Technische Information **LNGmass**

Coriolis-Durchflussmessgerät

Products

Das Durchflussmessgerät für Betankungsanwendungen mit einfacher Systemintegration

Anwendungsbereich

- Messprinzip arbeitet unabhängig von physikalischen Messstoffeigenschaften wie Viskosität und Dichte
- Genaue Messung von kryogenen Gasen in Betankungsanwendungen

Geräteeigenschaften

- Durchflussraten bis 18 000 kg/h (660 lb/min)
- Messstofftemperatur bis -196 °C (-321 °F)
- Nennweite: DN 8...25 (3/8...1")
- Robustes, kompaktes Messumformergehäuse
- Modbus RS485
- Erfüllt alle Anwendungsanforderungen

Ihre Vorteile

- Hervorragende Betriebssicherheit zuverlässig auch unter extremen Prozessbedingungen
- Weniger Prozessmessstellen multivariable Messung (Durchfluss, Dichte, Temperatur)
- Platzsparende Montage keine Ein-/Auslaufstrecken
- Platzsparende Installation volle Funktionalität auf engstem Raum
- Schnelle Inbetriebnahme vorkonfigurierte Geräte
- Automatische Datenwiederherstellung im Servicefall

Inhaltsverzeichnis

	3
Messprinzip	4 4 5 6
Messgröße	6 6 6
Ausgangssignal	7 7 7 7 8 8
	1 1 2 2 2 3
Leistungsmerkmale14Referenzbedingungen14Maximale Messabweichung12Wiederholbarkeit15Reaktionszeit15Einfluss Messstofftemperatur15Einfluss Messstoffdruck16Berechnungsgrundlagen16	4 4 5 5 6
Montage16Montageort16Einbaulage17Ein- und Auslaufstrecken17Spezielle Montagehinweise18Montage Safety Barrier Promass 10018	6 7 7 8
Umgebung18Umgebungstemperaturbereich18Lagerungstemperatur19Klimaklasse19Schutzart19Stoßfestigkeit19Schwingungsfestigkeit20Elektromagnetische Verträglichkeit (EMV)20	8 9 9 9

Prozess Messstofftemperaturbereich	20 20
Messstoffdichte Druck-Temperatur-Kurven Druckbereich Schutzbehälter Durchflussgrenze Druckverlust Systemdruck Vibrationen	20 20 21 21 21 21 21 21
Konstruktiver Aufbau Bauform, Maße Bauform, Maße Gewicht Werkstoffe Frozessanschlüsse	22 22 26 26 27
Bedienbarkeit	28 28 28
Zertifikate und Zulassungen CE-Zeichen C-Tick Zeichen Ex-Zulassung Zertifizierung Modbus RS485	28 28 28 28 29
Bestellinformationen	29
Zubehör Kommunikationsspezifisches Zubehör Servicespezifisches Zubehör	29 29 30
Ergänzende Dokumentation	30 30 30
Fingetragene Marken	21

Hinweise zum Dokument

Verwendete Symbole

Elektrische Symbole

Symbol	Bedeutung
A0011197	Gleichstrom Eine Klemme, an der Gleichspannung anliegt oder durch die Gleichstrom fließt.
A0011198	Wechselstrom Eine Klemme, an der Wechselspannung anliegt oder durch die Wechselstrom fließt.
A0017381	Gleich- und Wechselstrom ■ Eine Klemme, an der Wechselspannung oder Gleichspannung anliegt. ■ Eine Klemme, durch die Wechselstrom oder Gleichstrom fließt.
	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
A0011199	Schutzleiteranschluss Eine Klemme, die geerdet werden muss, bevor andere Anschlüsse hergestellt werden dürfen.
A0011201	Äquipotenzialanschluss Ein Anschluss, der mit dem Erdungssystem der Anlage verbunden werden muss: Dies kann z.B. eine Potenzialausgleichsleitung oder ein sternförmiges Erdungssystem sein, je nach nationaler bzw. Firmenpraxis.

Symbole für Informationstypen

Symbol	Bedeutung
A0011182	Erlaubt Kennzeichnet Abläufe, Prozesse oder Handlungen, die erlaubt sind.
A0011183	Zu bevorzugen Kennzeichnet Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
A0011184	Verboten Kennzeichnet Abläufe, Prozesse oder Handlungen, die verboten sind.
A0011193	Tipp Kennzeichnet zusätzliche Informationen.
A0011194	Verweis auf Dokumentation Verweist auf die entsprechende Dokumentation zum Gerät.
A0011195	Verweis auf Seite Verweist auf die entsprechende Seitenzahl.
A0011196	Verweis auf Abbildung Verweist auf die entsprechende Abbildungsnummer und Seitenzahl.
A0015502	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung
1, 2, 3,	Positionsnummern
1. , 2. , 3	Handlungsschritte
A, B, C,	Ansichten
A-A, B-B, C-C,	Schnitte

Symbol	Bedeutung
≋→ A0013441	Durchflussrichtung
	Explosionsgefährdeter Bereich Kennzeichnet den explosionsgefährdeten Bereich.
A0011188	Sicherer Bereich (nicht explosionsgefährdeter Bereich) Kennzeichnet den nicht explosionsgefährdeten Bereich.

Arbeitsweise und Systemaufbau

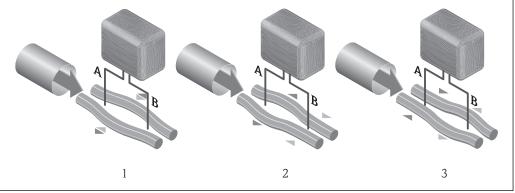
Messprinzip

Das Messprinzip basiert auf der kontrollierten Erzeugung von Corioliskräften. Diese Kräfte treten in einem System immer dann auf, wenn sich gleichzeitig translatorische (geradlinige) und rotatorische (drehende) Bewegungen überlagern.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 $F_c = Corioliskraft$

 $\Delta m = bewegte Masse$


 ω = Drehgeschwindigkeit

v = Radialgeschwindigkeit im rotierenden bzw. schwingenden System

Die Größe der Corioliskraft hängt von der bewegten Masse Δm , deren Geschwindigkeit v im System und somit vom Massefluss ab. Anstelle einer konstanten Drehgeschwindigkeit ω tritt beim Messaufnehmer eine Oszillation auf.

Beim Messaufnehmer werden dabei zwei vom Messstoff durchströmte, parallele Messrohre in Gegenphase zur Schwingung gebracht und bilden eine Art "Stimmgabel". Die an den Messrohren erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):

- Bei Nulldurchfluss (Stillstand des Messstoffs) schwingen beide Rohre in Phase (1).
- Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt (3).

A0016771

Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynamischer Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Die Systembalance wird durch die gegenphasige Schwingung der beiden Messrohre erreicht. Das Messprinzip arbeitet grundsätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.

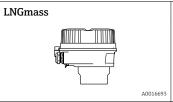
Dichtemessung

Das Messrohr wird immer in seiner Resonanzfrequenz angeregt. Sobald sich die Masse und damit die Dichte des schwingenden Systems (Messrohr und Messstoff) ändert, regelt sich die Erregerfrequenz automatisch wieder nach. Die Resonanzfrequenz ist somit eine Funktion der Messstoffdichte. Aufgrund dieser Abhängigkeit lässt sich mit Hilfe des Mikroprozessors ein Dichtesignal gewinnen.

