Technische Information Raman-Spektroskopiesonde Rxn-40

Systemaufbau und Spezifikationen

Anwendungsbereich

Die Raman Rxn-40-Sonde ist eine abgedichtete Tauchsonde für die *In-situ*-Raman-Spektroskopie von Flüssigphasenproben in einem Labor oder einer Prozessanlage. Der Prozessanschluss für die Raman Rxn-40-Sonde kann über eine Quetsch-/Pressverbindung, einen Flansch oder in einer Endress+Hauser Durchflusszelle montiert werden und ist NeSSI-kompatibel. Diese vielseitigen Optionen ermöglichen ein direktes Einführen in slip-streams, Ablassventile, Reaktoren, Kreisläufe, Mischköpfe sowie Einlauf- und Auslaufleitungen.

- Chemikalien: Reaktionsüberwachung, Mischung, Katalyse, Zufuhr- und Endproduktüberwachung
- Polymere: Überwachung der Polymerisationsreaktion, Extrusionsüberwachung, Polymermischung
- Öl und Gas: Alle Kohlenwasserstoffanalysen
- Pharmazeutika: Atmospheric Pressure Ionization (API)-Überwachung, Kristallisation, Polymorphismus, Mischung

Geräteeigenschaften

- C276 Alloy, Edelstahl 316L oder Titan Grade 2
- Hochreiner Saphir

Ihre Vorteile

- An den Prozess des Kunden anpassbar
- Robuste Bauform mit einer Vielzahl von Prozessanschlüssen
- In-situ/ohne Notwendigkeit eines Bypasses oder einer Probenschleife
- Schnellere, einfachere Montage
- Unterstützung für eine breite Palette an chemischen Prozessen und Korrosivitätsanforderungen
- Gewährleistet Sicherheit und erfüllt gesetzliche Auflagen
- Geeignet f
 ür explosionsgef
 ährdete/klassifizierte Umgebungen

Inhaltsverzeichnis

Arbeitsweise und Systemaufbau	3
Anwendungsbereich	3
Lasersicherheitsverriegelung	3
Rxn-40-Sonde, Konfiguration ohne Flansch	3
Laseremissionsanzeige	4
Rxn-40-Sonde, Konfiguration mit Flansch	4
Rxn-40-Sonde, Mini-Konfiguration	5
Prozess- und Sondenkompatibilität	5
Montage	6
Datenerfassungsbereich: kurz vs. lang	7
Spezifikationen	Ω

Temperatur und Druck	8
Flanschtemperatur und -druck	9
Allgemeine Spezifikationen	10
Maximal zulässige Strahlenexposition (MPE): Augenexposition	11
MPE: Hautexposition	11
Nomineller Gefahrenbereich	12
Werkstoffe	12
Zertifikate und Zulassungen	13
Ex-Zulassungen	13
Zertifizierungen und Kennzeichnungen	13
Zeichnung für die Montage in Ex-Bereichen	14

Arbeitsweise und Systemaufbau

Anwendungsbereich

Eine andere als die beschriebene Verwendung gefährdet die Sicherheit von Personen und der gesamten Messeinrichtung und setzt die Gewährleistung außer Kraft.

Lasersicherheitsverriegelung

Die montierte Rxn-40-Sonde ist Bestandteil des Verriegelungskreises. Wenn es zu einem Bruch des Faserkabels kommt, schaltet sich der Laser innerhalb von Millisekunden nach dem Bruch aus.

HINWEIS

Werden Kabel nicht ordnungsgemäß verlegt, kann es zu einer dauerhaften Beschädigung kommen.

- Sonden und Kabel vorsichtig behandeln und sicherstellen, dass sie nicht geknickt werden.
- ► Faserkabel mit einem Mindestbiegeradius gemäß Dokument Raman-LWL-Kabel Technische Information (TI01641C) montieren.

Bei dem Verriegelungskreis handelt es sich um eine elektrische Niederstromschleife. Wird die Rxn-40-Sonde in einem klassifizierten Bereich verwendet, muss der Verriegelungskreis durch eine eigensichere (IS) Trennvorrichtung geführt werden.

