
Operating Instructions LNGmass Modbus RS485

Coriolis flowmeter

- Make sure the document is stored in a safe place such that it is always available when working on or with the device.
- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data in line with technological developments without prior notice. Your Endress+Hauser sales center will supply you with current information and updates to this manual.

LNGmass Modbus RS485 Table of contents

Table of contents

1	Document information			6.2.2 Preparing the measuring device6.2.3 Mounting the measuring device	
1.1 1.2	Document function		6.3	Post-installation check	
	1.2.1 Safety symbols	5	7	Electrical connection	22
	 1.2.3 Tool symbols	6	7.1	Connection conditions	22 22
1.3	Documentation	7	7.2	7.1.4 Shielding and grounding	25 26
1.4	Registered trademarks			7.2.1 Connecting the transmitter7.2.2 Connecting the Safety Barrier Promass 100	
2	Basic safety instructions		7.3	Hardware settings	28
2.1 2.2 2.3 2.4	Requirements for the personnel	8 9	7.4 7.5	Ensuring the degree of protection Post-connection check	
2.5	Product safety		8	Operability	30
2.6	IT security	9	8.1 8.2	Structure and function of the operating	30
3 3.1	Product description	11	8.3	8.2.1 Structure of the operating menu 8.2.2 Operating philosophy	31 32 33 33
4	Incoming acceptance and product				33
	identification	12			
4.1 4.2	4.2.2 Sensor nameplate	12 13	9.1 9.2	System integration	35 35 35 35 36 36
5	Storage and transport	16		9.2.4 Modbus data map	36
5.1 5.2 5.3	Storage conditions	16	10 10.1 10.2	Function check Establishing a connection via FieldCare	
6 6.1	Installation conditions	18 18 18 19 20	10.3	10.3.3 Configuring the communication interface	393941
6.2	Mounting the measuring device	20 20		10.3.5 Configuring the partial filled pipe detection	44

10.410.5	Advanced settings	45 46 46	14.4 14.5	Return	53 53
10.6	Protecting settings from unauthorized		15	Accessories 6	5
	access		15.1 15.2	Communication-specific accessories	55
11	Operation	49	16	Technical data 6	6
11.1	Reading device locking status	49	16.1	Application	
11.2	Reading measured values		16.2 16.3	Function and system design 6 Input	
	11.2.1 Process variables		16.3		57
11 2	11.2.2 Totalizer	50	16.5	Power supply 6	
11.3	Adapting the measuring device to the process conditions	50	16.6		59
11.4	Performing a totalizer reset		16.7		72
			16.8	Environment	
12	Diagnostics and troubleshooting	52	16.9		73
12.1	General troubleshooting				74 76
12.2	Diagnostic information via light emitting	20			76
	diodes	52		Application packages	
	12.2.1 Transmitter		16.14	Accessories	
	12.2.2 Safety Barrier Promass 100		16.15	Supplementary documentation	′7
12.3	Diagnostic information in FieldCare				_
	12.3.1 Diagnostic options		17	Appendix	8
12.4	Diagnostic information via communication	74	17.1	Overview of the operating menu	′8
	interface	54			
	12.4.1 Reading out diagnostic information		Index	ĸ 8	9
40.5	12.4.2 Configuring error response mode				
12.5	Adapting the diagnostic information	55			
12.6	12.5.1 Adapting the diagnostic behavior Overview of diagnostic information	55 56			
12.7	Pending diagnostic events				
12.8	Diagnostic list	58			
12.9	Event logbook	58			
	12.9.1 Event history				
	12.9.2 Filtering the event logbook	59			
12 10	12.9.3 Overview of information events Resetting the measuring device	59 60			
	Device information	60			
	Firmware history	61			
13	Maintenance	62			
13.1	Maintenance tasks				
	13.1.1 Exterior cleaning				
	13.1.2 Interior cleaning				
13.2	Measuring and test equipment				
13.3	Endress+Hauser services	62			
14	Repair	63			
14.1	General notes	63			
14.2	Spare parts	63			
14.3	Endress+Hauser services	63			

LNGmass Modbus RS485 Document information

1 Document information

1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

1.2 Symbols used

1.2.1 Safety symbols

	Symbol	Meaning
warning Marning A0011189-EN Warning! This symbol alerts you to a dangerous situation. Failure to avoid this situation can serious or fatal injury. CAUTION! CAUTION!		This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in
		This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in
		This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in
	NOTICE A0011192-EN	NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.

1.2.2 Electrical symbols

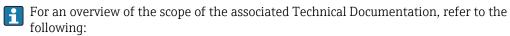
Symbol	Meaning
A0011197	Direct current A terminal to which DC voltage is applied or through which direct current flows.
A0011198	Alternating current A terminal to which alternating voltage is applied or through which alternating current flows.
A0017381	Direct current and alternating current ■ A terminal to which alternating voltage or DC voltage is applied. ■ A terminal through which alternating current or direct current flows.
	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
A0011199	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.
A0011201	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Document information LNGmass Modbus RS485

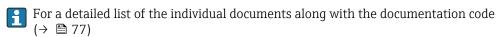
1.2.3 Tool symbols

Symbol	Meaning
A0011221	Allen key
A0011222	Open-ended wrench

1.2.4 Symbols for certain types of information


Symbol	Meaning
A0011182	Allowed Indicates procedures, processes or actions that are allowed.
A0011183	Preferred Indicates procedures, processes or actions that are preferred.
A0011184	Forbidden Indicates procedures, processes or actions that are forbidden.
A0011193	Tip Indicates additional information.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011195	Reference to page Refers to the corresponding page number.
A0011196	Reference to graphic Refers to the corresponding graphic number and page number.
1. , 2. , 3	Series of steps
~	Result of a sequence of actions
? A0013562	Help in the event of a problem
A0015502	Visual inspection

1.2.5 Symbols in graphics


Symbol	Meaning
1, 2, 3,	Item numbers
1. , 2. , 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≋➡	Flow direction
A0013441	
A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates a non-hazardous area.

