Products Solutions Service

Техническое описание

Спектроскопический зонд Rxn-45 Raman

Лучший по совместимости для биотехнологического производства

Применение

Зонд Raman Rxn-45 использует возможности анализа комбинационного рассеяния в биотехнологическо производстве посредством, измеряя нескольких конкретных компонентов в режиме реального времени для получения непрерывной круглосуточной обратной связи от технологического процесса. Он также отвечает строгим требованиям при отборе проб к стерилизации, совместимости с портами и удобству. Зонд Raman Rxn-45 был разработан для установки в опытных реакторах из нержавеющей стали и реакторах сGMP и успешно используется для аналитического наблюдения за крупномасштабными биопроцессами.

- Клеточная культура: глюкоза, лактат, аминокислоты, плотность клеток, титр и многое другое
- Ферментация: глюкоза, глицерин, ацетат, метанол, этанол, биомасса и многое другое

Свойства прибора

- Алюминий 6061, нержавеющая сталь 316L и нержавеющая сталь 303
- PG13.5 для корпусов датчиков отраслевого стандарта; возможна поставка сварных соединителей для портов
- Ra 15 с электрополировкой

Преимущества

- Измеряет несколько компонентов в режиме реального времени для автоматической обратной связи с технологическим процессом 24/7
- Обеспечивает долговременную стабильность измерений
- Обеспечивает подходящую шероховатость поверхности для производства с соблюдением правил сGMP
- Обеспечивает совместимость со стандартными промышленными боковыми портами биореактора и корпусами датчиков
- Обеспечивает гибкость установки в опытных и производственных реакторах
- Сокращает нагрузку в связи со стерилизацией и очисткой благодаря совместимости со стандартом автоматической очистки CIP/SIP

Содержание

Принцип действия и конструкция		
Принцип действия и конструкция системы	3	
Применение	3	
Защитная блокировка лазера	3	
Зонд Rxn-45	3	
Монтаж	4	
Зона сбора данных: короткий	4	

Технические характеристики	5
Общие технические характеристики	. 5
Размеры зонда	6
Максимально допустимое воздействие (МДВ): воздействие на глаза	. 6
Максимально допустимое воздействие (МДВ): воздействие на кожу	. 7

Принцип действия и конструкция системы

Применение

Использование прибора в других целях представляет угрозу для безопасности людей и всей измерительной системы и приводит к аннулированию гарантии.

Защитная блокировка лазера

Зонд Rxn-45 в установленном виде является частью цепи блокировки. Цепь блокировки представляет собой слаботочный электрический контур. Если оптоволоконный кабель поврежден, лазер выключится через миллисекунды после разрыва.

УВЕДОМЛЕНИЕ

Неправильная прокладка кабелей может привести к необратимому повреждению.

- ▶ Обращайтесь с зондами и кабелями осторожно, не допуская их перегибов.
- ▶ Монтаж оптоволоконных кабелей необходимо выполнять с минимальным радиусом изгиба в соответствии с документом "Оптоволоконный кабель Raman. Техническое описание (ТІО1641С)".

Электрооптический волоконный кабель (EO) со встроенным контуром блокировки должен быть подключен к задней панели анализатора Raman Rxn для соответствующего канала. Контур блокировки завершен, когда электрооптический волоконный кабель со стороны зонда подключен к зонду Rxn-45.

Когда существует вероятность включения лазера, загорается индикатор блокировки лазера на корпусе зонда.

Зонд Rxn-45

Зонд Rxn-45 с соединением под прямым углом показан ниже.