Rxn-40-Sonde, Konfiguration ohne Flansch

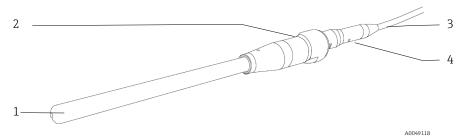


Abbildung 1. Konfiguration ohne Flansch, mit Faserkanalkabel

Pos.	Bezeichnung	Beschreibung
1	Spitze	Edelstahl 316L, C276 Alloy oder Titan Grade 2 Eintauchbare Länge von 152, 305 oder 457 mm (6, 12 oder 18 in)
2	Optikrumpf	Werkstoffe passend zur Sondenspitze, aber nicht in Kontakt mit Prozessmedien
3	Faserkabel	Kabel: PVC-ummantelte herstellerspezifische Konstruktion Anschlüsse: Herstellerspezifische elektrooptische Anschlüsse Anschlussrumpf: Edelstahl der 300er Serie
4	LED-Laseranzeige	Leuchtet, wenn der Laser mit Strom versorgt wird

Laseremissionsanzeige

Die Position der Laseremissionsanzeige hängt vom Baugruppentyp ab.

- Gerade Konfiguration (Abbildung 1): Die Anzeige befindet sich auf der Baugruppe. Wenn die Möglichkeit besteht, dass der Laser mit Strom versorgt wird, dann leuchtet diese Anzeige.
- Rechtwinklige EO-Anschlusskonfigurationen (Abbildung 2 bis 4): Die Anzeige befindet sich auf dem Gehäuse des Faseranschlusses. Wenn die Möglichkeit besteht, dass der Laser mit Strom versorgt wird, dann leuchtet diese Anzeige.

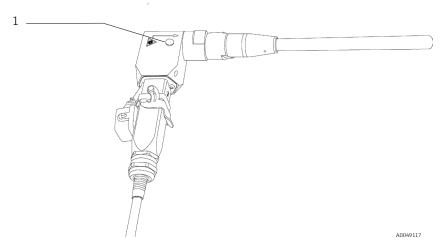


Abbildung 2. LED-Laseranzeige (1) auf rechtwinkligem EO-Faseranschluss

Rxn-40-Sonde, Konfiguration mit Flansch

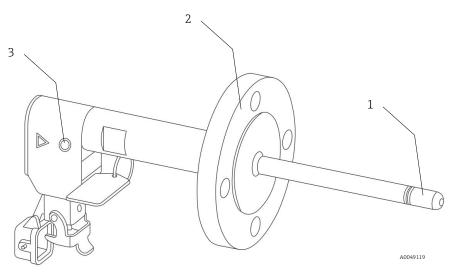


Abbildung 3. Geflanschte Konfiguration der Rxn-40-Sonde

Pos.	Bezeichnung	Beschreibung
1	Spitze	Edelstahl 316L, C276 Alloy oder Titan Grade 2 Eintauchbare Länge von 36 mm (1,42 in)
2	Flansch	Flansch für Prozessanschluss (z. B. 316 L, C276, Titan Grade 2)
3	LED-Laseranzeige	Leuchtet, wenn der Laser mit Strom versorgt wird

Rxn-40-Sonde, Mini-Konfiguration

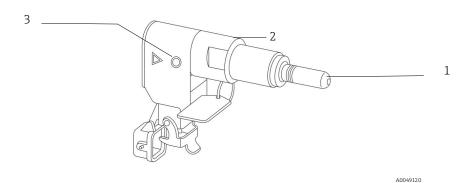


Abbildung 4. Mini-Konfiguration der Rxn-40-Sonde

Pos.	Bezeichnung	Beschreibung
1	Spitze	Edelstahl 316L, C276 Alloy oder Titan Grade 2 Eintauchbare Länge von 36,07 mm (1,42 in)
2	Optikrumpf	Werkstoffe passend zur Sondenspitze, aber nicht in Kontakt mit Prozessmedien
3	LED-Laseranzeige	Leuchtet, wenn der Laser mit Strom versorgt wird

Prozess- und Sondenkompatibilität

Vor der Montage muss der Benutzer prüfen, ob die Druck- und Temperaturauslegung der Sonde sowie die Sondenwerkstoffe mit dem Prozess kompatibel sind, in dem die Sonde eingesetzt werden soll.

