Information technique Sonde spectroscopique Raman Rxn-10

Une sonde polyvalente pour vos besoins en spectroscopie Raman

Domaine d'application

Conçue pour le développement de produits et process, la sonde Rxn-10 est la bête de somme de la gamme de sondes Raman. Elle est connue pour ses hautes performances de mesure Raman dans une vaste gamme spectrale. Elle est par ailleurs compacte, légère et flexible, offrant le confort d'un appareil multifonction pour l'analyse des solides et des liquides en laboratoire. La sonde Rxn-10 prend en charge une multitude d'optiques interchangeables, ce qui en fait un instrument très polyvalent et facilement adaptable dans votre équipement de laboratoire.

- Chimie: surveillance de la réaction, mélange, surveillance du catalyseur, spéciation des hydrocarbures, optimisation des unités de process
- Polymère: surveillance de la réaction de polymérisation, surveillance de l'extrusion, mélange de polymères
- Pharmacie: surveillance de la réaction des ingrédients pharmaceutiques actifs (IPA), cristallisation
- Biopharmacie: surveillance, optimisation et régulation de la culture cellulaire et de la fermentation
- Agroalimentaire: cartographie de l'hétérogénéité des zones des viandes et des poissons

Caractéristiques de l'appareil

- Aluminium 6061, inox 316L et inox 303
- Enveloppe de PVC, structure propriétaire
- Électro-optique (EO) propriétaire ou convertisseur(s) FC vers fibre EO pour systèmes non intégrés

Principaux avantages

- Utilisation polyvalente pour la mesure des solides et des liquides
- Légère et compacte
- Verrouillage de sécurité laser intégré, avec indication "laser on" et obturateur de sonde
- Sortie flexible compatible avec un vaste éventail d'options d'échantillonnage
- Commutation simple entre optiques sans contact, à immersion et de biotraitement pour s'adapter à une multitude de domaines d'application
- Vaste gamme spectrale, avec accès à la plage critique des petits nombres d'ondes

Sommaire

Principe de fonctionnement et	
construction du système	3
Domaine d'application	3
Verrouillage de sécurité laser	3
Sonde Rxn-10	3
Optiques de la sonde Rxn-10	4

Montage	5
Spécifications	6
Spécifications de la sonde	6
Dimensions de la sonde	7
EMP : exposition des yeux	8
EMP : exposition de la peau	8

2

Principe de fonctionnement et construction du système

Domaine d'application

Toute autre utilisation que celle décrite dans le présent manuel constitue une menace pour la sécurité des personnes et du système de mesure complet, et annule toute garantie.

Verrouillage de sécurité laser

La sonde Rxn-10, telle qu'elle est installée, fait partie du circuit de verrouillage. Si le câble à fibre optique est sectionné, le laser s'éteint dans les millisecondes qui suivent la rupture.

REMARQUE

Des dommages permanents peuvent survenir si les câbles ne sont pas acheminés de manière appropriée.

- ▶ Manipuler les sondes et les câbles avec précaution, en veillant à ne pas les plier.
- Installer les câbles à fibre avec un rayon de courbure minimum conforme au document Information technique du câble à fibre optique Raman (TI01641C).

Sonde Rxn-10

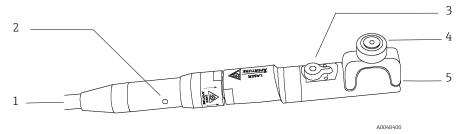


Figure 1 : Sonde Rxn-10

#	Nom	Description
1	Câble à fibre	Relie la sonde à l'analyseur Raman Rxn via l'une des possibilités suivantes : Sous-ensemble de câble Fiber Channel (FC) Câble à fibre électro-optique (EO)
2	Voyant d'émission laser	Lorsque le laser est susceptible d'être mis sous tension, le voyant s'allume.
3	Obturateur de faisceau laser	Peut être fermé pour empêcher l'émission du laser. La position "I" indique le potentiel d'émission. Le déplacement du levier au-delà de la position "O" indique que l'obturateur empêche l'émission.
4	Vis à serrage à main	À serrer pour fixer l'optique sur la sonde en l'absence de raccord fileté.
5	Raccord d'optique	Insérer l'optique ou l'adaptateur fileté.

