Products Solutions Services

Техническая информация SS2100

Газоанализатор TDLAS

Одноканальный, двухканальный или трехканальный газоанализатор TDLAS, обладающий исключительной надежностью при измерении следовых концентраций газовых компонентов. Поставляется с герметичной, обогреваемой системой пробоотбора. Сертифицирован по стандартам CSA: класс I, раздел 2 и класс I, зона 2.

Области применения

- Измерение H₂O, CO₂ или H₂S в природном газе, на нефтеперерабатывающих заводах, газоперерабатывающих установках, в производстве СПГ, нефтехимии и олефинах.
- Диапазон измерений: от низких значений ppmv до %

Ключевые особенности

- Лазерный принцип, быстрый отклик
- Простая конструкция, надежная работа
- Не требует регулярного технического обслуживания
- Не требует калибровки на месте
- Отсутствие дрейфа и помех от загрязняющих веществ
- Надежность при эксплуатации в агрессивной среде
- Компактный анализатор с возможностью множественных измерений
- Сертификация CSA

Содержание

1 Введение	3
Обзор изделия	3
Стандартная документация	4
Зарегистрированные товарные знаки	5
Адрес изготовителя	5
2 Конструкция системы	6
Измерительная система	6
Апуитектура оборудования	8

3 Сертификаты и разрешения	11
Классификация взрывоопасных зон	11
4 Информация для заказа	12
Конфигуратор выбранного продукта	12
Технические характеристики газа	13
Примечания по применению	14
Технические характеристики	17

1 Введение

Обзор изделия

Газоанализаторы процесса Endress+Hauser SS2100 обеспечивают исключительно надежное измерение следовых концентраций газов с использованием технологии лазерной абсорбционной спектроскопии с настройкой длины волны (TDLAS) от SpectraSensors. TDLAS—это высокоточная инфракрасная методика, позволяющая точно измерять отдельные компоненты газа, исключая помехи, характерные для традиционных инфракрасных анализаторов. Прибор SS2100 сертифицирован по стандартам CSA: класс I, раздел 2 и класс I, зона 2.

Простота эксплуатации. Управление анализатором интуитивно понятно. Технический персонал может освоить принципы работы с системой за короткое время. В сочетании с минимальными требованиями к обслуживанию этот фактор обеспечивает низкую стоимость владения.

В то же время важным элементом конструкции прибора является возможность технической поддержки. В системе предусмотрено несколько параметров мониторинга состояния, а удаленный доступ возможен как через сервисное программное обеспечение, так и напрямую с помощью сенсорной клавиатуры.

Простота установки. Прибор SS2100 легко устанавливается; достаточно подключить питание, интерфейс передачи данных и линию подачи измеряемого газа. Анализатор начинает работу без необходимости в сложной калибровке или дополнительной настройке.

Надежность. Достоверность измерений имеет ключевое значение для аналитических задач в технологических процессах. Газоанализатор TDLAS не подвержен воздействию загрязнителей и агрессивных сред, поскольку газовый поток не контактирует с лазером или детектором. Благодаря стабильности технологии TDLAS прибор SS2100 практически не требует регулярного обслуживания, повторной калибровки или замены комплектующих.

Стандартная документация

При поставке с завода каждый анализатор снабжается документами, относящимися именно к приобретенной модели. Вся документация доступна на веб-сайте Endress+Hauser www.endress.com.

Настоящий документ технической информации является неотъемлемой частью полного пакета документов, состав которого указан ниже:

Номер артикула	Тип документа	Описание		
BA02281C	Руководство по эксплуатации	Предоставляет полный обзор анализатора и пошаговые инструкции по установке.		
XA02750C	Указания по технике безопасности	Содержит наиболее распространенные вопросы безопасности, связанные с установкой и эксплуатацией газоанализатора SS2100 на основе TDLAS.		
XA02751C	Указания по технике безопасности	Содержит наиболее распространенные вопросы безопасности, связанные с установкой и эксплуатацией газоанализатора SS2100 в двух- и трехканальной конфигурации на основе TDLAS.		
Параметры	Параметры прибора			
GP01177C	Описание параметров прибора	Предоставляет пользователю обзор функциональных возможностей прошивки версии FS 5.16.		
GP01180C	Описание параметров прибора	Предоставляет пользователю обзор функцио- нальных возможностей прошивки версии NS 5.14		
GP01181C	Описание параметров прибора	Предоставляет пользователю обзор функциональных возможностей прошивки HC12 версии 2.51		