LNGmass Modbus RS485 Document information

1.3 Documentation

- The CD-ROM provided for the device (depending on the device version, the CD-ROM might not be part of the delivery!)
- The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

1.3.1 Standard documentation

Document type	Purpose and content of the document
Technical Information	Planning aid for your device The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.
Brief Operating Instructions	Guide that takes you quickly to the 1st measured value The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.
Modbus RS485 register information	Reference for Modbus RS485 register information The document provides Modbus-specific information for each individual parameter in the operating menu.

1.3.2 Supplementary device-dependent documentation

Additional documents are supplied depending on the device version ordered: Always comply strictly with the instructions in the supplementary documentation. The supplementary documentation is an integral part of the device documentation.

1.4 Registered trademarks

Modbus[®]

Registered trademark of SCHNEIDER AUTOMATION, INC.

Basic safety instructions LNGmass Modbus RS485

2 Basic safety instructions

2.1 Requirements for the personnel

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists must have a relevant qualification for this specific function and task
- ► Are authorized by the plant owner/operator
- ► Are familiar with federal/national regulations
- ▶ Before beginning work, the specialist staff must have read and understood the instructions in the Operating Instructions and supplementary documentation as well as in the certificates (depending on the application)
- ▶ Following instructions and basic conditions

The operating personnel must fulfill the following requirements:

- ► Being instructed and authorized according to the requirements of the task by the facility's owner-operator
- ► Following the instructions in these Operating Instructions

2.2 Designated use

Application and media

The measuring device described in these Instructions is intended only for flow measurement of liquids and gases.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

Measuring devices for use in hazardous areas, in hygienic applications or in applications where there is an increased risk due to process pressure, are labeled accordingly on the nameplate.

To ensure that the measuring device remains in proper condition for the operation time:

- ▶ Only use the measuring device in full compliance with the data on the nameplate and the general conditions listed in the Operating Instructions and supplementary documentation.
- ▶ Based on the nameplate, check whether the ordered device is permitted for the intended use in the hazardous area (e.g. explosion protection, pressure vessel safety).
- ▶ Use the measuring device only for media against which the process-wetted materials are adequately resistant.
- ▶ If the measuring device is not operated at atmospheric temperature, compliance with the relevant basic conditions specified in the associated device documentation is absolutely essential: "Documentation" section $(\rightarrow \boxdot 7)$.

Incorrect use

Non-designated use can compromise safety. The manufacturer is not liable for damage caused by improper or non-designated use.

▲ WARNING

Danger of breakage of the measuring tube due to corrosive or abrasive fluids.

Housing breakage due to mechanical overload possible!

- ▶ Verify the compatibility of the process fluid with the measuring tube material.
- ► Ensure the resistance of all fluid-wetted materials in the process.
- ▶ Observe the specified pressure and temperature range.

Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of fluid-wetted materials, but does not accept any

LNGmass Modbus RS485 Basic safety instructions

warranty or liability as minute changes in the temperature, concentration or level of contamination in the process can alter the corrosion resistance properties.

Residual risks

The external surface temperature of the housing can increase by max. 20 K due to the power consumption of the electronic components. Hot process fluids passing through the measuring device will further increase the surface temperature of the housing. The surface of the sensor, in particular, can reach temperatures which are close to the fluid temperature.

Possible burn hazard due to fluid temperatures!

► For elevated fluid temperature, ensure protection against contact to prevent burns.

2.3 Workplace safety

For work on and with the device:

► Wear the required personal protective equipment according to federal/national regulations.

For welding work on the piping:

▶ Do not ground the welding unit via the measuring device.

If working on and with the device with wet hands:

▶ It is recommended to wear gloves on account of the higher risk of electric shock.

2.4 Operational safety

Risk of injury.

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ▶ The operator is responsible for interference-free operation of the device.

Conversions to the device

Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

▶ If, despite this, modifications are required, consult with Endress+Hauser.

Repair

To ensure continued operational safety and reliability,

- ► Carry out repairs on the device only if they are expressly permitted.
- ▶ Observe federal/national regulations pertaining to repair of an electrical device.
- ▶ Use original spare parts and accessories from Endress+Hauser only.

2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

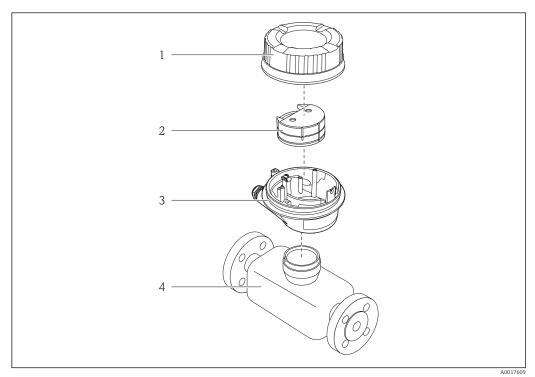
It meets general safety standards and legal requirements. It also complies with the EC directives listed in the device-specific EC Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

2.6 IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

Basic safety instructions LNGmass Modbus RS485

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

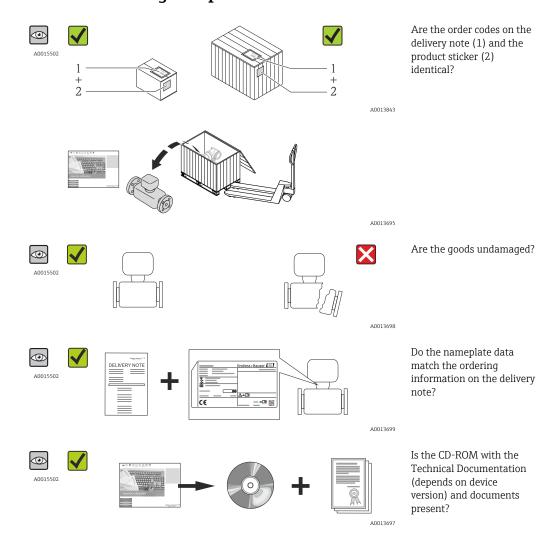

Endress+Hauser can be contacted to provide support in performing this task.