Die Sonden sind mit Dichtungen zu montieren, die für den Behälter oder die Rohrleitung geeignet und typisch sind (z. B. Flansche, Klemmverschraubungen).

▲ WARNUNG

Wenn die Sonde in einem Prozess montiert wird, in dem hohe Temperaturen oder Drücke herrschen, sind zusätzliche Sicherheitsvorkehrungen zu treffen, um eine Beschädigung der Geräte oder Sicherheitsrisiken zu vermeiden.

- ► Eine Ausblassicherung gemäß lokalen Sicherheitsnormen wird dringend empfohlen.
- ▶ Der Benutzer ist dafür verantwortlich, festzustellen, ob Ausblassicherungen erforderlich sind, und sicherzustellen, dass sie während der Montage an der Sonde angebracht werden.

WARNUNG

Wenn die zu montierende Sonde aus Titan gefertigt ist, muss sich der Benutzer immer bewusst sein, dass Stöße oder eine übermäßige Reibung im Prozess zu Funkenbildung oder Entzündung führen können.

Der Benutzer muss sicherstellen, dass bei der Montage und Verwendung einer Sonde aus Titan die entsprechenden Vorsichtsmaßnahmen ergriffen werden, um solche Situationen zu vermeiden.

Montage

Vor der Montage im Prozess ist die maximale Menge der austretenden Laserleistung zu verifizieren, um sicherzustellen, dass sie die im Dokument Hazardous Area Equipment Assessment (4002266), oder äquivalent, spezifizierte Menge nicht überschreitet.

Während der Montage sind Standardsicherheitsvorkehrungen für Laserprodukte der Klasse 3B zum Schutz von Augen und Haut (gemäß EN 60825/IEC 60825-14) einzuhalten. Zusätzlich sind folgende Hinweise zu beachten:

▲ WARNUNG	Sonden sind mit spezifischen Dichtungsgrenzen ausgelegt.			
	 Die Druckangaben der Sonde sind nur dann gültig, wenn auf dem vorgesehenen Dichtungselement (Schaft, Flansch etc.) eine Dichtung vorgenommen wird. 			
	▶ Die Leistungsstufen können Begrenzungen für Armaturen, Flansche, Bolzen und Dichtungen enthalten. Der Monteur muss diese Begrenzungen verstehen und geeignete Befesti- gungs- und Montageverfahren nutzen, um eine druckdichte und sichere Verbindung zu erreichen.			
	Die für Laserprodukte geltenden Standardvorsichtsmaßnahmen sind zu beachten.			
	 Sonden, die nicht in einer Probenkammer montiert sind, sollten immer mit Kappen abgedeckt oder von Personen weg auf ein diffuses Ziel gerichtet werden. 			
▲ VORSICHT	Wenn Streulicht in eine nicht verwendete Sonde eindringt, dann beeinträchtigt dies die von einer verwendeten Sonde erfassten Daten und kann zu einem Fehlschlagen der Kalibrierung oder Messabweichungen führen.			
	 Nicht verwendete Sonden sind IMMER mit Kappen abzudecken, um zu verhindern, dass Streulicht in die Sonde gelangt. 			
HINWEIS	Ein übermäßiges Verdrehen des Kabels im Anschluss kann eine Faserverbindung beschädigen, wodurch die Rxn-40-Sonde funktionsunfähig wird.			
	 Darauf achten, die Sonde so zu montieren, dass sie die strö- mende Probe oder den Probenbereich von Interesse misst. 			

Datenerfassungsbereich: kurz vs. lang

Je nach gewählter Ausführung verfügt die Rxn-40-Sonde entweder über einen kurzen (S) oder einen langen (L) Datenerfassungsbereich.

Ein kurzer Datenerfassungsbereich wird im Allgemeinen für undurchsichtige Proben wie Gele, Schlämme und Lacke verwendet. Ein langer Datenerfassungsbereich eignet sich besser für transparente Proben, wie z. B. Kohlenwasserstoffe und Lösungsmittel, da er die Signalintensität durch Ausnutzung des gesamten effektiven Fokalzylinders maximiert.

