Betrieb ist.	Tage (d), Stunden (h), Minuten (m) und Sekunden (s)

10.7.1 Diagnoseliste

Bis zu fünf aktuell anstehende Diagnoseereignisse können zusammen mit den zugehörigen Diagnoseinformationen im Untermenü **Diagnose list** angezeigt werden. Wenn mehr als fünf Diagnoseereignisse anstehen, werden diejenigen mit der höchsten Priorität angezeigt.

Navigation Diagnostics → Diagnose list

A0014006-EN

Abbildung 69. Diagnoseliste auf dem Gerätedisplay

Das Aufrufen der Abhilfemaßnahmen zu einem Diagnoseereignis erfolgt über:

- das Gerätedisplay
- den Webbrowser

10.8 Ereignislogbuch

10.8.1 Ereignishistorie

Eine chronologische Übersicht zu den aufgetretenen Ereignismeldungen befindet sich im Untermenü Eventlist.

Navigation Diagnostics → Untermenü Event logbook → Event list

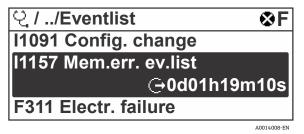


Abbildung 70. Beispiel einer Ereignisliste im Gerätedisplay

Mit dem Anwendungspaket Extended HistoROM kann die Ereignisliste bis zu 100 Einträge enthalten, die in chronologischer Reihenfolge angezeigt werden. Die Ereignishistorie umfasst Einträge zu:

- Diagnoseereignissen
- Informationsereignissen

Jedem Ereignis ist neben der Betriebszeit seines Auftretens noch ein Symbol zugeordnet, das angibt, ob das Ereignis aufgetreten oder bereits beendet ist:

- Diagnoseereignis
 - €: Auftreten des Ereignisses
 - →: Ende des Ereignisses
- Informationsereignis
 - €: Auftreten des Ereignisses

Das Aufrufen der Abhilfemaßnahmen zu einem Diagnoseereignis erfolgt über:

- das Gerätedisplay
- den Webbrowser

10.8.2 Ereignislogbuch filtern

Mithilfe des Parameters **Filteroptionen** kann bestimmt werden, welche Kategorien von Ereignismeldungen im Untermenü **Ereignisliste** angezeigt werden.

Navigation Diagnostics \rightarrow Event logbook \rightarrow Filter options

Filterkategorien

- All
- Failure, F
- Function check, C
- Out of specification, S
- Maintenance required, M
- Information, I

10.8.3 Übersicht über Informationsereignisse

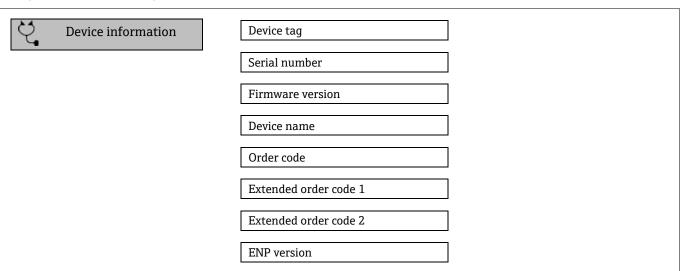
Im Gegensatz zu Diagnoseereignissen werden Informationsereignisse nur im Ereignis-Logbuch und nicht in der Diagnoseliste angezeigt.

Optionen	Beschreibung	Optionen	Beschreibung
I1000	(Gerät ok)	I1513	Download abgeschlossen
I1079	Sensor getauscht	I1514	Upload gestartet
I1089	Netz ein	I1515	Upload abgeschlossen
I1090	Rücksetzen der Konfiguration	I1618	I/O-Modul ausgetauscht
I1091	Konfiguration geändert	I1619	I/O-Modul ausgetauscht
I1092	HistoROM Backup gelöscht	I1621	I/O-Modul ausgetauscht
I1137	Elektronik ausgetauscht	I1622	Kalibrierung geändert
I1151	Historie zurückgesetzt	I1625	Schreibschutz aktiviert
I1156	Speicherfehler Trend	I1626	Schreibschutz deaktiviert
I1157	Speicherfehler Ereignisliste	I1627	Webserver-Login erfolgreich
I1256	Display: Zugriffsstatus geändert	I1629	CDI-Login erfolgreich
I1278	I/O-Modul neu gestartet	I1631	Webserver-Zugriff geändert
I1335	Firmware geändert	I1632	Anzeige-Login fehlgeschlagen
I1361	Webserver-Login fehlgeschlagen	I1633	CDI-Login fehlgeschlagen
I1397	Feldbus: Zugriffsstatus geändert	I1634	Zurücksetzen auf Werkseinstellungen
I1398	CDI: Zugriffsstatus geändert	I1635	Zurücksetzen auf Einstellungen bei Auslieferung
I1440	Hauptelektronikmodul geändert	I1639	Max. Anzahl Schaltzyklen erreicht
I1442	I/O-Modul geändert	I1649	Hardware-Schreibschutz aktiviert
I1444	Geräteverifizierung erfolgreich	I1650	Hardware-Schreibschutz deaktiviert
I1445	Geräteverifizierung fehlgeschlagen	I1712	Neue Flash-Datei empfangen

Optionen	Beschreibung	Optionen	Beschreibung
I1459	Verifizierung des I/O-Moduls fehlgeschlagen	I1725	Sensorelektronikmodul (ISEM) geändert
I1461	Sensorverifizierung fehlgeschlagen	I1726	Sicherung der Konfiguration fehlgeschlagen
I1462	Verifizierung Sensorelektronikmodul.	I11201	SD-Karte entfernt
I1512	Download gestartet	I11431	Wäscherschutz aktiv

10.9 Messgerät zurücksetzen

Mithilfe von Parameter **Device reset** lässt sich die gesamte Gerätekonfiguration oder ein Teil der Konfiguration auf einen definierten Zustand zurücksetzen.


10.9.1 Funktionsumfang des Parameters Device reset

Optionen	Beschreibung
Cancel	Der Benutzer verlässt den Parameter, ohne eine Aktion auszuführen.
Restart device	Bei einem Neustart wird jeder Parameter mit Daten im flüchtigen Speicher/RAM auf die Werkseinstellung zurückgesetzt. Dazu gehören auch die Messwertdaten. Die Gerätekonfiguration bleibt unverändert.

10.10 Geräteinformationen

Das Untermenü **Device information** enthält alle Parameter, die verschiedene Informationen zur Geräteidentifizierung anzeigen.

Navigation Menü Diagnostics → Device information

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Device tag	Zeigt die Bezeichnung für eine Messstelle an.	Maximal 32 Zeichen (Buchstaben, Ziffern und Sonderzeichen, wie @,%, /)	JT33 H2S MB
Serial number	Zeigt die Seriennummer des Messgeräts an.	Eine Zeichenfolge aus maximal 11 Zeichen, die Buchstaben und Ziffern umfasst.	-

Parameter	Beschreibung	Benutzereingabe	Werkseinstellung
Firmware version	Zeigt die Version der installierten Geräte- Firmware an.	Zeichenfolge im Format: xx.yy.zz	-
Device name	Zeigt den Namen der Steuerungseinheit an. Der Name befindet sich auch auf dem Typenschild des Analysators.	JT33 H₂S	-
Order code	Zeigt den Bestellcode des Geräts an. Der Bestellcode befindet sich im Typenschild des Analysators im Feld Order Code .	Zeichenfolge aus Buchstaben, Ziffern und bestimmten Sonderzeichen, beispielsweise /.	-
Extended order code 1	Zeigt den ersten Teil des erweiterten Bestellcodes an. Der Bestellcode befindet sich auch auf dem Typenschild des Analysators im Feld Ext. ord. cd .	Zeichenfolge	_
Extended order code 2	Zeigt den zweiten Teil des erweiterten Bestellcodes an. Der Bestellcode befindet sich auch auf dem Typenschild des Analysators im Feld Ext. ord. cd .	Zeichenfolge	_
ENP version	Zeigt die Version des elektronischen Typenschilds (ENP) an.	Zeichenfolge	2.02.00

10.11 Signalalarme

Je nach Benutzeroberfläche werden die in diesem Abschnitt beschriebenen Fehlerinformationen angezeigt.

10.11.1 Modbus-RS485 und Modbus-TCP

Failure Mode	Zur Auswahl stehen:
	 NaN value instead of current value Last valid value

10.11.2 Stromausgang 0/4 bis 20 mA

4 bis 20 mA

Failure Mode	Zur Auswahl stehen: 4 to 20 mA in accordance with NAMUR recommendation NE 43 4 to 20 mA in accordance with US Mindestwert: 3.59 mA Maximalwert: 22.5 mA Frei definierbarer Wert: 3.59 bis 22.5 mA Aktueller Wert Letzter gültiger Wert
--------------	---

0 bis 20 mA

Failure Mode	Zur Auswahl stehen:
	 Maximum alarm: 22 mA Freely definable value: 0 to 20.5 mA

10.11.3 Relaisausgang

Failure Mode	Zur Auswahl stehen: Current status Open Closed
	- Closed

10.11.4 Gerätedisplay

Klartextanzeige	Liefert Informationen zu Ursachen und Abhilfemaßnahmen.
Hintergrund	Eine rote Hintergrundbeleuchtung weist auf einen Gerätefehler hin.

Statussignal gemäß NAMUR-Empfehlung NE 107.

10.11.5 Schnittstelle/Protokoll

- Über digitale Kommunikation: Modbus-RS485 und Modbus-TCP
- Über Serviceschnittstelle

10.11.6 Webserver

Klartextanzeige	Liefert Informationen zu Ursachen und Abhilfemaßnahmen.
-----------------	---

10.11.7 Leuchtdioden (LED)

Statusinformationen	Statusanzeige durch verschiedene LEDs. Je nach Geräteausführung werden folgende Informationen angezeigt: Versorgungsspannung aktiv Datenübertragung aktiv Gerätealarm/-störung liegt vor
	i Diagnoseinformationen durch LEDs.

10.12 Protokollspezifische Daten

Protokoll	Modbus Applications Protocol Specification V1.1
Antwortzeiten	 Direkter Datenzugriff: üblicherweise 25 bis 50 ms Datenbereich Auto-Scan-Puffer: üblicherweise 3 bis 5 ms
Gerätetyp	Server
Serveradressbereich ¹³	1 bis 247
Broadcast-Adressbereich ¹³	0
Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate ¹³	■ 1 200 BAUD ■ 2 400 BAUD ■ 4 800 BAUD ■ 9 600 BAUD ■ 19 200 BAUD ■ 38 400 BAUD ■ 57 600 BAUD ■ 115 200 BAUD
Priority Pool IP-Adresse	IP-Adresse
Timeout bei Nichtaktivität	0 bis 99 Sekunden
Max. Verbindungen	1 bis 4
Datenübertragungsmodus	■ ASCII ¹³ ■ RTU ¹³ ■ TCP ¹⁴
Datenzugriff	Auf jeden Geräteparameter kann über Modbus-RS485 und Modbus-TCP zugegriffen werden.