LNGmass Modbus RS485 Product description

Product description 3

3.1 Product design

3.1.1 Device version with Modbus RS485 communication type


■ 1 Important components of a measuring device

- Transmitter housing cover
- 2 3 Main electronics module
- Transmitter housing
- Sensor

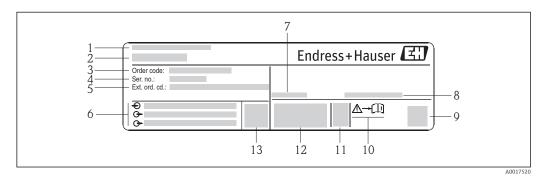
In the case of the device version with Modbus RS485 intrinsically safe, the Safety Barrier Promass 100 forms part of the scope of supply.

4 Incoming acceptance and product identification

4.1 Incoming acceptance

If one of the conditions is not satisfied, contact your Endress+Hauser Sales Center.
 Depending on the device version, the CD-ROM might not be part of the delivery! In such cases, the technical documentation is available via the Internet or via the Endress+Hauser Operations App, see the "Product identification" section (→ ≅ 13).

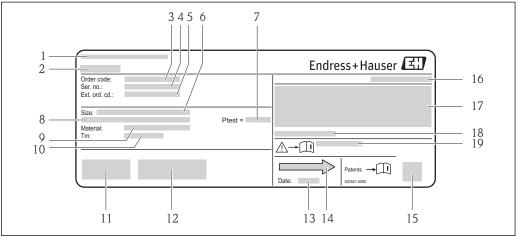
4.2 Product identification


The following options are available for identification of the measuring device:

- Nameplate specifications
- Order code with breakdown of the device features on the delivery note
- Enter serial numbers from nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All information about the measuring device is displayed.
- Enter the serial number from the nameplates into the *Endress+Hauser Operations App* or scan the 2-D matrix code (QR code) on the nameplate with the *Endress+Hauser Operations App*: all the information for the measuring device is displayed.

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The chapters "Additional standard documentation on the device" (\rightarrow 🖹 7) and "Supplementary device-dependent documentation" (\rightarrow 🖺 7)
- The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
- The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.


4.2.1 Transmitter nameplate

■ 2 Example of a transmitter nameplate

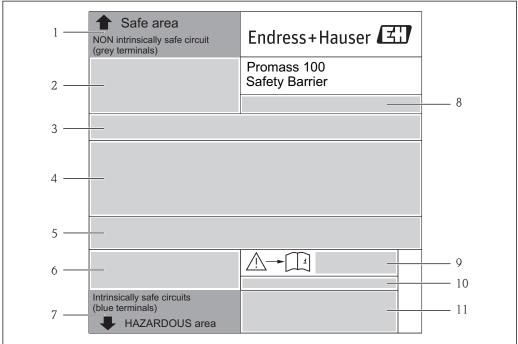
- 1 Manufacturing location
- 2 Name of the transmitter
- 3 Order code
- 4 Serial number
- 5 Extended order code
- 6 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 7 Permitted ambient temperature range (T_a)
- 8 Degree of protection
- 9 2-D matrix code
- 10 Document number of safety-related supplementary documentation (\rightarrow $\stackrel{\triangle}{=}$ 77)
- 11 Manufacturing date: year-month
- 12 CE mark, C-Tick
- 13 Firmware version (FW)

4.2.2 Sensor nameplate

A0013907

■ 3 Example of a sensor nameplate

- 1 Manufacturing location
- 2 Name of the sensor
- 3 Order code
- 4 Serial number (Ser. no.)
- 5 Extended order code (Ext. ord. cd.)
- 6 Nominal diameter of the sensor
- 7 Test pressure of the sensor
- 8 Flange nominal diameter/nominal pressure
- 9 Material of measuring tube and manifold
- 10 Medium temperature range
- 11 CE mark, C-Tick
- 12 Additional information on version: certificates, approvals
- 13 Manufacturing date: year-month
- 14 Flow direction
- 15 2-D matrix code
- 16 Degree of protection
- 17 Approval information for explosion protection and Pressure Equipment Directive
- 18 Permitted ambient temperature (T_a)
- 19 Document number of safety-related supplementary documentation (→ 🖺 77)


Order code

The measuring device is reordered using the order code.

Extended order code

- The device type (product root) and basic specifications (mandatory features) are always listed.
- Of the optional specifications (optional features), only the safety and approvalrelated specifications are listed (e.g. LA). If other optional specifications are also ordered, these are indicated collectively using the # placeholder symbol (e.g. #LA#).
- If the ordered optional specifications do not include any safety and approval-related specifications, they are indicated by the + placeholder symbol (e.g. XXXXXX-ABCDE +).

4.2.3 Promass 100 safety barrier - nameplate

A001785/

- 4 Example of a Safety Barrier Promass 100 nameplate
- 1 Non-hazardous area or zone 2/div. 2
- 2 Serial number, material number and 2-D matrix code of the Safety Barrier Promass 100
- 3 Electrical connection data, e.g. available inputs and outputs, supply voltage
- 4 Approval information for explosion protection
- 5 Safety warning
- 6 Communication-specific information
- 7 Intrinsically safe area
- 8 Manufacturing location
- 9 Document number of safety-related supplementary documentation ($\rightarrow \equiv 77$)
- 10 Permitted ambient temperature (T_a)
- 11 CE mark, C-Tick

4.2.4 Symbols on measuring device

Symbol	Meaning
Δ	WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011199	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.

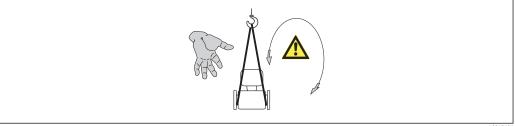
Storage and transport LNGmass Modbus RS485

5 Storage and transport

5.1 Storage conditions

Observe the following notes for storage:

- Store in the original packaging to ensure protection from shock.
- Do not remove protective covers or protective caps installed on process connections.
 They prevent mechanical damage to the sealing surfaces and fouling in the measuring tube.
- Protect from direct sunlight to avoid unacceptably high surface temperatures.
- Storage temperature: -40 to +80 °C (-40 to +176 °F), preferable for +20 °C (+68 °F)
- Store in a dry and dust-free place.
- Do not store outdoors.


5.2 Transporting the product

A WARNING

Center of gravity of the measuring device is higher than the suspension points of the webbing slings.

