
Инструкция по эксплуатации Micropilot FMR10B

Бесконтактный радарный уровнемер

A002355

- Убедитесь в том, что документ хранится в безопасном месте и всегда доступен при работе с прибором
- В целях предотвращения опасности для персонала и имущества внимательно ознакомьтесь с разделом «Основные указания по технике безопасности», а также со всеми другими указаниями по технике безопасности, содержащимися в документе и имеющими отношение к рабочим процедурам

Изготовитель сохраняет за собой право на изменение технических характеристик без предварительного уведомления. Актуальную информацию и обновления настоящего руководства по эксплуатации можно получить в региональной торговой организации Endress+Hauser.

Micropilot FMR10B Содержание

Содержание

1	Информация о настоящем		8	Ввод в эксплуатацию	23
	документе	. 5	8.1	Предварительные условия	
1.1	Назначение документа		8.2 8.3	Монтаж и функциональная проверка Ввод в эксплуатацию с помощью	23
1.2 1.3	Условные обозначения		0.5	приложения SmartBlue	23
1.4	Документация		8.4	Примечания к мастер "Ввод в работу"	
1.5	Зарегистрированные товарные знаки		8.5	Настройка прибора	
			8.6 8.7	Настройка параметр "Частотный режим" Подменю "Моделирование"	26 27
2	Основные указания по технике		8.8	Защита параметров настройки от	۵,
	безопасности	. 7		несанкционированного доступа	27
2.1	Требования к работе персонала		9	Эментизтация	27
2.2 2.3	Назначение			Эксплуатация	
2.4	Эксплуатационная безопасность		9.1 9.2	Чтение состояния блокировки прибора Считывание измеряемых значений	27 27
2.5	Безопасность изделия		9.3	Адаптация прибора к условиям	۷,
2.6	ІТ-безопасность			технологического процесса	28
2.7	IT-безопасность прибора	. 9			
3	Описание изделия	10	10	Диагностика и устранение	
ر 3.1	Конструкция изделия			неисправностей	28
J.1	понструкции изделии	10	10.1	Общая процедура устранения	20
4	Приемка и идентификация		10.2	неисправностей	28
	изделия	10	10.2	помощью светодиодного индикатора	30
4.1	Приемка		10.3	Отображение диагностического события в	
4.2	Идентификация изделия	11	10 /	управляющей программе	
4.3	Хранение и транспортировка	11	10.4 10.5	Адаптация диагностической информации . Необработанные диагностические	31
_				сообщения	31
5	Монтаж	12	10.6	Список диагностических сообщений	31
5.1	Инструкции по монтажу	12	10.7	Журнал событий	
5.2 5.3	Место монтажа	12 13	10.8 10.9	Перезапуск прибора	
5.4	Внутренние элементы резервуара Выравнивание оси антенны по вертикали	13		История разработки встроенного ПО	36
5.5	Способы оптимизации				
5.6	Монтаж прибора	14	11	Техническое обслуживание	37
5.7	Проверка после монтажа	18	11.1	Очистка наружной поверхности	
6	Электрическое подключение	18	11.2	Уплотнения	37
6.1	Подключение прибора	18	12	Ремонт	37
6.2	Обеспечение требуемой степени защиты	19			
6.3	Проверка после подключения	19	12.1 12.2	Общая информация	37
			12.3	Утилизация	
7	Варианты управления	20			
7.1	1 , 31	20	13	Аксессуары	38
7.2 7.3	Структура и функции меню управления Управление с использованием технологии	20	13.1	Защитный козырек от погодных явлений	
1.1	беспроводной связи Bluetooth®	21	10.0	для прибора с кабельным вводом сверху	38
7.4	Светодиодный индикатор	21	13.2 13.3	Крепежная гайка G 1½"	38 39
7.5	Доступ к меню управления с помощью		13.3 13.4	Крепежная гайка G 2"	39
	управляющей программы	21	13.5	Адаптер UNI MNPT 1½" > MNPT 2"	

Содержание Micropilot FMR10B

13.6	Трубка для защиты от перелива среды	
	40 мм (1,5 дюйм)	40
13.7	Монтажный кронштейн регулируемый,	
	монтаж на стене/тросе/потолке, 75 мм	41
13.8	Монтажный кронштейн, регулируемый,	
	настенный, 200 мм	42
13.9	Угловой кронштейн для настенного	
	монтажа	44
13.10	Поворотная консоль	44
	Шарнирный монтажный кронштейн	51
13.12	Приспособление для выравнивания	
	FAU40	51
	Фланец UNI 2"/DN50/50, полипропилен	53
	Фланец UNI 3"/DN80/80, полипропилен	54
	Фланец UNI 4"/DN100/100, полипропилен .	55
	Регулируемое уплотнение фланца	56
	DeviceCare SFE100	57
	Device Viewer	57
	RN22	57
	RN42	57
13.21	Field Xpert SMT70	57
13.22	Field Xpert SMT77	57
13.23	Приложение SmartBlue	57
	_	
14	Технические характеристики	58
14.1	Вход	58
14.2	Выход	61
14.3	Условия окружающей среды	63
14.4	Параметры технологического процесса	65
14.5	Дополнительные технические	
	характеристики	66
Алфа	авитный указатель	67

1 Информация о настоящем документе

1.1 Назначение документа

Настоящее руководство по эксплуатации содержит все данные, необходимые на различных этапах жизненного цикла устройства: от идентификации изделия, приемки и хранения до установки, подключения, ввода в эксплуатацию и эксплуатации, устранения неисправностей, технического обслуживания и утилизации.

1.2 Условные обозначения

1.2.1 Символы техники безопасности

Λ ΟΠΑ<u>CHO</u>

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации приведет к тяжелой травме или смерти.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к тяжелой травме или смерти.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Допущение такой ситуации может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

1.2.2 Специальные символы связи

Bluetooth®: 8

Беспроводная передача данных между устройствами на небольшом расстоянии.

1.2.3 Символы для различных типов информации

Разрешено: 🗸

Означает разрешенные процедуры, процессы или действия.

Запрещено: 🔀

Означает запрещенные процедуры, процессы или действия.

Дополнительная информация: 🚹

Ссылка на документацию: 📵

Ссылка на страницу: 🖺

Серия шагов: 1., 2., 3.

Результат отдельного шага: 🛶

1.2.4 Символы на рисунках

Номера пунктов: 1, 2, 3 ...

Серия шагов: 1., 2., 3.

Виды: А, В, С, ...

1.3 Список аббревиатур

PN

Номинальное давление

МРД

Максимальное рабочее давление MPД указано на заводской табличке.

ToF

Время полета

DTM

Средство управления типом прибора

$\varepsilon_{\rm r}$ (значение Dk)

Относительная диэлектрическая проницаемость

Управляющая программа

Термин "управляющая программа" используется вместо следующего операционного программного обеспечения:

- FieldCare / DeviceCare, для работы через HART-связь и ПК
- Приложение SmartBlue для работы со смартфона или планшета с операционной системой Android или iOS

ПЛК

Программируемый логический контроллер (ПЛК)

1.4 Документация

Общие сведения о сопутствующей технической документации можно получить следующими способами.

- Программа *Device Viewer*www.endress.com/deviceviewer: введите серийный номер с заводской таблички.
- *Приложение Endress+Hauser Operations*: введите серийный номер с заводской таблички или просканируйте матричный штрих-код на заводской табличке.

1.5 Зарегистрированные товарные знаки

Apple[®]

Apple, логотип Apple, iPhone и iPod touch являются товарными знаками компании Apple Inc., зарегистрированными в США и других странах. App Store – знак обслуживания Apple Inc.

Android®

Android, Google Play и логотип Google Play – товарные знаки Google Inc.

Bluetooth®

Тестовый символ и логотипы $Bluetooth^{@}$ являются зарегистрированными товарными знаками, принадлежащими Bluetooth SIG, Inc., и любое использование таких знаков компанией Endress+Hauser осуществляется по лицензии. Другие товарные знаки и торговые наименования принадлежат соответствующим владельцам.

2 Основные указания по технике безопасности

2.1 Требования к работе персонала

Требования к персоналу, выполняющему монтаж, ввод в эксплуатацию, диагностику и техобслуживание:

- ▶ Обученные квалифицированные специалисты должны иметь соответствующую квалификацию для выполнения конкретных функций и задач.
- ▶ Получить разрешение на выполнение данных работ от руководства предприятия.
- ▶ Ознакомиться с нормами федерального/национального законодательства.
- ► Перед началом работы внимательно ознакомиться с инструкциями, представленными в руководстве, с дополнительной документацией, а также с сертификатами (в зависимости от цели применения).
- Следовать инструкциям и соблюдать основные условия.

Обслуживающий персонал должен соответствовать следующим требованиям:

- ► Получить инструктаж и разрешение у руководства предприятия в соответствии с требованиями выполняемой задачи.
- ▶ Следовать инструкциям, представленным в данном руководстве.

2.2 Назначение

Область применения и технологическая среда

Рассмотренный в настоящем руководстве по эксплуатации измерительный прибор предназначен для непрерывных бесконтактных измерений уровня жидких продуктов, густых растворов, суспензий и сыпучих материалов. Поскольку рабочая частота прибора составляет около 80 ГГц, максимальная пиковая мощность излучения – менее 1,5 мВт, а средняя выходная мощность – менее 70 мкВт, прибор можно устанавливать снаружи закрытых металлических емкостей (например, над бассейнами или открытыми каналами). Работающий прибор полностью безопасен для людей и животных.

При соблюдении предельных значений, указанных в разделе «Технические характеристики», и условий, указанных в руководствах и дополнительной документации, измерительный прибор можно использовать только для выполнения следующих измерений:

- ▶ Измеряемые переменные процесса: уровень, расстояние, мощность сигнала
- ► Рассчитываемые переменные процесса: объем или масса в резервуарах произвольной формы; расход через измерительные водосливы или желоба (рассчитывается на основании уровня с использованием функции линеаризации)

Чтобы обеспечить нахождение измерительного прибора в исправном состоянии во время эксплуатации, необходимо соблюдать следующие условия:

- ► Используйте измерительный прибор только с теми средами, в отношении которых смачиваемые части прибора обладают достаточной стойкостью.
- ► Соблюдайте предельные значения, указанные в разделе «Технические характеристики».

Использование не по назначению

Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием прибора не по назначению.

Избегайте механических повреждений.

► Не прикасайтесь к поверхностям прибора (например, для очистки) твердыми или заостренными предметами.

Пояснение по поводу сложных ситуаций

► Сведения о специальных жидкостях, в том числе жидкостях для очистки: специалисты Endress+Hauser готовы предоставить всю необходимую информацию, касающуюся устойчивости к коррозии материалов, находящихся в контакте с жидкостями, но не несут какой-либо ответственности и не предоставляют каких бы то ни было гарантий.

Остаточные риски

За счет теплопередачи от выполняемого процесса, а также вследствие рассеивания мощности электронных компонентов корпус электроники и встроенные компоненты (например дисплей, главный модуль электроники и электронный модуль ввода / вывода) могут нагреться до 80°C (176°F). Во время работы датчик может нагреваться до температуры, близкой к температуре среды.

Опасность ожогов при соприкосновении с поверхностями!

▶ При повышенной температуре жидкости следует обеспечить защиту от прикосновения для предотвращения ожогов.

2.3 Техника безопасности на рабочем месте

При работе с прибором необходимо соблюдать следующие правила:

- ▶ Пользуйтесь необходимыми средствами индивидуальной защиты в соответствии с национальными правилами.
- ▶ Подключение прибора выполняется при отключенном сетевом напряжении.

2.4 Эксплуатационная безопасность

Опасность получения травмы!

- ► Эксплуатируйте прибор только в том случае, если он находится в надлежащем техническом состоянии, а ошибки и неисправности отсутствуют.
- ▶ Оператор несет ответственность за исправность прибора.

Изменение конструкции прибора

Несанкционированное изменение конструкции прибора запрещено и может представлять непредвиденную опасность:

▶ Если изменение все же необходимо, обратитесь за консультацией к изготовителю.

Ремонт

Для обеспечения постоянной эксплуатационной безопасности и надежности необходимо соблюдать следующие правила:

▶ Используйте только оригинальные принадлежности.

Взрывоопасная зона

Во избежание травмирования персонала и повреждения оборудования при использовании прибора в зоне, указанной в сертификате (например, взрывозащита, безопасность оборудования, работающего под давлением):

- ► Информация на заводской табличке позволяет определить соответствие приобретенного прибора взрывоопасной зоне его монтажа.
- См. характеристики, указанные в отдельной сопроводительной документации, которая является неотъемлемой частью настоящего документа.

2.5 Безопасность изделия

Данный прибор был разработан и испытан в соответствии с современными стандартами эксплуатационной безопасности и в соответствии с передовой инженерной практикой. Прибор поставляется с завода в безопасном для эксплуатации состоянии.

Прибор отвечает основным требованиям техники безопасности и требованиям законодательства. Кроме того, прибор соответствует директивам ЕС, перечисленным в декларации соответствия требованиям ЕС для конкретного прибора. Компания Endress+Hauser подтверждает данное соответствие нанесением на прибор маркировки СЕ.

2.6 ІТ-безопасность

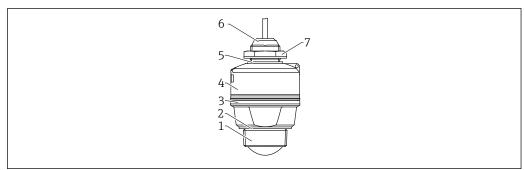
Гарантия нашей компании действительна только в том случае, если изделие установлено и используется в соответствии с руководством по эксплуатации. Изделие оснащено механизмами безопасности для защиты от любого непреднамеренного изменения настроек.