¹³ Nur Modbus-RS485

 $^{^{14}}$ Nur Modbus-TCP

10.13 Allgemeine Störungsbehebungen

Geräteanzeige

Fehler	Mögliche Ursachen	Behebung
Geräteanzeige dunkel und keine Ausgangssignale	Versorgungsspannung stimmt nicht mit der Angabe auf dem Typenschild überein.	Richtige Versorgungsspannung anlegen. Siehe Abschnitt Versorgungsspannung und zusätzliche Ein-/Ausgänge anschließen → 🖺.
	Versorgungsspannung ist falsch gepolt.	Versorgungsspannung umpolen.
	Anschlusskabel haben keinen Kontakt zu den Anschlussklemmen.	Anschluss der Kabel prüfen und gegebenenfalls korrigieren.
	Anschlussklemmen sind auf I/O- Elektronikmodul nicht korrekt gesteckt. Anschlussklemmen sind auf Hauptelektronikmodul nicht korrekt gesteckt.	Anschlussklemmen kontrollieren.
	I/O-Elektronikmodul ist defekt. Hauptelektronikmodul ist defekt.	Ersatzteil bestellen.
Gerätedisplay ist dunkel, aber Signalausgabe innerhalb des gültigen Bereichs	Display ist zu hell oder zu dunkel eingestellt.	 Anzeige heller einstellen durch gleichzeitiges Drücken von ± + E. Anzeige dunkler einstellen durch gleichzeitiges Drücken von □ + E.
	Das Kabel des Anzeigemoduls ist nicht korrekt eingesteckt.	Stecker korrekt in Hauptelektronikmodul und Anzeigemodul einstecken.
	Anzeigemodul ist defekt.	Ersatzteil bestellen.
Hintergrundbeleuchtung der Geräteanzeige ist rot	Diagnoseereignis mit Diagnoseverhalten Alarm eingetreten.	Abhilfemaßnahmen ergreifen.
Meldung auf Gerätedisplay: Kommunikationsfehler, Elektronik prüfen	Die Kommunikation zwischen Anzeigemodul und Elektronik ist unterbrochen.	Kabel und Verbindungsstecker zwischen Hauptelektronikmodul und Anzeigemodul prüfen. Ersatzteil bestellen.

Ausgangssignale

Fehler	Mögliche Ursachen	Behebung
Signalausgabe außerhalb des gültigen Bereichs	Hauptelektronikmodul ist defekt.	Ersatzteil bestellen.
Gerät zeigt auf Gerätedisplay richtigen Wert an, Signalausgabe ist falsch, jedoch im gültigen Bereich.	Konfigurationsfehler.	Parameterkonfiguration prüfen und korrigieren.
Gerät misst falsch.	Konfigurationsfehler, oder das Gerät wird außerhalb der Anwendung betrieben.	 Parameterkonfiguration prüfen und korrigieren. In den technischen Daten angegebene Grenzwerte einhalten.

Zugriff

Fehler	Mögliche Ursachen	Behebung
Kein Schreibzugriff auf Parameter möglich	Hardwareschreibschutz aktiviert.	Schreibschutzschalter auf Hauptelektronikmodul in Position AUS stellen. Siehe Abschnitt <i>Schreibschutzschalter</i> verwenden → 🖹.
	Aktuelle Anwenderrolle hat eingeschränkte Zugriffsrechte.	 Anwenderrolle prüfen. Korrekten kundenspezifischen Zugangscode eingeben. Siehe Abschnitt Zugangscode zurücksetzen →
Keine Verbindung von	Modbus-RS485-Kabel falsch terminiert.	Abschlusswiderstand prüfen.
Modbus-RS485	Falsche Einstellungen für die Kommunikationsschnittstelle.	Modbus-RS485-Konfiguration prüfen.
Keine Verbindung von	Modbus-TCP-Kabel falsch terminiert.	Abschlusswiderstand prüfen.
Modbus-TCP	Falsche Einstellungen für die Kommunikationsschnittstelle.	Modbus-TCP-Konfiguration prüfen.
Kein Verbindungs- aufbau zum	Webserver deaktiviert.	-
Webserver	Falsche Einstellung der Ethernet-Schnittstelle des Computers.	Netzwerkeinstellungen mit IT- Verantwortlichem prüfen.

Fehler	Mögliche Ursachen	Behebung
Kein Verbindungs- aufbau zum Webserver ¹⁵	IP falsch IP-Adresse nicht bekannt	 Bei Adressierung durch Hardware: Steuerungseinheit öffnen und IP- Adresse einstellen. Letztes Oktett. IP-Adresse des Analysators mit dem Netzwerk-Manager überprüfen. Wenn die IP-Adresse unbekannt ist, DIP-Schalter 01 auf ON setzen, Gerät neu starten und IP-Adresse des Werks 192.168.1.212 eingeben.
	Web-Browser-Einstellung Use a Proxy Server for Your LAN ist aktiviert.	Verwendung des Proxy-Servers in den Webbrowser-Einstellungen des Computers deaktivieren. Beispiel mit Internet Explorer: 1. In der Systemsteuerung auf Internetoptionen klicken. 2. Registerkarte Verbindungen auswählen und auf LAN- Einstellungen doppelklicken. 3. In den LAN-Einstellungen die Verwendung des Proxy-Servers deaktivieren und mit OK bestätigen.
	Neben der aktiven Netzwerkverbindung zum Messgerät werden weitere Netzwerkverbindungen genutzt.	 Es dürfen keine weiteren Netzwerkverbindungen oder WLAN- Verbindungen vom Computer aus bestehen. Weitere Programme mit Netzwerkzugriff auf den Computer schließen. Bei Verwendung einer Docking-Station sicherstellen, dass keine Netzwerkverbindung zu einem anderen Netzwerk aktiv ist.
Webbrowser eingefroren und keine	Datentransfer aktiv.	Warten, bis Datentransfer oder laufende Aktion abgeschlossen ist.
Bedienung mehr möglich	Verbindung unterbrochen.	Kabelverbindung und Spannungsversorgung prüfen. Webbrowser aktualisieren und gegebenenfalls neu starten.
Anzeige der Inhalte im Webbrowser schlecht lesbar oder unvollständig	Verwendete Webbrowser-Version ist nicht optimal.	Korrekte Webbrowser-Version verwenden. Zwischenspeicher des Webbrowsers leeren und Webbrowser neu starten.
	Ansichtseinstellungen sind nicht passend.	Schriftgröße/Anzeigeverhältnis des Webbrowsers anpassen.
Keine oder unvollständige Darstellung der Inhalte im Webbrowser	JavaScript nicht aktiviert.JavaScript ist nicht aktivierbar.	JavaScript aktivieren. Als IP-Adresse http://XXX.XXXX.X.XXX/basic.html eingeben.

 $^{^{15}}$ Für Modbus-TCP

11 Wartung/Service

Es wird erwartet, dass Techniker im Umgang mit gefährlichen Probengasen geschult sind und alle vom Kunden festgelegten für die Wartung des Analysators erforderlichen Sicherheitsprotokolle befolgen. Hierzu gehören auch Vorgehensweisen zum Sperren/Kennzeichnen Lockout/Tagout), Protokolle zur Überwachung von toxischen Gasen, Anforderungen an die Persönliche Schutzausrüstung (PSA), Feuererlaubnisscheine und andere Vorsichtsmaßnahmen, die auf Sicherheitsbelange eingehen, die mit Servicearbeiten an in explosionsgefährdeten Bereichen angesiedelten Prozessbetriebsmitteln zusammenhängen.

Das Personal muss Schutzausrüstung (z. B. Handschuhe, Masken etc.) verwenden, wenn es Gasen oder Dämpfen ausgesetzt ist.

11.1 Reinigung und Dekontaminierung

Probenleitungen frei von Verunreinigungen halten

- 1. Sicherstellen, dass ein Membranabscheidefilter (im Lieferumfang der meisten Systeme enthalten) vor dem Analysator montiert ist und normal arbeitet.
- Membran bei Bedarf austauschen.
 Wenn Flüssigkeit in die Messzelle eindringt und sich auf der internen Optik ansammelt, wird der Fehler Detector reference level range exceeded ausgegeben.
- 3. Probenventil am Hahn gemäß lokalen Absperr-/Kennzeichnungsvorschriften ausschalten.
- 4. Probegasleitung vom Zuleitungsanschluss des Analysators trennen.
- 5. Probegasleitung mit Isopropanol oder Aceton waschen und mit leichtem Druck von einer Trockenluft- oder Stickstoffquelle trocken blasen.
- 6. Sobald die Probegasleitung frei von Lösungsmitteln ist, die Probegasleitung wieder am Probenzuleitungsanschluss auf dem Analysator anschließen.
- 7. Alle Anschlüsse auf Gaslecks untersuchen. Die Verwendung eines flüssigen Leckmelders wird empfohlen.

Außenseite des JT33 TDLAS Gasanalysators reinigen

Das Gehäuse sollte nur mit einem feuchten Tuch gereinigt werden, um eine elektrostatische Entladung zu vermeiden.

MARNUNG

 Niemals Vinylacetat, Aceton oder andere organische Lösungsmittel zum Reinigen des Analysatorgehäuses oder der Etiketten verwenden.

11.2 Wäscher warten

Der H_2S -Wäscher enthält Material, das mit dem Gebrauch allmählich seine Reinigungskraft verliert. Die Lebensdauer des Materials hängt davon ab, wie viel Analyt durch den Wäscher fließt (Gaszusammensetzung) und wie oft (Schaltfrequenz). Die Lebensdauer der Wäscher ist anwendungsspezifisch. Das Analysesystem prognostiziert die verbleibende Kapazität des Wäschers, indem es anhand der tatsächlichen H_2S -Konzentrationsmessungen und der Dauer des Trockenzyklus berechnet, wie viel kumulatives H_2S vom Wäscher entfernt wurde. Die Lebensdauer des Wäschers wurde für typische Erdgas- und Brenngasanwendungen simuliert. Wie in der nachfolgenden Abbildung dargestellt, arbeitet ein Wäscher unter normalen Betriebsbedingungen in einer Erdgasanwendung mit einer durchschnittlichen H_2S -Konzentration von 4 ppmv viele Jahre, während bei einem Wäscher in einer Brenngasanwendung mit einer durchschnittlichen H_2S -Konzentration von 100 ppmv eine Lebensdauer von ca. 190 Tagen zu erwarten ist.