Risk of injury if the measuring device slips.

- ► Secure the measuring device from rotating or slipping.
- ▶ Observe the weight specified on the packaging (stick-on label).
- ► Observe the transport instructions on the stick-on label on the electronics compartment cover.

A0015606

Observe the following notes during transport:

- Transport the measuring device to the measuring point in the original packaging.
- Lifting gear
 - Webbing slings: Do not use chains, as they could damage the housing.
 - For wood crates, the floor structure enables these to be loaded lengthwise or broadside using a forklift.
- \blacksquare For measuring device > DN 40 (1½ in): lift the measuring device using the webbing slings at the process connections; do not lift at the transmitter housing.
- Do not remove protective covers or protective caps installed on process connections.
 They prevent mechanical damage to the sealing surfaces and fouling in the measuring tube.

LNGmass Modbus RS485 Storage and transport

5.3 Packaging disposal

All packaging materials are environmentally friendly and 100% recyclable:

- Measuring device secondary packaging: polymer stretch film that conforms to EC Directive 2002/95/EC (RoHS).
- Packaging:
 - Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.

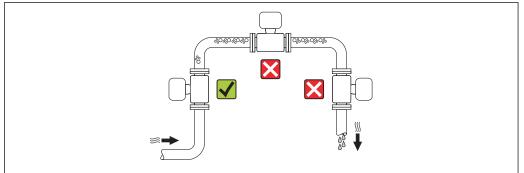
or

- Carton in accordance with European Packaging Directive 94/62EC; recyclability is confirmed by the affixed RESY symbol.
- Seaworthy packaging (optional): Wood crate, treated in accordance with ISPM 15 standard, which is confirmed by the affixed IPPC logo.
- Carrying and mounting hardware:
 - Disposable plastic pallet
 - Plastic straps
 - Plastic adhesive strips
- Dunnage: Paper cushion

Installation LNGmass Modbus RS485

6 Installation

6.1 Installation conditions


No special measures such as supports are necessary. External forces are absorbed by the construction of the device.

6.1.1 Mounting position

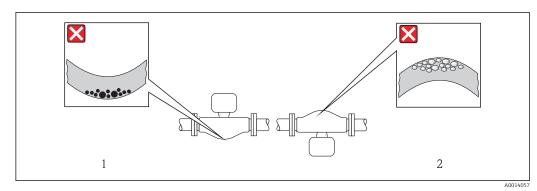
Mounting location

To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

- Highest point of a pipeline.
- Directly upstream of a free pipe outlet in a down pipe.

A00155

Orientation


The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

	Orientation			
A	Vertical orientation	A0015591		
В	Horizontal orientation, transmitter head up	A0015589	$(\rightarrow \square)^1$ Exception: $(\rightarrow \square 5, \cong 19)$	
С	Horizontal orientation, transmitter head down	A0015590	Exception: $(\rightarrow \square 5, \trianglerighteq 19)$	
D	Horizontal orientation, transmitter head at side	A0015592	×	

- 1) Applications with low process temperatures may reduce the ambient temperature. To maintain the minimum ambient temperature for the transmitter, this orientation is recommended.
- 2) Applications with high process temperatures may increase the ambient temperature. To maintain the maximum ambient temperature for the transmitter, this orientation is recommended.

LNGmass Modbus RS485 Installation

If a sensor is installed horizontally with a curved measuring tube, match the position of the sensor to the fluid properties.

■ 5 Orientation of sensor with curved measuring tube

- 1 Avoid this orientation for fluids with entrained solids: Risk of solids accumulating.
- 2 Avoid this orientation for outgassing fluids: Risk of gas accumulating.

Inlet and outlet runs

No special precautions need to be taken for fittings which create turbulence, such as valves, elbows or T-pieces, as long as no cavitation occurs ($\Rightarrow \triangleq 19$).

Installation dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section

6.1.2 Requirements from environment and process

Ambient temperature range

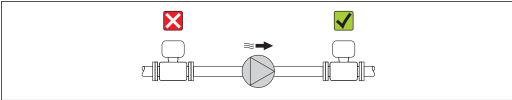
Measuring device	-40 to +60 °C (-40 to +140 °F)
Safety Barrier Promass 100	-40 to +60 °C (-40 to +140 °F)

► If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.

System pressure

It is important that cavitation does not occur, or that gases entrained in the liquids do not outgas.


Cavitation is caused if the pressure drops below the vapor pressure:

- In liquids that have a low boiling point (e.g. hydrocarbons, solvents, liquefied gases)
- In suction lines
- **E**nsure the system pressure is sufficiently high to prevent cavitation and outgassing.

Installation LNGmass Modbus RS485

For this reason, the following mounting locations are recommended:

- At the lowest point in a vertical pipe
- Downstream from pumps (no danger of vacuum)

A001559

Vibrations

The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by plant vibrations.

6.1.3 Special mounting instructions

Zero point adjustment

Experience shows that zero point adjustment is advisable only in special cases:

- To achieve maximum measuring accuracy even with low flow rates
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity fluids).

6.2 Mounting the measuring device

6.2.1 Required tools

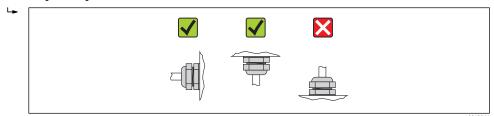
For sensor

For flanges and other process connections: Corresponding mounting tools

6.2.2 Preparing the measuring device

- 1. Remove all remaining transport packaging.
- 2. Remove any protective covers or protective caps present from the sensor.
- 3. Remove stick-on label on the electronics compartment cover.

6.2.3 Mounting the measuring device


A WARNING

Danger due to improper process sealing!

- ► Ensure that the inside diameters of the gaskets are greater than or equal to that of the process connections and piping.
- Ensure that the gaskets are clean and undamaged.
- ► Install the gaskets correctly.
- 1. Ensure that the direction of the arrow on the nameplate of the sensor matches the flow direction of the fluid.