Optiques de la sonde Rxn-10

La sonde est compatible avec les optiques suivantes pour répondre aux exigences de différents domaines d'application :

	Optiques	Domaines d'application
Optiques sans contact	A0048410 A0048676	Pour l'utilisation avec des produits solides ou troubles. Convient également aux liquides délicats ou corrosifs en cas de crainte de contamination des échantillons ou d'endommagement des composants optiques.
Optiques à immersion (OI)	A0048411	Pour l'utilisation dans des cuves de réaction, des réacteurs de laboratoire ou des flux de process.
Bio-optique (bIO)	A0048412	Pour l'utilisation avec une mesure en ligne continue dans un bioréacteur/ fermenteur sur table nécessitant une entrée supérieure.
Bio multi- optique et bio-manchon	A0051184	Pour l'utilisation avec une mesure en ligne continue dans un bioréacteur/ fermenteur sur table nécessitant une entrée supérieure.
Système optique Raman à usage unique	A0048413	Pour l'utilisation avec des raccords jetables pour les applications à usage unique.

	Optiques	Domaines d'application
Chambre de passage Raman (avec banc de micro-débit et cellule de micro-débit)	A0052578	Pour une utilisation avec des liquides à faible débit lorsque la surveillance d'un flux de process dynamique fournit de précieuses informations et lorsque la vitesse ou la limite de détection est particulièrement élevée.

Montage

Lors du montage, des mesures de protection standard des yeux et de la peau pour les produits laser de classe 3B (conformément à la norme EN-60825/IEC 60825-14 ou ANSI Z136.1) doivent être observées comme décrit ci-dessous.

AVERTISSEMENT	Les précautions habituelles pour les produits laser doivent être respectées. ▶ Si elles ne sont pas montées dans une chambre à échantillon, les sondes doivent toujours être obturées ou détournées des personnes et dirigées vers une cible diffuse.
A ATTENTION	L'entrée laser dans la sonde Rxn-10 ne doit pas dépasser 499 mW. Si de la lumière parasite peut rentrer dans une sonde inutilisée, elle interfère avec les données collectées par une sonde utilisée et peut entraîner des erreurs d'étalonnage ou de mesure. Les sondes inutilisées doivent TOUJOURS être obturées pour empêcher la lumière parasite d'y pénétrer. Si un couvercle optique est disponible, le placer sur l'optique inutilisée.
REMARQUE	Lors du montage de la tête de sonde <i>sur site</i> , l'utilisateur doit s'assurer qu'une protection contre la traction conforme aux spécifications de rayon de pliage des fibres est disponible à l'emplacement d'installation.

Spécifications

Spécifications de la sonde

Les spécifications de la sonde Rxn-10 sont répertoriées ci-dessous.

Élément		Description	
Longueur d'onde laser	avec optique sans contact ou à immersion	532 nm, 785 nm, ou 993 nm	
	avec système d'optique bIO- Optic ou Raman à usage unique	785 nm ou 993 nm	
	avec bio multi-optique et bio- manchon ou banc de micro- débit et cellule de micro-débit	785 nm	
Puissance laser m	naximale dans la tête de sonde	< 499 mW	
Distance de fonct	ionnement	Sur la base de l'optique d'échantillonnage choisi	
Interface d'échan	tillon	Sur la base de l'optique d'échantillonnage choisi	
Polarisation au ni	iveau de l'échantillon	Sans polarisation	
Température de l	a sonde	−10 à 70 °C (14 à 158 °F)	
Rampe de tempéi	rature	≤ 30 °C/min (≤ 54 °F/min)	
Sonde d'humidité	relative	20 à 60 %, sans condensation	
Couverture specti	rale de la sonde	La couverture spectrale de la sonde est limitée par la couverture de l'analyseur utilisé	
Puissance laser au niveau de	532 nm (avec laser standard 120 mW)	> 45 mW	
l'échantillon	785 nm (avec laser standard 400 mW)	> 150 mW	
	993 nm (avec laser standard 400 mW)	> 150 mW	
Matériaux de	corps de la sonde	Aluminium 6061, inox 316L et inox 303	
construction	câble à fibre optique	Construction : enveloppe de PVC, structure propriétaire Raccords : électro-optique propriétaire ou convertisseur(s) FC vers fibre EO pour systèmes non intégrés	
Sonde	longueur (sans le rayon de courbure du câble à fibre)	203 mm (8 in)	
	longueur (avec le rayon de courbure du câble à fibre)	356 mm (14,02 in)	
	diamètre (sans câble)	19 mm (0,75 in)	
	poids (avec câble)	0,5 kg (environ 1 lb)	
Câble à fibre	température*	−40 à 70 °C (−40 à 158 °F)	
optique	longueur	Longueurs standard de 5 à 25 m (16,4 à 82,0 ft) par incréments de 5 m (16,4 ft)	
		Des rallonges de câble à fibre sont également disponibles dans des longueurs de 5 à 200 m (16,4 à 656,2 ft) par incréments de 5 m (16,4 ft), limitées par l'application prévue.	
	rayon de courbure minimal	152,4 mm (6 in)	
	résistance à la flamme	Certifiée : CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4	
		Nominale: AWM I/II A/B 80C 30V FT4	

^{*} Si le câble à fibre optique peut résister à des températures jusqu'à 80 °C (17 °F), le raccord du câble pour la tête de sonde est limité à 70 °C (158 °F).