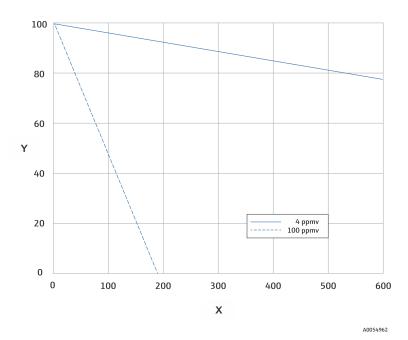


Abbildung 71. Prognostizierte Lebensdauer des Wäschers basierend auf der durchschnittlichen H_2S -Last

Achse	Beschreibung
X	Tage
Y	Restkapazität [%]

Als zusätzliche Vorsichtsmaßnahme für H_2S -Systeme ist am Auslass des Wäschers eine Anzeige für die Wäschereffizienz angebracht, wie in der Abbildung des Wäschers und der Anzeige für die Wäschereffizienz unten dargestellt. Das Pulver in der Anzeige des Wäscherwirkungsgrads ändert die Farbe von Türkis zu Dunkelgrau, wenn ein H_2S -Durchbruch vorliegt. Alternativ gibt eine regelmäßige Validierung des Systems mit einem geeigneten Gasstandard darüber Auskunft, wann der Wäscher ausgetauscht werden muss.

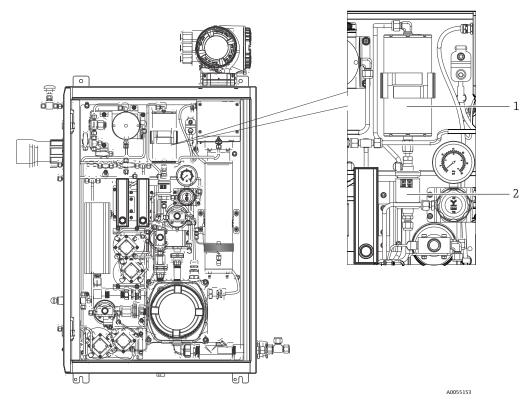


Abbildung 72. Wäscher und Anzeige des Wäscherwirkungsgrads

Nr.	Beschreibung
1	Wäscher
2	Anzeige des Wäscherwirkungsgrads

Bei der Spezifizierung von Gasstandards H_2S in der Methan-Bilanz angeben. Für einen Messbereich von 0 bis 20 ppm empfiehlt sich eine Konzentration von 4 bis 16 ppm.

Das System gibt eine Meldung zur Wäscherdiagnose aus, um anzuzeigen, wann der Wäscher und die Wäscher-Effizienzanzeige ausgetauscht werden müssen. Sobald der Wäscher und die Wäscher-Effizienzanzeige ausgetauscht wurden, muss die Wäscher-Nutzungsüberwachung für die aktive Diagnose über das Menü Diagnostic behavior zurückgesetzt werden.

11.2.1 Wäscher austauschen

Wenn ein Austausch des Wäschers des Probenaufbereitungssystems erforderlich ist, www.endress.com/contact www.endress.com besuchen oder die lokale Vertriebsniederlassung kontaktieren.

- 1. Probenzufuhrventil schließen. Das Ausschalten des Analysators kann optional erfolgen.
- 2. Tür des SCS-Gehäuses öffnen.
- 3. Mit einem Schraubenschlüssel die Armatur auf der Ober- und Unterseite des Wäschers lösen.
- 4. Den Wäscher aus der Halterung entfernen.
- 5. Neuen Wäscher in den Analysator einsetzen und den Bügel montieren.
- 6. Muttern auf der Ober- und Unterseite des Wäschers fingerfest anziehen.
- 7. Mit einem Schraubenschlüssel die fingerfest angezogenen Muttern mit 1/8 Umdrehung fester anziehen.

11.2.2 Verbrauchte Wäscher und Anzeigen des Wäscherwirkungsgrads entsorgen

▲ VORSICHT

Verbrauchte H₂S-Wäscher und Wäscheranzeigen enthalten hauptsächlich Kupfer-(II)-Sulfid [CAS# 1317-40-4] sowie etwas Kupfer-(II)-Oxid [CAS# 1317-38-0] und basisches Kupferkarbonat[CAS# 12069-69-1].

- Diese Substanzen sind geruchlose, dunkle Pulver, die nur wenige spezielle Vorsichtsmaßnahmen erfordern, abgesehen davon, dass der Kontakt mit den internen Substanzen vermieden werden muss. Darüber hinaus muss der Wäscher gut abgedichtet werden und der Inhalt muss vor Feuchte geschützt werden.
- Verbrauchte Wäscher und Wäscheranzeigen in einem geeigneten, lecksicheren Behälter entsorgen.

11.3 Ersatzteile

Alle Ersatzteile für den Analysator sowie deren Bestellnummern sind im Ersatzteilsuche-Tool auf der Webseite von Endress+Hauser aufgeführt.

Ersatzteilsuche-Tool: www.endress.com/product-Tools

11.4 Fehlerbehebung/Reparatur

Sicherstellen, dass ein Membranabscheiderfilter ordnungsgemäß funktioniert. Wenn Flüssigkeit in die Messzelle eindringt und sich auf der internen Optik ansammelt, wird der Fehler **Detector reference level range exceeded** ausgegeben.

Reparaturen, die vom Kunden oder im Auftrag des Kunden vorgenommen werden, müssen in einem Standortdossier aufgezeichnet und für Inspektionen bereitgehalten werden.

11.4.1 Membranabscheiderfilter wechseln

- 1. Probenzufuhrventil schließen.
- 2. Kappe vom Membranabscheider abschrauben.
- 3. Prüfen, ob der Membranfilter trocken ist oder ob Flüssigkeit/Verunreinigungen vorhanden sind. Nachfolgende Schritte ausführen.

Wenn der Membranfilter trocken ist:

- 1. Überprüfen, ob Verunreinigungen oder Verfärbungen auf der weißen Membran zu sehen sind. Wenn dies der Fall ist, muss der Filter ausgetauscht werden.
- 2. O-Ring entfernen und Membranfilter austauschen.
- 3. O-Ring auf der Oberseite des Membranfilters austauschen.
- 4. Kappe wieder auf den Membranabscheider setzen und anziehen.
- 5. Prüfen, ob der Bereich vor der Membran durch Flüssigkeiten verunreinigt ist, und vor dem Öffnen des Probenzufuhrventils den Bereich bei Bedarf reinigen und trocknen.

Wenn Flüssigkeiten oder Verunreinigungen auf dem Filter festgestellt werden:

- 1. Sämtliche Flüssigkeiten ablassen und mit Isopropanol reinigen.
- 2. Sämtliche Flüssigkeiten und Verunreinigungen von der Basis des Membranabscheiders entfernen.
- 3. Filter und O-Ring austauschen.
- 4. Kappe auf den Membranabscheider setzen und anziehen.
- 5. Prüfen, ob der Bereich vor der Membran durch Flüssigkeiten verunreinigt ist, und vor dem Öffnen des Probenzufuhrventils den Bereich bei Bedarf reinigen und trocknen.

11.4.2 7-Mikron-Filter austauschen

Werkzeuge und Befestigungsmaterialien

- 1-Zoll-Gabelschlüssel
- 1-Zoll-Crow-Foot-Schlüssel
- Drehmomentschlüssel mit 73,4 Nm (650-lb)

▲ WARNUNG

- Im Filter können gefährliche Reststoffe verbleiben.
- 1. Probenzufuhrventil schließen.
- 2. Das Probenentnahmesystem spülen, falls gefährliche Stoffe vorhanden sein sollten. Siehe Abschnitt Gehäuse spülen $\rightarrow \boxminus$.
- 3. Den Rumpf mit einem Schraubenschlüssel stabilisieren und die Haube lösen.

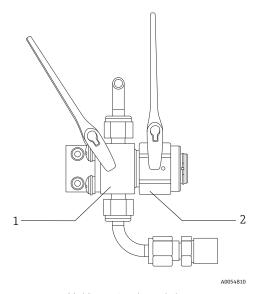


Abbildung 73. Filterteile lösen

Nr.	Beschreibung
1	Filterkörper
2	Filterhaube

- 4. Haube, Dichtung und Filterelement, wie in der Abbildung unten dargestellt, entfernen.
 - ▶ Bei Austausch der Dichtung: alte Dichtung entsorgen.
 - ▶ Bei Austausch des Filterelements: alten Filter entsorgen.

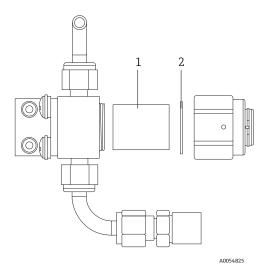
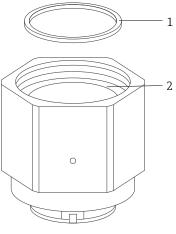



Abbildung 74. Filter und Dichtung entfernen

Nr.	Beschreibung
1	Filterelement
2	Dichtung

- 5. Bei einem Austausch des alten Filterelements den Filter mit Isopropylalkohol reinigen.
- 6. Offenes Ende des Filterelements in den Rumpf drücken.
- 7. Dichtung auf der Dichtungsfläche der Haube zentrieren.

A005482

Abbildung 75. Dichtung auf der Dichtungsfläche der Haube zentrieren

Nr.	Beschreibung
1	Dichtung
2	Dichtungsfläche der Haube

- 8. Haube auf den Rumpf schrauben, bis die Gewindegänge des Rumpfs nicht länger sichtbar sind.
 - Sollte sich die Haube nicht vollständig auf den Rumpf aufschrauben lassen, ist die Dichtung nicht auf der Dichtungsfläche der Haube zentriert.
- 9. Den Rumpf mit einem Schraubenschlüssel stabilisieren und die Haube mit 62,2 Nm (550 in-lb) anziehen. 10. Auf ordnungsgemäßen Betrieb prüfen.

11.4.3 MAC-Wartung

Der zertifizierte Measurement Accessory Controller (MAC) ist eine Zubehörsteuerung für verschiedene Elemente, die in einem Probenaufbereitungssystem verwendet werden, das Gasanalysatoren von Endress+Hauser unterstützt.