LNGmass Modbus RS485 Installation

2. Install the measuring device or turn the transmitter housing so that the cable entries do not point upwards.

6.3 Post-installation check

Is the device undamaged (visual inspection)?	\rightarrow
Does the measuring device conform to the measuring point specifications? For example: Process temperature (→ 🖺 73) Process pressure (refer to the chapter on "Material load curves" of the "Technical Information" document) Ambient temperature (→ 🖺 19) Measuring range (→ 🖺 66)	→
Has the correct orientation for the sensor been selected? According to sensor type According to medium temperature According to medium properties (outgassing, with entrained solids)	→
Does the arrow on the sensor nameplate match the direction of flow of the fluid through the piping ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	→
Are the measuring point identification and labeling correct (visual inspection)?	\rightarrow
Is the device adequately protected from precipitation and direct sunlight?	\rightarrow
Are the securing screw and securing clamp tightened securely?	\rightarrow

Electrical connection LNGmass Modbus RS485

7 Electrical connection

The measuring device does not have an internal circuit breaker. For this reason, assign the measuring device a switch or power-circuit breaker so that the power supply line can be easily disconnected from the mains.

7.1 Connection conditions

7.1.1 Required tools

- For cable entries: Use corresponding tools
- For securing clamp (on aluminum housing): Allen screw3 mm
- For securing screw (for stainless steel housing): open-ended wrench 8 mm
- Wire stripper
- When using stranded cables: crimping tool for ferrule

7.1.2 Requirements for connecting cable

The connecting cables provided by the customer must fulfill the following requirements.

Electrical safety

In accordance with applicable federal/national regulations.

Permitted temperature range

- -40 °C (-40 °F) to +80 °C (+176 °F)
- Minimum requirement: cable temperature range ≥ ambient temperature +20 K

Power supply cable

Standard installation cable is sufficient.

Signal cable

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz
Cable capacitance	<30 pF/m
Wire cross-section >0.34 mm ² (22 AWG)	
Cable type	Twisted pairs
Loop resistance	≤110 Ω/km
Signal damping	Max. 9 dB over the entire length of the cable cross-section
Shielding	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.

LNGmass Modbus RS485 Electrical connection

Connecting cable between Safety Barrier Promass 100 and measuring device

Cable type	Shielded twisted-pair cable with 2x2 wires. When grounding the cable shield, observe the grounding concept of the plant.
Maximum cable resistance	2.5Ω , one side

Comply with the maximum cable resistance specifications to ensure the operational reliability of the measuring device.

The maximum cable length for individual wire cross-sections is specified in the table below. Observe the maximum capacitance and inductance per unit length of the cable and the connection values in the Ex documentation $(\rightarrow \ \ \ \ \ \ \ \ \ \ \)$.

Wire cros	ss-section	Maximum cable length		
[mm ²]	[AWG]	[m]	[ft]	
0.5	20	70	230	
0.75	18	100	328	
1.0	17	100	328	
1.5	16	200	656	
2.5	14	300	984	

Cable diameter

• Cable glands supplied:

M20 × 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in)

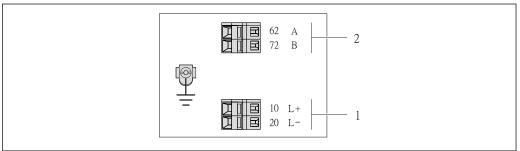
Spring terminals:

Wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

■ With Safety Barrier Promass 100:

Plug-in screw terminals for wire cross-sections 0.5 to 2.5 mm2 (20 to 14 AWG)

Electrical connection LNGmass Modbus RS485


7.1.3 Terminal assignment

Transmitter

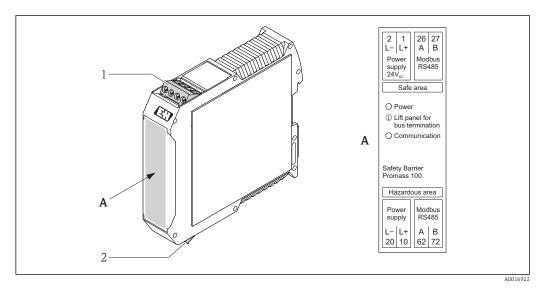
Modbus RS485 connection version, for use in intrinsically safe areas

Order code for "Output", option **M** (connection via Safety Barrier Promass 100)

Ouden ende fou	Connection methods available			
Order code for "Housing"	Output	Power supply	Possible options for order code "Electrical connection"	
Options A	Terminals	Terminals	 Option B: thread M20x1 Option C: thread G ½" Option D: thread NPT ½" 	
Order code for "Housing": Option A: compact, coated aluminum				

A001705

- Modbus RS485 terminal assignment, connection version for use in intrinsically safe areas (connection via Safety Barrier Promass 100)
- 1 Intrinsically safe power supply
- 2 Modbus RS485


Order code for "Output"	20 (L-)	10 (L+)	72 (B)	62 (A)
Option M	Intrinsically safe supply voltage		Modbus RS485	intrinsically safe

Order code for "Output":

 $Option \ \textbf{\textit{M}}{:}\ Modbus\ RS485, for\ use\ in\ intrinsically\ safe\ areas\ (connection\ via\ Safety\ Barrier\ Promass\ 100)$

LNGmass Modbus RS485 Electrical connection

Safety Barrier Promass 100

■ 7 Safety Barrier Promass 100 with terminals

- Non-hazardous area and Zone 2/Div. 2
- 2 Intrinsically safe area

7.1.4 Shielding and grounding

The shielding and grounding concept requires compliance with the following:

- Electromagnetic compatibility (EMC)
- Explosion protection
- Personal protection equipment
- National installation regulations and guidelines
- Observe cable specification (\rightarrow 🖺 22).
- Keep the stripped and twisted lengths of cable shield to the ground terminal as short as possible.
- Seamless cable shielding.

Grounding of the cable shield

To comply with EMC requirements:

- Ensure the cable shield is grounded to the potential matching line at multiple points.
- Connect every local ground terminal to the potential matching line.

NOTICE

In systems without potential matching, the multiple grounding of the cable shield causes mains frequency equalizing currents!

Damage to the bus cable shield.

▶ Only ground the bus cable shield to either the local ground or the protective ground at one end.