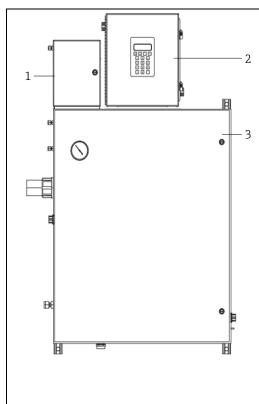
Зарегистрированные товарные знаки

Modbus®

Зарегистрированный товарный знак SCHNEIDER AUTOMATION, INC.

Адрес изготовителя Епо

Endress+Hauser 11027 Arrow Route


Rancho Cucamonga, CA 91730

United States www.endress.com

2 Конструкция системы

Измерительная система

Газоанализатор SS2100 на основе TDLAS

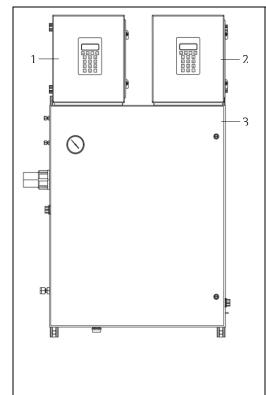
Базовый анализатор состоит из следующих элементов:

1. Распределительная коробка электромагнитных клапанов

Содержит электромагнитные клапаны, используемые в случае анализа следовых концентраций газов (если применимо).

2. Контроллер

Содержит блок питания, интерфейс пользователя (ЖК-дисплей и клавиатура), а также электронные компоненты для связи и управления измерениями.


3. Корпус с обогревом

Включает систему подготовки проб, оптическую головку и измерительную кювету.

Газовая проба проходит через кювету от входного к выходному порту. Лазерный луч проходит через кювету и отражается от зеркала, расположенного в нижней части.

Компоненты системы фильтруют газ, обеспечивая репрезентативность пробы, а также контролируют давление и расход. Предусмотрен байпас для создания быстрого потока и непрерывной продувки загрязненной стороны мембранного сепаратора.

Газоанализатор SS2100 на основе TDLAS в двух- и трехканальной конфигурации

Базовый анализатор состоит из следующих элементов:

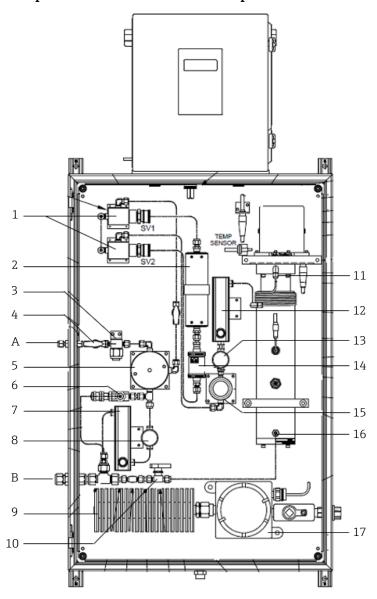
1. Контроллер H₂S

Содержит блок питания, интерфейс пользователя (ЖК-дисплей и клавиатура), а также электронные компоненты для связи и управления измерением H₂S.

2. Контроллер Н₂О и СО₂

Содержит блок питания, интерфейс пользователя (ЖК-дисплей и клавиатура), а также электронные компоненты для связи и управления измерениями $\rm H_2O~CO_2$.