HINWEIS

- Alle MAC-Wartungsarbeiten müssen von einem zertifizierten Benutzer ausgeführt werden.
- Kategorie 3: Elemente, die im Feld vom Hersteller ausgetauscht werden dürfen:
 - MAC-Leiterplattenbestückung (PCBA)
 - Stromversorgung
 - Thermische Abschaltung
- Kategorie 1: Elemente, die im Feld durch den Kunden ersetzt werden dürfen:
 - Elektrische Sicherungen
 - O-Ringe
 - Sicherungen
 - Klemmenblock, Stecker

Werkzeuge und Materialien

- Neue Sicherungen
 - F4 oder F5
 - Thermische Sicherungen bis 77 °C
- 2.5-mm-Sechskantschlüssel zum Entfernen des TDK-Netzteils
- 2-mm-Sechskantschlüssel zum Entfernen des Cincon-Netzteils
- 5- mm-Flachschraubendreher zum Entfernen von Sicherungen
- 2,5-mm-Flachschraubendreher für Strom- und SCS-Heizungsanschlüsse
- Kreuzschlitzschraubendreher Nr. 2 für die Entfernung des Stützkäfigs
- Stange mit den Abmessungen 20 x 20 x 165 mm zum Entfernen der MAC-Abdeckung
- Halbmondschlüssel (2 x 41mm) für die Wartung von Magnetventilen
- Aderendhülsen-Crimpwerkzeug (Teilenummer SQ28-10 oder TRAP24-10)
- Syntheso Glep 1 Fett
- Hardware, die mit der neuen Stromversorgung geliefert wurde

MAC-Stapel entfernen

Den MAC-Stapel entfernen, um die Thermosicherungen, die MAC-Leiterplatte, die Leiterplattenabdeckung oder das Netzteil auszutauschen.

- 1. Alle internen Kabelbäume von der MAC-Leiterplatte trennen, einschließlich des Schutzerdungskabels, das J12-3 mit dem Gehäuse verbindet.
- 2. Die Kabelbäume aus dem Gehäuse durch die Hauptöffnung ziehen, auf die die Abdeckung aufsitzt.
- 3. Die Kabelbäume entlang des Randes/Gewindeabschnitts des Gehäuses mit Klebeband befestigen.
- 4. Mit einem Kreuzschlitzschraubendreher Nr. 2 die vier in der Abbildung unten gezeigten unverlierbaren 10-32-Schrauben entfernen.
- 5. Den Stapel senkrecht aus dem Gehäuse herausnehmen.

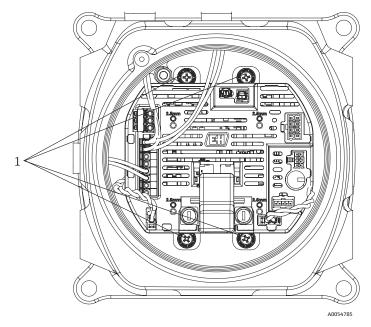


Abbildung 76. Positionen der unlösbaren Schrauben (1)

MARNUNG

Sicherungen sind für eine bestimmte Spannung ausgelegt. Auf die entsprechende Stromstärke achten.

Die MAC-Leiterplatte hat zwei Sicherungen. F4 stellt sicher, dass der MAC nicht beschädigt wird, und F5 stellt sicher, dass die Heizung nicht beschädigt wird. Vor einer Wartung die Lage der Sicherungen bestimmen.

- Alle Sicherungen müssen gemäß IEC 60127-2/1 und CSA22.2 Nr. 248.14 zugelassen sein.
- Bei der Wartung eines Wechselstromsystems mit 100 V oder 120 V hat die Heizungssicherung (F5) einen Amperewert von 2,5 A (F) und die MAC-Sicherung (F4) einen Amperewert von 1,25 A.
- Bei der Wartung eines Wechselstromsystems mit 230 V oder 240 V hat die Heizungssicherung (F5) einen Amperewert von 1,25 A (F) und die MAC-Sicherung (F4) einen Amperewert von 1,25 A.
- Bei der Wartung eines 24-Volt-Systems hat die MAC-Sicherung (F5) einen Amperewert von 4 A (F) und im Heizungssteckplatz ist keine Sicherung eingesetzt.

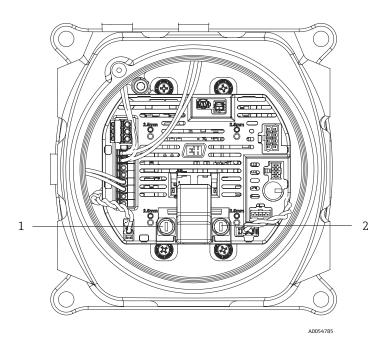


Abbildung 77. MAC-Leiterplatte Lage der Sicherungen

Nr.	Beschreibung
1	SCS-Heizungshalterung
2	MAC Sicherungshalter

F4- oder F5-Sicherungen ersetzen

- 1. Die Sicherungshalterkappe mit dem 5-mm-Flachkopfschraubendreher gegen den Uhrzeigersinn drehen.
- 2. Die Kappe von der MAC-Leiterplatte abnehmen.
- 3. Die neue Sicherung in die Kappe einsetzen.
- 4. Die Kappe im Uhrzeigersinn in den Sicherungshalter drehen, bis sie richtig sitzt.

Thermosicherungen austauschen

WARNUNG

- Die MAC-Abdeckung darf nur dann vom Gehäuse entfernt werden, wenn bekannt ist, dass der Bereich frei von explosiven Gasen in der Atmosphäre ist.
- 2. Zum Austausch der Thermosicherungen die Abdeckung entfernen. Die Sicherungen sind nicht polaritätsabhängig und können daher in jeder Ausrichtung montiert werden. Die Sicherung zur Absicherung der SCS-Heizung befindet sich unten links auf der Leiterplatte und die Sicherung zur Absicherung der Zellenheizung befindet sich auf der rechten Seite der Platine. Siehe Abbildung unten.

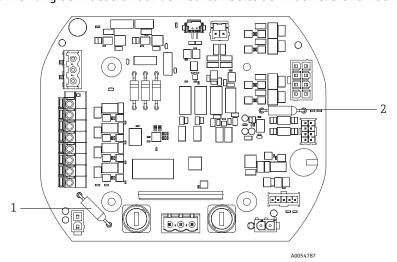


Abbildung 78. Abschaltpunkte der Thermosicherung

Nr.	Beschreibung
1	Thermische Abschaltung SCS- Heizung
2	Thermische Abschaltung Zellenheizung

- 3. Die Sicherungen aus ihren Steckfassungen auf der Leiterplatte entfernen.
- 4. Austauschsicherungen einsetzen. Es wird kein Löten benötigt.

MAC-Leiterplatte austauschen

- 2. Die Abdeckung und die vier $M3 \times 0,5$ -Innensechskantschrauben entfernen, mit denen die Leiterplatte am Stapel befestigt ist.
- 3. Die neue MAC-Leiterplatte mit den gleichen Kopfschrauben montieren.
- 4. Die M3 x 0,5-Kopfschrauben müssen mit einem Drehmoment von 2,0 Nm (17.7 lb-in) angezogen werden.
- 5. Die MAC-Abdeckung wieder anbringen.
- 6. Die Kabelbäume wieder an den richtigen Stellen anbringen.

Netzteil austauschen

- 2. Die vier Innensechskantschrauben lösen.
 - Bei der TDK-Variante wird ein 2,5-mm-Sechskantschlüssel verwendet, um die M3 x 0,5-Schrauben zu entfernen.
 - Bei der Cincon-TDK-Variante wird ein 2-mm-Sechskantschlüssel verwendet, um die M2,5 x 0,5-Schrauben zu entfernen.
- 3. Die Hardware aus dem Stromversorgungskäfig unter dem MAC entfernen.
- 4. Das Netzteil entfernen.
- 5. Das Ersatznetzteil in derselben Ausrichtung in die Baugruppe einsetzen, in der das alte Netzteil entfernt wurde. Dabei die mitgelieferte Hardware verwenden. Siehe Abbildung unten.
 - Um das TDK-Netzteil zu ersetzen, den 2-poligen Stecker in Richtung des Wechselstrom-Eingangs am Stromversorgungskäfig ausrichten.
 - Um das Cincon-Netzteil zu ersetzen, den 3-poligen Stecker in Richtung des Wechselstrom-Eingangs ausrichten.

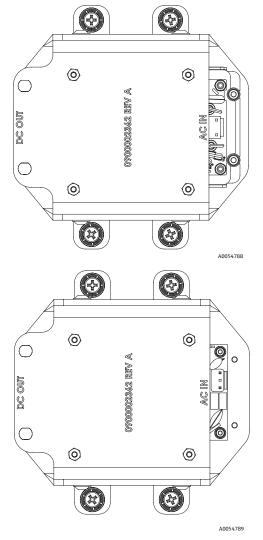


Abbildung 79. Montagelage Netzteil: TDK (oben) und Cincon (unten)

Ex d-Abdeckung entfernen

- 1. Mit einem 2,5-mm-Sechskantschlüssel die Sicherungsschraube im Uhrzeigersinn drehen, um die auf die Unterseite der Abdeckung ausgeübte Kraft zu verringern.
- 2. Nachdem die Sicherungsschraube gelöst wurde, die Abdeckung durch Drehen gegen den Uhrzeigersinn von Hand entfernen.
 - Alternativ kann eine 20 x 20 x 165 mm große Vierkantstange (nicht von Endress+Hauser geliefert) verwendet werden, um die Abdeckung zu entfernen. Siehe Abbildung unten.

HINWEIS

• Eine Stange, die länger als der angegebene Vierkant ist, kann mit SCS-Komponenten kollidieren.

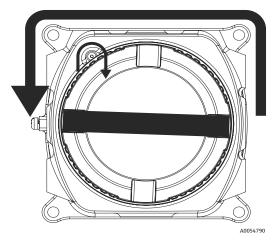


Abbildung 80. MAC-Abdeckung entfernen

- 3. Nachdem die Abdeckung oder die Verschraubungen von einem Zugangspunkt am MAC-Gehäuse entfernt wurden, müssen alle Gewinde auf Abrieb oder Verformung überprüft werden.

 Wenn Gewinde beschädigt sind, das Ersatzgehäuse oder die Ersatzdichtung einsenden, um sicherzustellen, dass die Anforderungen an die Gefahrenabwehr erfüllt werden. Dies kann nicht vor Ort repariert werden.
- 4. Gewinde und O-Ring reinigen und eine dünne Schicht Synetheso Glep 1 auftragen.
- 5. Die Abdeckung wieder auf das Gehäuse setzen.

Magnetventile warten

- Wenn die beiden Magnetventile gewartet werden, die die Schaltlogik des Differenzstroms steuern, müssen die im MAC montierten Aderendhülsen abgeschnitten werden, um die Baugruppe zu entfernen.
- Beim Wiedereinbau in das Gehäuse die beiden isolierten Nylon-Aderendhülsen 2 x 22 AWG mit dem entsprechenden Crimpwerkzeug wieder an beiden Magnetspulen anbringen.
- Bei der Wartung des Validierungsmagnetventils müssen die Aderendhülsen in der Regel nicht ausgetauscht werden.
- Wenn ein Problem mit der Barriereverschraubung auftritt, müssen die Hülsen möglicherweise mit dem entsprechenden Crimpwerkzeug ausgetauscht werden.