7.1.5 Preparing the measuring device

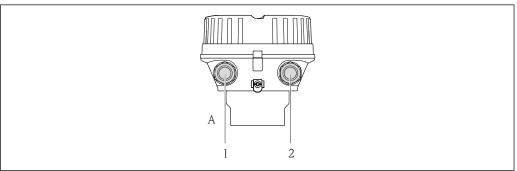
- 1. Remove dummy plug if present.
- 2. **NOTICE!** Insufficient sealing of the housing! Operational reliability of the measuring device could be compromised. Use suitable cable glands corresponding to the degree of protection.

If measuring device is delivered without cable glands:

Provide suitable cable gland for corresponding connecting cable ($\rightarrow \stackrel{\triangle}{=} 22$).

3. If measuring device is delivered with cable glands: Observe cable specification ($\rightarrow \cong 22$).

Electrical connection LNGmass Modbus RS485

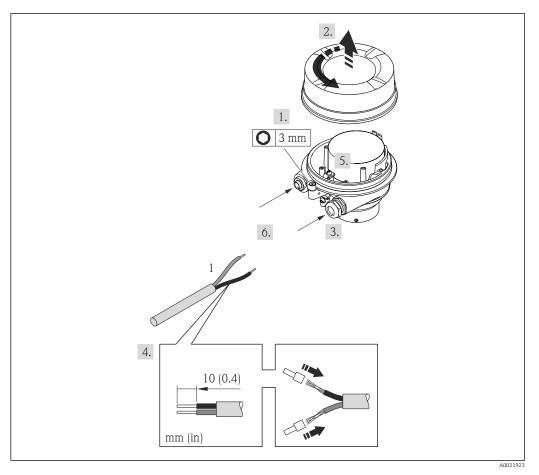

7.2 Connecting the measuring device

NOTICE

Limitation of electrical safety due to incorrect connection!

- ▶ Have electrical connection work carried out by correspondingly trained specialists only.
- ▶ Observe applicable federal/national installation codes and regulations.
- Comply with local workplace safety regulations.
- ► For use in potentially explosive atmospheres, observe the information in the device-specific Ex documentation.

7.2.1 Connecting the transmitter



A0019824

■ 8 Device versions and connection versions

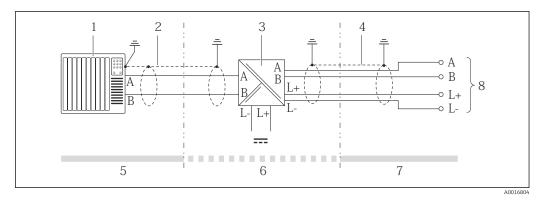
- A Housing version: compact, aluminum coated
- 1 Cable entry for signal transmission
- 2 Cable entry for supply voltage

LNGmass Modbus RS485 Electrical connection

 \blacksquare 9 Device versions with connection example

1 Cable

- 1. Loosen the securing clamp of the housing cover.
- 2. Unscrew the housing cover.
- 3. Push the cable through the cable entry . To ensure tight sealing, do not remove the sealing ring from the cable entry.
- 4. Strip the cable and cable ends. In the case of stranded cables, also fit ferrules.
- 5. Connect the cable in accordance with the terminal assignment.
- 6. Firmly tighten the cable glands. .
- 7. Enable the terminating resistor if applicable ($\rightarrow \triangleq 28$).
- 8. **WARNING!** Housing degree of protection may be voided due to insufficient sealing of the housing. Screw in the screw without using any lubricant. The threads on the cover are coated with a dry lubricant.


Reverse the removal procedure to reassemble the transmitter.

7.2.2 Connecting the Safety Barrier Promass 100

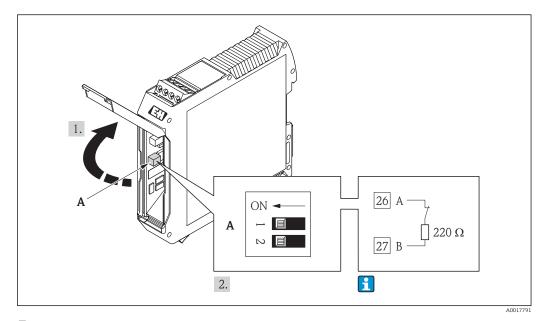
In the case of the device version with Modbus RS485 intrinsically safe, the transmitter must be connected to the Safety Barrier Promass 100.

- 1. Strip the cable ends. In the case of stranded cables, also fit ferrules.
- 2. Connect the cable in accordance with the terminal assignment ($\rightarrow \triangleq 25$).

Electrical connection LNGmass Modbus RS485

■ 10 Electrical connection between the transmitter and Safety Barrier Promass 100

- 1 Control system (e.g. PLC)
- 2 Observe cable specification
- *Safety Barrier Promass 100: terminal assignment (→ \Barger 25)*
- 4 *Observe cable specification* ($\rightarrow \implies 22$)
- 5 Non-hazardous area
- 6 Non-hazardous area and Zone 2/Div. 2
- 7 Intrinsically safe area
- 8 Transmitter: terminal assignment


7.3 Hardware settings

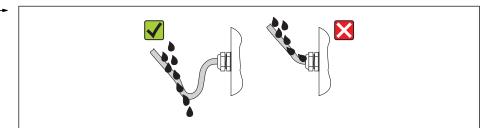
7.3.1 Enabling the terminating resistor

Modbus RS485

To avoid incorrect communication transmission caused by impedance mismatch, terminate the Modbus RS485 cable correctly at the start and end of the bus segment.

If the transmitter is used in the intrinsically safe area

 $lap{1}$ Terminating resistor can be enabled via DIP switch in the Safety Barrier Promass 100


LNGmass Modbus RS485 Electrical connection

7.4 Ensuring the degree of protection

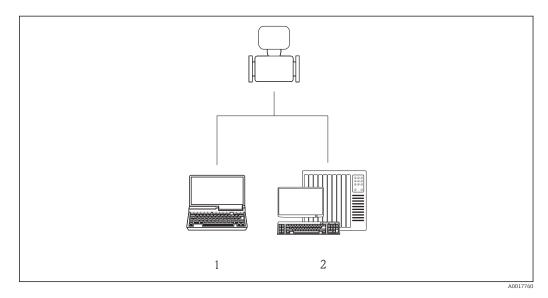
The measuring device fulfills all the requirements for the IP66/67 degree of protection, Type 4X enclosure.