Dimensions de la sonde

Les dimensions de la sonde Rxn-10 sont indiquées ci-dessous.

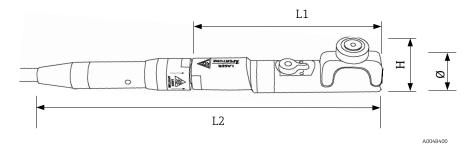


Figure 2. Dimensions de la sonde Rxn-10

Dimension	Mesure	Description
L1	111 mm 4,37 in	Longueur du corps de la sonde sans câble ni optique
L2	203 mm 8 in	Longueur avec câble à fibre optique raccordé Remarque : cela n'inclut pas le rayon de courbure minimal supplémentaire du câble
Н	33 mm 1,3 in	Hauteur de la sonde avec vis à serrage à la main
Ø	19 mm 0,75 in	Diamètre de la sonde, sans câble

EMP : exposition des yeux

Voir les tableaux ci-dessous de la norme ANSI Z136.1 pour calculer l'exposition maximale permise (EMP) pour l'exposition des yeux à un faisceau laser sous forme de source ponctuelle.

Un facteur de correction (C_A) peut également être requis. Il peut être déterminé ci-dessous.

Longueur d'onde λ (nm)	Facteur de correction C _A
400 à 700	1
700 à 1050	10 ^{0,002} (λ ⁻⁷⁰⁰⁾
1050 à 1400	5

Exposition maximale permise (EMP) pour l'exposition des yeux à un faisceau laser sous forme de source ponctuelle			
Longueur d'onde	Durée de l'exposition t (s)	Calcul de la valeur EMP (J·cm ⁻²) (W·cm ⁻²)	
λ (nm)			
532	10 ⁻¹³ à 10 ⁻¹¹	1,0 × 10 ⁻⁷	-
	10 ⁻¹¹ à 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-
	5 × 10 ⁻⁶ à 10	$1.8 t^{0.75} \times 10^{-3}$	-
	10 à 30 000	-	1 × 10 ⁻³

Exposition maximale permise (EMP) pour l'exposition des yeux à un faisceau laser sous forme de source ponctuelle				
Longueur	Durée de	Calcul de la va	Calcul de la valeur EMP	
d'onde λ (nm)	l'exposition t (s)	(J·cm ⁻²)	(W·cm⁻²)	EMP, avec C _A = 1,4791
	10 ⁻¹³ à 10 ⁻¹¹	$1,5 C_{\rm A} \times 10^{-8}$	-	2,2 × 10 ⁻⁸ (J·cm ⁻²)
	10 ⁻¹¹ à 10 ⁻⁹	2,7 C _A t ^{0.75}	-	Ajouter le temps (t) et calculer
785 et 993	10 ⁻⁹ à 18 × 10 ⁻⁶	$5.0 C_{\rm A} \times 10^{-7}$	-	7,40 × 10 ⁻⁷ (J·cm ⁻²)
	18 × 10 ⁻⁶ à 10	$1.8 C_{\rm A} t^{0.75} \times 10^{-3}$	-	Ajouter le temps (t) et calculer
	10 à 3 × 10 ⁴	-	$C_{\rm A} \times 10^{-3}$	1,4971 × 10 ⁻³ (W⋅cm ⁻²)

EMP : exposition de la peau

Voir le tableau ci-dessous de la norme ANSI Z136.1 pour calculer l'EMP pour l'exposition de la peau à un faisceau laser.

Exposition maximale permise (EMP) pour l'exposition de la peau à un faisceau laser				
Longueur	Durée de	Calcul de la valeur EMP		
d'onde λ (nm)	l'exposition t (s)	(J·cm⁻²)	(W·cm⁻²)	EMP, avec C _A = 1,4791
	10 ⁻⁹ à 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2,9582 × 10 ⁻² (J·cm ⁻²)
532, 785 et 993	10 ⁻⁷ à 10	1,1 C _A t ^{0,25}	-	Ajouter le temps (t) et calculer
	10 à 3 × 10 ⁴	-	0,2 C _A	2,9582 × 10 ⁻¹ (W·cm ⁻²)