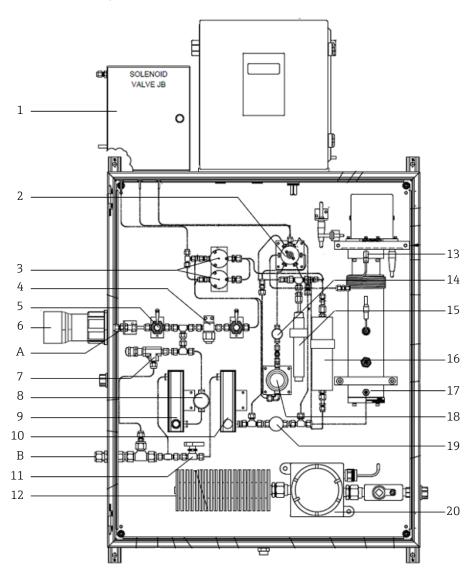
3. Корпус с обогревом


Включает систему подготовки проб, оптическую головку и измерительную кювету.

Газовая проба проходит через кювету от входного к выходному порту. Лазерный луч проходит через кювету и отражается от зеркала, расположенного в нижней части.

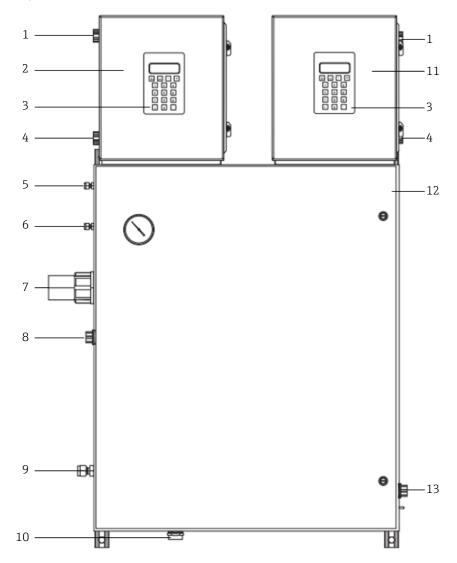
Компоненты системы фильтруют газ, обеспечивая репрезентативность пробы, а также контролируют давление и расход. Предусмотрен байпас для создания быстрого потока и непрерывной продувки загрязненной стороны мембранного сепаратора.

Архитектура оборудования


Газоанализатор SS2100 на основе TDLAS: измерение H₂S

- Электромагнитные клапаны (опционально – пневматические клапаны)
- 2 Скруббер проб
- 3 Фильтр
- 4 Включение/отключение подачи пробы и эталонного газа
- 5 Мембранный сепаратор
- 6 Предохранительный клапан
- 7 Индикатор и регулятор расхода в байпасе
- 8 Датчик давления байпаса
- А Подача пробы: 140-310 кПа (20-45 psi)
- В Сброс проб в безопасную зону

- 9 Нагреватель
- 10 Включение/отключение сброса газа
- 11 Входное отверстие ячейки
- 12 Указатель и регулятор расхода в линии анализатора
- 13 Датчик давления анализатора
- 14 Индикатор состояния скруббера
- 15 Регулятор давления
- 16 Выходное отверстие ячейки
- 17 Контроллер температуры


Газоанализатор SS2100 на основе TDLAS: измерение следовых концентраций с внутренней валидацией

- 1 Распределительная коробка электромагнитных клапанов
- 2 6-ходовой клапан
- 3 Пневмоуправляемый 3-ходовой клапан
- 4 Фильтр
- 5 Мембранный клапан
- 6 Теплоизоляционный кожух с обогревом
- 7 Предохранительный клапан
- 8 Датчик давления
- 9 Индикатор и регулятор расхода в байпасе
- 10 Указатель и регулятор расхода в линии анализатора
- А Подача пробы: 140-310 кПа (20-45 psi)
- В Сброс проб в безопасную зону

- 11 Включение/отключение сброса газа
- 12 Нагреватель
- 13 Входное отверстие ячейки
- 14 Фильтр
- 15 Трубка с контролируемой проницаемостью
- 16 Сушилка или скруббер
- 17 Выходное отверстие ячейки
- 18 Регулятор давления
- 19 Дозирующий клапан
- 20 Контроллер температуры

Газоанализатор SS2100 на основе TDLAS в двух- и трехканальной конфигурации: измерение H_2S и H_2O и/или CO_2