To guarantee IP66/67 degree of protection, Type 4X enclosure, carry out the following steps after the electrical connection:

- 1. Check that the housing seals are clean and fitted correctly. Dry, clean or replace the seals if necessary.
- 2. Tighten all housing screws and screw covers.
- 3. Firmly tighten the cable glands.
- 4. To ensure that moisture does not enter the cable entry, route the cable so that it loops down before the cable entry ("water trap").

A001396

5. Insert dummy plugs into unused cable entries.


7.5 Post-connection check

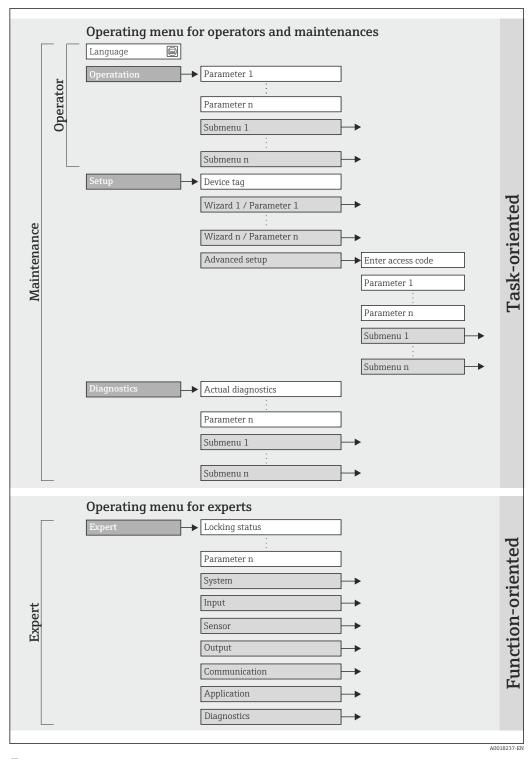
Are cables or the device undamaged (visual inspection)?	
Do the cables comply with the requirements (→ 🖺 22)?	
Do the cables have adequate strain relief?	
Are all the cable glands installed, firmly tightened and leak-tight? Cable run with "water trap" ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
 Does the supply voltage match the specifications on the transmitter nameplate (→	
Is the terminal assignment correct?	
 If supply voltage is present, is the power LED on the electronics module of the transmitter lit green (→ 🖺 11)? For device version with Modbus RS485 intrinsically safe, if supply voltage is present, is the power LED on the Safety Barrier Promass 100 lit (→ 🖺 11)? 	
Depending on the device version, is the securing clamp or fixing screw firmly tightened?	

Operability LNGmass Modbus RS485

8 Operability

8.1 Overview of operation options

Computer with Web browser (e.g. Internet Explorer) or with "FieldCare" operating tool via Commubox FXA291 and service interface


2 Control system (e.g. PLC)

LNGmass Modbus RS485 Operability

8.2 Structure and function of the operating menu

8.2.1 Structure of the operating menu

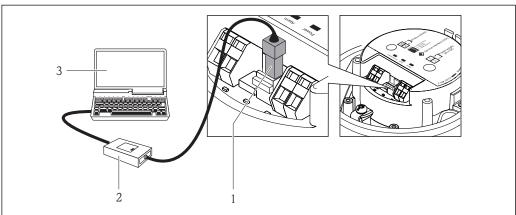
For an overview of the operating menu with menus and parameters (\rightarrow $\stackrel{\triangle}{=}$ 78)

■ 12 Schematic structure of the operating menu

Operability LNGmass Modbus RS485

8.2.2 Operating philosophy

The individual parts of the operating menu are assigned to certain user roles. Each user role corresponds to typical tasks within the device lifecycle.


Menu		User role and tasks	Content/meaning
Operation	task-oriented	Role "Operator", "Maintenance" Tasks during operation: Reading measured values	Resetting and controlling totalizers
Setup		"Maintenance" role Commissioning: Configuration of the measurement Configuration of the communication interface	Submenus for fast commissioning: Setting the individual system units Defining the medium Configuration of the digital communication interface Configuring the low flow cut off Configuring the monitoring of partial and empty pipe detection
			"Advanced setup" submenu: For more customized configuration of the measurement (adaptation to special measuring conditions) Configuration of totalizers "Device reset" submenu Resets the device configuration to certain settings
Diagnostics		"Maintenance" role Fault elimination: Diagnostics and elimination of process and device errors Measured value simulation	Contains all parameters for error detection and analyzing process and device errors: "Diagnostic list" submenu Contains up to 5 currently pending diagnostic messages. "Event logbook" submenu Contains 20 event messages that have occurred. "Device information" submenu Contains information for identifying the device. "Measured values" submenu Contains all current measured values. "Simulation" submenu Is used to simulate measured values or output values.
Expert	function-oriented	Tasks that require detailed knowledge of the function of the device: Commissioning measurements under difficult conditions Optimal adaptation of the measurement to difficult conditions Detailed configuration of the communication interface Error diagnostics in difficult cases	Contains all the parameters of the device and makes it possible to access these parameters directly using an access code. The structure of this menu is based on the function blocks of the device: "System" submenu Contains all higher-order device parameters that do not pertain either to measurement or the measured value communication. "Sensor" submenu Configuration of the measurement. "Communication" submenu Configuration of the digital communication interface. "Application" submenu Configuration of the functions that go beyond the actual measurement (e.g. totalizer). "Diagnostics" submenu Error detection and analysis of process and device errors and for device simulation and Heartbeat Technology.