Меры ИТ-безопасности, которые обеспечивают дополнительную защиту изделия и связанной с ним передачи данных, должны быть реализованы самим оператором в соответствии с действующими в его компании стандартами безопасности.

2.7 IT-безопасность прибора

Прибор оснащен специальными функциями для поддержания защитных мер оператором. Данные функции доступны для настройки пользователем и при правильном применении обеспечивают повышенную эксплуатационную безопасность. Уровень доступа можно изменить с помощью кода доступа (действует при управлении через интерфейс Bluetooth®).

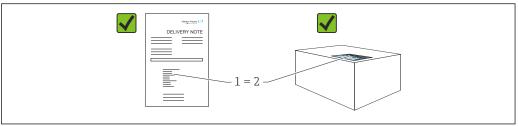
2.7.1 Доступ по протоколу беспроводной связи Bluetooth®


Технология защищенной передачи сигнала по протоколу беспроводной связи Bluetooth® включает в себя метод шифрования, протестированный Институтом Фраунгофера.

- Без приложения SmartBlue прибор невидим при использовании технологии беспроводной связи Bluetooth®.
- Устанавливается только одно соединение типа "точка-точка" между прибором и смартфоном или планшетом.
- Интерфейс беспроводной технологии Bluetooth® можно отключить с помощью приложения SmartBlue или управляющей программы посредством цифровой связи.

Micropilot FMR10B Описание изделия

3 Описание изделия


3.1 Конструкция изделия

- **■** 1 Обзор материалов; антенна 40 мм (1,5 дюйм), резьба кабельного ввода
- 1 Технологическое соединение со стороны антенны; PVDF
- Уплотнение из EPDM (для резьбы G 1½")
- 3 Конструкционное кольцо из РВТ/РС
- Корпус датчика из РВТ/РС
- Уплотнение из EPDM
- Технологическое соединение с кабельным вводом: РВТ/РС
- Контргайка; РА6.6

Приемка и идентификация изделия 4

4.1 Приемка

Во время приемки необходимо проверить соблюдение следующих условий.

- Совпадает ли код заказа, указанный в накладной (1), с кодом заказа, который указан на наклейке изделия (2)?
- Не поврежден ли товар?
- Соответствует ли информация, указанная на заводской табличке, с данными заказа и накладной?
- Имеется ли в наличии документация?
- Если применимо (см. заводскую табличку): имеются ли указания по технике безопасности (ХА)?

Если одно из этих условий не выполнено, обратитесь в торговую организацию компании-изготовителя.

4.2 Идентификация изделия

Возможны следующие варианты идентификации изделия:

- технические данные, указанные на заводской табличке;
- Код заказа с разбивкой функций прибора, указанный в транспортной накладной
- ввод серийного номера с заводской таблички в программу Device Viewer (www.endress.com/deviceviewer): будут отображены все сведения об измерительном приборе.

4.2.1 Заводская табличка

На заводской табличке указана информация, которая требуется согласно законодательству и относится к прибору. Состав этой информации указан ниже:

- Данные изготовителя
- Номер заказа, расширенный код заказа, серийный номер
- Технические характеристики, степень защиты
- Версии программного обеспечения и аппаратной части
- Информация, связанная с сертификатами, ссылка на указания по технике безопасности (XA)
- Код DataMatrix (информация о приборе)

Сравните данные на заводской табличке с данными заказа.

4.2.2 Адрес изготовителя

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Германия

Место изготовления: см. заводскую табличку.

4.3 Хранение и транспортировка

4.3.1 Условия хранения

- Используйте оригинальную упаковку
- Храните прибор в чистом и сухом помещении и примите меры по защите от ударных повреждений

Температура хранения

-40 до +80 °С (-40 до +176 °F)

4.3.2 Транспортировка изделия до точки измерения

▲ ОСТОРОЖНО

Неправильная транспортировка!

Корпус или датчик могут получить повреждения или оторваться. Опасность получения травмы!

► Транспортируйте прибор до точки измерения в оригинальной упаковке или держа за технологическое соединение.

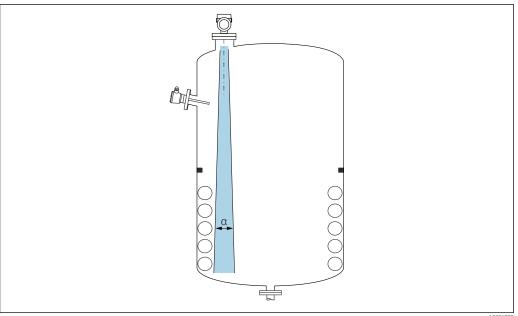
Moнтаж Micropilot FMR10В

5 Монтаж

5.1 Инструкции по монтажу

- Во время монтажа важно убедиться в том, что используемый уплотнительный элемент имеет постоянную рабочую температуру, соответствующую максимальной температуре процесса.
- Приборы подходят для использования во влажной среде в соответствии со стандартом IEC/EN 61010-1.
- Защитите корпус от ударов.

5.2 Место монтажа



Ü

- Использование защитного козырька от погодных явлений; защита от прямых солнечных лучей или дождя
- 2 Монтаж в центре; помехи могут причинить неправильную оценку сигнала
- 3 Не устанавливайте над потоком загружаемой среды

Micropilot FMR10B Монтаж

5.3 Внутренние элементы резервуара

Избегайте установки внутренних устройств (датчиков предельного уровня, датчиков температуры, стержней, вакуумных колец, теплообменников, перегородок и т. п.) в зоне распространения сигнального луча. Учитывайте угол расхождения луча lpha.

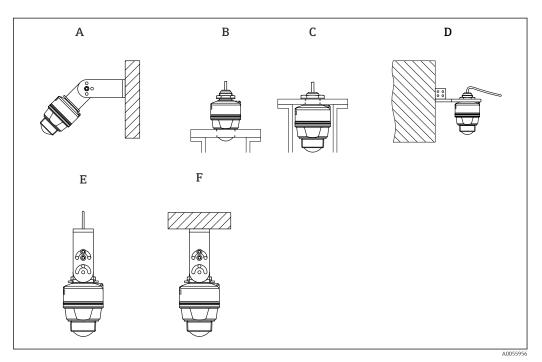
5.4 Выравнивание оси антенны по вертикали

Сориентируйте антенну перпендикулярно поверхности среды.

📔 Если направление передачи антенны не перпендикулярно измеряемой среде (или при наличии дополнительных интерференционных сигналов), максимальная зона действия луча антенны может быть уменьшена.

5.5 Способы оптимизации

Маскирование помех


Процесс измерения можно оптимизировать путем электронного подавления эхо-

См. параметр Подтвердить расстояние.

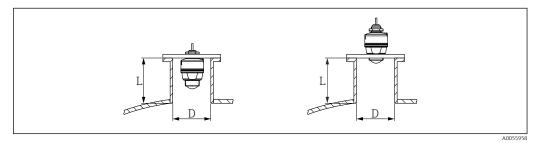
Moнтаж Micropilot FMR10В

5.6 Монтаж прибора

5.6.1 Типы монтажа

🛮 2 Монтаж на стене или потолке

А Монтаж на стене с возможностью регулировки


- В Затяжка на технологическом соединении со стороны антенны
- С Затяжка на технологическом соединении с кабельным вводом
- D Монтаж на стене с помощью технологического соединения с кабельным вводом
- Е Монтаж на тросе
- F Монтаж на потолке

🚹 Осторожно!

- Кабели датчиков не предназначены для использования в качестве поддерживающих кабелей. Не используйте их для подвешивания.
- Для монтажа на тросе трос должен быть предоставлен заказчиком.
- При использовании в качестве бесконтактного уровнемера монтируйте прибор только в вертикальном положении.

5.6.2 Инструкции по монтажу

Для обеспечения оптимального измерения антенна должна выступать из патрубка. Внутренняя часть патрубка должна быть гладкой и не иметь выступающих краев и сварочных швов. Край патрубка должен быть закругленным, если это возможно.

🗷 3 Монтаж в патрубке, антенна 40 мм (1,5 дюйм)

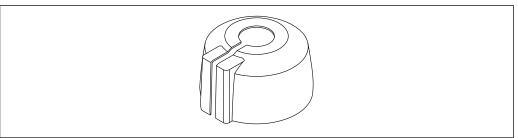
Micropilot FMR10B Монтаж

Максимальная длина патрубка L зависит от диаметра патрубка D.

Обратите внимание на ограничения по диаметру и длине патрубка.

Антенна 40 мм (1,5 дюйм), монтаж снаружи патрубка

- D: мин. 40 мм (1,5 дюйм)
- L: макс. (D 30 мм (1,2 дюйм)) × 7,5

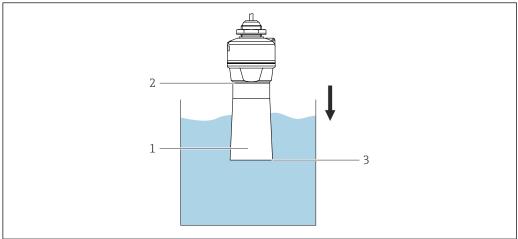

Антенна 40 мм (1,5 дюйм), монтаж внутри патрубка

- D: мин. 80 мм (3 дюйм)
- L: макс. 100 мм (3,94 дюйм) + (D 30 мм (1,2 дюйм)) × 7,5

5.6.3 Защитный козырек от погодных явлений

При использовании вне помещений рекомендуется применять защитный козырек от погодных явлений.

Его можно заказать в качестве дополнительных принадлежностей.


₩ 4 Защитный козырек от погодных явлений, кабельный ввод сверху

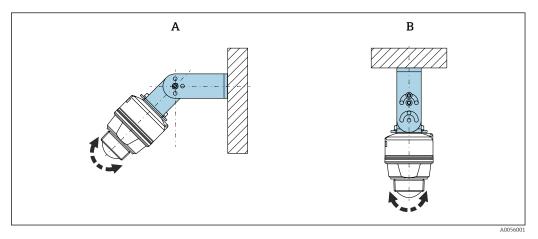
Датчик не полностью покрывается защитным козырьком от погодных явлений.

5.6.4 Трубка для защиты от заполнения водой

Трубка для защиты от заполнения водой гарантирует измерение максимального уровня датчика даже при полном затоплении.

Ее можно заказать в качестве дополнительных принадлежностей.

₩ 5 Функция трубки для защиты от заполнения водой


- Воздушный карман
- Уплотнительное кольцо (EPDM)
- Макс. уровень

Micropilot FMR10B Монтаж

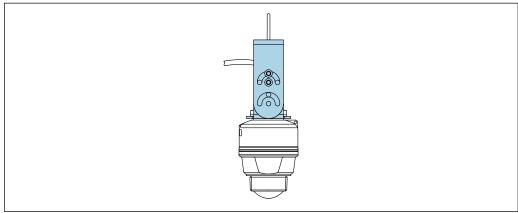
> Трубка привинчивается непосредственно к датчику и герметизирует систему посредством уплотнительного кольца. В случае затопления воздушный карман, образующийся в трубке, обеспечивает измерение максимального уровня на конце трубки.

5.6.5 Установка с монтажным кронштейном, регулируемая

Монтажный кронштейн можно приобрести в качестве дополнительных принадлежностей.

€ 6 Установка с монтажным кронштейном, регулируемая

- Монтажный кронштейн, регулируемый для антенны 40 мм (1,5 дюйм), монтаж на стене
- В Монтажный кронштейн, регулируемый для антенны 40 мм (1,5 дюйм), монтаж на потолке
- Возможен монтаж на стене или потолке.
- С помощью монтажного кронштейна расположите антенну перпендикулярно поверхности среды.


УВЕДОМЛЕНИЕ

Монтажный кронштейн не имеет проводящего соединения с корпусом преобразователя.

Возможно накопление электростатического заряда.

▶ Подсоедините монтажный кронштейн к локальной системе выравнивания потенциалов.

Монтаж на тросе

₽ 7 Установка с монтажом на тросе

Монтажный кронштейн, регулируемый для антенны 40 мм (1,5 дюйм), монтаж на тросе

Micropilot FMR10В Монтаж


Сориентируйте антенну перпендикулярно поверхности среды.

В случае монтажа на тросе обратите внимание, что кабель не должен использоваться для подвешивания прибора.

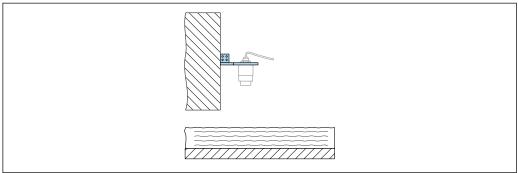
Необходимо использовать отдельный трос.

5.6.6 Монтаж на поворотной консоли

Консоль, настенный кронштейн и монтажную раму можно приобрести в качестве принадлежностей.

- 🛮 8 Монтаж на поворотной консоли
- А Консоль с настенным кронштейном (вид сбоку)
- В Консоль с монтажной рамой (вид сбоку)
- С Консоль можно поворачивать, например для того, чтобы поместить прибор над центром желоба (вид сверху)

УВЕДОМЛЕНИЕ


Монтажный кронштейн не имеет проводящего соединения с корпусом преобразователя.

Возможно накопление электростатического заряда.

 Подсоедините монтажный кронштейн к локальной системе выравнивания потенциалов.

5.6.7 Монтаж с помощью поворотного монтажного кронштейна

Поворотный монтажный кронштейн можно приобрести в качестве дополнительных принадлежностей.

