Informações técnicas **Sonda espectroscópica Raman Rxn-30**

Design e especificações do sistema

Aplicação

A sonda Raman Rxn-30 é atrativa para diversas indústrias por seu monitoramento robusto da fase gasosa, medições $in \, situ$ e compatibilidade de materiais. Certificada para uso em ambientes de áreas classificadas, a sonda Raman Rxn-30 pode ser inserida diretamente em processos com temperaturas de até 150 °C (302 °F) e pressões de até 68,9 barg (1000 psig). Ela está disponível com diversas opções de instalação para máxima flexibilidade de instalação e amostragem.

- Química: amônia, metanol, HyCO, monitoramento de reação, mistura, catálise
- Polímero: monitoramento da reação de polimerização
- Correntes de fase gasosa no refino: produção de hidrogênio e de mistura de combustível de reciclo, caracterização de combustível
- Energia elétrica: Usinas de energia IGCC, turbinas a gás
- Farmacêutica: monitoramento da reação do insumo farmacêutico ativo (IFA), secagem
- Alimentos e bebidas: fermentações, off gas, voláteis

Propriedades do equipamento

- Aço inoxidável 316/316L
- PTFE
- Safira
- Vidro de sílica fundida

Seus benefícios

- Medições confiáveis e quantitativas da fase gasosa
- Medição in situ/sem necessidade de linhas de transferência ou circuitos rápidos
- Opções de instalação padrão da indústria
- Inserção direta, inserção lateral, ou circuito de amostra
- Adequado para áreas classificadas/ambientes classificados

Sumário

Função e design do sistema	3
Aplicação	3
Intertravamento de segurança do laser	3
Sonda Rxn-30	3
Filtro de partículas (opcional)	4
Conexão cruzada NPT na sonda Rxn-30	5
Conexão cruzada ajustável na sonda Rxn-30	5
Compatibilidade entre processo e sonda	6
Instalação	6

Especificações	7
Especificações gerais	
MPE: exposição ocular	8
MPE: exposição da pele	8
Certificados e aprovações	9
Aprovações para área classificada	<u>ç</u>
Certificações e marcações	<u>9</u>
Desenho para área classificada	10

Função e design do sistema

Aplicação

O uso do equipamento para qualquer outro propósito além do que foi descrito indica uma ameaça à segurança das pessoas e de todo o sistema de medição, e invalida qualquer garantia.

Intertravamento de segurança do laser

A sonda Rxn-30, conforme instalada, forma parte do circuito de intertravamento. Se o cabo de fibra for rompido, o laser irá desligar em milissegundos após a ruptura, conforme IEC 60079-28 e IEC 60825-2.

NOTA

Se os cabos não forem roteados adequadamente, isso pode resultar em danos permanentes.

- Manuseie as sondas e os cabos com cuidado, garantindo que não sejam dobrados ou torcidos.
- ► Instale os cabos de fibra com um raio mínimo de curvatura conforme especificado nas *Informações Técnicas do cabo de fibra óptica Raman (TI01641C)*.

O circuito de intertravamento é um circuito elétrico de baixa corrente. Se a sonda Rxn-30 for usada em uma área classificada como perigosa, o circuito de intertravamento deve passar por uma barreira intrinsecamente segura (IS).

Sonda Rxn-30

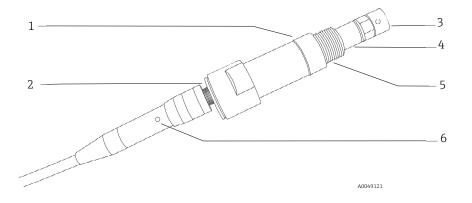


Figura 1. Sonda Rxn-30

#	Descrição
1	Compatível com conexão ajustável de 1 pol. de diâmetro
2	Interface conector/cabo (deixar conectado)
3	Conjunto reverso
4	Portas de gás de amostra localizadas sob um filtro de metal sinterizado
5	Rosca da interface NPT ½ pol
6	Indicador LED do laser: Quando há potencial para que o laser seja energizado, a luz indicadora de LED do laser é acesa.

Filtro de partículas (opcional)

O filtro de partículas opcional é fornecido como um kit composto por:

- 1 Elemento filtrante de metal sinterizado (tamanho do poro de 20 mícrons)
- 2 Juntas de vedação de Teflon

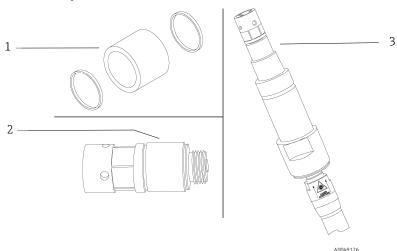


Figura 2. Kit de filtro de partículas e instalação

#	Descrição
1	Kit do filtro de partículas com elemento filtrante e 2 juntas de vedação
2	Filtro de partículas no tubo de amostra
3	Remontagem final da sonda Rxn-30 com filtro de partículas

Conexão cruzada NPT na sonda Rxn-30

A Endress+Hauser oferece uma conexão cruzada NPT personalizada de $\frac{1}{2}$ pol. opcional com adaptadores NPT padrão para tubos de aço inoxidável de $\frac{1}{4}$ pol. (n.º da peça 70187793, não incluída). Ela fornece quatro portas NPT de $\frac{1}{2}$ pol. A quarta porta pode ser usada para sensores de temperatura ou pressão, drenagem de condensado ou pode ser tampada.