Volumenmessung

Daraus lässt sich mit Hilfe des gemessenen Masseflusses auch der Volumenfluss berechnen.

Temperaturmessung

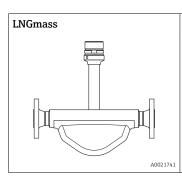

Zur rechnerischen Kompensation von Temperatureffekten wird die Temperatur am Messrohr erfasst. Dieses Signal entspricht der Prozesstemperatur und steht auch als Ausgangssignal zur Verfügung.

Messeinrichtung

Das Gerät besteht aus Messumformer und Messaufnehmer. Wenn das Gerät mit Modbus RS485 eigensicher bestellt wird, gehört die Safety Barrier Promass 100 (Sicherheitsbarriere) zum Lieferumfang und muss für den Betrieb des Geräts eingesetzt werden.

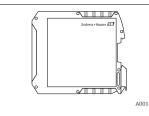
Eine Geräteausführung ist verfügbar: Kompaktausführung - Messumformer und Messaufnehmer bilden eine mechanische Einheit.

Messumformer

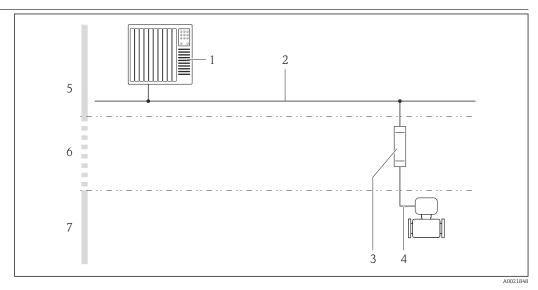


Gehäuseausführungen und Werkstoffe: Kompakt, Alu beschichtet: Beschichtetes Aluminium AlSi10Mg

Konfiguration:


Via Bedientools (z.B. FieldCare)

Messaufnehmer


- Gleichzeitige Messung von Durchfluss, Volumenfluss, Dichte und Temperatur (multivariable)
- Unempfindlich gegenüber Prozesseinflüssen
- Nennweitenbereich: DN 8...25 (3/8 ...1")
- Werkstoffe:
 - Messaufnehmer: Rostfreier Stahl 1.4301 (304)
 - Messrohre: Rostfreier Stahl 1.4539 (904L)
 - Prozessanschlüsse: Rostfreier Stahl 1.4404 (316/316L)

Safety Barrier Promass 100

- 2-Kanal Trennbarriere für Installation im nicht explosionsgefährdeten Bereich oder Zone 2/Div. 2:
 - Kanal 1: DC 24 V Stromversorgung
 - Kanal 2: Modbus RS485
- Bietet zusätzlich zur Begrenzung von Strom, Spannung und Leistung, für den Explosionsschutz eine galvanische Trennung der Stromkreise.
- Einfache Hutschienenmontage (DIN 35 mm) für Schaltschrankinstallation

Gerätearchitektur

■ 1 Möglichkeiten für die Messgeräteinbindung in ein System

- 1 Automatisierungssystem (z.B. SPS)
- 2 Modbus RS485
- 3 Safety Barrier Promass 100
- 4 Modbus RS485 eigensicher
- 5 Nicht explosionsgefährdeter Bereich
- 6 Nicht explosionsgefährdeter Bereich und Zone 2/Div. 2
- 7 Eigensicherer Bereich und Zone 1/Div. 1

Eingang

Messgröße

Direkte Messgrößen

- Massefluss
- Dichte
- Temperatur

Berechnete Messgrößen

- Volumenfluss
- Normvolumenfluss
- Normdichte

Messbereich

Messbereiche für Flüssigkeiten

DN		Messbereich-Endwerte $\dot{m}_{min(F)}\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	02 000	073,5
15	1/2	06500	0238
25	1	018000	0660

Empfohlener Messbereich

Kapitel "Durchflussgrenze" (→ 🖺 21)

Messdynamik

Über 1000 : 1.

Durchflüsse oberhalb des eingestellten Endwerts übersteuert die Elektronik nicht, so dass die aufsummierte Durchflussmenge korrekt erfasst wird.

Ausgang

Ausgangssignal

Modbus RS485

Physikalische Schnittstelle Gemäß Standard EIA/TIA-485-A	
Abschlusswiderstand	Integriert, über DIP-Schalter auf dem Messumformer-Elektronikmodul aktivierbar

Ausfallsignal

Ausfallinformationen werden abhängig von der Schnittstelle wie folgt dargestellt.

Modbus RS485

Fehlerverhalten	Wählbar:
	■ NaN-Wert anstelle des aktuellen Wertes
	Letzter gültiger Wert

Bedientool

Via Service-Schnittstelle

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
-----------------	---

Weitere Informationen zur Fernbedienung (→ 🖺 28)

Leuchtdioden (LED)

Statusinformationen	Statusanzeige durch verschiedene Leuchtdioden		
	Je nach Geräteausführung werden folgende Informationen angezeigt:		
Versorgungsspannung aktiv			
■ Datenübertragung aktiv			
	■ Gerätealarm/-störung vorhanden		

Ex-Anschlusswerte

Diese Werte gelten nur für folgende Geräteausführung: Bestellmerkmal "Ausgang", Option \mathbf{M} : Modbus RS485, für Einsatz im eigensicheren Bereich

Safety Barrier Promass 100

Sicherheitstechnische Werte

Klemmennummern			
Versorgungsspannung		Signalübertragung	
2 (L-)	1 (L+)	26 (A)	27 (B)
U _{nom} = DC 24 V U _{max} = AC 260 V		U _{nom} = DC 5 V U _{max} = AC 260 V	

Eigensichere Werte

Klemmennummern				
Versorgungsspannung Signalübertragung				
20 (L-) 10 (L+) 62 (A) 72 (B)			72 (B)	
$U_0 = 16,24 \text{ V}$				
$I_0 = 623 \text{ mA}$ $P_0 = 2.45 \text{ W}$				
Bei IIC*: L_0 = 92,8 μH, C_0 = 0,433 μF, L_0/R_0 = 14,6 μH/Ω				
* Die Gasgruppe ist abhängig von Messaufnehmer und Nennweite.				
Zur Übersicht und den Abhängigkeiten zwischen Gasgruppe - Messaufnehmer - Nennweite: Dokument				

Endress+Hauser 7

"Safety Instructions" (XA) zum Messgerät

Messumformer

Eigensichere Werte

Bestellmerkmal	Klemmennummern			
"Zulassungen"	Versorgungsspannung		Signalübertragung	
	20 (L-)	10 (L+)	62 (A)	72 (B)
 Option BM: ATEX II2G + IECEx Z1 Ex ia, II2D Ex tb Option BU: ATEX II2G + IECEx Z1 Ex ia Option C2: CSA C/US IS Cl. I, II, III Div. 1 Option 85: ATEX II2G + IECEx Z1 Ex ia + CSA C/US IS Cl. I, II, III Div. 1 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

^{*} Die Gasgruppe ist abhängig von Messaufnehmer und Nennweite.