A0055398

Я Поворотная регулируемая консоль с настенным кронштейном (например, для размещения прибора над центром желоба)

УВЕДОМЛЕНИЕ

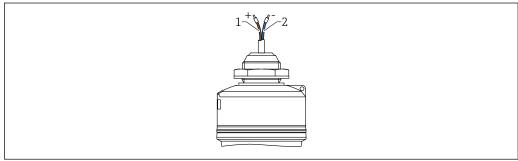
Монтажный кронштейн не имеет проводящего соединения с корпусом преобразователя.

Возможно накопление электростатического заряда.

 Подсоедините монтажный кронштейн к локальной системе выравнивания потенциалов.

5.7 Проверка после монтажа

□ Прибор и кабель не повреждены (внешний осмотр)?
\square Соответствуют ли предъявляемым требованиям идентификационный номер и маркировка точки измерения (внешний осмотр)?
🗆 Прибор защищен от воздействия осадков и прямых солнечных лучей?
□ Надежно ли закреплен прибор?
□ Соответствует ли прибор техническим параметрам точки измерения? Примеры приведены ниже:
□ Рабочая температура
□ Рабочее давление
□ Температура окружающей среды
□ Диапазон измерений


6 Электрическое подключение

6.1 Подключение прибора

6.1.1 Выравнивание потенциалов

Никаких специальных мер по выравниванию потенциалов не требуется.

6.1.2 Назначение кабелей

A0055

- 🗷 10 Назначение кабелей, кабельный ввод сверху
- 1 Плюс, коричневый провод
- 2 Минус, синий провод

6.1.3 Сетевое напряжение

12 до 30 В пост. тока на блоке питания постоянного тока

1 Блок питания должен иметь сертификат безопасности (например, PELV, SELV, класс 2) и соответствовать определенным спецификациям протокола.

В системе предусмотрены схемы безопасности для защиты от обратной полярности, влияния высокочастотных помех и скачков напряжения.

6.1.4 Потребляемая мощность

Чтобы соответствовать требованиям безопасности прибора в соответствии со стандартом IEC/EN 61010, установка должна обеспечивать ограничение максимального тока до 500 мА.

6.1.5 Технические характеристики кабелей

Неэкранированный кабель, площадь поперечного сечения провода 0,5 мм².

- Защита от ультрафиолетового излучения и атмосферного воздействия согласно стандарту ISO 4892-2.
- Огнестойкость соответствует стандарту IEC 60332-1-2.

Прибор поставляется с кабелем длиной 10 м (32 фут).

6.1.6 Защита от перенапряжения

Прибор соответствует производственному стандарту IEC/DIN EN 61326-1 (таблица 2 "Промышленная среда"). В зависимости от типа соединения (источник питания постоянного тока, входная линия, выходная линия) используются различные уровни испытаний для предотвращения переходных перенапряжений (IEC/DIN EN 61000-4-5 Избыточное напряжение) в соответствии со стандартом IEC/DIN EN 61326-1: уровень испытаний для линий питания постоянного тока и линий ввода-вывода: трос на заземление 1000 В.

Категория перенапряжения

В соответствии с IEC/DIN EN 61010-1 прибор предназначен для использования в сетях с категорией защиты от перенапряжения II.

6.2 Обеспечение требуемой степени защиты

Испытание в соответствии с IEC 60529, редакция $2.2\ 2013-08$ /DIN EN 60529 2014-09 и NEMA 250-2014:

- IP66, NEMA тип 4X
- IP68, NEMA тип 6Р (в течение 24 ч на глубине 1,83 м (6,00 фут) под водой)

6.3 Проверка после подключения

Приоор и каоель не повреждены (внешнии осмотр)?
□ Используемый кабель соответствует техническим требованиям?
□ Подключенный кабель не натянут?
🗆 Правильно ли установлено резьбовое соединение?
□ Сетевое напряжение соответствует техническим требованиям, указанным на заводской табличке?
□ Нет обратной полярности, соблюдено ли назначение клемм?
□ При наличии сетевого напряжения: готов ли прибор к работе и горит ли светодиодный индикатор рабочего состояния?

Варианты управления Micropilot FMR10B

7 Варианты управления

7.1 Обзор опций управления

- Управление с помощью Bluetooth®
- Управление с помощью ПО DeviceCare

7.2 Структура и функции меню управления

Полное меню управления, доступное с помощью управляющих программ (DeviceCare, SmartBlue), позволяет пользователям выполнять более сложные настройки прибора.

Мастер настройки помогает пользователю ввести прибор в эксплуатацию в различных условиях применения. Пользователь получает рекомендации на различных этапах настройки.

7.2.1 Обзор меню управления

Меню "Руководство"

Главное меню Руководства содержит функции, позволяющие пользователям быстро выполнять основные задачи, например ввод в эксплуатацию. Это меню состоит в основном из мастеров управления и специальных функций, охватывающих несколько областей.

Меню "Диагностика"

Настройки и информация по диагностике, а также помощь в поиске и устранении неисправностей.

Меню "Применение"

Функции для детальной настройки процесса для оптимальной интеграции прибора в приложение.

Меню "Система"

Системные настройки по управлению прибором, администрированию пользователя или безопасности.

7.2.2 Уровни доступа и соответствующие полномочия

Этот прибор поддерживает 2 уровня доступа пользователя: **Техническое обслуживание** и **Оператор**

- Уровень доступа пользователя Техническое обслуживание (в том виде, в котором поставляется заказчику) имеет доступ для чтения/записи.
- Уровень доступа пользователя Оператор имеет доступ только для чтения.

Текущий уровень доступа пользователя отображается в главном меню.

Параметры прибора могут быть полностью настроены с помощью уровня доступа пользователя **Техническое обслуживание**. Впоследствии доступ к настройке прибора можно заблокировать, назначив пароль. Этот пароль служит кодом доступа и защищает конфигурацию прибора от несанкционированного доступа.

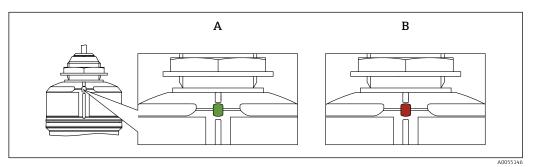
Блокировка меняет уровень доступа пользователя **Техническое обслуживание** на уровень доступа пользователя **Оператор**. Повторный доступ к конфигурации можно получить, введя код доступа.

Micropilot FMR10B Варианты управления

При вводе неверного кода доступа пользователю предоставляются права доступа, соответствующие уровню доступа **Оператор**.

Назначение пароля, изменение уровня доступа пользователя:

▶ Навигация: Система → Управление пользователями


7.3 Управление с использованием технологии беспроводной связи Bluetooth®

Предварительное условие:

Смартфон или планшет с приложением SmartBlue, разработанным компанией Endress+Hauser, или ПК с установленным ПО DeviceCare версии 1.07.07 или более совершенной версии либо коммуникатор FieldXpert SMT70SMT77

Соединение имеет диапазон до 25 м (82 фут). Диапазон может варьироваться в зависимости от условий окружающей обстановки, таких как крепления, стены или потолки.

7.4 Светодиодный индикатор

ททมดิดทย

🛮 11 🛮 Светодиодный индикатор на приборе

- А Зеленый светодиод
- В Красный светодиод

Функции:

- Отображение состояния прибора
 - Прибор работает (зеленый)
 - Неисправность (красный)
- Отображение активного соединения Bluetooth (мигание)

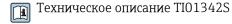
7.5 Доступ к меню управления с помощью управляющей программы

7.5.1 Подключение управляющей программы

Доступ с помощью управляющей программы возможен через интерфейс Bluetooth.

DeviceCare

Диапазон функций


Инструмент для подключения и настройки полевых приборов Endress+Hauser.

📵 Подробную информацию см. в буклете "Инновации" IN01047S.

Варианты управления Micropilot FMR10B

FieldXpert SMT70, SMT77

Планшетный ПК Field Xpert SMT70 для настройки приборов обеспечивает мобильное управление парком приборов во взрывоопасных (зона 2) и невзрывоопасных зонах. Модель предназначена для специалистов по пусконаладке и техническому обслуживанию. Планшетный ПК управляет измерительными приборами компании Endress+Hauser и других производителей, поддерживающими цифровую передачу данных, и документирует происходящий процесс. Модель SMT70 представляет собой комплексное решение. Планшетный ПК поступает в продажу уже с загруженной библиотекой драйверов и представляет собой удобный в использовании сенсорный инструмент для управления измерительными приборами в течение всего жизненного цикла.

Планшет Field Xpert SMT77 для настройки приборов обеспечивает мобильное управление парком приборов во взрывоопасных зонах (зона 1).

Техническое описание TI01418S

7.5.2 Управление с помощью приложения SmartBlue

Управлять прибором и настраивать его можно с помощью приложения SmartBlue.

- Для этого необходимо загрузить на мобильное устройство приложение SmartBlue.
- Информация о совместимости приложения SmartBlue с мобильными устройствами приведена в Apple App Store (устройства на базе IOS) или Google Play Store (устройства на базе Android).
- Неправильная эксплуатация не допущенными к ней лицами предотвращается благодаря шифрованию связи и парольной защите шифрования.
- Функция Bluetooth® может быть отключена после первоначальной настройки прибора.

🛮 12 🔻 QR-код для бесплатного приложения Endress+Hauser SmartBlue

A003320

Загрузка и установка:

- 1. Отсканируйте QR-код или введите строку **SmartBlue** в поле поиска в Apple App Store (iOS) или Google Play Store (Android).
- 2. Установите и запустите приложение SmartBlue.
- 3. Для устройств на базе Android: включите функцию отслеживания местоположения (GPS) (не требуется для устройств на базе iOS).
- 4. Выберите устройство, готовое к приему, из отображаемого списка устройств.

Войдите в систему:

- 1. Введите имя пользователя: admin
- 2. Введите исходный пароль: серийный номер прибора
- 🎦 Смените пароль после первого входа.
- 😭 Забыли пароль? Обратитесь в сервисный центр Endress+Hauser.

Micropilot FMR10B Ввод в эксплуатацию

8 Ввод в эксплуатацию

8.1 Предварительные условия

№ ОСТОРОЖНО

Настройки на токовом выходе могут привести к условиям, связанным с безопасностью (например, переполнение продукта)!

Проверка настроек токового выхода.

8.2 Монтаж и функциональная проверка

Перед вводом измерительной точки в эксплуатацию убедитесь в том, что были выполнены проверки после монтажа и подключения.

- 🖺 Проверка после монтажа
- 🖺 Проверка после подключения

8.3 Ввод в эксплуатацию с помощью приложения SmartBlue

8.3.1 Приложение SmartBlue

1. Отсканируйте QR-код или введите строку SmartBlue в поле поиска в App Store.

A00391

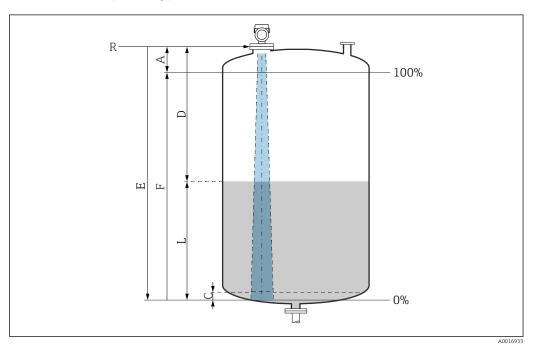
- Ссылка для загрузки
- 2. Запустите SmartBlue.
- 3. Выберите прибор в отображаемом списке активных устройств.
- 4. Введите данные для входа в систему.
 - Имя пользователя: adminПароль: серийный номер прибора
- 5. Чтобы получить дополнительные сведения, коснитесь того или иного значка.
- 🚹 После первого входа в систему измените пароль!

8.4 Примечания к мастер "Ввод в работу"

Мастер **Ввод в работу** позволяет выполнять простой ввод в эксплуатацию под руководством пользователя.

- 1. После запуска мастер **Ввод в работу** введите соответствующее значение в каждом параметре или выберите соответствующую опцию. Эти значения будут записаны непосредственно в память прибора.
- 2. Для перехода к следующей странице нажмите кнопку "Next".

Ввод в эксплуатацию Micropilot FMR10B

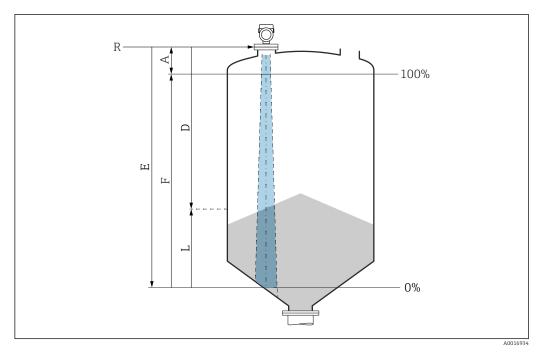

3. После того, как все страницы будут заполнены, нажмите кнопку "End", чтобы закрыть мастер **Ввод в работу**.

Если работу мастер **Ввод в работу** отменить до того, как будут настроены все необходимые параметры, прибор может находиться в неопределенном состоянии. В такой ситуации произойдет возврат прибора к заводским настройкам по умолчанию.