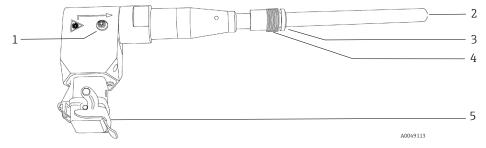


Рисунок 1. Зонд Rxn-45

Nº	Наименование	Описание		
1	Индикатор блокировки лазера	Загорается, когда есть вероятность включения лазера		
2	Наконечник зонда	Наконечник зонда для интерфейса пробы; глубина погружения 120 мм (4,73 дюйма)		
3	Фланец и уплотнительное кольцо	Приварной фланец и сменное уплотнительное кольцо, отвечающее требованиям USP, класс VI, для обеспечения герметичного уплотнения с портом резервуара / крепежом		
4	Накидная гайка	резьба PG13.5 для стандартных промышленных корпусов датчиков; доступны приварные разъемы портов		
5	Оптоволоконный кабельный разъем	Электрооптическое волоконное соединение под подпружиненным колпачком оптоволоконного разъема		

Монтаж

Во время монтажа следует соблюдать стандартные меры предосторожности для глаз и кожи при использовании лазерных изделий класса 3В (согласно стандарту EN 60825 / IEC 60825-14). Кроме того, соблюдайте следующие правила:

▲ предупреждение	Следует соблюдать стандартные меры предосторожности при работе с лазерными изделиями.			
	 Если зонды не установлены в пробоотборной камере, они всегда должны быть закрыты крышками или направлены в сторону от людей, к объекту рассеяния. 			
▲ осторожно	Мощность лазерного излучения, поступающего на зонд, не должна превышать 499 мВт.			
	Если допустить попадание паразитного света в неиспользуемый зонд, он будет создавать помехи для сбора данных с используемого зонда и может привести к сбою калибровки или погрешностям измерения.			
	► Неиспользуемые зонды ВСЕГДА должны быть закрыты крышками для предотвращения попадания паразитного света в зонд.			
уведомление	При монтаже зонда на месте необходимо снять натяжение с оптоволоконного кабеля в месте монтажа зонда.			

Зона сбора данных: короткий

Во всех вариантах исполнения зонда Rxn-45 используются короткие зоны сбора данных. Короткая зона сбора данных обеспечивает максимальную воспроизводимость спектра, сводя к минимуму влияние непрозрачности пробы, ее цвета и летучих частиц на измеряемый рамановский спектр.

Технические характеристики

Общие технические характеристики

Общие технические характеристики зонда Rxn-45 перечислены ниже.

Примечание: Номинальные значения максимального рабочего давления не учитывают номинальные параметры фитингов или фланцев, используемых для монтажа зонда в технологической системе. Характеристики этих компонентов требуют независимой оценки и могут снизить максимальное рабочее давление зонда.

Параметр		Оπисание			
Длина волны лазера		785 нм или 993 нм			
Спектральный охват		спектральный охват зонда ограничен охватом используемого анализатора			
Максимальная мо в зонде	ощность лазера	< 499 мВт			
Относительная вл	ажность	до 95 %, без конденсации			
Максимальное ра (на наконечнике)	бочее давление	13,8 бар изб. (200 фунтов/кв. дюйм изб.)			
Присоединение к	процессу	резьба PG13.5 для стандартных промышленных корпусов датчиков; доступны приварные разъемы портов			
Степень защиты с IEC 60529	огласно	IP-65			
Глубина резкости		0,33 мм (0,013 дюйма) FWHM			
Устойчивость к хи воздействию	мическому	ограничена материалами изготовления			
Совместимость с г	протоколо м	SIP/CIP			
Температура зонда	окно, на наконечнике	от -30 °С до 150 °С (от -22 °F до 302 °F)			
	корпус зонда	до 150 °C (302 °F)			
	диапазон температур	≤ 30 °C/мин (≤ 54 °F/мин)			
Параметры измерения с	длина погружной части	120 мм (4,73 дюйма)			
помощью зонда	диаметр	12 мм (0,48 дюйма)			
	размеры (с открытым колпачком элек- трооптического разъема)	306 x 127 x 34 мм (12,05 x 5,0 x 1,34 дюйма)			
Материалы	корпус зонда	нержавеющая сталь 316L			
изготовления смачиваемые,	окно	запатентованный материал, оптимизированный для биопроцессов			
контактирующие с пробой	адгезив	совместим с требованиями USP (класс VI) и стандарта ISO 993			
	шероховатость поверхности	Ra 0,38 мкм (Ra 15 мкдюймов) с электрополировкой			
	оптоволоконный кабель	конструкция: в оболочке из ПВХ, запатентованная конструкция			
		соединения: запатентованные электрооптические (EO) или волоконно-электрооптические (FC/EO) преобразователи для распределенных систем			
Оптоволокон- ный кабель (кабель	длина	Электрооптический кабель (ЕО) доступен с шагом по 5 м (16,4 фута) до 200 м (656,2 фута), при этом максимальная длина зависит от требований области применения			
приобретается отдельно)	минимальный радиус изгиба	152,4 мм (6 дюймов)			
	Температура	от -40 °C до 70 °C (от -40 °F до 158 °F)			
	Огнестойкость	сертифицированная: CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4			
		номинальная: AWM I/II A/B 80C 30V FT4			