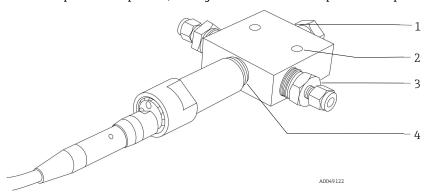


Figura 3. Sonda Rxn-30 integrada à conexão cruzada NPT de ½ polegada

#	Descrição
1	Tampão NPT de ½ pol. para porta não utilizada
2	(2) orifícios de instalação de ¼ pol
3	(2) adaptadores ajustáveis de tubo inoxidável NPT de ½ pol. a ¼ pol
4	Porta NPT de ½ pol. da Rxn-30

NOTA

Se a sonda for removida e reinstalada, é recomendada uma conexão ajustável.

 As interconexões NPT não são a melhor interface para a sonda se a sonda será removida e reinstalada.

Conexão cruzada ajustável na sonda Rxn-30

A sonda Rxn-30 também pode ser instalada usando uma conexão ajustável cruzada padrão de 1", disponível comercialmente ou junto à Endress+Hauser (n.º da peça 71675522).

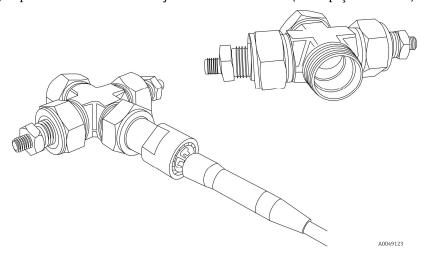


Figura 4. Sonda Rxn-30 integrada à conexão ajustável cruzada de 1 polegada

Compatibilidade entre processo e sonda

Antes da instalação, o usuário deve verificar se as classificações de pressão e temperatura da sonda, assim como os materiais dos quais a sonda é feita, são compatíveis com o processo no qual ela está sendo inserida.

Instalação

Antes da instalação no processo, verifique se a quantidade de potência laser de cada sonda não é maior que a quantidade especificada na Avaliação para Equipamento em Área Classificada (4002266) ou equivalente.

Precauções de segurança padrão para o olho e a pele para produtos laser classe 3B (conforme EN 60825/IEC 60825-14) devem ser observadas.

Especificações

Especificações gerais

As especificações gerais para a sonda Rxn-30 estão listadas abaixo.

Item		Descrição		
Comprimento de onda do laser		532 nm		
Cobertura espectral		a cobertura espectral da sonda é limitada pela cobertura do analisador utilizado		
Temperatura ambiente		Atmosferas não explosivas: -30 a 150 °C / -22 a 302 °F Ambientes explosivos: T4: -20 a 70 °C / -4 a 158 °F T6: -20 a 65 °C / -4 a 149 °F Limitado à temperatura ambiente normal IEC 60079-0 para Coreia		
Potência máxima do	laser na sonda	<499 mW		
Temperatura de oper (corpo da sonda/amo	•	−20 a 150 °C (−4 a 302 °F)		
Temperatura de operação (cabo e conector)		−40 a 70 °C (−40 a 158 °F)		
Rampa de temperatu	ra	≤ 6 °C/min (≤ 10,8 °F/min)		
Pressão máxima de operação (espaço de amostra)		68,9 barg (1000 psig)		
Umidade de operação)	0 a 95% de umidade relativa, sem condensação		
Purga do corpo da so	nda	hélio		
Hermenêutica do cor	po da sonda	taxa de vazamento de hélio de purga $< 1 \times 10^{-7}$ mbar·L/s		
Classificação IEC 605	29	IP65		
Resistência química		por contato da amostra com safira, sílica fundida, aço inoxidável 316, revestimentos dielétricos (SiO ₂ , TiO ₂), cromo denso fino (TDC) e Teflon		
Eficiência da coleta de sinais (nível do sistema, com unidade base Raman Rxn nominal)		ar ambiente N_2 altura do pico Rxn-30-532: > 2,5 e ⁻ /s/mW		
Supressão de ruído de linha de base N2	e fundo,	linha de base adjacente < 0,15X pico de ar ambiente de N_2 em < 2331 cm $^{-1}$		
Supressão de ruído de fundo, espectro total		ruído de fundo máximo < 1,0X pico de ar N ₂		
Materiais molhados		Aço inoxidável 316/316L PTFE safira vidro de sílica fundida		
Cabo de fibra óptica (vendido separada- mente)	resistência a chamas	Certificação: CSA-C/US AWM I/II, A/B, 80C, 30V, FT1, FT2, VW-1, FT4 Classificação: AWM I/II A/B 80C 30V FT4		
	comprimento	disponível em incrementos de 5 m (16,4 pés), com o comprimento configurado de acordo com a aplicação e limitado por ela		

MPE: exposição ocular

Consulte as tabelas abaixo da norma ANSI Z136.1 para calcular a exposição máxima permitida (MPE) para exposição ocular de fonte pontual a um raio laser.