Zur Übersicht und den Abhängigkeiten zwischen Gasgruppe - Messaufnehmer - Nennweite: Dokument "Safety Instructions" (XA) zum Messgerät

Schleichmengenunterdrückung

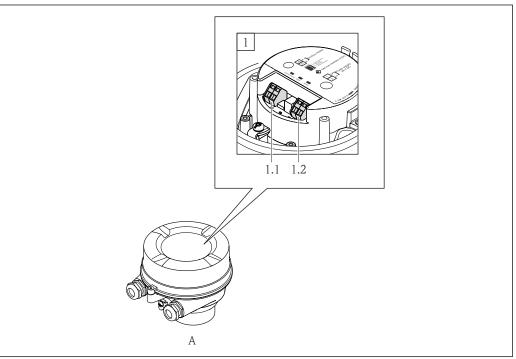
Die Schaltpunkte für die Schleichmengenunterdrückung sind frei wählbar.

Galvanische Trennung

Die folgenden Anschlüsse sind galvanisch voneinander getrennt:

- Ausgänge
- Spannungsversorgung

Protokollspezifische Daten


Modbus RS485

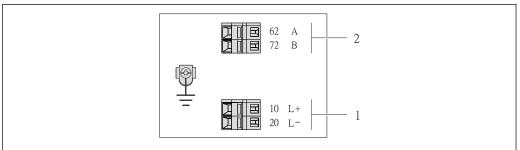
Protokoll	Modbus Applications Protocol Specification V1.1
Gerätetyp	Slave
Slave-Adressbereich	1247
Broadcast-Adressbereich	0
Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Modus Datenübertragung	ASCII RTU
Datenzugriff	Auf jeden Geräteparameter kann via Modbus RS485 zugegriffen werden. ☐ Zu den Modbus-Registerinformationen (→ 🖺 30)

Energieversorgung

Klemmenbelegung

Übersicht: Gehäuseausführung

- A Gehäuseausführung: Kompakt, beschichtet Alu 1 Anschlussvariante: Modbus RS485 1.1 Signalübertragung


- 1.2 Versorgungsspannung

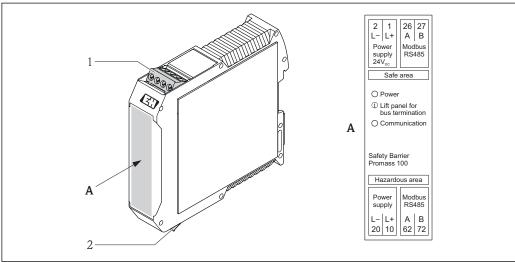
Messumformer

Anschlussvariante Modbus RS485, für Einsatz im eigensicheren Bereich

Bestellmerkmal "Ausgang", Option **M** (Anschluss via Safety Barrier Promass 100)

Bestellmerkmal	Verfügbare Anschlussarten		Mariale August I Desteller culus al	
"Gehäuse"	Ausgang	Energie- versorgung	Mögliche Auswahl Bestellmerkmal "Elektrischer Anschluss"	
Optionen A	Klemmen	Klemmen	 Option B: Gewinde M20x1 Option C: Gewinde G ½" Option D: Gewinde NPT ½" 	
Bestellmerkmal "Gel Option A : Kompakt,				

A001705


- 2 Klemmenbelegung Modbus RS485, Anschlussvariante für den Einsatz im eigensicheren Bereich (Anschluss via Safety Barrier Promass 100)
- 1 Eigensichere Energieversorgung
- 2 Modbus RS485

Bestellmerkmal "Ausgang"	20 (L-)	10 (L+)	72 (B)	62 (A)
Option M	Eigensichere Versorgungsspannung		Modbus RS48	35 eigensicher

Bestellmerkmal "Ausgang":

Option M: Modbus RS485, für Einsatz im eigensicheren Bereich (Anschluss via Safety Barrier Promass 100)

Safety Barrier Promass 100

A0016922

- 3 Safety Barrier Promass 100 mit Anschlüssen
- 1 Nicht explosionsgefährdeter Bereich und Zone 2/Div. 2
- 2 Eigensicherer Bereich

Versorgungsspannung

Messumformer

- Für Geräteausführung mit allen Kommunikationsarten außer Modbus RS485 eigensicher: DC 20...30 V
- Für Geräteausführung mit Modbus RS485 eigensicher: Speisung via Safety Barrier Promass 100 Das Netzteil muss sicherheitstechnisch geprüft sein (z.B. PELV, SELV).

Safety Barrier Promass 100

DC 20...30 V

Leistungsaufnahme

Messumformer

Bestellmerkmal	Maximale	
"Ausgang"	Leistungsaufnahme	
Option M : Modbus RS485, für Einsatz im eigensicheren Bereich	2,45 W	

Safety Barrier Promass 100

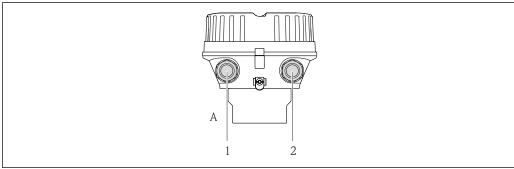
Bestellmerkmal	Maximale	
"Ausgang"	Leistungsaufnahme	
Option M : Modbus RS485, für Einsatz im eigensicheren Bereich	4,8 W	

Stromaufnahme

Messumformer

Bestellmerkmal	Maximale	Maximaler
"Ausgang"	Stromaufnahme	Einschaltstrom
Option M : Modbus RS485, für Einsatz im eigensicheren Bereich	145 mA	16 A (<0,4 ms)

Safety Barrier Promass 100


Bestellmerkmal	Maximale	Maximaler
"Ausgang"	Stromaufnahme	Einschaltstrom
Option M : Modbus RS485, für Einsatz im eigensicheren Bereich	230 mA	10 A (<0,8 ms)

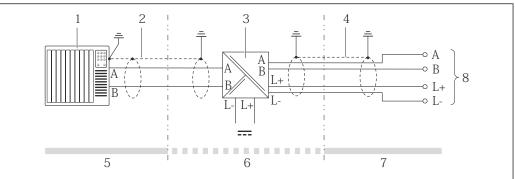
Versorgungsausfall

- Summenzähler bleiben auf dem zuletzt ermittelten Wert stehen.
- Konfiguration bleibt im Gerätespeicher erhalten.
- Fehlermeldungen inklusive Stand des Betriebsstundenzählers werden abgespeichert.

Elektrischer Anschluss

Anschluss Messumformer

A001982


- A Gehäuseausführung: Kompakt, beschichtet Alu
- 1 Kabeleinführung für Signalübertragung
- 2 Kabeleinführung für Versorgungsspannung

Klemmenbelegung (→ 🖺 10)

Anschlussbeispiele

Modbus RS485

A001680

■ 4 Anschlussbeispiel für Modbus RS485 eigensicher

- 1 Automatisierungssystem (z.B. SPS)
- 2 Kabelschirm, Kabelspezifikation beachten ($\rightarrow \implies 13$)
- 3 Safety Barrier Promass 100
- 4 Kabelspezifikation beachten ($\rightarrow \implies 13$)
- 5 Nicht explosionsgefährdeter Bereich
- 6 Nicht explosionsgefährdeter Bereich und Zone 2/Div. 2
- 7 Eigensicherer Bereich
- 8 Messumformer

Potentialausgleich

Spezielle Maßnahmen für den Potenzialausgleich sind nicht erforderlich.