- 1 Сигнальная цепь
- 2 Электроника анализатора H_2S
- 3 Дисплей анализатора и клавиатура
- 4 Мощность анализатора
- 5 Вход приборного воздуха
- 6 Вход поверочного газа и точка отбора пробы
- 7 Подача пробы: 140-310 кПа (20-45 psi)
- 8 Подключение питания обогрева
- 9 Сброс проб в безопасную зону
- 10 Дренажное отверстие корпуса SCS
- 11 Электроника анализатора H₂O и/или CO₂
- 12 Корпус системы SCS и ячейки TDLAS
- 13 Питание обогревателя корпуса SCS

3 Сертификаты и разрешения

Классификация взрывоопасных зон

Модель	Сертификаты
Газоанализатор SS2100 на основе TDLAS	<u>cCSAus:</u> Класс I, раздел 2, группы A, B, C, D, T3 (Т3С без обогревателя), тип 4X и степень защиты IP66 Класс I, зона 2, IIC, T3 (Т3С без обогревателя) Токр.: От -20 °C до +60 °C
Газоанализатор SS2100 на основе TDLAS в двух- и трехканальной конфигурации	<u>cCSAus:</u> Класс I, раздел 2, группы B, C, D, T3 (T3C без обогревателя), тип 4X и IP66 Класс I, зона 2, IIB+H ₂ T3 (T3C без обогревателя) Токр.: От -20 °C до +60 °C

4 Информация для заказа

Конфигуратор выбранного продукта

Подробные сведения об оформлении заказа можно получить в ближайшей торговой организации нашей компании www.addresses.endress.com или в Конфигураторе выбранного продукта на веб-сайте www.endress.com. Доступ к:

- 1. Выберите ссылку Corporate.
- 2. Выберите страну.
- 3. Откройте вкладку **Products**.
- 4. Нажмите **Product finder**.
- 5. Выберите изделие с помощью фильтров и поля поиска.
- 6. Откройте страницу изделия.
- 7. Нажмите кнопку **Configure**, чтобы открыть Конфигуратор выбранного изделия.

Конфигуратор выбранного изделия—это инструмент для индивидуальной настройки конфигурации изделия, который обеспечивает следующие возможности:

- Самая актуальная информация о вариантах конфигурации
- Автоматическая проверка критериев исключения
- Автоматическое формирование кода заказа и его расшифровка в формате PDF или выходном формате Excel
- Возможность заказа прямо в интернет-магазине Endress+Hauser

Если определенный продукт недоступен в вашем регионе, перейдите на веб-сайт (www.endress.com/contact), чтобы найти региональный канал продаж и получить дополнительную информацию.

Технические характеристики газа

		Допустимый диапазон компонентов ¹			
Название компонента	Сокращение	Природный газ	Обогащ приро га	дный	Обогащенный природный газ / чистый СО ₂
		Таблица 1	Табли	ща 2	Таблица 3
Метан	C1	90-100 %	50-1	00 %	0-50 %
Этан	C2	0-7 %	0-2	0 %	0-20 %
Пропан	C3	0-2 %	0-1	5 %	0-15 %
Бутаны	C4	0-1 %	0-5	%	0-5 %
Пентаны	C5	0-0,2 %	0-2	%	0-2 %
Гексаны и более тяжелые	C6+	0-0,2 %	0-2	%	0-2 %
Углекислый газ	CO ₂	0-3 %	0-20	0 %	50-100 %
Азот и др. инертные газы	N_2	0-10 %	0-2	O %	0-20 %
Сероводород	H₂S	0-300 ppm o6.	0-5	%	0-5 %
Вода	H ₂ O	0-5000 ppm oб.	0-500 of		0-5000 ppm об.
		Допустимый диапазон компонентов ¹		омпонентов ¹	
Название компонента	Сокращение	СПГ			Этилен
		Таблица	21	Т	аблица 41
Метан	C1	75-100	%	0-1	1000 ррт об.
Этан	C2	0-10 %	6	0-2	1000 ррт об.
Пропан	C3	0-5 %)		-
Бутаны	C4	0-2 %)		-
Пентаны	C5	0-0,5	%		-
Углекислый газ	CO ₂	0-100 ppr	п об.		-
Сероводород	H ₂ S	0-10 ppm	об.	0	-1 ppm об.
Вода	H ₂ O	0-1 ppm	об.	0-	-10 ррт об.
Этилен	C ₂ H ₄	-		9	8,9-100 %
Пропилен	C ₃ H ₆	-		0-3	3000 ррт об.
Аммиак	NH ₃	-		0	–5 ppm oб.