Um fator de correção (C_A) também pode ser necessário e pode ser determinado abaixo.

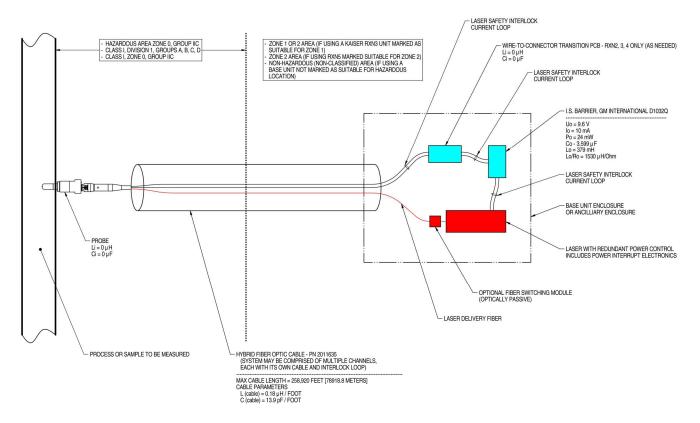
Comprimento de onda λ (nm)	Fator de correção C _A
400 a 700	1
700 a 1050	10 ^{0,002} (λ ⁻⁷⁰⁰⁾
1050 a 1400	5

MPE para exposição ocular de fonte pontual a um raio laser			
Comprimento de onda	Duração da exposição t (s)	Cálculo da MPE	
de onda λ (nm)		(J·cm⁻²)	(W·cm⁻²)
532	10 ⁻¹³ a 10 ⁻¹¹	1,0 × 10 ⁻⁷	-
	10 ⁻¹¹ a 5 × 10 ⁻⁶	2,0 × 10 ⁻⁷	-
	5 × 10 ⁻⁶ a 10	$1.8 t^{0.75} \times 10^{-3}$	-
	10 a 30.000	-	1 × 10 ⁻³

MPE: exposição da pele

Consulte a tabela abaixo da norma ANSI Z136.1 para calcular a MPE para exposição da pele a um raio laser.

MPE para exposição da pele a um raio laser				
Comprimento	Duração da	,		MPE em que
de onda λ (nm)	exposição t (s)	(J·cm⁻²)	(W·cm⁻²)	$C_{\rm A} = 1,4791$
532	10 ⁻⁹ a 10 ⁻⁷	$2 C_{\rm A} \times 10^{-2}$	-	2,9582 × 10 ⁻² (J·cm ⁻²)
	10 ⁻⁷ a 10	1,1 C _A t ^{0,25}	-	Insira o tempo (t) e calcule
	10 a 3 × 10 ⁴	-	0,2 C _A	2,9582 × 10 ⁻¹ (W·cm ⁻²)


Certificados e aprovações

Aprovações para área classificada Consulte o manual *Instruções de segurança da sonda espectroscópica Raman Rxn-30 (XA02748C)* para informações detalhadas sobre certificações e aprovações.

Certificações e marcações

A Endress+Hauser oferece certificações para a sonda Rxn-30. Selecione a certificação desejada e a sonda ou a tag da sonda é marcada de acordo. Consulte a documentação *Instruções de segurança da sonda espectroscópica Raman Rxn-30 (XA02748C)* para obter mais informações sobre certificações.

Desenho para área classificada O desenho de instalação para áreas classificadas (4002396) é mostrado abaixo.

NOTES:

- 1. CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 VRMS OR VDC.
- 2. INSTALLATION IN THE U.S. SHOULD BE IN ACCORDANCE WITH ANSI/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS" AND THE NATIONAL ELECTRICAL CODE® (ANSI/NFPA 70) SECTIONS 504 AND 505.
- 3. INSTALLATION IN CANADA SHOULD BE IN ACCORDANCE WITH THE CANADIAN ELECTRICAL CODE, CSA C22.1, PART 18, APPENDIX J18.
- 4. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.
- FOR U.S. INSTALLATIONS, THE PROBE MODELS RXN-30 (AIRHEAD), RXN-40 (WETHEAD) AND RXN-41 (PILOT) ARE APPROVED FOR CLASS I, ZONE 0 APPLICATIONS.
- 6. NO REVISION TO DRAWING WITHOUT PRIOR CSA APPROVAL.
- 7. WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY.

Figura 5. Desenho de Instalação em Área Classificada (4002396 versão X6)

A0049010

www.addresses.endress.com