8.5 Настройка прибора

Рекомендуется ввод в эксплуатацию с помощью мастера ввода в эксплуатацию. См. раздел "Ввод в эксплуатацию с помощью приложения SmartBlue"

8.5.1 Измерение уровня в жидкостях

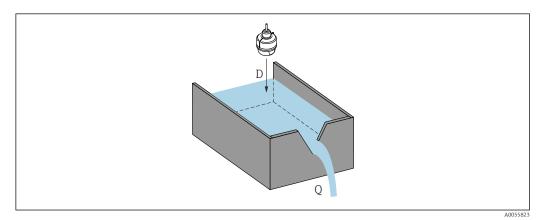

🖪 14 — Параметры конфигурации для измерения уровня жидких сред

- R Контрольная точка измерения
- А Длина антенны + 10 мм (0,4 дюйм)
- C 50 до 80 мм (1,97 до 3,15 дюйм); среда ɛr < 2
- D Расстояние
- L Уровень
- E Параметр "Калибровка пустой емкости" (= 0 %)
- F Параметр "Калибровка заполненной емкости" (= 100 %)

В случае сред с низкой диэлектрической проницаемостью, εr < 2, дно резервуара может быть видно сквозь среду при очень низких уровнях (ниже уровня С). В этом участке диапазона точность измерения ухудшается. Если это нежелательно, рекомендуется разместить нулевую точку на расстоянии С над дном резервуара для этих применений (см. рисунок).

Micropilot FMR10B Ввод в эксплуатацию

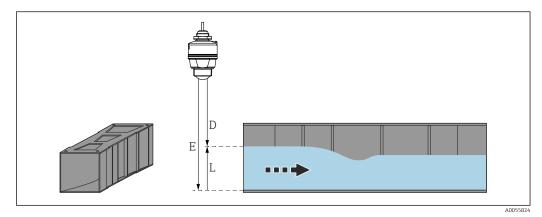
8.5.2 Измерение уровня сыпучих сред


🖻 15 — Параметры конфигурации для измерения уровня сыпучих сред

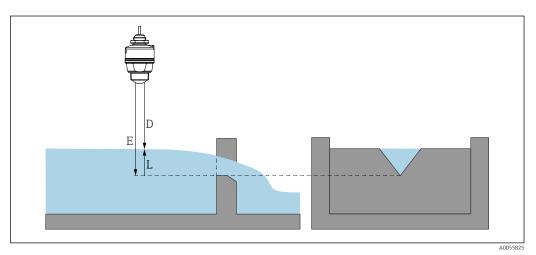
- R Контрольная точка измерения
- А Длина антенны + 10 мм (0,4 дюйм)
- D Расстояние
- L Уровень
- E Параметр "Калибровка пустой емкости" (= 0%)
- F Параметр "Калибровка заполненной емкости" (= 100%)

8.5.3 Настройка измерения расхода с помощью программного обеспечения

Условия монтажа для измерения расхода


- Для измерения расхода необходим канал или водослив.
- Расположите датчик в середине канала или водослива.
- Сориентируйте датчик перпендикулярно поверхности воды.
- Для защиты прибора от солнечных лучей и дождя используйте защитный козырек от погодных явлений.

- 🗷 16 Параметры конфигурации для измерения расхода в жидкостях
- D Расстояние
- Расход при измерении в водосливах или каналах (рассчитывается на основе уровня путем линеаризации)


Ввод в эксплуатацию Micropilot FMR10B

Настройка измерения расхода

🗷 17 Пример: желоб Khafagi-Venturi

- Е Калибровка пустой емкости (нулевая точка)
- D Расстояние
- L Уровень

🗷 18 Пример: водослив треугольного сечения

- Е Калибровка пустой емкости (нулевая точка)
- D Расстояние
- L Уровень

8.6 Настройка параметр "Частотный режим"

Параметр **Частотный режим** используется для определения настроек радиолокационных сигналов для конкретной страны или региона.

Параметр **Частотный режим** должен быть настроен в начале ввода в эксплуатацию в меню управления с помощью соответствующей управляющей программы.

Применение → Сенсор → Расширенные настройки → Частотный режим

Рабочая частота 80 ГГц:

- Опция Режим 2: континентальная Европа, США, Австралия, Новая Зеландия, Канада, Бразилия, Япония, Южная Корея, Тайвань, Таиланд
- Опция Режим 3: Россия, Казахстан
- Опция Режим 4: Мексика
- Опция Режим 5: Индия, Малайзия, Южная Африка, Индонезия

Метрологические характеристики прибора могут отличаться в зависимости от установленного режима. Указанные метрологические характеристики относятся к прибору, поставляемому заказчику (опция **Режим 2**).

Micropilot FMR10B Эксплуатация

8.7 Подменю "Моделирование"

Переменные процесса и диагностические события могут быть смоделированы с помощью подменю **Моделирование**.

Навигация: Диагностика → Моделирование

В процессе моделирования переключающего или токового выхода прибор выдает предупреждающее сообщение на протяжении всего времени моделирования.

8.8 Защита параметров настройки от несанкционированного доступа

8.8.1 Программная блокировка и разблокировка

Блокировка с помощью пароля в ПО DeviceCare / SmartBlue

Доступ к настройке параметров прибора можно заблокировать, задав пароль. При поставке с завода для прибора устанавливается уровень доступа опция **Техническое обслуживание**. Уровень доступа опция **Техническое обслуживание** позволяет полностью настроить прибор. Впоследствии доступ к настройке прибора можно заблокировать, задав пароль. В результате данной блокировки происходит переход с уровня опция **Техническое обслуживание** на уровень опция **Оператор**. Доступ к настройке открывается при вводе пароля.

Пароль задается с помощью следующих пунктов меню:

Меню Система подменю User management

Уровень доступа можно изменить с опция **Техническое обслуживание** на опция **Оператор**, используя следующее меню:

Система → User management

Отключение блокировки с помощью ПО DeviceCare / SmartBlue

После ввода пароля можно выполнять настройку параметров прибора на уровне доступа опция **Оператор** с вводом пароля. При этом устанавливается уровень доступа опция **Техническое обслуживание**.

При необходимости пароль можно удалить в User management: Система ightarrow User management

9 Эксплуатация

9.1 Чтение состояния блокировки прибора

9.1.1 Управляющая программа

☐ Управляющая программа (DeviceCare / FieldXpert / SmartBlue)

Навигация: Система → Управление прибором → Статус блокировки

9.2 Считывание измеряемых значений

Все измеряемые значения можно считывать с помощью подменю Измеренное значение.

Навигация: меню Применение → подменю Измеренные значения

9.3 Адаптация прибора к условиям технологического процесса

Для этой цели предусмотрены следующие меню:

- Основные настройки в меню Руководство
- Расширенные настройки в следующих разделах:
 - Меню Диагностика
 - Меню Применение
 - Меню Система

Более подробную информацию см. в документе "Описание параметров прибора".

10 Диагностика и устранение неисправностей

10.1 Общая процедура устранения неисправностей

10.1.1 Неисправности общего характера

Прибор не запускается

- Возможная причина: сетевое напряжение не соответствует техническим требованиям, указанным на заводской табличке.
 Способ устранения неисправности: подключите прибор к источнику питания регламентированного напряжения.
- Возможная причина: не соблюдена полярность питания.
 Способ устранения неисправности: измените полярность.
- Возможная причина: слишком велико сопротивление нагрузки.
 Способ устранения неисправности: увеличьте сетевое напряжение, чтобы обеспечить минимально допустимое напряжение на клеммах.

10.1.2 Неисправность – управление с помощью приложения SmartBlue через интерфейс Bluetooth®

Прибор не отображается в оперативном списке

- Возможная причина: превышен радиус действия сигнала Bluetooth.
 Способ устранения неисправности: уменьшите расстояние между полевым прибором и смартфоном / планшетом.
 Соединение имеет диапазон до 25 м (82 фут).
- Радиус действия с промежуточной видимостью − 10 м (33 фут).

 Возможная причина: на устройстве с операционной системой Android не включена геолокация, или ее использование не разрешено для приложения SmartBlue.

 Способ устранения неисправности: включение / разрешение службы геолокации на

устройстве Android для приложения SmartBlue.

Прибор числится в оперативном списке, однако подключение установить не удается

- Возможная причина: прибор уже соединен с другим смартфоном / планшетом через интерфейс Bluetooth.
 - Допускается только одно соединение типа "точка-точка".
 - Способ устранения неисправности: отсоедините смартфон / планшет от прибора.
- Возможная причина: ошибочный ввод имени пользователя и пароля. Способ устранения неисправности: стандартное имя пользователя admin, а паролем является серийный номер прибора, указанный на его заводской табличке (только если пароль не был изменен пользователем ранее). Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com).

Не удается установить соединение посредством приложения SmartBlue

- Возможная причина: введен неверный пароль.
 Способ устранения неисправности: введите действительный пароль, обращая внимание на регистр символов.
- Возможная причина: забыт пароль.
 Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com).

Не удается войти в систему посредством приложения SmartBlue

- Возможная причина: прибор вводится в работу впервые.
 Способ устранения неисправности: введите имя пользователя admin и пароль (серийный номер прибора), обращая внимание на регистр символов.
- Возможная причина: электрический ток и напряжение не соответствуют требованиям.
 - Способ устранения неисправности: увеличьте сетевое напряжение.

Невозможно управлять прибором посредством приложения SmartBlue

- Возможная причина: введен неверный пароль.
 Способ устранения неисправности: введите действительный пароль, обращая внимание на регистр символов.
- Возможная причина: забыт пароль.
 Если пароль забыт, обратитесь в сервисный центр Endress+Hauser (www.addresses.endress.com).
- Возможная причина: отсутствует авторизация уровня доступа опция Оператор.
 Меры по устранению: перейдите в опция Техническое обслуживание.

10.1.3 Меры по устранению неисправности

Для получения информации о мерах в случае сообщения об ошибке: Смотрите раздел "Необработанные диагностические сообщения" 🖺.

Если эти меры не привели к устранению неисправности, обратитесь в представительство компании Endress+Hauser.

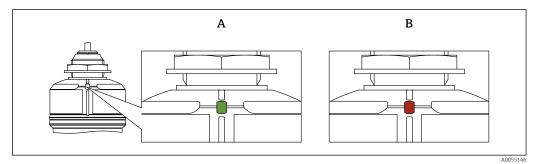
10.1.4 Дополнительные проверки

Если не удается определить явную причину ошибки (или если причиной неисправности может быть как прибор, так и технологическое оборудование), можно выполнить следующие дополнительные проверки:

- 1. Проверьте цифровое значение.
- 2. Убедитесь в том, что соответствующий прибор работает должным образом. Замените прибор, если цифровое значение не соответствует ожидаемому значению.
- 3. Включите моделирование и проверьте токовый выход. Замените прибор, если токовый выход не соответствует смоделированному значению.
- 4. Сбросьте параметры прибора на заводские настройки.

10.1.5 Поведение прибора в случае отключения электроэнергии

В случае неожиданного отключения электроэнергии динамические данные сохраняются постоянно (согласно NAMUR NE 032).


10.1.6 Поведение токового выхода в случае отказа

Поведение токового выхода в случае отказа определяется параметром параметр Выходной ток неисправности.

Обзор и краткое описание параметров

Параметр	Описание	Выбор / Ввод данных пользователем
Выходной ток неисправности	Выходной ток в случае ошибки. Мин.: < 3,6 мА Макс.: >21,5 мА Примечание: аппаратный DIP-переключатель для аварийного тока (при наличии) имеет приоритет перед программной настройкой.	Мин.Макс.
Ток при отказе	Установите значение токового выхода для аварийной сигнализации	21,5 до 23 мА

10.2 Вывод диагностической информации с помощью светодиодного индикатора

🗷 19 Светодиодный индикатор на приборе

- Светодиодный индикатор рабочего состояния постоянно горит зеленым цветом: все в порядке.
- Светодиодный индикатор рабочего состояния постоянно горит красным цветом: активен тип диагностики "Сигнал тревоги".
- Во время подключения по Bluetooth: светодиодный индикатор рабочего состояния мигает во время выполнения функции.
 Светодиодный индикатор мигает независимо от цвета светодиода.

10.3 Отображение диагностического события в управляющей программе

Если в приборе произошло диагностическое событие, то в верхней левой области состояния управляющей программы отображается сигнал состояния вместе с соответствующим символом уровня события согласно рекомендациям NAMUR NE 107:

- Отказ (F)
- Проверка функций (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (M)

Выберите запись сигнала состояния, чтобы просмотреть подробные данные сигнала состояния.

Сообщения о диагностических событиях и мерах по устранению неисправностей можно распечатать с помощью подменю **Перечень сообщений диагностики**.

10.4 Адаптация диагностической информации

Уровень события можно настроить:

Навигация: Диагностика → Diagnostic settings → Конфигурация

10.5 Необработанные диагностические сообщения

Необработанные диагностические сообщения можно просмотреть с помощью параметр **Диагностика активна**.

Навигация: Диагностика → Диагностика активна

10.6 Список диагностических сообщений

Все необработанные в данный момент диагностические сообщения могут быть отображены в подменю **Перечень сообщений диагностики**.

Навигация:Диагностика → Перечень сообщений диагностики

10.6.1 Список диагностических событий

Диагностические события 168, 203, 204, 242, 252, 420, 421, 806, 846, 847, 848 и 952 не могут возникать с помощью данного прибора.

Для диагностических событий 270, 273 и 805: при замене электроники прибор необходимо заменить.