^{1.} Состав потока должен быть предоставлен при оформлении заказа.

Примечания по применению

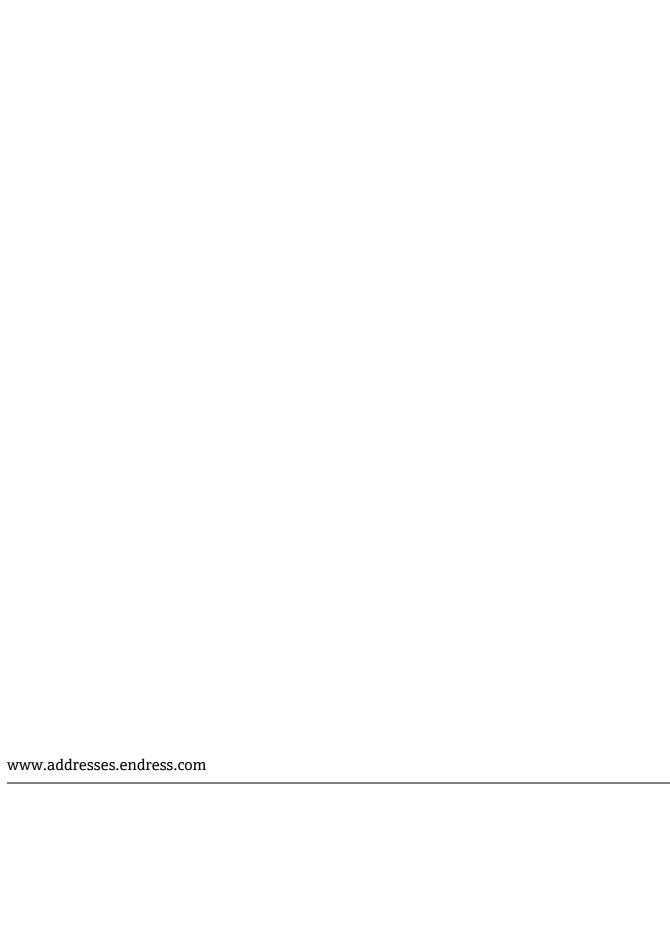
Газоанализатор SS2100 на основе TDLAS компании Endress+Hauser SS2100 TDLAS предназначен для измерения H_2O , CO_2 , or H_2S в различных отраслях и технологических установках.

Обратитесь к веб-сайту (www.endress.com/contact), чтобы найти региональный канал продаж для получения дополнительной информации об областях применения, которых нет в списке.

Измерения влаж	Измерения влажности (H₂O)		
Замечание по применению	Описание		
AI01215C	H₂O в добыче, хранении, транспортировке и распределении природного газа		
AI01219C	Переработка природного газа: H ₂ O в выходном потоке из сосуда с молекулярным ситом		
AI01220C	Переработка природного газа: H_2 О в продуктах переработки природного газа (чистый продукт / остаточный газ)		
AI01245C	Переработка природного газа: $H_2 O$ в процессе фракционирования Y-grade (нефракционированной смеси NGL)		
AI01244C	Переработка природного газа: H_2 О при фракционировании этана из NGL		
AI01243C	Переработка природного газа: H_2 О при фракционировании смеси этана и пропана из NGL		
AI01242C	Переработка природного газа: H_2 О при фракционировании пропана из NGL		
AI01254C	СПГ: H_2 О в сухом подающемся газе для производства СПГ		
AI01257C	СПГ: H ₂ O в продукте СПГ — терминал		
AI01274C	Переработка: H ₂ O в реканализированном потоке H ₂ для каталитического риформинга на НПЗ, водородные реканализированные газовые потоки		
AI01275C	Переработка: H ₂ O в потоках реканализированного H ₂ для непрерывного каталитического риформинга		
AI01279C	Переработка: H ₂ O в смеси пропана/пропилена		
AI01282C	Переработка: H ₂ O в сырье для алкилирования		
AI01283C	Переработка: H ₂ O в подающем газе n-бутана для реакторов процесса UOP Butamer		
AI01284C	Переработка: H₂O в приборном воздухе		
AI01258C	Нефтепродукты: H₂O в выходах из сосудов осушителя газа после крекинга		
AI01259C	Нефтепродукты: H₂O в чистом этилене		
AI01260C	Нефтепродукты: H₂O в чистом пропилене (паровой крекинг)		
AI01288C	Нефтепродукты: H_2O в этиленовом исходном газе процесса UNIPOL PE		
AI01361C	Энергетический переход: измерения H_2O , H_2S и $O2$ для применения в области улавливания, использования и хранения углерода (CCUS)		