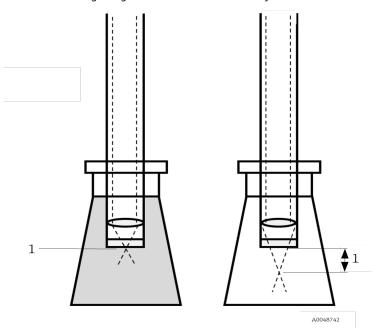


Abbildung 5. Kurzer (links) vs. langer (rechts) Datenerfassungsbereich (1)

Spezifikationen

Temperatur und Druck

Die Temperatur und Druckspezifikationen für die Rxn-40-Sonde variieren je nach Konstruktionswerkstoffen. Zusätzlich gilt:

- Der maximale Druck wird gemäß ASME B31.3 Ausgabe von 2020 für Werkstoff und Sondengeometrie bei maximaler Nenntemperatur berechnet.
- Der maximale Betriebsdruck beinhaltet nicht die Druckstufen für Armaturen oder Flansche, mit denen die Sonde im Prozesssystem montiert wird. Diese Komponenten müssen unabhängig bewertet werden und können den maximalen Betriebsdruck der Sonde verringern.
- Mindestdruckstufe: Alle Sonden haben eine Mindestdruckstufe von 0 bara (volles Vakuum). Sofern nicht anders angegeben, sind sie jedoch nicht für geringe Ausgasungen im Hochvakuumbetrieb ausgelegt.
- Die Temperaturrampe ist ≤ 30 °C/min (≤ 54 °F/min).

Komponente	Werkstoffe	Min. Temp.	Max. Temp	Max. Betriebsdruck
Rxn-40-Sonde, ½ in. Durchmesser	Edelstahl 316L	-30 °C (-22 °F)	120 °C (248 °F)	142,4 barg (2066 psig)
	Alloy C276	-30 °C (-22 °F)	280 °C (536 °F)	158,1 barg (2293 psig)
	Titan Grade 2	-30 °C (-22 °F)	315 ℃ (599 °F)	65,2 barg (946 psig)
Rxn-40-Sonde, ¾ in. Durchmesser	Edelstahl 316L	-30 °C (-22 °F)	120 °C (248 °F)	169,5 barg (2458 psig)
	Alloy C276	-30 °C (-22 °F)	280 °C (536 °F)	182,8 barg (2651 psig)
	Titan Grade 2	-30 °C (-22 °F)	315 ℃ (599 °F)	72,2 barg (1047 psig)
Rxn-40-Sonde, 1 in. Durchmesser	Edelstahl 316L	-30 °C (-22 °F)	120 °C (248 °F)	169,5 barg (2458 psig)
	Alloy C276	-30 °C (-22 °F)	280 °C (536 °F)	182,8 barg (2651 psig)
	Titan Grade 2	-30 °C (-22 °F)	315 ℃ (599 °F)	72,2 barg (1047 psig)
Rxn-40-Sonde, Mini- Konfiguration	Edelstahl 316L	-30 °C (-22 °F)	120 °C (248 °F)	157,1 barg (2279 psig)
	Alloy C276	-30 °C (-22 °F)	150 ℃ (302 ℉)	199,3 barg (2890 psig)
	Titan Grade 2	-30 °C (-22 °F)	150 ℃ (302 ℉)	153,6 barg (2228 psig)
Kabel und Steckverbinder	Kabel: PVC-ummantelte herstellerspezifische Konstruktion Anschlüsse: Hersteller- spezifische elektrooptische Anschlüsse	-40 °C (-40 °F)	70 °C (158 °F)	Nicht anwendbar

Flanschtemperatur und -druck

Die Temperaturangaben für Sondenflansche variieren je nach Werkstoff. Der maximale Nenndruck eines Sondenflansches variiert mit der maximal zulässigen Temperatur. Flansche aus unterschiedlichen Werkstoffen unterliegen unterschiedlichen Normen. Die Flanschauslegung für Edelstahl 316L und C276 Alloy basiert auf der ASME B16.5-2018. Die Flanschauslegung für Titan Grade 2 basiert auf der ASME BPVC VIII.1-2021, Appendix 2. Die Flanschauslegung für DIN-Flansche basiert auf der EN 1092-1:2013-04.