Размеры зонда

Размеры зонда Rxn-45 приведены ниже.

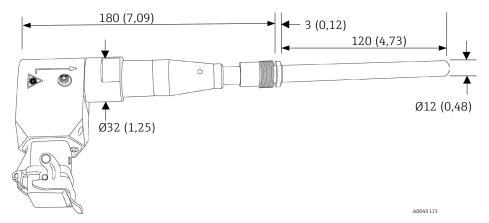


Рисунок 2. Зонд Rxn-45. Размеры: мм (дюймы)

Максимально допустимое воздействие (МДВ): воздействие на глаза

См. приведенные ниже таблицы из стандарта ANSI Z136.1 для расчета максимально допустимого воздействия (МДВ) для точечного источника лазерного излучения на глаза.

Также может потребоваться поправочный коэффициент (C_A), который можно определить ниже.

Длина волны λ (нм)	Поправочный коэффициент С _А
400-700	1
700-1050	10 ^{0,002} (λ-700)
1050-1400	5

МДВ при воздействии на глаза точечного источника лазерного луча				
Длина волны	Продолжитель-	Расчет МДВ		МДВ, где
λ (нм)	ность воздействия t (c)	(Дж∙см⁻²)	(Вт∙см⁻²)	$C_{\rm A} = 1,4791$
	от 10 ⁻¹³ до 10 ⁻¹¹	$1,5 C_{\rm A} \times 10^{-8}$	-	2,2 × 10 ⁻⁸ (Дж·см ⁻²)
	от 10 ⁻¹¹ до 10 ⁻⁹	2,7 C _A t ^{0,75}	-	Введите время (t) и рассчитайте
785 и 993	от 10 ⁻⁹ до 18 × 10 ⁻⁶	$5,0 C_{\rm A} \times 10^{-7}$	1	7,40 × 10 ⁻⁷ (Дж·см ⁻²)
	от 18 × 10 ⁻⁶ до 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Введите время (t) и рассчитайте
	от 10 до 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1,4971 × 10 ⁻³ (B _T ·cm ⁻²)

Максимально допустимое воздействие (МДВ): воздействие на кожу

Для расчета МДВ при воздействии лазерного луча на кожу см. приведенную ниже таблицу из стандарта ANSI Z136.1.

МДВ при воздействии лазерного луча на кожу				
Длина волны λ (нм)	Продолжитель- ность воздействия t (c)	Расчет МДВ		МДВ, где
		(Дж∙см⁻²)	(Вт∙см⁻²)	C _A = 1,4791
	от 10 ⁻⁹ до 10 ⁻⁷	2 C _A x 10 ⁻²	-	2,9582 × 10 ⁻² (Дж·см ⁻²)
785 и 993	от 10 ⁻⁷ до 10	$1,1 C_{\rm A} t^{0,25}$	-	Введите время (t) и рассчитайте
	от 10 до 3 × 10 ⁴	-	0,2 <i>C</i> _A	2,9582 × 10 ⁻¹ (B ⊤·cm ⁻²)