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
Диагностика д	датчика			
062	Сбой соединения датчика	Проверьте соединение сенсора	F	Alarm
151	Сбой электроники датчика	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
168	Обнаружены налипания	1. Проверьте условия процесса 2. Увеличьте давление системы	М	Warning ¹⁾
Диагностика электроники				
203	HART неисправность прибора	Проверить состояние прибора	S	Warning
204	HART дефект электроники	Проверить состояние прибора	F	Alarm

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
242	Несовместимая прошивка	Проверьте программное обеспечение Перепрограммируйте или замените основной электронный модуль	F	Alarm
252	Несовместимый модуль	Проверить, правильный ли блок электроники подключен Заменить модуль электроники	F	Alarm
270	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm
272	Неисправность блока основной электроники	Перезапустите прибор Обратитесь в сервисную службу	F	Alarm
273	Неисправность основного электрон.модуля	Замените основную электронику или устройство.	F	Alarm
282	Некорректное хранение данных	Перезапустите прибор	F	Alarm
283	Несовместимость содержимого памяти	1. Перезапустите прибор 2. Обратитесь в сервисную службу	F	Alarm
287	Несовместимость содержимого памяти	Перезапустите прибор Обратитесь в сервисную службу	М	Warning
388	Электроника и HistoROM неисправны	Перезапустите устройство Замените электронику и HistoROM Свяжитесь с сервисом	F	Alarm
Диагностика	конфигурации			
410	Сбой передачи данных	1. Повторите передачу данных 2. Проверьте присоединение	F	Alarm
412	Обработка загрузки	Выполняется загрузка, пожалуйста, подождите	С	Warning
420	НАRT Конфигурация прибора заблокирована	Проверьте конфигурацию блокировки устройства	S	Warning
421	НАRT токовая петля зафиксир.	Проверьте режим Multi-drop или текущее моделирование.	S	Warning
430	Неверная конфигурация	Проверить конфигурацию Адаптировать конфигурацию	F	Alarm
431	Требуется выравнивание	Выполнить баланс.	С	Warning
435	Ошибка линеаризации	Проверьте таблицу линеаризации	F	Alarm
437	Конфигурация несовместима	1. Обновите прошивку 2. Выполните сброс до заводских настроек	F	Alarm

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
438	Массив данных отличается	 Проверьте файл с массивом данных Проверьте параметризацию устройства Скачайте файл с новой параметризацией устройства 	М	Warning
441	Токовый выход 1 насыщенный	Проверьте технологический процесс Проверьте настройки токового выхода	S	Warning
452	Обнаружена ошибка расчета	Проверьте конфигурацию прибора Загрузите новую конфигурацию	F	Alarm
484	Моделир. режима неисправности активиров.	Деактивировать моделирование	С	Alarm
485	Моделирование переменной процесса	Деактивировать моделирование	С	Warning
491	Ток.выход моделирование запущено	Деактивировать моделирование	С	Warning
495	Моделирование диагност. событий активно	Деактивировать моделирование	S	Warning
538	Неправильная конфигурация датчика	Проверьте настройки датчика Проверьте настройки прибора	F	Alarm
585	Моделир. расстояние до уровня продукта	Деактивировать моделирование	С	Warning
586	Записать карту помех	Запись маскирования, пожалуйста, подождите.	С	Warning
Циагностика	процесса			
801	Слишком низкое напряжение питания	Напряжение питания слишком низкое, увеличьте напряжение питания	F	Alarm
802	Слишком высокое напряжение питания	Уменьшите напряжение питания	S	Warning
805	Ток контура неисправность	Проверьте проводку Замените электронику или устройство	F	Alarm
806	Диагностика контура	1. Проверьте напряжение питания 2. Проверьте кабели и клеммы	М	Warning 1)
807	Нет баз.знач низк.напряжение при 20мА	Напряжение питания слишком низкое, увеличьте напряжение питания	М	Warning
825	Температура электроники	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning

Количество диагностик	Краткий текст	Действия по восстановлению	Сигнал статуса [заводские]	Характеристики диагностики [заводские]
826	Температура датчика вне диапазона	Проверьте температуру окружающей среды Проверьте рабочую температуру	S	Warning
843	Значение процесса выше предел.значения	Уменьшите рабочее значение Проверьте условия применения Проверьте датчик	F	Alarm
844	Значение процесса вне спецификации	Проверить значение процесса Проверить процесс Проверить датчик	S	Warning ¹⁾
846	НАRT неосновная переменная вне диапазона	Проверить состояние прибора	S	Warning
847	НАRT основная переменная вне диапазона	Проверить состояние прибора	S	Warning
848	НАRТ переменная прибора предупреждение	Проверить состояние прибора	S	Warning
941	Эхо сигнал потерян	Проверьте параметр "Значение DC"	S	Warning ¹⁾
942	На безопасном расстоянии	Проверьте уровень Проверьте безопасное расстояние Сбросьте удержание тревоги	S	Warning ¹⁾
952	Обнаружена пена	1. Проверьте условия процесса 2. Увеличьте давление системы	S	Warning ¹⁾
968	Достигнут предел изм. уровня	1. Проверьте уровень 2. Проверьте предельные параметры	S	Warning

¹⁾ Параметры диагностики могут быть изменены.

10.7 Журнал событий

10.7.1 Архив событий

Подменю "Журнал событий" предоставляет хронологический обзор сообщений о событиях, которые произошли $^{1)}$.

Навигация: Диагностика → Журнал событий

В хронологическом порядке могут отображаться до 100 сообщений о событиях.

Архив событий содержит следующие записи:

- Диагностические события
- Информационные события

¹⁾ Если прибор управляется посредством FieldCare, список событий может быть отображен с помощью функции "Список событий" в FieldCare.

Кроме времени наступления события (которое исчисляется в часах работы прибора), с каждым событием связывается символ, который указывает состояние события (длится оно или закончилось):

- Диагностическое событие
 - : начало события
 - 🕒: окончание события
- Информационное событие
 - €: начало события

10.7.2 Фильтрация журнала событий

С помощью фильтров можно определить, какая категория сообщений о событиях отображается в подменю **Журнал событий**.

Навигация: Диагностика → Журнал событий

Категории фильтрации

- Bce
- Отказ (F)
- Функциональная проверка (С)
- Не соответствует спецификации (S)
- Требуется техническое обслуживание (М)
- Информация

10.7.3 Обзор информационных событий

Номер данных	Наименование данных
I1000	(Прибор ОК)
I1079	Датчик изменён
I1089	Питание включено
I1090	Сброс конфигурации
I1091	Конфигурация изменена
I11074	Проверка прибора активна
I1110	Переключатель защиты от записи изменен
I11104	Диагностика контура
I1151	Сброс истории
I1154	Сброс измер напряжения клемм мин/макс
I1155	Сброс измерения температуры электроники
I1157	Журнал событий ошибок
I1256	Дисплей: статус доступа изменен
I1264	Безопасная последовательность прервана!
I1335	Прошивка изменена
I1397	Fieldbus: статус доступа изменен
I1398	CDI: статус доступа изменен
I1440	Главный модуль электроники изменен
I1444	Проверка прибора успешно завершена
I1445	Проверка прибора не выполнена
I1461	Ошибка проверки датчика
I1512	Началась загрузка

Номер данных	Наименование данных	
I1513	Загрузка завершена	
I1514	Загрузка началась	
I1515	Загрузка завершена	
I1551	Исправлена ошибка назначения	
I1552	Не выполнено: поверка гл.электрон.	
I1554	Последовательность безопасности начата	
I1555	Последовательность безопасн.подтверждена	
I1556	Безопасный режим выкл	
I1956	Сброс	

10.8 Перезапуск прибора

10.8.1 Сброс через цифровую связь

Настройки прибора можно сбросить с помощью параметр **Сброс параметров прибора**.

Навигация: Система → Device management

Сброс не затрагивает индивидуальные настройки, выполненные на заводе (конфигурация, заказанная пользователем, сохраняется).

10.8.2 Сброс пароля с помощью управляющей программы

Введите код для сброса текущего пароля 'Техническое обслуживание' . Код предоставляется вашей локальной службой техподдержки.

Навигация: Система ightarrow Администрирование пользователей ightarrow Сброс пароля

📵 Более подробную информацию см. в документе "Описание параметров прибора".

10.9 Информация о приборе

Все сведения о приборе содержатся в подменю Информация.

Навигация: Система → Информация

📵 Более подробную информацию см. в документе "Описание параметров прибора".

10.10 История разработки встроенного ПО

10.10.1 Версия

01.00.00

Исходное ПО

11 Техническое обслуживание

Специальные работы по техническому обслуживанию не требуются.

11.1 Очистка наружной поверхности

🚹 Примечания в отношении очистки

- Используемые моющие средства не должны разрушать поверхности и уплотнения
- Сохраняйте надлежащую степень защиты прибора

11.2 Уплотнения

Технологические уплотнения, которыми уплотняется присоединение к процессу прибора, необходимо периодически заменять. Периодичность замены уплотнений зависит от частоты выполнения циклов очистки, температуры очистки и температуры среды.

12 Ремонт

12.1 Общая информация

12.1.1 Принцип ремонта

Концепция ремонта Endress+Hauser состоит в том, что ремонт может осуществляться только путем замены прибора.

12.1.2 Замена прибора

После замены прибора ранее сохраненные параметры можно скопировать на вновь установленный прибор.

После полной замены прибора параметры можно снова загрузить в систему прибора через интерфейс связи. Следует предварительно выгрузить данные в компьютер или приложение SmartBlue с помощью ПО DeviceCare.

12.2 Возврат

Требования, предъявляемые к безопасному возврату прибора, могут варьироваться в зависимости от типа прибора и национального законодательства.

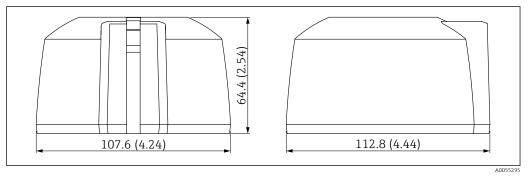
- 1. Подробнее см. на сайте: https://www.endress.com/support/return-material

 → Выберите регион.
- 2. При возврате прибора упаковывайте его таким образом, чтобы он был надежно защищен от внешних воздействий. Наибольшую степень защиты обеспечивает оригинальная упаковка.

12.3 **Утилизация**

Если этого требует Директива 2012/19 ЕС об отходах электрического и электронного оборудования (WEEE),

изделия маркируются указанным символом, с тем чтобы свести к минимуму возможность утил как несортированных коммунальных отходов. Не утилизируйте изделия с такой маркировкой как несортированные коммунальные отходы. Вместо этого верните их изготовителю для утилизации в соответствии с действующими правилами.


13 Аксессуары

Аксессуары, выпускаемые в настоящее время для изделия, можно выбрать в конфигураторе выбранного продукта по адресу www.endress.com.

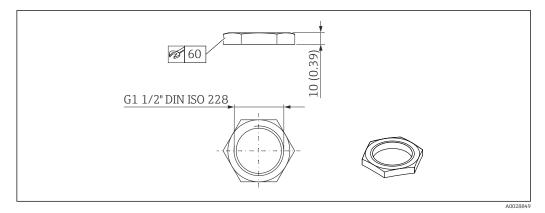
- 1. Выберите изделие с помощью фильтров и поля поиска.
- 2. Откройте страницу изделия.
- 3. Выберите раздел «Запчасти / Аксессуары.
- Аксессуары можно частично заказать через опцию "Accessory enclosed" (прилагаемые аксессуары).

Защитный козырек от погодных явлений для 13.1 прибора с кабельным вводом сверху

🔁 Датчик закрыт не полностью.

■ 20 Размеры защитного козырька от погодных явлений G1/NPT1, кабельный ввод сверху. Единица измерения мм (дюйм)

Материал изготовления


PBT/PC

Код заказа

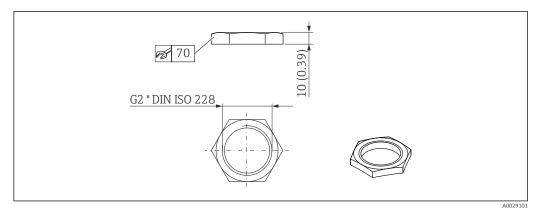
71662413

Крепежная гайка G 11/2" 13.2

Подходит для приборов с технологическим соединением G 1½" и MNPT 1½".

🖻 21 Размеры крепежной гайки. Единица измерения мм (дюйм)

Материал изготовления


PC

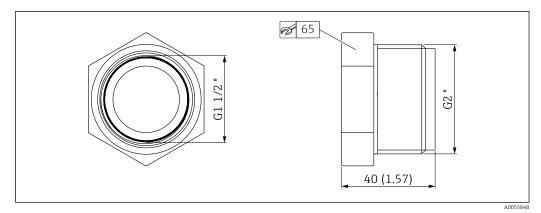
Код для заказа

52014146

13.3 Крепежная гайка G 2"

Подходит для приборов с технологическим соединением на стороне антенны G 2" и MNPT 2".

🗷 22 Размеры крепежной гайки. Единица измерения мм (дюйм)


Материал изготовления

PC

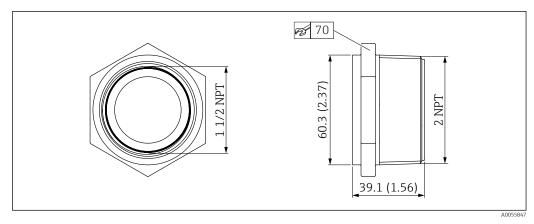
Код для заказа 52000598

13.4 Адаптер UNI G 1½" > G 2"

🚹 Диапазон температуры -40 до 45 °C (-40 до 113 °F)

🗷 23 Размеры адаптера UNI

Материал изготовления


ПВХ

Код для заказа

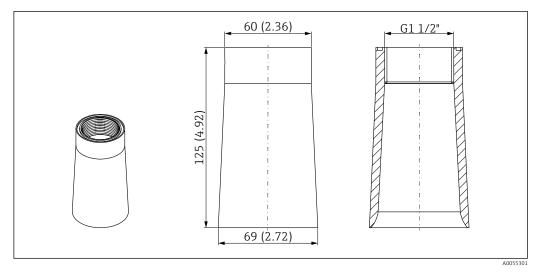
71662415

13.5 Адаптер UNI MNPT 1½" > MNPT 2"

🚹 Диапазон температуры –40 до 65 °C (–40 до 150 °F)

🗷 24 Размеры адаптера UNI

Материал изготовления


Полипропилен

Код для заказа

71666515

13.6 Трубка для защиты от перелива среды 40 мм (1,5 дюйм)

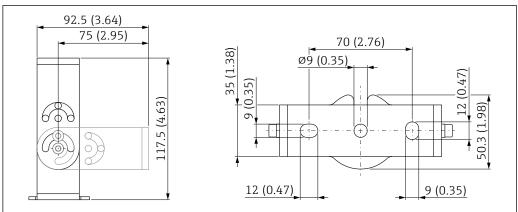
Подходит для приборов, оснащенных антенной 40 мм (1,5 дюйм) и резьбовым технологическим соединением G $1\frac{1}{2}$ " на стороне антенны

🗷 25 Размеры трубки для защиты от перелива среды 40 мм (1,5 дюйм). Единица измерения мм (дюйм)

Материал изготовления

Полипропилен

Код для заказа 71091216


13.7 Монтажный кронштейн регулируемый, монтаж на стене/тросе/потолке, 75 мм

Монтажный кронштейн можно использовать для монтажа на стене, тросе или потолке.