Die Flanschauslegung kann sich von den Nennwerten der Sonde unterscheiden. Bei einer Kombination aus Sonde und Flansch muss die Auslegung für diese Kombination der jeweils niedrigeren Auslegung entsprechen, die für die Sonde oder den Flansch gilt. Alle hydrostatischen oder sonstigen Prüfungen sind mit der Druckstufe der begrenzenden Komponente durchzuführen.

Die Rxn-40-Sonde in der Mini-Konfiguration ist nicht mit einem geflanschten Prozessanschluss erhältlich.

Werkstoffe	Min. Temp.	Max. Temp	Klasse	Max. Betriebsdruck
	ASME B16		lng	
Edelstahl 316L			150	12,8 barg (185 psig)
	-30 °C (-22 °F)	120 °C (248 °F)	300	33,4 barg (484 psig)
			600	66,9 barg (970 psig)
Alloy C276			150	10,9 barg (158 psig)
	-30 ℃ (-22 ℉)	280 °C (536 °F)	300	44,2 barg (642 psig)
			600	88,5 barg (1283 psig)
	ASME BPVC VIII.1-2	2021, Appendix 2 Flansc	hauslegung	·
Titan Grade 2			150	6,2 barg (90 psig)
	-30 °C (-22 °F)	316 °C (600 °F)	300	16,2 barg (235 psig)
			600	32,3 barg (469 psig)
	DIN EN 1092-	-1:2013-04 Flanschausle	egung	
Edelstahl 316L			10	9,0 barg (130 psig)
	-30 °C	120 °C	16	14,5 barg (210 psig)
	(-22 °F)	(250 °F)	25	22,7 barg (329 psig)
			40	36,4 barg (527 psig)

Allgemeine Spezifikationen

Nachfolgend sind die allgemeinen Spezifikationen für die Rxn-40-Sonde aufgeführt.

Pos.		Beschreibung		
Laserwellenlänge		532 nm, 785 nm oder 993 nm		
Spektrale Abdeck	ung	Die spektrale Abdeckung der Sonde wird durch die Abdeckung des verwendeten Analysators beschränkt		
Umgebungstemperatur		Nicht explosionsfähige Umgebungen: -30150 °C/-22302 °F Explosionsfähige Umgebungen: T4: -2070 °C/-4158 °F T6: -2065 °C/-4149 °F Beschränkt auf normale Umgebungstemperatur IEC 60079-0 für Korea		
Maximal in die So Laserleistung	nde gespeiste	< 499 mW		
Feuchte im Betrie	b	Bis zu 95 % relative Feuchte, keine Kondensatbildung		
Spülen Sondenrur	npf	Helium		
Dichtigkeit des So	ndenrumpfs	Spülhelium Leckrate $< 1 \times 10^{-7}$ mbar·L/s		
Chemische Bestär	ıdigkeit	Begrenzt durch Konstruktionswerkstoffe		
Fensterwerkstoff		Hochreiner Saphir		
Arbeitsabstand vo Sondenausgang	om	Kurz: 0 mm (0 in) Lang: 3 mm (0,12 in)		
IEC 60529-Ausle	jung	IP65		
Eintauchbare Länge der Sonde	Ungeflanschte Konfiguration der Rxn-40- Sonde	Standardlängen: 152, 305 oder 457 mm (6, 12 oder 18 in) Titan Grade 2: 150350 mm (5,913,8 in)		
	Geflanschte Konfiguration der Rxn-40- Sonde	150380 mm (5,915,0 in)		
	Mini- Konfiguration der Rxn-40- Sonde	36 mm (1,42 in)		
Außen- durchmesser Tauchschaft	Ungeflanschte Konfiguration der Rxn-40- Sonde	12,7 mm (0,5 in) Standard; kundenspezifische Durchmesser verfügbar		
	Geflanschte Konfiguration der Rxn-40- Sonde	12,7, 19,05 oder 25,4 mm (0,5, 0,75 oder 1 in) Standard; kundenspezifische Durchmesser verfügbar		
	Mini-Konfigu- ration der Rxn- 40-Sonde	12,7 mm (0,5 in) Standard; kundenspezifische Durchmesser verfügbar		
LWL-Kabel (Kabel separat zu erwerben; Längen durch Anwendung begrenzt)	Länge	EO-Kabel erhältlich von 5 m200 m in Inkremeten von 5 m (16,4 ft656,2 ft in Inkrementen von 16,4 ft) Verlängerungsleitungen EO-Steckverbinder/EO-Buchse erhältlich von 5 m200 m in Inkrementen von 5 m (16,4 ft656,2 ft in Inkrementen von 16,4 ft) FC-Kabel erhältlich von 5 m50 m in Inkrementen von 5 m (16,4 ft164,0 ft in Inkrementen von 16,4 ft)		
	Aufbau	PVC-ummantelte herstellerspezifische Konstruktion		
	Zugfestigkeit	204 kg (450 lb)		
	Mindestbiege- radius	152,4 mm (6 in)		
Flammwidrigkeit	LWL-Kabel	Zertifiziert: CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4		
		Ausgelegt für: AWM I/II A/B 80C 30V FT4		