Bei einem Gerät für den explosionsgefährdeten Bereich: Hinweise in der Ex-Dokumentation (XA) beachten.

Klemmen

Messumformer

Federkraftklemmen für Aderquerschnitte 0,5...2,5 mm² (20...14 AWG)

Safety Barrier Promass 100

Steckbare Schraubklemmen für Aderquerschnitte 0,5...2,5 mm² (20...14 AWG)

Kabeleinführungen

- Kabelverschraubung: M20 × 1,5 mit Kabel ϕ 6...12 mm (0,24...0,47 in)
- Gewinde für Kabeleinführung:
 - NPT ½"
 - G ½"
 - M20

Kabelspezifikation

Zulässiger Temperaturbereich

- -40 °C (-40 °F)...+80 °C (+176 °F)
- Mindestanforderung: Kabel-Temperaturbereich ≥ Umgebungstemperatur + 20 K

Energieversorgungskabel

Normales Installationskabel ausreichend.

Signalkabel

Modbus RS485

Standard EIA/TIA-485 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

Kabeltyp	A
Wellenwiderstand	135165 Ω bei einer Messfrequenz von 320 MHz
Kabelkapazität	<30 pF/m
Aderquerschnitt	>0,34 mm ² (22 AWG)
Kabeltyp	Paarweise verdrillt
Schleifenwiderstand	≤110 Ω/km
Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.

Verbindungskabel Safety Barrier Promass 100 - Messgerät

Kabeltyp	Abgeschirmtes Twisted-Pair-Kabel mit 2x2 Adern. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.
Maximaler Kabelwider- stand	$2,5~\Omega,$ einseitig

Um die Funktionstüchtigkeit des Messgeräts sicherzustellen: Maximalen Kabelwiderstand einhalten.

Im Folgenden wird zum jeweiligen Aderquerschnitt die maximale Kabellänge angegeben. Maximalen Kapazitäts- und Induktivitätsbelag vom Kabel sowie Ex-Anschlusswerte beachten (→ 🖺 7).

Aderquerschnitt		Maximale Kabellänge	
[mm ²]	[AWG]	[m]	[ft]
0,5	20	70	230
0,75	18	100	328
1,0	17	100	328

Aderque	erschnitt	Maximale Kabellänge			
[mm ²] [AWG]		[m]	[ft]		
1,5	16	200	656		
2,5	14	300	984		

Leistungsmerkmale

Referenzbedingungen

- Fehlergrenzen in Anlehnung an ISO 11631
- Wasser mit +15...+45 °C (+59...+113 °F) bei 2...6 bar (29...87 psi)
- Angaben laut Kalibrationsprotokoll
- Angaben zur Messabweichung basieren auf akkreditierten Kalibrieranlagen, die auf ISO 17025 rückgeführt sind.
- Zum Erhalt der Fehlermesswerte: Produktauswahlhilfe *Applicator*(→ 🖺 30)

Maximale Messabweichung

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grundgenauigkeit

Masse- und Volumenfluss (Flüssigkeiten)

±0,15 % v.M.

Berechnungsgrundlagen (→ 🖺 16)

Dichte (Flüssigkeiten)

- Referenzbedingungen: ±0,0005 g/cm³
- Standarddichtekalibrierung: ±0,02 g/cm³ (gültig über den gesamten Temperaturbereich und Dichtebereich)

 $\pm 0.5 \text{ }^{\circ}\text{C} \pm 0.005 \cdot \text{T }^{\circ}\text{C} (\pm 0.9 \text{ }^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \text{ }^{\circ}\text{F})$

Nullpunktstabilität

D	N	Nullpunktstabilität			
[mm]	[mm] [in]		[lb/min]		
8	3/8	0,2	0,0074		
15	1/2	0,65	0,0239		
25	1	1,8	0,0662		

Durchflusswerte

Durchflusswerte als Turndown-Kennzahlen abhängig von der Nennweite.

SI-Einheiten

DN	1:1	1:1 1:10 1:20 1:50		1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	kg/h] [kg/h]		[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6500	650	325	130	65	13
25	18 000	1800	900	360	180	36

14

US-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73,5	7,35	3,675	1,47	0,735	0,147
1/2	238	23,8	11,9	4,76	2,38	476
1	660	66	33	13,2	6,6	1,32

Wiederholbarkeit

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grund-Wiederholbarkeit

Masse- und Volumenfluss (Flüssigkeiten)

±0,075 % v.M.

Berechnungsgrundlagen (→ 🖺 16)

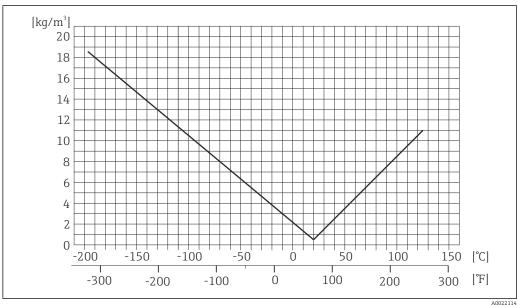
Dichte (Flüssigkeiten)

 $\pm 0,00025 \text{ g/cm}^3$

Temperatur

 ± 0.25 °C ± 0.0025 · T °C (± 0.45 °F ± 0.0015 · (T-32) °F)

Reaktionszeit


- Die Reaktionszeit ist abhängig von der Parametrierung (Dämpfung).
- Reaktionszeit bei sprunghaften Änderungen der Messgröße (nur Massefluss): Nach 100 ms, 95 % des Endwerts

Einfluss Messstofftemperatur

Massefluss and Volumenfluss

Bei einer Temperaturdifferenz zwischen der Temperatur beim Nullpunktabgleich und der Prozesstemperatur, beträgt die Messabweichung der Messaufnehmer typisch ±0,0002 % vom Endwert/°C $(\pm 0.0001 \% \text{ vom Endwert/}^{\circ}F)$.

Bei einer Temperaturdifferenz zwischen der Dichte-Kalibriertemperatur und der Prozesstemperatur, beträgt die Messabweichung der Messaufnehmer typisch ±0,0001 g/cm³ /°C (±0,00005 g/cm³ /°F). Felddichteabgleich ist möglich.

■ 5 Felddichtabgleich, Beispiel bei +20 ℃ (+68 °F)

Temperatur

 $\pm 0,005 \cdot \text{T} \, ^{\circ}\text{C} \, (\pm 0,005 \cdot (\text{T} - 32) \, ^{\circ}\text{F})$

Einfluss Messstoffdruck

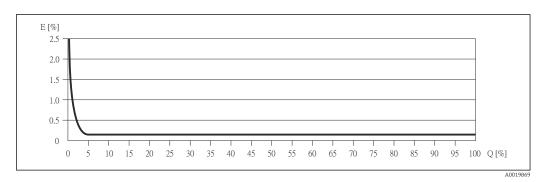
Eine Druckdifferenz zwischen Kalibrierdruck und Prozessdruck hat keinen Einfluss auf die Messgenauigkeit.

Berechnungsgrundlagen

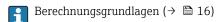
v.M. = vom Messwert, v.E. = vom Endwert

BaseAccu = Grundgenauigkeit in % v.M., BaseRepeat = Grund-Wiederholbarkeit in % v.M.