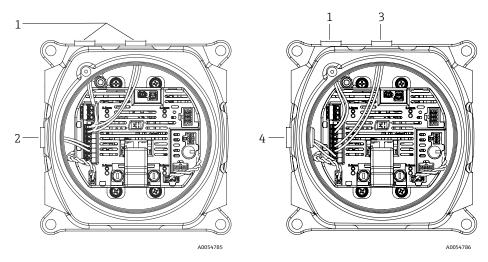


Abbildung 81. Magnetventilverkabelung: Elektrische (links) und pneumatische (rechts) Konfigurationen

Nr.	Beschreibung
1	Differenz-Magnetventil
2	Validierungsmagnetventil
3	Magnetventil für Validierung 1
4	Magnetventil für Validierung 2

11.4.4 Zellenrohr reinigen

Endress+Hauser empfiehlt nicht, das Zellenrohr zu wechseln. Wenn das Zellenrohr verunreinigt ist, kann es gereinigt werden.

Werkzeuge und Materialien

- Fusselfreies Tuch
- Isopropanol in Reagenzqualität (Cole-Parmer® EW-88361-80 oder äquivalent) oder Aceton
- Permanentmarker
- Acetonbeständige Handschuhe (North NOR CE412W Nitrile Chemsoft™ CE Reinraum-Handschuhe oder äquivalent)
- 4-mm-Sechskantschraubendreher

Zellenrohr reinigen

- 1. Analysator ausschalten.
- 2. SCS vom Prozessprobenstrom trennen.
- 3. Wenn möglich, das System 10 Minuten lang mit Stickstoff ausblasen.
- 4. Die Ausrichtung des Zellenrohrs auf der Übergangsplatte mit permanenter Tintenmarkierung markieren.

HINWEIS

- Das Zellenrohr ist sehr schwer. Vorsicht beim Entfernen von der Übergangsplatte und dem Panel.
- 5. Die vier Schrauben, die das Zellenrohr mit der Übergangsplatte verbinden, entfernen.
- 6. Die Schrauben entfernen, die die Halterung mit dem Panel verbinden. Die Halterung am Zellenrohr belassen.
- 7. Saubere acetonbeständige Handschuhe anziehen.
- 8. Das Rohr mit einem fusselfreien Tuch mit Isopropylalkohol oder Aceton reinigen.

HINWEIS

- Darauf achten, dass das Zellenrohr vor dem erneuten Anbringen richtig auf der Übergangsplatte ausgerichtet ist, damit der obere Spiegel nicht beschädigt wird.
- 9. Zellenrohr beim Austausch in der gleichen Ausrichtung, wie zuvor markiert, wieder einsetzen.

11.4.5 Zellenspiegel reinigen

Wenn Verunreinigungen in die Zelle eindringen und sich auf der internen Optik ansammeln, wird der Fehler **Detector reference level range exceeded** ausgegeben.

Vor der Durchführung dieser Aufgabe sorgfältig alle nachfolgenden Warnungen und Hinweise durchlesen und beachten.

HINWEIS

- Nicht den oberen Spiegel reinigen. Wenn der obere Spiegel im sauberen Bereich sichtbar verschmutzt oder zerkratzt ist (siehe Abbildung des Spiegels unten), an den Servicekontakt → 🗎 wenden.
- Die Reinigung von Spiegeln in der Zellenbaugruppe kann nur bei geringer Verschmutzung durchgeführt werden.
 Anderenfalls siehe Abschnitt Servicekontakt → □.
- Eine sorgfältige Markierung der Spiegelausrichtung ist kritisch für die Wiederherstellung der Systemleistung bei der Wiedermontage nach der Reinigung.
- Optische Baugruppe immer nur am Fassungsrand anfassen. Niemals die beschichteten Oberflächen des Spiegels berühren.
- Es werden keine Druckluftzerstäuber zur Reinigung der Komponenten empfohlen. Das Treibmittel kann Flüssigkeitströpfchen auf der optischen Oberfläche hinterlassen.
- Niemals eine optische Oberfläche abreiben, insbesondere nicht mit trockenen Tüchern, da dadurch die beschichtete Oberfläche angegriffen oder zerkratzt werden kann.
- Dieser Vorgang sollte NUR im Bedarfsfall ausgeführt werden und ist kein Teil der routinemäßigen Wartung.

WARNUNG

UNSICHTBARE LASERSTRAHLUNG: Die Messzellenbaugruppe enthält einen unsichtbaren CW-Laser der Klasse 3B mit geringer Leistung von maximal 35 mW und einer Wellenlänge zwischen 750 und 3000 nm.

• Flansche der Messzelle oder die optische Baugruppe immer erst nach dem Abschalten der Spannungsversorgung öffnen.

WARNUNG

Prozessproben können Gefahrstoffe in potenziell brandfördernden und toxischen Konzentrationen enthalten.

- Das Personal muss vor dem Betrieb des Probenaufbereitungssystems die physischen Eigenschaften der Probenzusammensetzung und die notwendigen Sicherheitsvorkehrungen genau kennen und verstehen.
- Alle Ventile, Regler, Schalter sind gemäß den vor Ort geltenden Vorgehensweisen zum Absperren/Kennzeichnen (Lockout/Tagout) zu betreiben.

Die Vorgehensweise zum Reinigen der Spiegel ist in drei Teile untergliedert:

- SCS spülen und Spiegelbaugruppe entfernen
- Zellenspiegel reinigen
- Spiegelbaugruppe und Bauteile ersetzen

Werkzeuge und Materialien

- Linsenreinigungstuch (Cole-Parmer® EW-33677-00 TEXWIPE® TX1009 Reinraum-Reinigungstücher mit niedrigem Partikelgehalt oder äquivalent)
- Isopropanol in Reagenzqualität (Cole-Parmer® EW-88361-80 oder äquivalent)
- Kleine Tropfenabgabeflasche (Nalgene® 2414 FEP Tropfenabgabeflasche oder äquivalent)
- Acetonbeständige Handschuhe (North NOR CE412W Nitrile Chemsoft™ CE Reinraum-Handschuhe oder äquivalent)
- Hämostatzange (Fisherbrand™ 13-812-24 Rochester-Pean Serrated Forceps oder äguivalent)
- Puster oder trockene Druckluft/Stickstoff
- Drehmomentschlüssel
- Permanentmarker
- Nicht ausgasendes Schmiermittel
- Taschenlampe

SCS spülen und Spiegelbaugruppe entfernen

- 1. Analysator ausschalten.
- 2. SCS vom Prozessprobenstrom trennen.
- 3. Wenn möglich, das System 10 Minuten lang mit Stickstoff spülen.
- 4. Sorgfältig die Ausrichtung der Spiegelbaugruppe mit einem Permanentmarker auf dem Zellenrumpf markieren.
- 5. Spiegelbaugruppe vorsichtig aus der Zelle entfernen. Hierzu die Innensechskant-Zylinderschrauben entfernen und Spiegelbaugruppe auf einer sauberen, stabilen und flachen Oberfläche ablegen.

Zellenspiegel reinigen

- 1. Staub und andere größere Partikel mithilfe eines Pusters oder trockener Druckluft/Stickstoff entfernen.
- 2. Saubere acetonbeständige Handschuhe anziehen.
- 3. Ein sauberes Linsenreinigungstuch doppelt falten. Das Tuch nahe zum Falz sowie am Falz entlang mit der Hämostatzange oder den Fingern zusammendrücken, um eine "Bürste" zu formen.
- 4. Einige Tropfen Isopropanol auf den Spiegel geben und den Spiegel hin und herbewegen, um die Flüssigkeit gleichmäßig auf der Spiegeloberfläche zu verteilen.
- 5. Mit leichtem, gleichmäßigem Druck den Spiegel von einer Kante zur anderen nur einmal und nur in eine Richtung mit dem Reinigungstuch abwischen, um die Verunreinigung zu entfernen. Reinigungstuch entsorgen.
- 6. Vorgang mit einem sauberen Linsenreinigungstuch wiederholen, um die Streifen zu entfernen, die das erste Reinigungstuch hinterlassen hat.
- 7. Schritt 6 bei Bedarf wiederholen, bis im erforderlichen sauberen Bereich des Spiegels keine sichtbare Verunreinigung mehr vorhanden ist. In der Abbildung unten zeigt der schattierte Ring den Bereich des Spiegels, der sauber und frei von Kratzern sein muss.
 - Wenn der Spiegel im erforderlichen Bereich nicht sauber und frei von Kratzern ist, muss die Spiegelbaugruppe ausgetauscht werden.

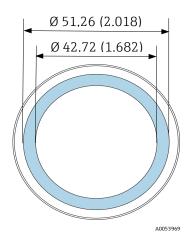
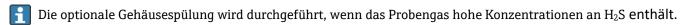



Abbildung 82. Spiegelbereich, der sauber sein muss. Abmessungen: mm (in)

Spiegelbaugruppe und Bauteile auswechseln

- 1. Spiegelbaugruppe vorsichtig wieder auf der Zelle anbringen und zwar in der gleichen Ausrichtung wie zuvor markiert.
- 2. Eine sehr dünne Schicht nicht ausgasendes Schmierfett auf den O-Ring auftragen.
- 3. O-Ring wieder einsetzen und sicherstellen, dass er korrekt sitzt.
- 4. Innensechskant-Zylinderschrauben gleichmäßig mit einem Drehmomentschlüssel und einem Drehmoment von 30 lb-in anziehen.
- 5. System neu starten.

11.4.6 Gehäuse spülen

Ist eine Wartung des JT33 TDLAS-Gasanalysators und eine Gehäusespülung erforderlich, vor dem Öffnen der Gehäusetür eine der beiden nachfolgend beschriebenen Vorgehensweisen einhalten.

Gehäuse mit einem Gassensor spülen

▲ WARNUNG

- Sicherstellen, dass ein Sensor verwendet wird, der für die toxischen Komponenten im Prozessgasstrom geeignet ist.
- 1. Probengas weiterhin durch das System strömen lassen.
- 2. T-Stück-Kappe auf dem Auslassanschluss unten rechts auf dem Gehäuse öffnen und einen Sensor einführen, um festzustellen, ob sich H₂S im Gehäuse befindet.
- 3. Wird kein gefährliches Gas entdeckt, kann die Gehäusetür geöffnet werden.
- 4. Ist gefährliches Gas vorhanden, die nachfolgenden Anleitungen befolgen, um das Gehäuse zu spülen.