Доступно два варианта исполнения:

- Технологическое соединение на кабельном вводе G 1"/NPT 1"
- Технологическое соединение на стороне антенны G 1½"/NPT 1½"

13.7.1 Технологическое соединение на кабельном вводе G 1"/NPT 1"

🗷 26 Размеры монтажного кронштейна. Единица измерения мм (дюйм)

Endress+Hauser 41

A0055384

Компоненты:

- 1 монтажный кронштейн, 316L (1.4404)
- 1 угловой кронштейн, 316L (1.4404)
- 3 винта, А4
- 3 крепежных диска, А4

Код для заказа (G 1"/NPT 1")

71325079

13.7.2 Технологическое соединение на стороне антенны G 1½"/NPT 1½"

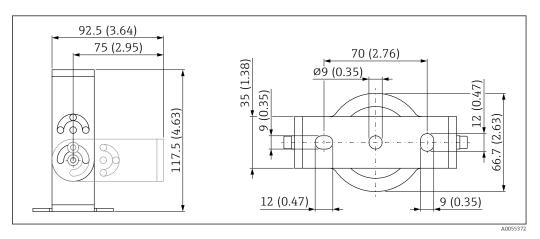


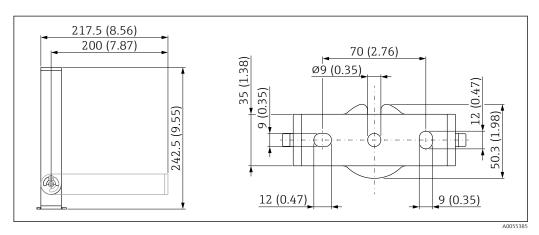
图 27 🛮 Размеры монтажного кронштейна. Единица измерения мм (дюйм)

Компоненты:

- 1 монтажный кронштейн, 316L (1.4404)
- 1 угловой кронштейн, 316L (1.4404)
- 3 винта, А4
- 3 крепежных диска, А4
- 1 крепежная гайка G 1½"

Код для заказа (G 11/2"/NPT 11/2")

71662419


13.8 Монтажный кронштейн, регулируемый, настенный, 200 мм

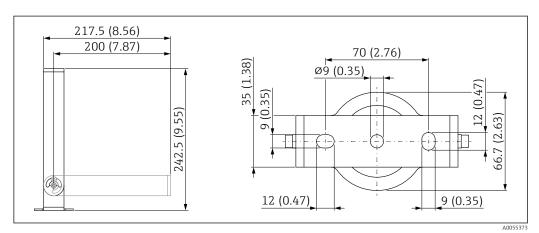
Монтажный кронштейн можно использовать для монтажа на стене.

Доступно два варианта исполнения:

- Технологическое соединение на кабельном вводе G 1"/NPT 1"
- Технологическое соединение на стороне антенны G 1½"/NPT 1½"

13.8.1 Технологическое соединение на кабельном вводе G 1"/NPT 1"

🗷 28 Размеры монтажного кронштейна. Единица измерения мм (дюйм)


Компоненты:

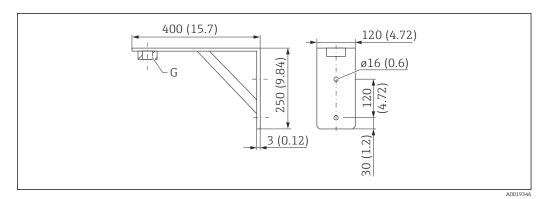
- 1 монтажный кронштейн, 316L (1.4404)
- 1 угловой кронштейн, 316L (1.4404)
- 3 винта, А4
- 3 крепежных диска, А4

Код для заказа (G 1"/NPT 1")

71662421

13.8.2 Технологическое соединение на стороне антенны G $1\frac{1}{2}$ "/NPT $1\frac{1}{2}$ "

🛮 29 Размеры монтажного кронштейна. Единица измерения мм (дюйм)


Компоненты:

- 1 монтажный кронштейн, 316L (1.4404)
- 1 угловой кронштейн, 316L (1.4404)
- 3 винта, А4
- 3 крепежных диска, А4
- 1 крепежная гайка G 1½"

Код для заказа (G 1½"/NPT 1½")

71662423

13.9 Угловой кронштейн для настенного монтажа

🗷 30 Размеры монтажного кронштейна. Единица измерения мм (дюйм)

G Подсоединение датчика с соответствии с опцией спецификации "Antenna end process connection" (технологическое соединение со стороны антенны)

Bec

3,4 кг (7,5 фунт)

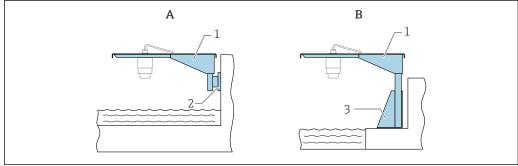
Материал изготовления

316L (1.4404)

Код для заказа для технологического соединения G 1½"

71452324

Также подходит для резьбы МNРТ 11/2"

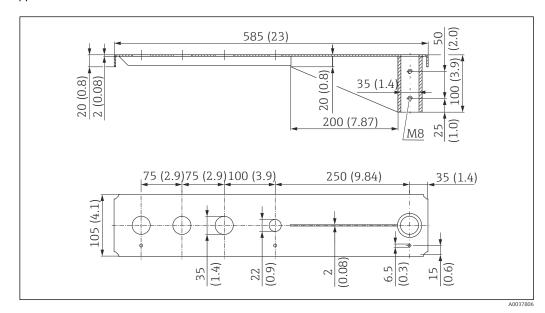

Код для заказа для технологического соединения G 2"

71452325

Также подходит для резьбы MNPT 2"

13.10 Поворотная консоль

13.10.1 Тип монтажа: технологическое соединение на кабельном вводе датчика



A002888

🗉 31 🛮 Тип монтажа: технологическое соединение на кабельном вводе датчика

- А Монтаж с использованием консоли и настенного кронштейна
- В Монтаж с использованием консоли и монтажной рамы
- 1 Консоль
- 2 Настенный кронштейн
- 3 Монтажная рама

Консоль 500 мм с шарниром, технологическое соединение на кабельном вводе датчика

23 Размер консоли 500 мм с шарниром, технологическое соединение на кабельном вводе датчика. Единица измерения мм (дюйм)

Bec:

2,1 кг (4,63 фунт)

Материал изготовления

316L (1.4404)

Код для заказа

71452315

- Отверстия 35 мм (1,38 дюйм) для всех резьбовых технологических соединений G 1" или MNPT 1" на кабельном вводе
- Отверстия 22 мм (0,87 дюйм) можно использовать для монтажа дополнительных датчиков
- Крепежные винты входят в комплект поставки

Консоль 1000 мм с шарниром, технологическое соединение на кабельном вводе датчика

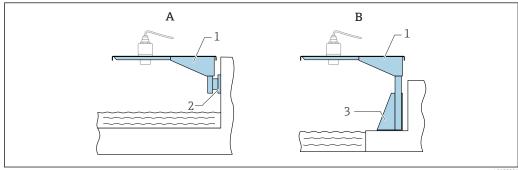
З3 Размер консоли 1000 мм с шарниром, технологическое соединение на кабельном вводе датчика. Единица измерения мм (дюйм)

Bec:

4,5 кг (9,92 фунт)

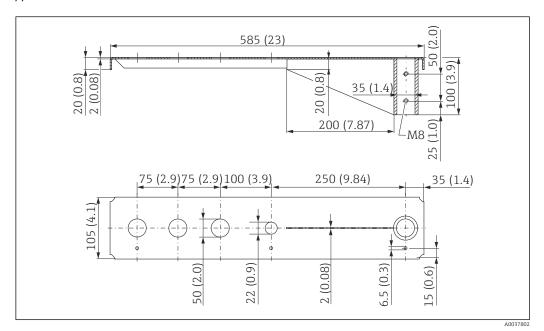
Материал изготовления

316L (1.4404)


Код для заказа

71452316

- Отверстия 35 мм (1,38 дюйм) для всех резьбовых технологических соединений G 1" или MNPT 1" на кабельном вводе
- Отверстие 22 мм (0,87 дюйм) можно использовать для монтажа дополнительного датчика
- Крепежные винты входят в комплект поставки


13.10.2 Тип монтажа датчика – технологическое соединение со стороны антенны

A002888

- 🛮 34 Тип монтажа датчика технологическое соединение со стороны антенны
- А Монтаж с использованием консоли и настенного кронштейна
- В Монтаж с использованием консоли и монтажной рамы
- 1 Консоль
- 2 Настенный кронштейн
- 3 Монтажная рама

Консоль 500 мм с шарниром, технологическое соединение на стороне антенны датчика G $1\frac{1}{2}$ "

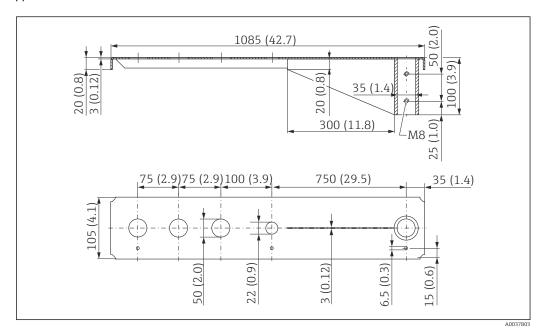
 \blacksquare 35 Размеры консоли 500 мм с шарниром, технологическое соединение на стороне антенны датчика $G\ 1^{1}\!\!/\!\!z''$. Единица измерения мм (дюйм)

Bec:

1,9 кг (4,19 фунт)

Материал изготовления

316L (1.4404)


Код для заказа

71452318

- Отверстия 50 мм (2,17 дюйм) для всех резьбовых технологических соединений G 1½" или MNPT 1½" на стороне антенны
- Отверстие 22 мм (0,87 дюйм) можно использовать для монтажа дополнительного датчика
- Крепежные винты входят в комплект поставки

Консоль 1000 мм с шарниром, технологическое соединение на стороне антенны датчика G $1\frac{1}{2}$ "

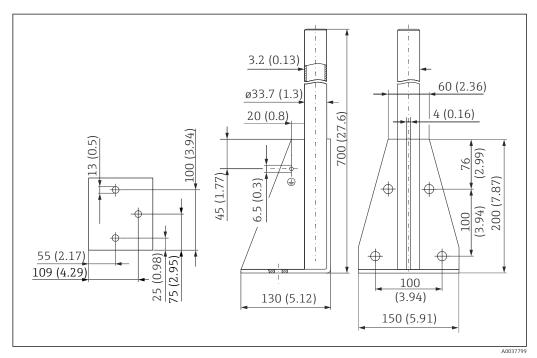
В 36 Размеры консоли 1000 мм с шарниром, технологическое соединение на стороне антенны датчика G 1½". Единица измерения мм (дюйм)

Bec:

4,4 кг (9,7 фунт)

Материал изготовления

316L (1.4404)


Код для заказа

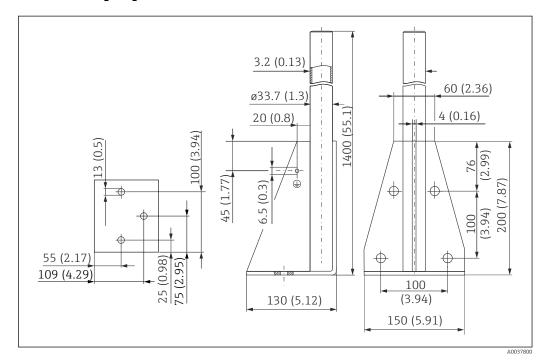
71452319

- Отверстия 50 мм (2,17 дюйм) для всех резьбовых технологических соединений G $1\frac{1}{2}$ " или MNPT $1\frac{1}{2}$ " на стороне антенны
- Отверстие 22 мм (0,87 дюйм) можно использовать для монтажа дополнительного датчика
- Крепежные винты входят в комплект поставки

13.10.3 Монтажная опора 700 мм (27,6 дюйм) для кронштейна с шарниром

🗷 37 Размеры. Единица измерения мм (дюйм)

Bec:


4,2 кг (9,26 фунт)

Материал изготовления

316L (1.4404)

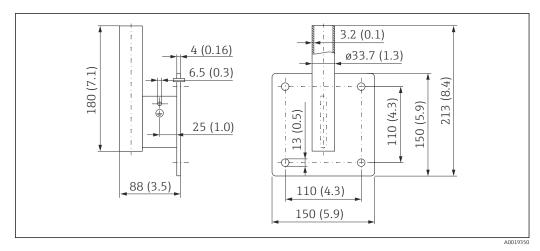
Код для заказа 71452327

13.10.4 Монтажная опора 1400 мм (55,1 дюйм) для кронштейна с шарниром

🗷 38 Размеры. Единица измерения мм (дюйм)