MeasValue = Messwert; ZeroPoint = Nullpunktstabilität


Berechnung der maximalen Messabweichung in Abhängigkeit von der Durchflussrate

Durchflussrate	maximale Messabweichung in % v.M.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
< ZeroPoint BaseAccu · 100	± ZeroPoint MeasValue · 100

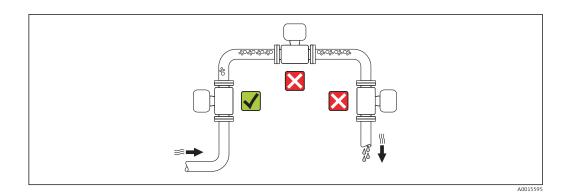

Berechnung der maximalen Wiederholbarkeit in Abhängigkeit von der Durchflussrate

Durchflussrate	maximale Wiederholbarkeit in % v.M.
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± BaseRepeat
A0021335	
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021336	A0021337

Beispiel maximale Messabweichung

- E Error: maximale Messabweichung in % v.M. (Beispiel)
- Q Durchflussrate in %

Montage

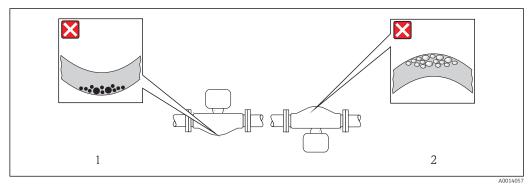

Grundsätzlich sind keine besonderen Montagevorkehrungen wie Abstützungen o.Ä. erforderlich. Externe Kräfte werden durch konstruktive Gerätemerkmale abgefangen.

Montageort

Um Messfehler aufgrund von Gasblasenansammlungen im Messrohr zu vermeiden, folgende Einbauorte in der Rohrleitung vermeiden:

- Einbau am höchsten Punkt der Leitung
- Einbau unmittelbar vor einem freien Rohrauslauf in einer Fallleitung

16


Einbaulage

Die Pfeilrichtung auf dem Messaufnehmer-Typenschild hilft, den Messaufnehmer entsprechend der Durchflussrichtung einzubauen (Fließrichtung des Messstoffs durch die Rohrleitung).

	Einbaulag	e	Empfehlung
A	Vertikale Einbaulage	A0015591	
В	Horizontale Einbaulage Messumfor- merkopf oben	A0015589	Ausnahme: $(\rightarrow \bigcirc 6, \bigcirc 17)$
С	Horizontale Einbaulage Messumfor- merkopf unten	A0015590	Ausnahme: $(\rightarrow \bigcirc 6, \bigcirc 17)$
D	Horizontale Einbaulage Messumfor- merkopf seitlich	A0015592	×

- Anwendungen mit tiefen Prozesstemperaturen können die Umgebungstemperatur senken. Um die minimale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.
- 2) Anwendungen mit hohen Prozesstemperaturen können die Umgebungstemperatur erhöhen. Um die maximale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.

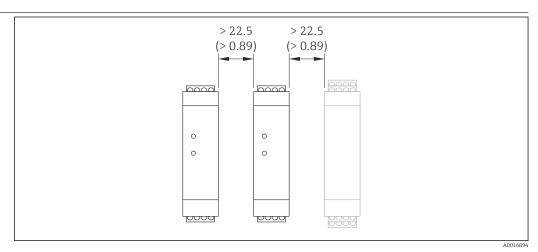
Wenn ein Messaufnehmer mit gebogenem Messrohr horizontal eingebaut wird: Messaufnehmerposition auf die Messstoffeigenschaften abstimmen.

 \blacksquare 6 Einbaulage Messaufnehmer mit gebogenem Messrohr

- 1 Vermeiden bei feststoffbeladenen Messstoffen: Gefahr von Feststoffansammlungen
- 2 Vermeiden bei ausgasenden Messstoffen: Gefahr von Gasansammlungen

Ein- und Auslaufstrecken

Bei der Montage muss keine Rücksicht auf Turbulenz erzeugende Armaturen wie Ventile, Krümmer oder T-Stücke genommen werden, solange keine Kavitationseffekte entstehen ($\Rightarrow \stackrel{ ext{le}}{=} 21$).


Spezielle Montagehinweise

Nullpunktabgleich

Ein Nullpunktabgleich ist erfahrungsgemäß nur in speziellen Fällen empfehlenswert:

- Bei höchsten Ansprüchen an die Messgenauigkeit und geringen Durchflussmengen
- Bei extremen Prozess- oder Betriebsbedingungen, z.B. bei sehr hohen Prozesstemperaturen oder sehr hoher Viskosität des Messstoffes.

Montage Safety Barrier Promass 100

Minimalabstand zwischen weiteren Safety Barrier Promass 100 oder anderen Modulen. Maßeinheit mm

Umgebung

₽ 7

Umgebungstemperaturbereich

Messgerät	-40+60 °C (-40+140 °F)
Safety Barrier Promass 100	-40+60 °C (-40+140 °F)

► Bei Betrieb im Freien:

 $\label{thm:condensity} \mbox{Direkte Sonneneinstrahlung vermeiden, besonders in wärmeren Klimaregionen.}$

Temperaturtabellen

Für den Einsatz im explosionsgefährdeten Bereich gilt in den nachfolgenden Tabellen, die folgende Abhängigkeit der maximalen Messstofftemperatur für T1-T6 von der maximalen Umgebungstemperatur T_a .

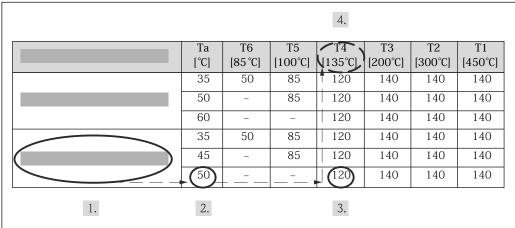
Ex ia, cCSA_{US} IS

SI-Einheiten

Bestellmerkmal "Gehäuse"	T _a [°C]	T6 [85 ℃]	T5 [100°C]	T4 [135 ℃]	T3 [200 °C]	T2 [300 °C]	T1 [450 °C]
	35	50	85	120	125	125	125
Option A "Kompakt beschichtet Alu"	50	-	85	120	125	125	125
	60	-	_	120	125	125	125

US-Einheiten

Bestellmerkmal "Gehäuse"	T _a [°F]	T6 [185 °F]	T5 [212 °F]	T4 [275 °F]	T3 [392 °F]	T2 [572 °F]	T1 [842 °F]
	95	122	185	248	257	257	257
Option A "Kompakt beschichtet Alu"	122	-	185	248	257	257	257
	140	-	-	248	257	257	257


Gas- und Staubexplosionsschutz

Temperaturklasse und Oberflächentemperatur mit der Temperaturtabelle ermitteln

- ullet Für Gas: Temperaturklasse in Abhängigkeit von Umgebungstemperatur T_a und Messstofftemperatur T_m bestimmen.
- Für Staub: Maximale Oberflächentemperatur in Abhängigkeit von der maximalen Umgebungstemperatur T_a und maximalen Messstofftemperatur T_m bestimmen.