Gehäuse spülen, wenn kein Gassensor vorhanden ist

- 1. Probengasstrom zum System ausschalten.
- 2. Spülgasleitung an den Spülgasanschluss rechts oben auf dem Gehäuse anschließen.
- 3. Auslass unten rechts auf dem Gehäuse öffnen und ein Rohr anschließen, durch das das Gas in einen sicheren Bereich abgeleitet wird.
- 4. Das Spülgas mit einer Geschwindigkeit von 10 l/min (0.35 scfm) in das System einleiten.
- 5. Das System 20 Minuten lang spülen.

Probenentnahmesystem spülen, optional

- 1. Gaszufuhr zum Analysator absperren.
- 2. Sicherstellen, dass Entlüftung und Bypass, wenn vorhanden, geöffnet sind.
- 3. Spülgas an den Anschluss "sample purge in" anschließen.
- 4. Gasauswahlventil von "sample in" auf "purge in" umstellen.
- 5. Durchflussrate auf 3 l/min einstellen und aus Sicherheitsgründen System mindestens 10 Minuten spülen.

Reparaturen verifizieren

Sobald Reparaturen korrekt abgeschlossen wurden, werden die Alarme aus dem System gelöscht.

11.5 Intermittierender Betrieb

Wenn der Analysator kurzzeitig gelagert oder heruntergefahren werden soll, die Anweisungen zum Trennen der Messzelle und des Probenaufbereitungssystems (SCS) befolgen.

- 1. System spülen.
- a. Prozessgasstrom abstellen.
- b. Warten, bis das Restgas aus den Leitungen entwichen ist.
- c. Eine Stickstoffspülgaszufuhr (N_2), die auf den spezifizierten Probenzufuhrdruck reguliert ist, an den Probenzufuhranschluss anschließen.
- d. Sicherstellen, dass sämtliche Ventile, die den Probenstromauslauf zur Niederdruckfackel oder zur atmosphärischen Entlüftung regeln, geöffnet sind.
- e. Die Spülgaszufuhr einschalten, um das System zu spülen und sämtliche Reste von Prozessgasen zu entfernen.
- f. Spülgaszufuhr abstellen.
- g. Warten, bis das Restgas aus den Leitungen entwichen ist.
- h. Sämtliche Ventile schließen, die den Probenstromauslauf zur Niederdruckfackel oder zur atmosphärischen Entlüftung regeln.
- 2. Die elektrischen Anschlüsse zum System trennen.
- a. Spannungsversorgung zum System trennen.

▲ VORSICHT

- Bestätigen, dass die Energiequelle am Schalter oder an der Trennvorrichtung unterbrochen wurde.
 Sicherstellen, dass der Schalter oder die Trennvorrichtung in der Position OFF steht und mit einem Vorhängeschloss verriegelt ist.
- b. Sicherstellen, dass alle digitalen/analogen Signale am Standort, von dem aus sie überwacht werden, ausgeschaltet sind.
- c. Phase und Neutralleiter vom Analysator trennen.
- d. Schutzleiter vom Analysatorsystem trennen.
- 3. Alle Leitungen und Signalanschlüsse trennen.
- 4. Alle Zu- und Abläufe mit Kappen versehen, um zu verhindern, dass Fremdkörper wie Staub oder Wasser in das System gelangen können.
- 6. Ausrüstung in Originalverpackung verpacken, sofern vorhanden. Sollte die Originalverpackung nicht mehr verfügbar sein, ist die Ausrüstung in geeigneter Weise zu sichern, um sie vor exzessiven Stößen oder Vibrationen zu schützen.
- 7. Wenn der Analysator an das Werk zurückgesendet wird, die von Endress+Hauser bereitgestellte Dekontaminationserklärung ausfüllen und vor dem Versand, wie angewiesen, auf der Außenseite der Versandpackung anbringen.

11.6 Verpackung, Versand und Lagerung

Die J33 TDLAS-Gasanalysatorsysteme und Zusatzgeräte werden ab Werk in einer entsprechend geeigneten Verpackung ausgeliefert. Je nach Größe und Gewicht kann die Verpackung aus einem Karton oder einer palettierten Holzkiste bestehen. Alle Zuläufe und Entlüftungen sind mit Kappen versehen und geschützt, wenn sie für den Versand verpackt werden. Das System sollte in der Originalverpackung verpackt werden, wenn es versendet oder für längere Zeit gelagert werden soll.

Wenn der Analysator montiert oder betrieben wurde, auch für Vorführzwecke, muss das System dekontaminiert und mit Inertgas gespült werden, bevor der Analysator ausgeschaltet wird.

▲ WARNUNG

Prozessproben können Gefahrstoffe in potenziell brandfördernden und/oder toxischen Konzentrationen enthalten.

 Das Personal sollte vor Montage, Betrieb oder Instandhaltung des Analysators die physischen Eigenschaften der Probe und die vorgeschriebenen Sicherheitsvorkehrungen genau kennen und verstehen.

Analysator für Versand oder Lagerung vorbereiten

- 1. Prozessgasstrom abstellen.
- 2. Warten, bis das Restgas aus den Leitungen entwichen ist.
- 3. Gehäuse spülen (optional), wenn das System mit einem Gehäuse ausgestattet ist.
- 4. Eine Spülgaszufuhr (N_2) , die auf den spezifizierten Probenzufuhrdruck reguliert ist, an den Probenzufuhranschluss anschließen.
- 5. Sicherstellen, dass sämtliche Ventile, die den Probenstromauslauf zur Niederdruckfackel oder zur atmosphärischen Entlüftung regeln, geöffnet sind.
- 6. Die Spülgaszufuhr einschalten und das System spülen, um sämtliche Reste von Prozessgasen zu entfernen.
- 7. Spülgaszufuhr abstellen.
- 8. Warten, bis das Restgas aus den Leitungen entwichen ist.
- 9. Sämtliche Ventile schließen, die den Probenstromauslauf zur Niederdruckfackel oder zur atmosphärischen Entlüftung regeln.
- 10. Spannungsversorgung zum System trennen.
- 11. Alle Leitungen und Signalanschlüsse trennen.
- 12. Alle Zu- und Ausläufe, Entlüftungen und Öffnungen von Kabelverschraubungen mit Kappen versehen, um zu verhindern, dass Fremdkörper wie Staub oder Wasser in das System gelangen können. Die Originalarmaturen verwenden, die als Bestandteil der Lieferung ab Werk mitgeliefert wurden.
- 13. Die Ausrüstung in der Originalverpackung, in der sie versandt wurde, verpacken, sofern verfügbar. Sollte die Originalverpackung nicht mehr verfügbar sein, ist die Ausrüstung in geeigneter Weise zu sichern, um sie vor exzessiven Stößen oder Vibrationen zu schützen.
- 14. Wenn der Analysator an das Werk zurückgesendet wird, die von Endress+Hauser bereitgestellte Dekontaminationserklärung ausfüllen und vor dem Versand, wie angewiesen, auf der Außenseite der Versandpackung anbringen. Siehe Abschnitt Servicekontakt → 🖺.

Lagerung

Der verpackte Analysator ist in einer geschützten Umgebung zu lagern, deren Temperatur zwischen –40 °C bis 60 °C (–4 °F bis 122 °F) reguliert ist. Den Analysator keinem Regen, Schnee, ätzenden oder korrosiven Umgebungen aussetzen.

11.7 Servicekontakt

Für Serviceanfragen unsere Webseite (www.endress.com/contact) besuchen. Sie enthält eine Liste der lokalen Vertriebskanäle in Kundennähe.

11.8 Vor der Kontaktaufnahme mit dem Service

Vor der Kontaktaufnahme mit dem Service die folgenden Informationen bereithalten, um sie zusammen mit der Anfrage einzusenden:

- Seriennummer (SN) des Analysators
- Kontaktinformation
- Beschreibung des Problems oder Fragen

Wenn die oben aufgeführten Informationen vorliegen, beschleunigt sich dadurch die Antwort auf technische Anfragen.

11.9 Rücksendung ans Werk

Wenn die Rücksendung des Analysators oder seiner Komponenten erforderlich ist, beim Service eine **Service Repair Order (SRO) Number** anfordern, bevor der Analysator an das Werk zurückgesendet wird. Der Service kann feststellen, ob die Servicearbeiten am Analysator vor Ort durchgeführt werden können oder ob das Gerät an das Werk zurückgesendet werden muss. Alle Rücksendungen sind an folgende Adresse zu schicken:

Endress+Hauser 11027 Arrow Route Rancho Cucamonga, CA 91730 USA

11.10 Haftungsausschluss

Endress+Hauser übernimmt keinerlei Verantwortung für Folgeschäden, die aus der Verwendung dieses Betriebsmittels herrühren. Die Haftung beschränkt sich auf den Austausch und/oder die Reparatur von defekten Komponenten.

Dieses Handbuch enthält Informationen, die durch das Urheberrecht geschützt sind. Kein Teil dieses Handbuchs darf ohne vorherige schriftliche Genehmigung durch Endress+Hauser fotokopiert oder in irgendeiner anderen Form reproduziert werden.

11.11 Gewährleistung

Endress+Hauser gewährleistet für einen Zeitraum von 18 Monaten ab Datum der Auslieferung oder für 12 Monate ab Inbetriebnahme, was immer zuerst eintritt, dass alle verkauften Produkte frei von Material- und Herstellungsfehlern sind, vorausgesetzt, dass die Produkte unter normalen Betriebs- und Servicebedingungen eingesetzt und korrekt eingebaut und gewartet wurden. Die alleinige Haftung von Endress+Hauserund das alleinige und ausschließliche Rechtsmittel des Kunden im Fall einer Verletzung der Gewährleistung beschränkt sich auf die Reparatur oder den Ersatz des Produkts oder der Komponente durch Endress+Hauser (was im alleinigen Ermessen von Endress+Hauser liegt), wobei das Produkt oder die Komponente auf Kosten des Kunden an das Werk von Endress+Hauser zurückzusenden ist. Diese Gewährleistung gilt nur, wenn der Kunde direkt nach Feststellen des Defekts und innerhalb des Gewährleistungszeitraums Endress+Hauser schriftlich über das defekte Produkt informiert. Produkte können vom Kunden nur zurückgesendet werden, wenn sie von einer von Endress+Hauser ausgestellten Referenznummer zur Genehmigung der Rücksendung (Return Authorization Reference Number bzw. Service Repair Order, SRO) begleitet werden. Die Frachtkosten für vom Kunden zurückgesendete Produkte sind vom Kunden im Voraus zu bezahlen. Endress+Hauser hat die Kosten für den Rückversand der im Rahmen der Gewährleistung reparierten Produkte zu tragen. Für Produkte, die zur Reparatur eingesendet werden und nicht mehr der Gewährleistung unterliegen, gelten die Standardreparaturkosten von Endress+Hauser zuzüglich Versandkosten.