Измерения сероводорода (H ₂ S)		
Замечание по применению	Описание	
AI01217C	H ₂ S в добыче, хранении, транспортировке и распределении природного газа	
AI01251C	Переработка природного газа: H ₂ S в выходе из скруббера с амином	
AI01303C	Переработка природного газа: H_2S в продукте природного газа (чистый продукт / остаточный газ)	
AI01304C	Переработка природного газа: H₂S в сыром газе (произведенный газ)	
AI01250C	Переработка природного газа: H₂S в фракционировании Y-grade NGL	
AI01249C	Переработка природного газа: H ₂ S в фракционировании этана из NGL	
AI01248C	Переработка природного газа: H ₂ S в фракционировании смеси этана и пропана из NGL	
AI01247C	Переработка природного газа: H₂S в пропане	
AI01246C	Переработка природного газа: H ₂ S в выходе из твердого очистителя	
AI01276C	Переработка: H ₂ S в водородном реканализированном потоке для каталитического риформинга	
AI01277C	Переработка: H₂S в факельном газе	
AI01278C	Переработка: H ₂ S в топливном газе	
AI01280C	Переработка: H₂S в смеси пропана/пропилена	
AI01281C	Переработка: H₂S в потоках реканализированного водорода для непрерывного каталитического риформинга	
AI01276C	Переработка: H₂S в водородном реканализированном потоке для каталитического риформинга	
AI01273C	Переработка: H ₂ S в газе водородного реканализированного потока на выходе из установки аминового очищения	
AI01291C	Нефтепродукты: H₂S в эксфлюенте реактора процесса UOP C3 Oleflex	
AI01292C	Нефтепродукты: H ₂ S во входах в колонну для промывки каустиком	
AI01361C	Энергетический переход: измерения H_2O , H_2S и O_2 для применения в области улавливания, использования и хранения углерода (CCUS)	

Измерения углекислого газа (CO ₂)		
Замечание по применению	Описание	
AI01216C	CO ₂ в производстве, хранении, транспортировке и распределении природного газа	
AI01305C	Переработка природного газа: CO ₂ в исходном необработанном природном газе	
AI01309C	Переработка природного газа: СО₂ на выходе из аминовой установки (очищенный газ)	
AI01306C	Переработка природного газа: CO ₂ в процессе фракционирования Y-grade NGL	
AI01307C	Переработка природного газа: CO ₂ в процессе фракционирования этана из NGL	
AI01308C	Переработка природного газа: CO ₂ в процессе фракционирования смеси этана и пропана из NGL	
AI01256C	СПГ: CO ₂ в аминовой установке на производстве СПГ	
AI01290C	Нефтепродукты: CO ₂ во входных потоках колонны промывки каустиком	
AI01293C	Синтез-газ: CO ₂ в синтез-газе GTL (процесс Synthol) (сжижение угля (CTL) / выход Benfield-процесса)	