Beispiel

- Maximale Umgebungstemperatur: T_a = 50 °C
- Gemessene maximale Messstofftemperatur: T_{mm} = 108 °C

A0019758

- 8 Vorgehensweise zur Ermittlung von Temperaturklasse und Oberflächentemperatur
- 1. Bestellmerkmal des Gerätes auswählen: Nennweite, Gehäuseoption, usw.
- 2. Umgebungstemperatur T_a (50 °C) auswählen.
 - └ Die Zeile, in der die maximale Messstofftemperatur steht, ist ermittelt.
- $\label{eq:maximale} \textbf{Maximale Messstofftemperatur } T_m \ dieser \ Zeile \ auswählen, \ die unmittelbar größer \ oder gleich \ der gemessenen maximalen \ Messstofftemperatur \ T_{mm} \ ist.$
 - Arr Die Spalte mit der Temperaturklasse für Gas ist ermittelt: 108 °C ≤ 120°C \rightarrow T4.
- 4. Die Maximaltemperatur der ermittelten Temperaturklasse entspricht der maximalen Oberflächentemperatur für Staub: T4 = 135 °C.

Lagerungstemperatur	−40+80 °C (−40+176 °F), vorzugsweise bei +20 °C (+68 °F)	
Klimaklasse	DIN EN 60068-2-38 (Prüfung Z/AD)	
Schutzart	Messumformer und Messaufnehmer ■ Standardmäßig: IP66/67, Type 4X enclosure ■ Bei geöffnetem Gehäuse: IP20, Type 1 enclosure	
	Safety Barrier Promass 100 IP20	

Stoßfestigkeit Gemäß IEC/EN 60068-2-31

Schwingungsfestigkeit

Beschleunigung bis 1 g, 10...150 Hz, in Anlehnung an IEC/EN 60068-2-6

Elektromagnetische Verträglichkeit (EMV)

- Nach IEC/EN 61326 und NAMUR-Empfehlung 21 (NE 21)
- Erfüllt Emissionsgrenzwerte für Industrie nach EN 55011 (Klasse A)

Details sind aus der Konformitätserklärung ersichtlich.

Prozess

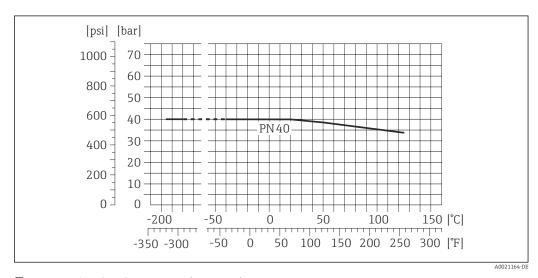
Messstofftemperaturbereich

Messaufnehmer

-196...+125 °C (-320...+257 °F)

Dichtungen

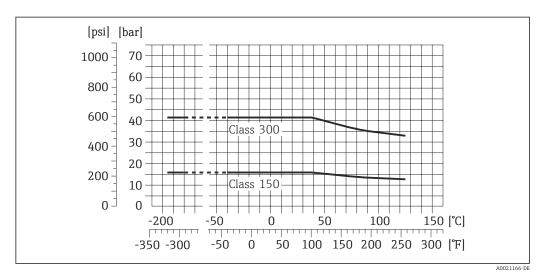
Keine innen liegenden Dichtungen


Messstoffdichte

 $0...5000 \text{ kg/m}^3 (0...312 \text{ lb/cf})$

Druck-Temperatur-Kurven

Die folgenden Belastungskurven beziehen sich auf das gesamte Gerät und nicht nur auf den Prozessanschluss.


Flanschanschluss in Anlehnung an EN 1092-1 (DIN 2501)

■ 9 Mit Flanschwerkstoff 1.4404 (316/316L)

20

Flanschanschluss in Anlehnung an ASME B16.5

Mit Flanschwerkstoff 1.4404 (316/316L) ■ 10

Druckbereich Schutzbehälter

Das Gehäuse des Messaufnehmers ist mit Helium gefüllt und schützt die innenliegende Elektronik und Mechanik.

Das Gehäuse verfügt nicht über eine Druckbehälterklassifizierung.

Richtwert für die Druckbelastbarkeit des Messaufnehmergehäuses: 16 bar (232 psi)

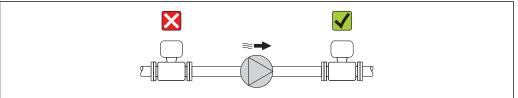
Durchflussgrenze

Die geeignete Nennweite wird ermittelt, indem zwischen dem Durchfluss und dem zulässigen Druckabfall optimiert wird.

Zur Übersicht der Messbereich-Endwerte: Kapitel "Messbereich" (→ 🖺 6)

- Der minimal empfohlene Endwert beträgt ca. 1/20 des maximalen Endwerts
- Für die häufigsten Anwendungen sind 20...50 % des maximalen Endwerts als ideal anzusehen
- Bei abrasiven Medien (z.B. feststoffbeladenen Flüssigkeiten) ist ein tiefer Endwert zu wählen: Strömungsgeschwindigkeit <1 m/s (<3 ft/s).

Druckverlust


Zur Berechnung des Druckverlusts: Produktauswahlhilfe $Applicator(\rightarrow \triangleq 30)$

Systemdruck

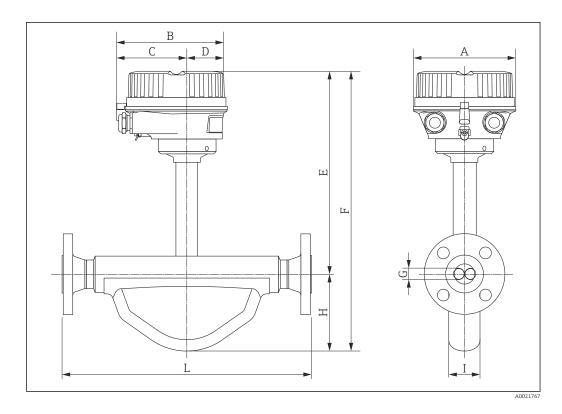
Es ist wichtig, dass keine Kavitation und kein Ausgasen der in Flüssigkeiten enthaltenen Gase auftritt. Dies wird durch einen genügend hohen Systemdruck verhindert.

Deshalb werden folgende Montageorte empfohlen:

- Am tiefsten Punkt einer Steigleitung
- Auf der Druckseite von Pumpen (keine Unterdruckgefahr)

A0015594

Vibrationen


Anlagenvibrationen haben aufgrund hoher Messrohr-Schwingfrequenz keinen Einfluss auf die Funktionstüchtigkeit des Messsystems.