Bec:

6 кг (13,23 фунт)


Материал изготовления

316L (1.4404)

Код для заказа

71452326

13.10.5 Настенный кронштейн для консоли с шарниром

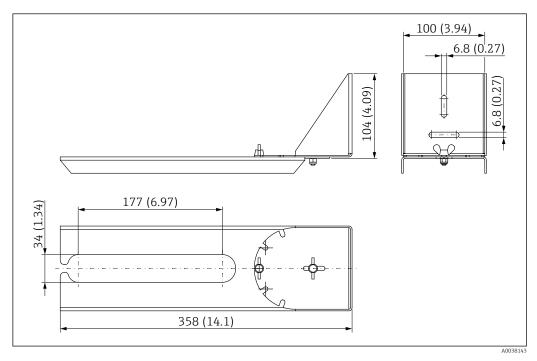
🗷 39 Размеры настенного кронштейна. Единица измерения мм (дюйм)

Bec

1,2 кг (2,65 фунт)

Материал

316L (1.4404)


50

Номер заказа

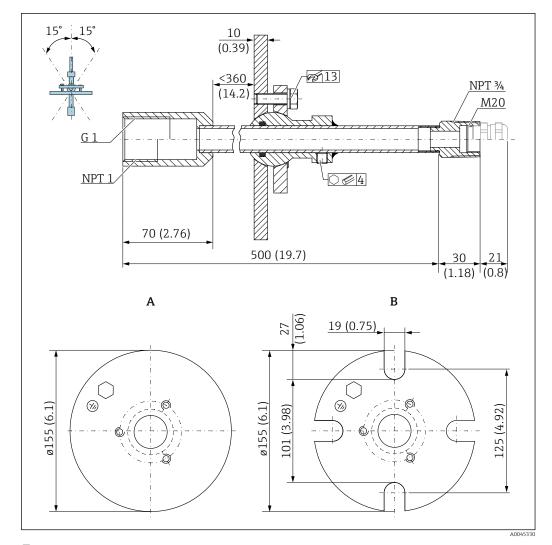
71452323

13.11 Шарнирный монтажный кронштейн

Поворотный монтажный кронштейн используется, в частности, для монтажа прибора в люке над канализационным каналом.

🛮 40 Размеры поворотного монтажного кронштейна. Единица измерения мм (дюйм)

Отверстия 34 мм (1,34 дюйм) для всех резьбовых технологических соединений G 1" или MNPT 1" на кабельном вводе


Материал изготовления 316L (1.4404)

Код для заказа

71429910

13.12 Приспособление для выравнивания FAU40

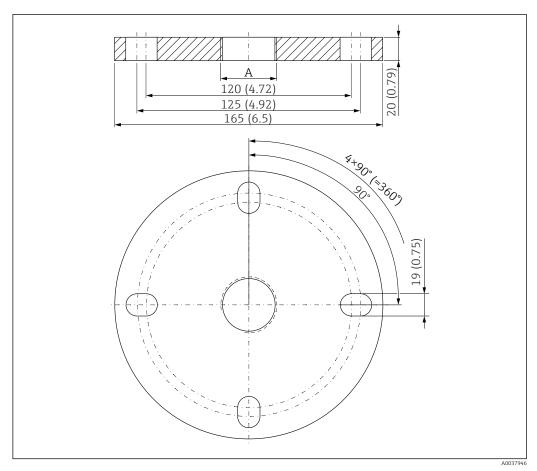
Приспособление для выравнивания используется для оптимального выравнивания датчику по отношению к поверхности сыпучей измеряемой среды.

🛮 41 Размеры. Единица измерения мм (дюйм)

- А Сварной фланец
- В Фланец UNI

Материал изготовления

- Фланец: нержавеющая сталь 304
- Труба: оцинкованная сталь
- Кабельная втулка уплотнитель: нержавеющая сталь 304 или оцинкованная сталь


Код для заказа

FAU40-##

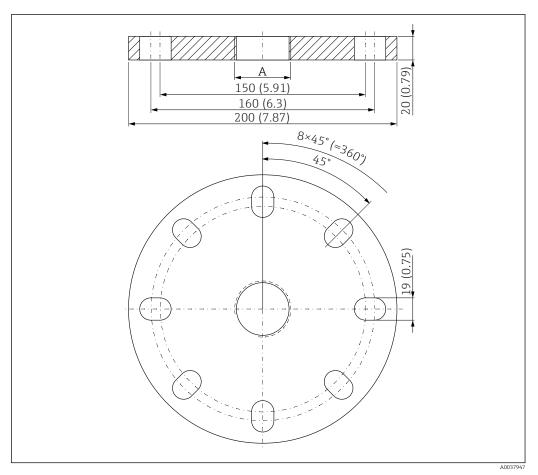
Для всех резьбовых технологических соединений G 1" или MNPT 1" на кабельном вводе и соединительных кабелей (макс. диам. 10 мм (0,43 дюйм), мин. длина 600 мм (23,6 дюйм)).

🕦 Техническая информация TI00179F

13.13 Фланец UNI 2"/DN50/50, полипропилен

🖩 42 Размеры фланца UNI 2 дюйма/DN50/50. Единица измерения мм (дюйм)

A Подсоединение датчика с соответствии с опцией спецификации "Antenna end process connection" (технологическое соединение со стороны антенны)


Материал изготовления

Полипропилен

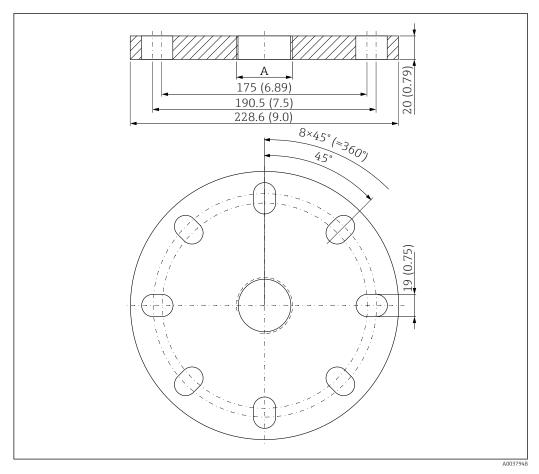
Код для заказа

FAX50-####

13.14 Фланец UNI 3"/DN80/80, полипропилен

№ 43 Размеры фланца UNI 3"/DN80/80. Единица измерения мм (дюйм)

A Подсоединение датчика с соответствии с опцией спецификации "Antenna end process connection" (технологическое соединение со стороны антенны) или "Cable entry process connection" (технологическое соединение на кабельном вводе)


Материал изготовления

Полипропилен

Код для заказа

FAX50-####

13.15 Фланец UNI 4"/DN100/100, полипропилен

■ 44 Размеры фланца UNI 4 дюйма/DN100/100. Единица измерения мм (дюйм)

A Подсоединение датчика с соответствии с опцией спецификации "Antenna end process connection" (технологическое соединение со стороны антенны) или "Cable entry process connection" (технологическое соединение на кабельном вводе)

Материал изготовления

Полипропилен

Код для заказа

FAX50-####

13.16 Регулируемое уплотнение фланца

Регулируемое уплотнение фланца используется для выравнивания датчика.

	Технические характеристики: вариан	T DN/JIS		
Код для заказа	71074263	71074264	71074265	
Совместимость	DN80 PN10/40	DN100 PN10/16	DN150 PN10/16JIS 10K 150A	
Рекомендуемая длина винта	100 мм (3,9 дюйм)	100 мм (3,9 дюйм)	110 мм (4,3 дюйм)	
Рекомендуемый размер винта	M14	M14	M18	
Материал изготовления		эпдм		
Рабочее давление	-0,1 до	-0,1 до 0,1 бар (-1,45 до 1,45 фунт/кв. дюйм)		
Рабочая температура		−40 до +80 °C (−40 до +176 °F)		
D	142 мм (5,59 дюйм)	162 мм (6,38 дюйм)	218 мм (8,58 дюйм)	
d	89 мм (3,5 дюйм)	115 мм (4,53 дюйм)	169 мм (6,65 дюйм)	
h	22 мм (0,87 дюйм)	23,5 мм (0,93 дюйм)	26,5 мм (1,04 дюйм)	
h _{мин.}	14 мм (0,55 дюйм)	14 мм (0,55 дюйм)	14 мм (0,55 дюйм)	
h _{MAKC.}	30 мм (1,18 дюйм)	33 мм (1,3 дюйм)	39 мм (1,45 дюйм)	
	Технические характеристики: вариант	ASME/JIS		
Код для заказа	71249070	71249072	71249073	
Совместимость	ASME 3" 150 фнтJIS 80A 10К	ASME 4" 150 фнт	ASME 6" 150 фнт	
Рекомендуемая длина винта	100 мм (3,9 дюйм)	100 мм (3,9 дюйм)	110 мм (4,3 дюйм)	
Рекомендуемый размер винта	M14	M14	M18	
Материал изготовления		эпдм		
Рабочее давление	-0,1 до	-0,1 до 0,1 бар (-1,45 до 1,45 фунт/кв. дюйм)		
Рабочая температура		−40 до +80 °C (−40 до +176 °F)		
D	133 мм (5,2 дюйм)	171 мм (6,7 дюйм)	219 мм (8,6 дюйм)	
d	89 мм (3,5 дюйм)	115 мм (4,53 дюйм)	168 мм (6,6 дюйм)	
h	22 мм (0,87 дюйм)	23,5 мм (0,93 дюйм)	26,5 мм (1,04 дюйм)	
h _{MUH.}	14 мм (0,55 дюйм)	14 мм (0,55 дюйм)	14 мм (0,55 дюйм)	
h _{makc.}	30 мм (1,18 дюйм)	33 мм (1,3 дюйм)	39 мм (1,45 дюйм)	
	1	-		

13.17 DeviceCare SFE100

Конфигурационный инструмент для полевых приборов с интерфейсом IO-Link, HART, PROFIBUS и FOUNDATION Fieldbus.

DeviceCare можно бесплатно загрузить на веб-сайте www.software-products.endress.com. Чтобы загрузить приложение, необходимо зарегистрироваться на портале ПО компании Endress+Hauser.

Техническое описание TI01134S

13.18 Device Viewer

Все запасные части для измерительного прибора вместе с кодами заказа числятся на pecypce *Device Viewer* (www.endress.com/deviceviewer).

13.19 RN22

Одно- или двухканальный активный барьер для безопасной электрической изоляции стандартных сигнальных цепей 4 до 20 мА с поддержкой протокола HART

Техническое описание (ТІО1515К) и руководство по эксплуатации (ВА02004К)

13.20 RN42

Одноканальный активный барьер искрозащиты с широкодиапазонным источником питания для безопасного электрического разделения стандартных сигнальных цепей 4 до 20 мA, прозрачных для протокола HART.

Техническое описание (ТІО1584К) и руководство по эксплуатации (ВА02090К)

13.21 Field Xpert SMT70

Универсальный, высокоэффективный промышленный планшетный компьютер для настройки приборов во взрывоопасных зонах (зона 2) и невзрывоопасных зонах

Подробные сведения приведены в документе "Техническое описание" ТІО1342S

13.22 Field Xpert SMT77

Универсальный, высокоэффективный промышленный планшетный компьютер для настройки приборов во взрывоопасных зонах (зона 1)

Подробные сведения приведены в документе "Техническое описание" TI01418S

13.23 Приложение SmartBlue

Мобильное приложение для простой настройки приборов на месте с помощью технологии беспроводной связи Bluetooth

14 Технические характеристики

14.1 Вход

14.1.1 Измеряемая величина

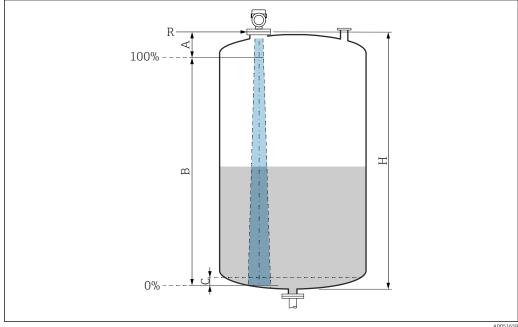
Измеряемая величина соответствует расстоянию между контрольной точкой и поверхностью среды.

Уровень рассчитывается на основе введенного известного расстояния Е, соответствующего пустому резервуару.

14.1.2 Диапазон измерения

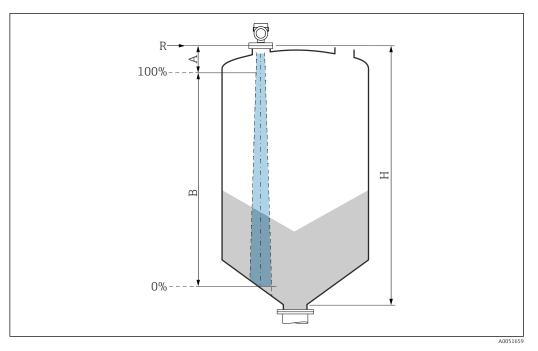
Диапазон измерения начинается в том месте, в котором луч достигает днища резервуара. Уровень, находящийся ниже этой точки, определить невозможно, особенно при наличии сферического днища или конического выпуска.

Максимальный диапазон измерения


Максимальный диапазон измерения составляет 10 м (33 фут).

Полезный диапазон измерения

Реальный диапазон измерения зависит от отражающих свойств среды, положения монтажа и любых возможных эхо-помех.