Технические характеристики

Данные измерения		
Целевые компоненты	SS2100: H ₂ O, H ₂ S или CO ₂ Двухканальная конфигурация: H ₂ S+H ₂ O или H ₂ S+CO ₂ в природном газе Трехканальная конфигурация: H ₂ S+H ₂ O+CO ₂ в природном газе	
Принцип измерения	Абсорбционная спектроскопия с применением перестраиваемого диодного лазера (TDLAS)	
Диапазоны измерения	См. соответствующее примечание для области применения	
Повторяемость	См. соответствующее примечание для области применения	
Данные об условиях примен	ения	
Диапазон температуры окружающей среды	от -20°C до 50°C (от (-4°F до 122°F) — стандартная от 10°C до 60°C (от (14°F до 140°F) — опционально	
Диапазон давления в измерительной кювете	800-1200 мбар (стандартный) 950-1700 мбар (опционально)	
Максимальное давление в кювете	70 кПа изб. (10 фунтов на кв. дюйм изб.)	
Давление подачи к пробоотборному шкафу	140-350 кПа изб. (20-50 фунтов на кв. дюйм изб.) ¹	
Расход проб	$0,5-4,0$ нл/мин $(1-8,5$ стандартных куб. футов в час) 1	
Расход в байпасной линии	0,5-1 нл/мин (1,1-2,2 стандартных куб. футов в час)	
Электрооборудование и связь		
Электропитание, корпус	120 В перем. тока или 240 В перем. тока ±10 %, 50–60 Гц, макс. 60 Втили 18–24 В пост. тока, макс. 1,6 А	
электроники	Входное питание SCS: $120\mathrm{B}$ перем. тока или $240\mathrm{B}$ перем. тока, макс. $200\mathrm{Br}$ 1	
Аналоговая связь	Изолированные аналоговые каналы, до 120 Ом при 24 В пост. тока Выходы: 2 шт. 4–20 мА (измеряемое значение)	
Последовательная связь	Канал 1 (H ₂ S) — RS232C и Ethernet Каналы 2 и 3 (H ₂ O и/или CO ₂) — RS232C или Ethernet (только для TSP)	
Цифровой сигнал	Выходы: Выходы: 5 шт.— аварийные сигналы по верхнему/нижнему пределу, общая неисправность, ошибка поверки ² , активна поверка 2 ² Входы: 2 шт.— сигнал тревоги по потоку ² , запрос на поверку ²	
Протокол	Modbus Gould RTU, Daniel RTU или ASCII	

Примеры диагностических значений	Питание детектора (состояние зеркала), сравнение с эталонным спектром и отслеживание пика (качество спектра), давление и температура в кювете (общее состояние системы)
ЖК-дисплей	Концентрация, давление и температура в кювете, диагностическая информация

- Зависит от условий применения В зависимости от конфигурации

Физические параметры	
	T
Тип корпуса электроники	Тип 4X, нержавеющая сталь 304 или 316L
Корпус(-а) пробоотборной системы	Тип 4X, нержавеющая сталь 304 или 316L
	Анализатор SS2100:
Габариты анализатора	1285 мм В х 610 мм Ш х 394 мм Г (50,6 х 24 х 15,5 дюйма)
	Анализатор SS2100 (для следовых концентраций):
	1285 мм В х 762 мм Ш х 394 мм Г (50,6 х 30 х 15,5 дюйма)
	Конфигурации SS2100 с двумя и тремя каналами:
	1285 мм В х 762 мм Ш х 394 мм Г (50,6 х 30 х 15,5 дюйма)
Вес анализатора	Приблизительно от 90 до 130 кг (от 200 до 300 фунтов)
Конструкция измерительной ячейки	Полированная нержавеющая сталь 316 L
Количество измерительных ячеек	1, 2 или 3
Сертификация	
	SS2100:
Анализатор (электроника и лазер)	Класс I, раздел 2, группы A, B, C, D, T3/T3C, тип 4X и IP66 Класс I, зона 2, IIC, T3/T3C
	Конфигурации SS2100 с двумя и тремя каналами:
	Класс I, раздел 2, группы В, С, D, Т3/Т3С, тип 4Х и IP66 Класс I, зона 2, IIB+H ₂ , Т3/Т3С