Konstruktiver Aufbau

Bauform, Maße

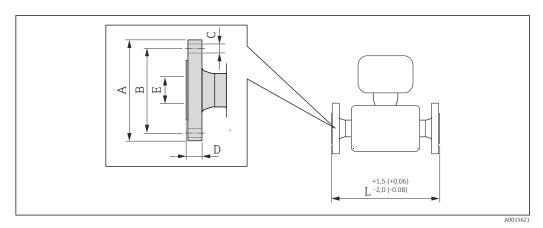
Kompaktausführung

Bestellmerkmal "Gehäuse", Option A "Alu"

Abmessungen SI-Einheiten

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	I [mm]	L [mm]
8	136	147,5	93,5	54	273	362	5,35	89	40	1)
15	136	147,5	93,5	54	273	373	8,30	100	38	1)
25	136	147,5	93,5	54	270	372	12,0	102	48	1)

1) Abhängig vom jeweiligen Prozessanschluss


Abmessungen US-Einheiten

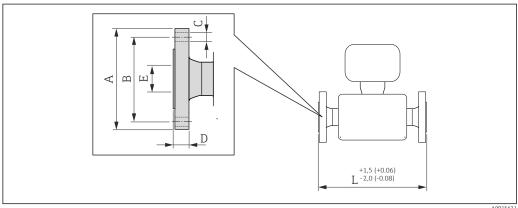
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	F [in]	G [in]	H [in]	I [in]	L [in]
3/8	5,35	5,81	3,68	2,13	10,7	14,3	0,21	3,50	1,57	1)
1/2	5,35	5,81	3,68	2,13	10,7	14,7	0,33	3,94	1,50	1)
1	5,35	5,81	3,68	2,13	10,6	14,6	0,47	4,02	1,89	1)

1) Abhängig vom jeweiligen Prozessanschluss

Prozessanschlüsse in SI-Einheiten

Flanschanschlüsse EN (DIN)

■ 11 Maßeinheit mm (in)


Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N) / PN 40: 1.4404 (316/316L) (Bestellmerkmal "Prozessanschluss", Option D2S)

Oberflächenrauhigkeit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2...12,5 µm

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
8 1)	95	65	4 × Ø14	16	17,3	232
15	95	65	4 × Ø14	16	17,3	279
25	115	85	4 × Ø14	18	28,5	329

1) DN 8 standardmäßig mit DN 15 Flanschen

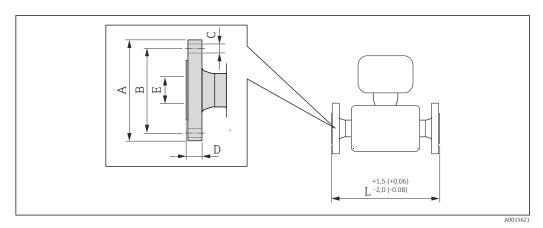
Flanschanschlüsse ASME B16.5

■ 12 Maßeinheit mm (in)

Endress+Hauser 23

A001562

Flansch in Anl Option AAS)	Flansch in Anlehnung an ASME B16.5 / Cl 150: 1.4404 (316/316L) (Bestellmerkmal "Prozessanschluss", Option AAS)						
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
8 ¹⁾	88,9	60,5	4 × Ø15,7	11,2	15,7	232	
15	88,9	60,5	4 × Ø15,7	11,2	15,7	279	
25	108,0	79,2	4 × Ø15,7	14,2	26,7	329	


1) DN 8 standardmäßig mit DN 15 Flanschen

Flansch in Anl Option ABS)	Flansch in Anlehnung an ASME B16.5 / Cl 300: 1.4404 (316/316L) (Bestellmerkmal "Prozessanschluss", Option ABS)						
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]	
8 ¹⁾	95,2	66,5	4 × Ø15,7	14,2	15,7	232	
15	95,2	66,5	4 × Ø15,7	14,2	15,7	279	
25	123,9	88,9	4 × Ø19,0	17,5	26,7	329	

1) DN 8 standardmäßig mit DN 15 Flanschen

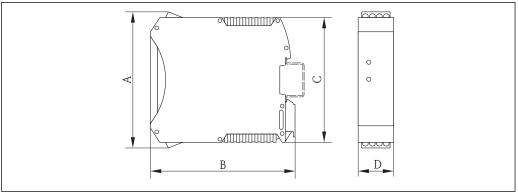
Prozessanschlüsse in US-Einheiten

Flanschanschlüsse ASME B16.5

🖪 13 Maßeinheit mm (in)

Flansch in An Option AAS)	Flansch in Anlehnung an ASME B16.5 / Cl 150: 1.4404 (316/316L) (Bestellmerkmal "Prozessanschluss", Option AAS)						
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]	
3/8 1)	3,50	2,38	4 × Ø0,62	0,44	0,62	9,13	
1/2	3,50	2,38	4 × Ø0,62	0,44	0,62	11,0	
1	4,25	3,12	4 × Ø0,62	0,56	1,05	13,0	

1) DN 3 /8" standardmäßig mit DN 4 /2" Flanschen


Flansch in An Option ABS)	Flansch in Anlehnung an ASME B16.5 / Cl 300: 1.4404 (316/316L) (Bestellmerkmal "Prozessanschluss", Option ABS)						
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]	
3/8 1)	3,75	2,62	4 × Ø0,62	0,56	0,62	9,13	
1/2	3,75	2,62	4 × Ø0,62	0,56	0,62	11,0	
1	4,88	3,50	4 × Ø0,75	0,69	1,05	13,0	

1) DN $^3\!/_{\!8}$ " standardmäßig mit DN $^1\!/_{\!2}$ " Flanschen

Safety Barrier Promass 100

Hutschiene EN 60715:

- TH 35 x 7,5
- TH 35 x 15

10016777

A	A	В		С		D	
[mm]	[in]	[mm]	[in]	[mm]	[in]	[mm]	[in]
108	4,25	114,5	4,51	99	3,9	22,5	0,89

Gewicht

Kompaktausführung

Gewicht in SI-Einheiten

Alle Werte (Gewicht) beziehen sich auf Geräte mit EN/DIN PN 40-Flanschen. Gewichtsangaben in $\lfloor kg \rfloor$.

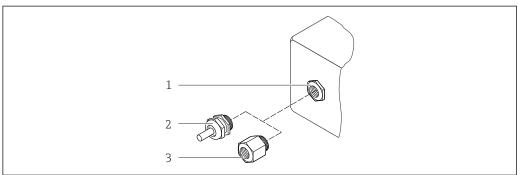
DN [mm]	Gewicht [kg]
8	6
15	6
25	8

Gewicht in US-Einheiten

Alle Werte (Gewicht) beziehen sich auf Geräte mit EN/DIN PN 40-Flanschen. Gewichtsangaben in [lbs].

DN [in]	Gewicht [lbs]
3/8	13
1/2	13
1	18

Safety Barrier Promass 100


49 g (1,73 ounce)

Werkstoffe

Gehäuse Messumformer

Bestellmerkmal "Gehäuse", Option ${\bf A}$ "Kompakt, Alu beschichtet": Beschichtetes Aluminium AlSi $10{
m Mg}$

Kabeleinführungen/-verschraubungen

Δ0020640

🖪 14 - Mögliche Kabeleinführungen/-verschraubungen

- Kabeleinführung im Messumformer-, Wandaufbau- oder Anschlussgehäuse mit Innengewinde M20 x 1,5
- 2 Kabelverschraubung M20 x 1,5
- 3 Adapter für Kabeleinführung mit Innengewinde G ½" oder NPT ½"

Bestellmerkmal "Gehäuse", Option A "Kompakt, beschichtet Alu"

Die verschiedenen Kabeleinführungen sind für den explosionsgefährdeten und nicht explosionsgefährdeten Bereich geeignet.