Maximal zulässige Strahlenexposition (MPE): Augenexposition Die Norm ANSI Z136.1 stellt ein Mittel zur Berechnung der MPE für die Exposition der Augen zur Verfügung. Siehe diese Norm zur Berechnung der entsprechenden MPE-Werte für den Fall einer Strahlenexposition durch den Laser der Rxn-40-Sonde oder für den unwahrscheinlichen Fall einer Strahlenexposition durch den Laser eines gebrochenen Lichtwellenleiters.

MPE für den Kontakt des Auges mit einem punktförmigen Laserstrahl				
Wellenlänge Dauer der Exposition		MPE-Berechnung		
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm ⁻²)	
532	10 ⁻¹³ 10 ⁻¹¹	1,0 × 10 ⁻⁷	-	
	10 ⁻¹¹ 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-	
	5 × 10 ⁻⁶ 10	$1.8 t^{0.75} \times 10^{-3}$	-	
	1030 000	-	1 × 10 ⁻³	

MPE für den Kontakt des Auges mit einem punktförmigen Laserstrahl					
Wellenlänge	Dauer der Exposition t (s)				
λ (nm)		(J·cm⁻²)	(W·cm⁻²)	$C_{ m A}$	
	10 ⁻¹³ 10 ⁻¹¹	1,5 C _A × 10 ⁻⁸	-		
785 und 993	10 ⁻¹¹ 10 ⁻⁹	2,7 C _A t ^{0,75}	-	- 532: C _A = 1,000 785: C _A = 1,479	
	10 ⁻⁹ 18 × 10 ⁻⁶	5,0 C _A × 10 ⁻⁷	-		
		18 x 10 ⁻⁶ bis 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	993: C _A = 3,855
	103 × 10 ⁴	-	C _A × 10 ⁻³		

MPE: Hautexposition

Siehe nachfolgende Tabelle aus der Norm ANSI Z136.1, um die maximal zulässige Strahlenexposition (MPE) für den Kontakt der Haut mit einem Laserstrahl zu berechnen.

MPE für den Kontakt der Haut mit Laserstrahlung					
Wellenlänge	Dauer der Exposition	MPE-Berechnung			
λ (nm)	t (s)	(J·cm ⁻²)	(W·cm⁻²)	<i>C</i> _A	
	10 ⁻⁹ 10 ⁻⁷	2 C _A × 10 ⁻²	-	532: C _A = 1,000	
532, 785 und 993	10 ⁻⁷ 10	1,1 C _A t ^{0,25}	-	785: C _A = 1,479	
	103 x 10 ⁴	-	0,2 C _A	993: C _A = 3,855	

Nomineller Gefahrenbereich

Zur Berechnung des nominellen Gefahrenbereichs an der Sondenspitze die nachfolgenden Informationen verwenden. Analysatorspezifische Informationen zur Berechnung des nominellen Gefahrenbereichs siehe Betriebsanleitung zum entsprechenden Raman Rxn2- oder Raman Rxn4-Analysator.