12 Technische Daten und Zeichnungen

Technische Spezifikationen sind in den folgenden Tabellen enthalten, die die empfohlenen Geräteeinstellungen, Nennwerte und physischen Spezifikationen aufführen.

12.1 SCS-Schema

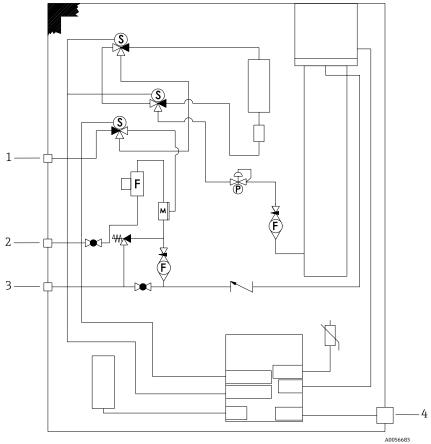


Abbildung 83. Elektrische Differenz mit Ein-Punkt-Validierung

Nr.	Beschreibung	
1	Validierungsgas 172 bis 310 kPag (25 bis 45 psig)	
2	Probenzuführung 172 bis 310 kPag (25 bis 45 psig)	
3	Systementlüftung max 1700 mbar. Die Druckentlastungs- öffnung ist werkseitig auf 380 kPag (55,1 psig) eingestellt.	
4	120 V/240 V-Spannungsversorgung	

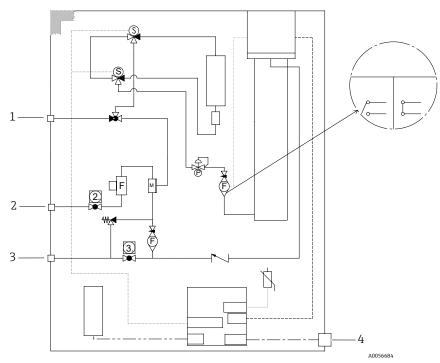


Abbildung 84. Elektrische Differenz mit manueller 1-Punkt-Validierung

Nr.	Beschreibung	
1	Validierungsgas 172 bis 310 kPag (25 bis 45 psig)	
2	Probenzuführung 172 bis 310 kPag (25 bis 45 psig)	
3	Systementlüftung max 1700 mbar. Die Druckentlastungs- öffnung ist werkseitig auf 350 kPag (50 psig) eingestellt.	
4	120 V/240 V-Spannungsversorgung	

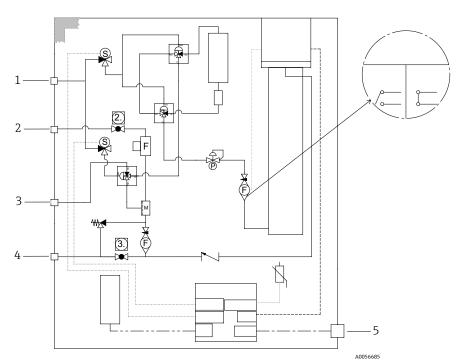


Abbildung 85. Pneumatische Differenz mit 1-Punkt-Validierung

Nr.	Beschreibung
1	Luftkompressor auf 413 bis 551 kPag (60 bis 80 psig) eingestellt
2	Probenzuführung 172 bis 310 kPag (25 bis 45 psig)
3	Validierungsgas 172 bis 310 kPag (25 bis 45 psig)
4	Systementlüftung max 1700 mbar. Die Druckentlastungs- öffnung ist werkseitig auf 350 kPag (50 psig) eingestellt.
5	120 V/240 V-Spannungsversorgung

Abbildung 86. Pneumatische Differenz mit Zwei-Punkt-Validierung

Nr.	Beschreibung	
1	Luftkompressor auf 413 bis 551 kPag (60 bis 80 psig) eingestellt	
2	Probenzuführung 172 bis 310 kPag (25 bis 45 psig)	
3	Validierungsgas 2,172 bis 310 kPag (25 bis 45 psig)	
4	Validierungsgas 2, 172 bis 310 kPag (25 bis 45 psig)	
5	Systementlüftung max 1700 mbar. Die Druckentlastungs- öffnung ist werkseitig auf 350 kPag (50 psig) eingestellt.	
6	120 V/240 V-Spannungsversorgung	

12.2 Elektrische und Kommunikationsanschlüsse

Elektrische und Kommunikationsanschlüsse: Eingangsspannungen		
JT33 TDLAS-Spektrometer	Wechselspannung 100 V bis 240 V, Toleranz \pm 10 %, 50/60 Hz, 10 W 16 Gleichspannung 24 V, Toleranz \pm 20 %, 10 W U_M = Wechselspannung 250 V	
MAC	Wechselspannung 100 V bis 240 V \pm 10 %, 50/60 Hz, 275 W 16 U $_{\rm M}$ = Wechselspannung 250 V	

 $^{^{16}}$ Transiente Überspannungen gemäß Überspannungskategorie II.

Elektrische und Kommunikationsanschlüsse: Ausgangstyp		
JT33 TDLAS-Spektrometer		
Modbus-RS485 oder Modbus-TCP über Ethernet (I/O1)	$\begin{split} &U_N \text{= Gleichspannung 30 V} \\ &U_M \text{= Wechselspannung 250 V} \\ &N \text{= nominal} \\ &M \text{= maximal} \end{split}$	
Relaisausgang (I/O2 und/oder I/O3)	U_N = Gleichspannung 30 V U_M = Wechselspannung 250 V I_N = Gleichstrom 100 mA / Wechselstrom 500 mA	
Konfigurierbarer Ein-/Ausgang (I/O) Strom 4-20 mA I/O passiv/aktiv (I/O2 und/ oder I/O3)	U_N = Gleichspannung 30 V U_M = Wechselspannung 250 V	
Eigensicherer (IS) Ausgang Durchflussschalter	$Uo = Voc = \pm 5,88 V$ $Io = Isc = 4,53 mA$ $Po = 6,66 mW$ $Co = Ca = 43 \mu F$ $Lo = La = 1,74 H$	

Elektrische und Kommunikationsanschlüsse: Ausgangstyp			
	SCS		
Eigensicherer Ausgang RS485 zur Elektronik des optischen Kopfs (Herstelleranschluss)	ATEX/IECEx//UKEX: J7-Steckverbinder, Pin 1/Pin 2 in Bezug auf Gehäuseerde Nordamerika Zone/Division: J7-Steckverbinder, Pin 1/Pin 2 in Bezug auf Gehäuseerde Ui = Ui/Vmax = $\pm 5,88 \text{ V}$ Ii = Ii/Imax = -22.2 mA , widerstandsbedingt begrenzt durch einen Mindestwiderstand Rmin = 265Ω Ci = 0 Li = 0 Uo = Uo/Voc = $5,36 \text{ V}$ Io = Io/Isc = $39,7 \text{ mA}$ (widerstandsbedingt begrenzt) Po = $52,9 \text{ mW}$ Pin 1 mit Bezug auf Pin 2 Ui = Ui/Vmax = $\pm 11,76 \text{ V}$ Ci = 0 Li = 0 Uo = Uo/Voc = $\pm 5,36 \text{ V}$		
	Io = Io/Isc = ±10 mA (widerstandsbedingt begrenzt) Po = 13,3 mW		
Eigensicheres Ausgangs- Probenaufbereitungssystem (SCS) Thermistor	J5 Stecker Ui/Vmax = 0 Uo = Voc = +5,88 V, -1,0 V Io = Io/Isc = 1,18 mA (widerstandsbedingt begrenzt) Po = 1,78 mW Ci = 0 Li = 0		
SCS-Heizungsausgang	U_N = Wechselspannung 100 V bis 240 V ±10 % U_M = Wechselspannung 250 V I_N = Wechselstrom 758 bis 2000 mA		

Elektrische und Kommunikationsanschlüsse: Ausgangstyp	
Ausgangsleistung für Magnetventile	$\begin{split} &U_N \text{= Gleichspannung 24 V} \\ &U_M \text{= Wechselspannung 250 V} \\ &I_N \text{= 1A-Kontaktleistung} \\ &Psov \text{=} \leq 42W \end{split}$

Anwendungsdaten 12.3

Begriff	Spezifikation
Umgebungstemperaturbereich: JT33 TDLAS-Gasanalysatorsystem ¹⁷	Lagerung: -40 bis 60 °C (-40 bis 140 °F) Umgebungstemperatur (T_A): -20 bis 60 °C (-4 bis 140 °F)
Umgebungstemperaturbereich: MAC ¹⁷	Lagerung: -40 bis 60 °C (-40 bis 140 °F) Betrieb: -20 bis 70 °C (-4 bis 158 °F)
Relative Umgebungsfeuchte	80 % bei Temperaturen bis 31 °C (88 °F), linear abnehmend bis 50 % bei 40 °C (104 °F)
Umgebung, Verschmutzungsgrad: JT33 TDLAS-Spektrometer	Für Typ 4X und IP66 für den Einsatz in Außenbereichen ausgelegt, gilt als Verschmutzungsgrad 2 in Innenbereichen
Umgebung, Verschmutzungsgrad: MAC	Typ 4X und IP66 für den Einsatz in Außenbereichen ausgelegt, gilt als Verschmutzungsgrad 2 in Innenbereichen
Einsatzhöhe	Bis zu 2000 m (6562 ft)
Messbereiche (H ₂ S)	0 bis 10 ppmv 0 bis 500 ppmv
	Andere verfügbare Bereiche auf Anfrage
Probeneingangsdruck (SCS)	172 bis 310 kPag (25 bis 45 psig)
Validierungseingangsdruck	172 bis 310 kPag (25 bis 45 psig)
Betriebsdruckbereich Messzelle	Anwendungsabhängig 800 bis 1200 mbara (Standard) 800 bis 1700 mbara (optional)
Geprüfter Druckbereich Messzelle	-25 bis 517 kPag (-7.2 bis 75 psig)
Werkseitiger Einstellwert des Überdruckventils	ca. 345 kPag (50 psig)
Betriebstemperatur	-20 bis 50 °C (-4 bis122 °F) -10 bis 60 °C (14 bis 140 °F) ¹⁸
Probenprozesstemperatur (T _P)	-20 bis 60 °C (-4 bis 140 °F) ¹⁸
Probendurchflussrate	2,5 bis 3 slpm (5.30 bis 6.36 scfh)

 ¹⁷ Sowohl die Elektronik als auch die Stromversorgung des MAC müssen eingeschaltet sein, um sicherzustellen, dass die Zelle auf der Zieltemperatur gehalten wird.
 18 Siehe Abschnitt JT33 Analysator-Dichtungen → ■.