В принципе, измерение возможно вплоть до наконечника антенны.

В зависимости от положения изделия (угол естественного откоса сыпучих продуктов) и во избежание повреждения материала коррозионными или агрессивными средами или образования отложений на антенне, конец диапазона измерения должен быть выбран 10 мм (0,4 дюйм) перед наконечником антенны.

- Наконечник антенны + 10 мм (0,4 дюйм) Α
- В Реальный диапазон измерения
- С 50 до 80 мм (1,97 до 3,15 дюйм); среда ε_r ≤2
- Η Высота резервуара
- Точка начала измерения; зависит от антенной системы (см. раздел "Механическая конструкция")

58

- А Наконечник антенны + 10 мм (0,4 дюйм)
- В Реальный диапазон измерения
- Н Высота резервуара
- R Точка начала измерения; зависит от антенной системы (см. раздел "Механическая конструкция")

В случае сред с низкой относительной диэлектрической проницаемостью, $\varepsilon_{\rm r} < 2$, дно резервуара может быть видно сквозь среду при очень низких уровнях (ниже уровня C). В данном участке диапазона точность измерения ухудшается. Если это нежелательно, то для таких случаев следует разместить нулевую точку на расстоянии C от дна резервуара (см. рис.).

В следующей таблице описаны группы сред и возможные диапазоны измерения в зависимости от условий применения и от конкретной группы сред. Если диэлектрическая постоянная среды неизвестна, то для получения достоверных результатов измерения следует считать, что среда принадлежит к группе В.

Группы сред

- A (ε_r 1,4 до 1,9)
 Непроводящие жидкости, например сжиженный газ
- В (ε_r 1,9 до 4)
 Непроводящие жидкости, например бензин, масло, толуол и т. д.
- C ($\epsilon_{\rm r}$ 4 до 10) Например, концентрированные кислоты, органические растворители, эфир, анилин и т. д.
- \mathbf{D} ($\epsilon_{\rm r}$ >10) Проводящие жидкости, водные растворы, разбавленные кислоты, щелочи и спирт
- Значения относительной проницаемости (ε_r) многих сред, часто применяемых в промышленности, приведены в разделе:
 - Относительная проницаемость (значение ε_r), Compendium CP01076F
 - Приложение "DC Values" компании Endress+Hauser (доступно для операционных систем Android и iOS)

Измерение в накопительном резервуаре

Накопительный резервуар - условия измерения

Спокойная поверхность технологической среды (например, донное заполнение, заполнение через погружную трубу или редкое заполнение сверху)

Антенна 40 мм (1,5 дюйм) в накопительном резервуаре

	Группа среды	Диапазон измерения
	Α (ε _г 1,4 до 1,9)	10 м (33 фут)
	В (ε _r 1,9 до 4)	10 м (33 фут)
	С (ε _r 4 до 10)	10 м (33 фут)
	$\mathbf{D} \ (\varepsilon_{\mathrm{r}} > 10)$	10 м (33 фут)

Измерение в буферном резервуаре

Буферный резервуар - условия измерения

Нестабильная поверхность технологической среды (например, при непрерывном заполнении, заполнении с верхней подачей, при использовании струйного перемешивания)

Антенна 40 мм (1,5 дюйм) в буферном резервуаре

	Группа среды	Диапазон измерения
	Α (ε _г 1,4 до 1,9)	7 м (23 фут)
	В (ε _г 1,9 до 4)	10 м (33 фут)
	С (ε _r 4 до 10)	10 м (33 фут)
	D (ε _r >10)	10 м (33 фут)

Измерение в резервуаре с одноступенчатой пропеллерной мешалкой

Резервуар с мешалкой – условия измерения

Турбулентная поверхность технологической среды (например, при заполнении с верхней подачей, при использовании мешалок и наличии перегородок)

 Группа среды
 Диапазон измерения

 A (ε_r 1,4 до 1,9)
 4 м (13 фут)

 B (ε_r 1,9 до 4)
 5 м (16,4 фут)

 C (ε_r 4 до 10)
 10 м (33 фут)

 D (ε_r >10)
 10 м (33 фут)

Антенна 40 мм (1,5 дюйм) в резервуаре с мешалкой

14.1.3 Рабочая частота

прибл. 80 ГГц

В один резервуар можно установить до восьми приборов, причем эти приборы не будут влиять друг на друга.

14.1.4 Мощность передачи

- Пиковая мощность: <1,5 мВт
- Средняя выходная мощность: <70 мкВт

14.2 Выход

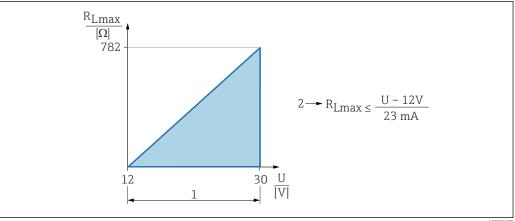
14.2.1 Выходной сигнал

- 4 до 20 мА
- Для токового выхода предусмотрено три различных режима работы:
 - 4 до 20,5 мА
 - NAMUR NE 43: 3,8 до 20,5 мА (заводская настройка)
 - Режим US: 3,9 до 20,5 мА

14.2.2 Сигнал тревоги для приборов с токовым выходом

Токовый выход

Сигнал при сбое в соответствии с рекомендацией NAMUR NE 43.


- Максимальный аварийный сигнал: можно настроить в диапазоне от 21,5 до 23 мА
- Минимальный аварийный сигнал: < 3,6 мА (заводская настройка)

Управляющая программа, работающая через систему цифровой связи

Сигнал состояния (согласно рекомендации NAMUR NE 107): простое текстовое отображение

14.2.3 Нагрузка

Для обеспечения достаточного напряжения на клеммах не должно быть превышено максимальное сопротивление нагрузки R $_{\rm L}$ (включая сопротивление провода) в зависимости от сетевого напряжения U источника питания.

A005260

- 1 Источник питания 12 до 30 В
- 2 $R_{L_{MAKC.}}$ = макс. сопротивление нагрузки
- U Напряжение питания

При чрезмерно большой нагрузке:

- Генерируется токовый сигнал неисправности и отображается сообщение об ошибке (индикация: минимальный ток аварийного сигнала)
- Периодическая проверка проверка возможности выхода из состояния сбоя;
- Управление посредством портативного терминала или ПК с управляющей программой: учитывайте минимально допустимое сопротивление резистора связи (250 Ом).

14.2.4 Демпфирование

Демпфирование влияет на все непрерывные выходы. Заводская настройка: 0 с(может быть установлена от 0 до 999 с)

14.2.5 Линеаризация

Функция линеаризации, имеющаяся в приборе, позволяет преобразовывать измеренное значение в любую требуемую единицу измерения длины, веса, расхода или объема.

Заранее запрограммированные кривые линеаризации

В приборе запрограммированы таблицы линеаризации для вычисления объема в перечисленных ниже резервуарах:

- Дно пирамидоидальное
- Коническое дно
- Дно под углом
- Горизонтальный цилиндр
- Резервуар сферический

В приборе запрограммированы таблицы линеаризации для вычисления расхода в перечисленных ниже емкостях:

- Лотки
 - Лоток Хафаги-Вентури
 - Лоток Вентури
 - Лоток Паршалла
 - Лоток Палмера-Боулюса
 - Трапецеидальный лоток (ISO 4359)
 - Прямоугольный лоток (ISO 4359)
 - U-образный лоток (ISO 4359)
- Водосливы
 - Трапецеидальный водослив
 - Прямоугольный водослив с широким порогом (ISO 3846)
 - Прямоугольный водослив с тонкой стенкой (ISO 1438)
 - Треугольный водослив с тонкой стенкой (ISO 1438)
- Стандартная формула

Также доступен ручной ввод дополнительных таблиц, каждая из которых может содержать до 32 пар значений.

14.2.6 Сумматор

В приборе предусмотрен сумматор, вычисляющий общий расход. Сбросить сумматор невозможно.

14.3 Условия окружающей среды

14.3.1 Диапазон температур окружающей среды

Измерительный прибор: -40 до +60 °C (-40 до +140 °F).

При эксплуатации на открытых площадках в условиях интенсивного солнечного света:

- Устанавливайте прибор в затененном месте.
- Предотвратите воздействие на прибор прямых солнечных лучей, особенно в регионах с жарким климатом.
- Используйте защитный козырек от погодных явлений.

14.3.2 Температура хранения

-40 до +80 °C (-40 до +176 °F)

14.3.3 Климатический класс

Согласно стандарту IEC 60068-2-38, испытание Z/AD (относительная влажность 4 до 100%).

14.3.4 Рабочая высота

До 5000 м (16404 фут) над уровнем моря

14.3.5 Степень защиты

Испытание согласно стандарту IEC 60529, редакция 2.2 2013-08/DIN EN 60529:2014-09 и NEMA 250-2014:

- IP66, NEMA тип 4X
- IP68, NEMA тип 6Р (в течение 24 ч на глубине 1,83 м (6,00 фут) под водой)

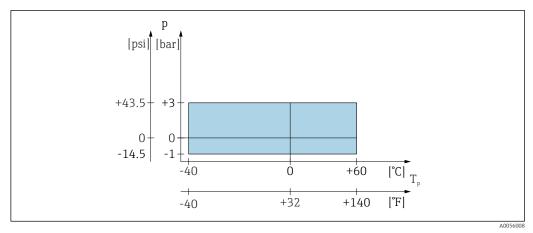
14.3.6 Вибростойкость

- Стохастический шум (случайная развертка) согласно DIN EN 60068-2-64, вариант 2/ IEC 60068-2-64, вариант 2
- Гарантирована для 5 до 2 000 Гц: 1,25 (м/с²)²/Гц, ~ 5 г

14.3.7 Электромагнитная совместимость (ЭМС)

- Электромагнитная совместимость соответствует стандартам серии EN 61326 и рекомендациям NAMUR по ЭМС (NE21)
- Максимальная погрешность измерения при испытаниях на ЭМС: < 0,5 % от диапазона.

Более подробные сведения см. в декларации соответствия EC (www.endress.com/downloads).


14.4 Параметры технологического процесса

14.4.1 Рабочая температура, рабочее давление

▲ ОСТОРОЖНО

Максимально допустимое давление для прибора зависит от компонента с наименьшим номинальным давлением (компоненты: технологическое соединение, дополнительные установленные компоненты или аксессуары).

- ▶ Эксплуатируйте прибор только в пределах допустимых значений, указанных для компонентов!
- ▶ МРД (максимальное рабочее давление): указано на заводской табличке. Это значение относится к исходной базовой температуре +20 °C (+68 °F) и может воздействовать на прибор в течение неограниченного времени. Обратите внимание на зависимость МРД от температуры. Значения давления, допустимые при более высокой температуре для фланцев, см. в стандартах EN 1092-1 (с учетом температурной стабильности материалы 1.4435 и 1.4404 сгруппированы в соответствии со стандартом EN 1092-1; химический состав двух материалов может быть идентичным), ASME B16.5, JIS B2220 (в каждом случае действует текущая редакция стандарта). Значения МРД, которые не соответствуют этим правилам, приведены в соответствующих разделах технического описания.
- ▶ В директиве для оборудования, работающего под давлением (2014/68/EU), используется аббревиатура **PS**. Это соответствует максимальному рабочему давлению (МРД) прибора.

🗉 46 — Допустимый диапазон рабочей температуры и рабочего давления

Диапазон рабочей температуры

-40 до +60 °C (-40 до +140 °F)

Диапазон рабочего давления, антенна 40 мм (1,5 дюйма)

- р_{изб.} = −1 до 3 бар (−14,5 до 43,5 фунт/кв. дюйм)
- p_{абс.} < =4 бар (58 фунт/кв. дюйм)

🙌 При наличии сертификата CRN диапазон давления может быть более узким.

14.4.2 Относительная проницаемость

Для жидкостей

- $\varepsilon_r \ge 1.8$
- ullet В случае более низких значений $arepsilon_{
 m r}$ обращайтесь в компанию Endress+Hauser

Для сыпучей измеряемой среды

 $\varepsilon_r \ge 1.6$

Для областей применения с более низкой относительной проницаемостью обращайтесь в компанию Endress+Hauser.

- - Значения относительной проницаемости (ϵ_{r}) многих сред, часто применяемых в промышленности, приведены в разделе:
 - Относительная проницаемость (значение ε_r), Compendium CP01076F
 - Приложение "DC Values" компании Endress+Hauser (доступно для операционных систем Android и iOS)

14.5 Дополнительные технические характеристики

Актуальная техническая информация: веб-сайт компании Endress+Hauser: www.endress.com \rightarrow «Документация».

Алфавитный указатель

А Архив событий
Б Безопасность изделия
В Возврат
Д Декларация соответствия 9 Диагностическое событие 30 В управляющей программе 30 Документ 5 Назначение 5 Доступ для записи 20 Доступ для чтения 20
З Заводская табличка
И Использование измерительных приборов Использование не по назначению 8 Сложные ситуации 8
К Код доступа 20 Ошибка при вводе 20
М Маркировка СЕ
ННазначение7Назначение документа5Назначение полномочий доступа к параметрам20Доступ для записи20Доступ для чтения20Настройка измерения расхода25Настройки4Адаптация прибора к условиям технологического процесса28
ООбласть применения7Остаточные риски8Отображаемые значения7Для состояния блокировки27Очистка37Очистка наружной поверхности37
П Подменю Список событий

Принцип ремонта	
С Список диагностических сообщений	34
T Техника безопасности на рабочем месте	. 7 21
У Устранение неисправностей	
Ф Фильтрация журнала событий	35
Э Эксплуатационная безопасность	. 8
D DeviceCare	2.1

www.addresses.endress.com