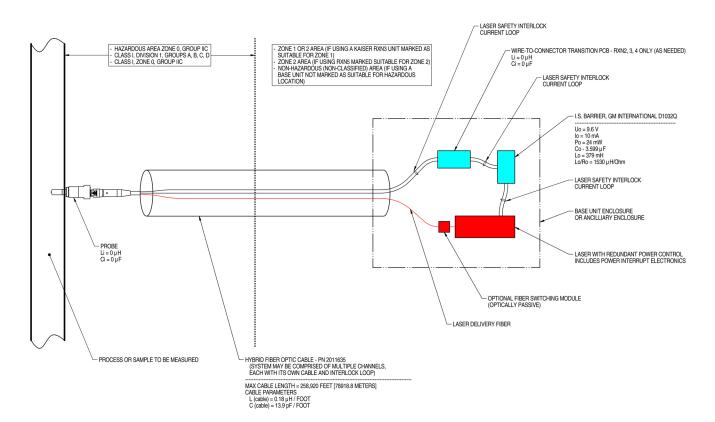
Strahldurchmesser (b_0)	Brennweite (f ₀)	NOHD-Gleichung (Nominal Ocular Hazard Distance; Lasersicherheitsabstand)
5 mm (0,20 in)	9 mm (0,35 in)	$r_{\text{NOHD}} = (f_0/b_0)(4\Phi/\pi\text{MPE})^{1/2}$
		Φ = ausgegebene Laserleistung in Watt

Werkstoffe

Nachfolgend sind die Werkstoffe für die Rxn-40-Sonde aufgeführt.

Werkstoff	Ausführung			
	Alloy C276 [UNS N10276]	316L [UNS S31603]	Titan [UNS R50400]	
Prozessberührend	Alloy C276	Edelstahl 316L	Titan Grade 2	
	Hochreiner Saphir	Hochreiner Saphir	Hochreiner Saphir	
Nicht mediums- berührend	Alloy C276	Edelstahl 316L	Titan Grade 2	
	Edelstahl 316/316L	Edelstahl 316/316L	Edelstahl 316/316L	
	Edelstahl 303/304	Edelstahl 303/304	Edelstahl 303/304	
	Sauerstofffreies Kupfer	Sauerstofffreies Kupfer	Sauerstofffreies Kupfer	
	Hochtemperaturepoxid	Hochtemperaturepoxid	Hochtemperaturepoxid	

Zertifikate und Zulassungen


Ex-Zulassungen

Nähere Informationen zu Zertifikaten und Zulassungen siehe *Raman-Spektroskopiesonde Rxn-40 Sicherheitshinweise (XA02749C)*.

Zertifizierungen und Kennzeichnungen

Endress+Hauser bietet Zertifizierungen für die Rxn-40-Sonde gemäß den geltenden Normen an. Beim Kauf sicherstellen, dass die gewünschten Zertifizierungen ausgewählt werden, damit das Typenschild der Sonde mit den korrekten Kennzeichnungen versehen wird. Die gewünschte/n Zertifizierung/en auswählen, und auf der Sonde oder dem Typenschild der Sonde wird die entsprechende Kennzeichnung angebracht. Nähere Informationen zu Zertifizierungen siehe Raman-Spektroskopiesonde Rxn-40 Sicherheitshinweise (XA02749C).

Zeichnung für die Montage in Ex- Die Zeichnung zur Montage in Ex-Bereichen (4002396) ist nachfolgend abgebildet. Bereichen

NOTES:

- 1. CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 VRMS OR VDC.
- 2. INSTALLATION IN THE U.S. SHOULD BE IN ACCORDANCE WITH ANSI/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS" AND THE NATIONAL ELECTRICAL CODE® (ANSI/NFPA 70) SECTIONS 504 AND 505.
- 3. INSTALLATION IN CANADA SHOULD BE IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE, CSA C22.1, PART 18, APPENDIX J18.
- 4. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.
- 5. FOR U.S. INSTALLATIONS, THE PROBE MODELS RXN-30 (AIRHEAD), RXN-40 (WETHEAD) AND RXN-41 (PILOT) ARE APPROVED FOR CLASS I, ZONE 0 APPLICATIONS.
- 6. NO REVISION TO DRAWING WITHOUT PRIOR CSA APPROVAL.
- 7. WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY.

0049010

Abbildung 6. Zeichnung für die Montage in Ex-Bereichen (4002396 Version X6)