Begriff	Spezifikation
Bypass-Durchflussrate	0,5 bis 2,0 slpm (1 bis 4.24 scfh)
Prozessdichtung	Doppelte Dichtung ohne Druckentlastungsfunktion
Primäre Prozessdichtung ¹⁸ 1	SCHOTT NG11 Glas Dichtungsmittel: Master Bond EP41S-5
Primäre Prozessdichtung ¹⁸ 2	Primäre Prozessdichtung 2 Werkstoff: Aluminiumoxidkeramik
Sekundäre Prozessdichtung ¹⁸	ISEM-Schnittstellenmodul-Baugruppe

12.4 Physische Spezifikationen

Begriff	JT33 TDLAS-Gasanalysatorsystem
Gewicht	89,9 kg (196 lb) bis 102,5 kg (226 lb), je nach Konfiguration
Abmessungen (H x T x B)	914 x 305 x 610 mm (36 x 12 x 24 in)

12.5 Bereichsklassifizierung

Begriff	Beschreibung
JT33 TDLAS-Gasanalysatorsystem	CCSAus: Ex db ia [ia Ga] op is IIC T3 Gb Klasse I, Zone 1, AEx db ia [ia Ga] op is IIC T3 Gb [Ex ia] Klasse I, Division 1, Gruppen B, C, D, T3 Umgebung = -20 °C bis 60 °C ATEX/IECEx/UKEX: II 2(1)G Ex db ia [ia Ga] ib op is h IIC T3 Gb Umgebung = -20 °C bis 60 °C
MAC	CCSAus: Ex db ia [ia Ga] IIC T4 Gb Klasse I, Zone 1, AEx db [ia Ga] IIC T4 Gb [Ex ia] Klasse I, Division 1, Gruppen A, B, C, D, T4 Umgebung = -20 °C bis 70 °C ATEX/IECEx/UKEX: (Ex) II 2(1)G Ex db [ia Ga] IIC T4 Gb Umgebung = -20 °C bis 70 °C
Schutzart	Typ 4X, IP66

12.6 Unterstützte Bedientools

Unterstütztes Bedientool	Bedieneinheit	Schnittstelle
Webbrowser	Notebook, PC oder Tablet mit Webbrowser	Serviceschnittstelle CDI-RJ45

 $^{^{18}}$ Siehe Abschnitt JT33 Analysator-Dichtungen $\rightarrow \boxminus$.

12.7 Webserver

Dank des integrierten Webservers kann das Gerät über einen Webbrowser und eine Serviceschnittstelle (CDI-RJ45) bedient werden. Der Aufbau des Bedienmenüs ist dabei derselbe wie beim Gerätedisplay. Neben den Messwerten werden auch Statusinformationen zum Gerät dargestellt und ermöglichen eine Kontrolle des Gerätezustands. Außerdem können die Daten vom Messgerät verwaltet und die Netzwerkparameter konfiguriert werden.

Der Datenaustausch zwischen dem Bediengerät (wie beispielsweise ein Notebook) und dem Messgerät unterstützt folgende Funktionen:

- Konfiguration vom Messgerät laden: XML-Format, Konfigurationssicherung
- Konfiguration im Messgerät speichern: XML-Format, Konfiguration wiederherstellen
- Ereignisliste als CSV-Datei exportieren
- Parametereinstellungen als CSV-Datei exportieren: Dokumentation der Messstellenkonfiguration erstellen
- Heartbeat Verification Log als PDF-Datei exportieren: (nur verfügbar mit Anwendungspaket Heartbeat Verification)
- Flashen der Firmware-Version beispielsweise für Upgrade der Geräte-Firmware

12.8 HistoROM-Datenmanagement

Das Messgerät verfügt über ein HistoROM Datenmanagement. Das HistoROM-Datenmanagement umfasst sowohl die Speicherung als auch den Import/Export wichtiger Geräte- und Prozessdaten, wodurch sich Bedienung und Wartung deutlich zuverlässiger, sicherer und effizienter gestalten.

HINWEIS

• Im Auslieferungszustand sind die Werkseinstellungen der Konfigurationsdaten als Backup im Gerätespeicher hinterlegt. Dieser Speicher kann mit einem aktualisierten Datensatz, beispielsweise nach der Inbetriebnahme, überschrieben werden.

Zusatzinformationen zum Datenspeicherungskonzept

Wie die nachfolgende Tabelle zeigt, gibt es verschiedene Arten von Datenspeichereinheiten, in denen Gerätedaten gespeichert und vom Gerät verwendet werden.

Begriff	Gerätespeicher	T-DAT	S-DAT
Verfügbare Daten	 Ereignishistorie wie z. B. Diagnoseereignisse Sicherung eines Parameterdatensatzes Firmwarepaket des Geräts 	 Messwertspeicher Aktueller Parameterdatensatz, der zur Laufzeit der Firmware verwendet wird Schleppzeiger (Min/Max- Werte) 	 Sensordaten Seriennummer Benutzerspezifischer Zugangscode (zur Nutzung der Benutzerrolle Maintenance) Kalibrierdaten Gerätekonfiguration (z. B. SW-Optionen, feste I/O oder Multi-I/O)
Speicherort	Fest auf dem User Interface Board im Anschlussklemmenraum montiert	Steckbar auf der Nutzerschnittstellenleiterplatte im Klemmenfach	Fest im Gehäuse des optischen Kopfs montiert

12.9 Datensicherung

12.9.1 Automatisch

- Automatische Speicherung der wichtigsten Gerätedaten (Sensor und Steuerung) in den DAT-Modulen.
- Bei Austausch der Steuerung oder des Messgeräts: Nachdem der T-DAT, der die vorherigen Gerätedaten enthält, ausgetauscht wurde, ist das neue Messgerät sofort und fehlerfrei wieder betriebsbereit.
- Bei Sensoraustausch: Nachdem der Sensor ausgetauscht wurde, werden neue Sensordaten vom S-DAT im Messgerät übertragen und das Messgerät ist sofort und fehlerfrei wieder betriebsbereit.

12.9.2 Manuell

Zusätzlicher Parameterdatensatz mit den kompletten Parametereinstellungen im integrierten Gerätespeicher für:

- Datensicherungsfunktion
- Sicherung und spätere Wiederherstellung einer Geräteparametrierung im Gerätespeicher
- Datenvergleichsfunktion
- Vergleich der aktuellen Geräteparametrierung mit der im Gerätespeicher gespeicherten Geräteparametrierung

12.10 Manuelle Datenübertragung

Mithilfe der Exportfunktion des Webservers kann eine Gerätekonfiguration auf ein anderes Gerät übertragen werden, um die Konfiguration zu duplizieren oder um sie in einem Archiv beispielsweise zu Sicherungszwecken zu speichern.

12.11 Automatische Ereignisliste

Das Anwendungspaket Extended HistoROM ermöglicht die chronologische Anzeige von bis zu 100 Ereignismeldungen in der Ereignisliste zusammen mit Zeitstempel, Klartextbeschreibung und Abhilfemaßnahmen. Die Ereignisliste kann über eine Vielzahl von Schnittstellen und Bedientools (z. B. Webserver) exportiert und angezeigt werden.

12.12 Manuelle Datenprotokollierung

Das Paket Extended HistoROM bietet:

- Aufzeichnung von bis zu 1000 Messwerten von 1 bis 4 Kanälen.
- Vom Benutzer konfigurierbares Aufzeichnungsintervall.
- Aufzeichnung von bis zu 250 Messwerten von jedem der 4 Speicherkanäle.
- Export des Messwertprotokolls über eine Vielzahl von Schnittstellen und Bedientools, z. B. Webserver.
- Nutzung der aufgezeichneten Messwertdaten in der integrierten Simulation des Messgeräts im Untermenü Diagnostics.

12.13 Diagnosefunktionalitäten

Paket	Beschreibung	
Extended HistoROM	Enthält erweiterte Funktionen zum Ereignisprotokoll und zur Aktivierung des Messwertspeichers. Ereignisprotokoll: Das Speichervolumen wird von 20 Meldungseinträgen (Standardausführung) auf bis zu 100 erweitert. Messwertspeicher (Linienschreiber):	
	 Das Speichervolumen wird für bis zu 1000 Messwerte aktiviert. Von jedem der 4 Speicherkanäle können 250 Messwerte ausgegeben werden. Das Aufzeichnungsintervall ist frei konfigurierbar. Die Messwertprotokolle können über das Gerätedisplay oder ein Bedientool, z. B. Webserver, aufgerufen werden. 	

12.14 Heartbeat Technology

Begriff	Beschreibung
Heartbeat Verification + Monitoring	 Heartbeat Monitoring Liefert kontinuierlich für das Messprinzip charakteristische Daten an ein externes Condition Monitoring System zum Zweck der vorbeugenden Wartung oder der Prozessanalyse. Diese Daten ermöglichen Folgendes: Mithilfe dieser Daten und anderer Informationen können Schlussfolgerungen darüber gezogen werden, wie sich Prozesseinflüsse im Verlauf der Zeit auf die Messleistung auswirken. Rechtzeitige Planung von Serviceeinsätzen. Überwachung der Prozess- oder Produktqualität. Heartbeat Verification Erfüllt die Anforderungen an eine rückführbare Verifizierung nach DIN ISO 9001:2008. Funktionsprüfung für Standardverifizierungsprüfung im eingebauten Zustand ohne Prozessunterbrechung. Rückführbare Verifizierung auf Standardvalidierungsgas mit Ergebnissen auf Anfrage, inklusive Bericht. Einfacher Prüfvorgang durch Vor-Ort-Bedienung oder Webserver. Eindeutige Bewertung der Analytmessstelle (Pass/Fail) mit hoher Testabdeckung im Rahmen der Herstellerspezifikation.

12.15 Erweiterte Heartbeat Verification mit Validierung

Der JT33 TDLAS-Gasanalysator erweitert die Funktion Heartbeat Verification um die Prüfmöglichkeit mithilfe eines Gasstandards, um die Testabdeckung des Systems zu erhöhen. Die Ergebnisse der Validierung können auf dem Webserver angezeigt, mit einer Validierungswarnung verknüpft und als Heartbeat Verification-Bericht gespeichert werden.

Weitere Informationen zur Validierung sind beim örtlichen Vertriebskanal verfügbar. Detaillierte Anweisungen zur Heartbeat Technology von Endress+Hauser sind in der Broschüre J22 and JT33 TDLAS gas analyzers Special Documentation (SD02912C) zu finden, in der das Anwendungspaket Heartbeat Verification + Monitoring erläutert wird.