Kabeleinführung/-verschraubung	Werkstoff
Kabelverschraubung M20 × 1,5	Messing vernickelt
Adapter für Kabeleinführung mit Innengewinde G ½"	
Adapter für Kabeleinführung mit Innengewinde NPT ½"	

Gehäuse Messaufnehmer

- Säuren- und laugenbeständige Außenoberfläche
- Rostfreier Stahl 1.4301 (304)

Messrohre

- Rostfreier Stahl 1.4539 (904L); Verteilerstück: 1.4404 (316L)
- Oberflächengüte:
 - Nicht poliert
 - $Ra_{max} = 0.8 \mu m (32 \mu in)$

Prozessanschlüsse

Für alle Prozessanschlüsse:

Rostfreier Stahl 1.4404 (316/316L)

Dichtungen

Geschweißte Prozessanschlüsse ohne innenliegende Dichtungen

Safety Barrier Promass 100

Gehäuse: Polyamid

Prozessanschlüsse

Flansche:

- EN 1092-1 (DIN 2501)
- ASME B16.5
- i

Zu den verschiedenen Werkstoffen der Prozessanschlüsse (→ 🖺 27)

Bedienbarkeit

Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

- Inbetriebnahme
- Betrieb
- Diagnose
- Expertenebene

Schnelle und sichere Inbetriebnahme

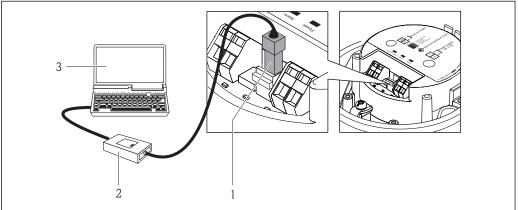
- Eigene Menüs für Anwendungen
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen

Sicherheit im Betrieb

Bedienung in folgenden Landessprachen:

Via Bedientool "FieldCare":

Englisch, Deutsch


Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

- Behebungsmaßnahmen sind via Bedientools und Webbrowser abrufbar
- Vielfältige Simulationsmöglichkeiten
- Statusanzeige durch mehrere Leuchtdioden (LED) auf dem Elektronikmodul im Gehäuseraum

Fernbedienung

Via Service-Schnittstelle (CDI)

Diese Kommunikationsschnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Ausgang", Option \mathbf{M} : Modbus RS485

A001692

- 1 Service-Schnittstelle (CDI) des Messgeräts
- 2 Commubox FXA291
- 3 Computer mit Bedientool "FieldCare" mit COM DTM "CDI Communication FXA291"

Zertifikate und Zulassungen

CE-Zeichen

Das Messsystem erfüllt die gesetzlichen Anforderungen der anwendbaren EG-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EG-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung des CE-Zeichens.

C-Tick Zeichen

Das Messsystem stimmt überein mit den EMV-Anforderungen der Behörde "Australian Communications and Media Authority (ACMA)".

Ex-Zulassung

Das Messgerät ist zum Einsatz im explosionsgefährdeten Bereich zertifiziert und die zu beachtenden Sicherheitshinweise im separaten Dokument "Safety Instructions" (XA) beigefügt. Dieses ist auf dem Typenschild referenziert.

Die separate Ex-Dokumentation (XA) mit allen relevanten Daten zum Explosionsschutz ist bei Ihrer Endress+Hauser Vertriebszentrale erhältlich.

28

ATEX/IECEx

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Ex ia

Kategorie (ATEX)	Zündschutzart
II2G	Ex ia IIC T6-T1 Gb
II2G	Ex ia IIC T6-T1 Gb oder Ex ia IIB T6-T1 Gb
II1/2G, II2D	Ex ia IIC T6-T1 Ga/Gb oder Ex ia IIB T6-T1 Ga/Gb Ex tb IIIC T* Db
II2G, II2D	Ex ia IIC T6-T1 Gb oder Ex ia IIB T6-T1 Gb Ex tb IIIC T* Db

Zertifizierung Modbus RS485

Das Messgerät erfüllt alle Anforderungen des MODBUS/TCP Konformitätstests und besitzt die "MODBUS/TCP Conformance Test Policy, Version 2.0". Das Messgerät hat alle durchgeführten Test-prozeduren erfolgreich bestanden und ist durch das "MODBUS/TCP Conformance Test Laboratory" der Universität von Michigan zertifiziert worden.

Bestellinformationen

Ausführliche Bestellinformationen sind verfügbar:

- Im Produktkonfigurator auf der Endress+Hauser Internetseite: www.endress.com → Land wählen → Messgeräte → Gerät wählen → Erweiterte Funktionen: Produktkonfiguration
- Bei Ihrer Endress+Hauser Vertriebszentrale: www.endress.com/worldwide
- i

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung
Commubox FXA291	Verbindet Endress+Hauser Feldgeräte mit CDI-Schnittstelle (= Endress+Hauser Common Data Interface) und der USB-Schnittstelle eines Computers oder Laptops. Für Einzelheiten: Dokument "Technische Information" TI00405C

Servicespezifisches Zubehör

Zubehör	Beschreibung	
Applicator	Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Berechnung aller notwendigen Daten zur Bestimmung des optimalen Durchflussmessgeräts: z.B. Nennweite, Druckabfall, Messgenauigkeiten oder Prozessanschlüsse. Grafische Darstellung von Berechnungsergebnissen	
	Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanten Daten und Parameter über die gesamte Lebensdauer eines Projekts.	
	Applicator ist verfügbar: " Über das Internet: https://wapps.endress.com/applicator Auf CD-ROM für die lokale PC-Installation.	
W@M	Life Cycle Management für Ihre Anlage W@M unterstützt Sie mit einer Vielzahl von Software-Anwendungen über den gesamten Prozess: Von der Planung und Beschaffung über Installation und Inbe- triebnahme bis hin zum Betrieb der Messgeräte. Zu jedem Messgerät stehen über den gesamten Lebenszyklus alle relevanten Informationen zur Verfügung: z.B. Gerätestatus, Ersatzteile, gerätespezifische Dokumentation. Die Anwendung ist bereits mit den Daten Ihrer Endress+Hauser Geräte gefüllt; auch die Pflege und Updates des Datenbestandes übernimmt Endress+Hauser.	
	W@M ist verfügbar: Über das Internet: www.endress.com/lifecyclemanagement Auf CD-ROM für die lokale PC-Installation.	
FieldCare	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren.	
	Zu Einzelheiten: Betriebsanleitung BA00027S und BA00059S	

Ergänzende Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- Die mitgelieferte CD-ROM zum Gerät (je nach Geräteausführung ist die CD-ROM nicht Teil des Lieferumfangs!)
- Der W@M Device Viewer: Seriennummer vom Typenschild eingeben (www.endress.com/deviceviewer)
- Die Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder den 2-D-Matrixcode (QR-Code) auf dem Typenschild scannen.

Standarddokumentation

Kommunikation	Dokumenttyp	Dokumentationscode
	Kurzanleitung	KA01153D
Modbus RS485	Betriebsanleitung	BA01261D

Geräteabhängige Zusatzdokumentation

Dokumenttyp	Inhalt	Dokumentationscode
Safety Instructions	ATEX/IECEx Ex i	XA01217D
	cCSAus IS	XA01218D
	INMETRO	XA01246D
	NEPSI	XA01247D
Sonderdokumentation	Modbus RS485-Register-Informationen	SD01165D
Einbauanleitung		Bei den Zubehörteilen jeweils angegeben (→ 🖺 29)

Eingetragene Marken

 $\mathbf{Modbus}^{\otimes}$ Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

www.addresses.endress.com