LNGmass Modbus RS485 Operability

8.3 Access to the operating menu via the operating tool

8.3.1 Connecting the operating tool

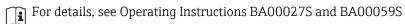
Via service interface (CDI)

A0016925

- 1 Service interface (CDI) of the measuring device
- 2 Commubox FXA291
- 3 Computer with "FieldCare" operating tool with COM DTM "CDI Communication FXA291"

8.3.2 FieldCare

Function scope


FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field devices in a system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

Access takes place via:

Service interface CDI ($\rightarrow \equiv 33$)

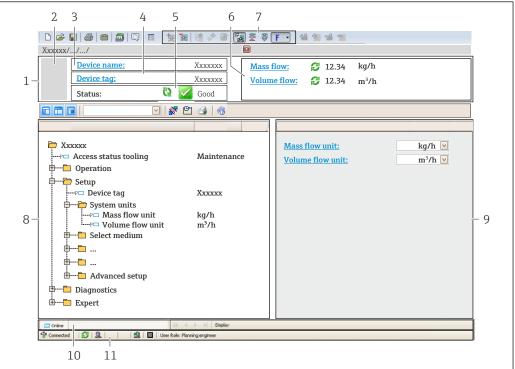
Typical functions:

- Configuring parameters of transmitters
- Loading and saving device data (upload/download)
- Documentation of the measuring point
- Visualization of the measured value memory (line recorder) and event logbook

Source for device description files

See data ($\rightarrow \implies 35$)

Establishing a connection


Via service interface (CDI)

- 1. Start FieldCare and launch the project.
- 2. In the network: Add a device.
 - ► The **Add device** window opens.
- 3. Select the **CDI Communication FXA291** option from the list and press **OK** to confirm.
- 4. Right-click **CDI Communication FXA291** and select the **Add device** option in the context menu that opens.

Operability LNGmass Modbus RS485

- 5. Select the desired device from the list and press **OK** to confirm.
- 6. Establish the online connection to the device.
- $\widehat{m{j}}$ For details, see Operating Instructions BA00027S and BA00059S

User interface

A0021051-E

- 1 Header
- 2 Picture of device
- 3 Device name
- *4 Device tag (→ 🖺 39)*
- 5 Status area with status signal ($\rightarrow = 54$)
- 6 Display area for current measured values ($\Rightarrow \triangleq 49$)
- 7 Event list with additional functions such as save/load, events list and document creation
- 8 Navigation area with operating menu structure
- 9 Operating range
- 10 Range of action
- 11 Status area

LNGmass Modbus RS485 System integration

9 System integration

9.1 Overview of device description files

9.1.1 Current version data for the device

Firmware version	01.02.00	 On the title page of the Operating instructions On transmitter nameplate (→ 🖺 13) Parameter firmware version Diagnostics → Device info → Firmware version
Release date of firmware version	04.2013	

9.1.2 Operating tools

The suitable device description file for the operating tool is listed in the table below, along with information on where the file can be acquired.

Operating tool via service interface (CDI)	Sources for obtaining device descriptions	
FieldCare	 www.endress.com → Download Area CD-ROM (contact Endress+Hauser) 	
	DVD (contact Endress+Hauser)	

9.2 Modbus RS485 information

9.2.1 Function codes

Function codes are used to define which read or write action is carried out via the Modbus protocol. The measuring device supports the following function codes:

Code	Name	Description	Application
03	Read holding register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	Read device parameters with read and write access Example: Read mass flow
04	Read input register	Master reads one or more Modbus registers from the device. A maximum of 125 consecutive registers can be read with 1 telegram: 1 register = 2 bytes The measuring device does not make a distinction between function codes 03 and 04; these codes therefore yield the same result.	Read device parameters with read access Example: Read totalizer value

System integration LNGmass Modbus RS485

Code	Name	Description	Application
06	Write single registers	Master writes a new value to one Modbus register of the measuring device.	Write only 1 device parameter Example: reset totalizer
		Use function code 16 to write multiple registers with just 1 telegram.	
80	Diagnostics	Master checks the communication connection to the measuring device.	
		The following "Diagnostics codes" are supported: Sub-function 00 = Return query data (loopback test) Sub-function 02 = Return diagnostics register	
16	Write multiple registers	Master writes a new value to multiple Modbus registers of the device. A maximum of 120 consecutive registers can be written with 1 telegram.	Write multiple device parameters Example: • Mass flow unit • Mass unit
		If the required device parameters are not available as a group, yet must nevertheless be addressed with a single telegram, use Modbus data map (→ ≧ 36)	
23	Read/Write multiple registers	Master reads and writes a maximum of 118 Modbus registers of the measuring device simultaneously with 1 telegram. Write access is executed before read access.	Write and read multiple device parameters Example: Read mass flow Reset totalizer

Proadcast messages are only allowed with function codes 06, 16 and 23.

9.2.2 Register information

For an overview on Modbus-specific information of the individual device parameters, please refer to the additional document on Modbus RS485 register information $(\rightarrow \blacksquare 77)$

9.2.3 Response time

Response time of the measuring device to the request telegram of the Modbus master: typically 3 to 5 ms $\,$

9.2.4 Modbus data map

Function of the Modbus data map

The device offers a special memory area, the Modbus data map (for a maximum of 16 device parameters), to allow users to call up multiple device parameters via Modbus RS485 and not only individual device parameters or a group of consecutive device parameters.

Grouping of device parameters is flexible and the Modbus master can read or write to the entire data block simultaneously with a single request telegram.

LNGmass Modbus RS485 System integration

Structure of the Modbus data map

The Modbus data map consists of two data sets:

Scan list: Configuration area
 The device parameters to be grouped are defined in a list in that their Modbus RS485 register addresses are entered in the list.

■ Data area

The measuring device reads out the register addresses entered in the scan list cyclically and writes the associated device data (values) to the data area.

For an overview of device parameters with their individual Modbus register address, please refer to the additional document on Modbus RS485 register information (→ 🗎 77)

Scan list configuration

For configuration, the Modbus RS485 register addresses of the device parameters to be grouped must be entered in the scan list. Please note the following basic requirements of the scan list:

Max. entries	ries 16 device parameters	
	Only parameters with the following characteristics are supported: Access type: read or write access Data type: float or integer	

Configuring the scan list via FieldCare

Carried out using the operating menu of the measuring device: Expert \rightarrow Communication \rightarrow Modbus data map \rightarrow Scan list register 0 -15

Scan list		
No.	Configuration register	
0	Scan list register 0	
15	Scan list register 15	

Configuring the scan list via Modbus RS485

Carried out using register addresses 5001 - 5016

Scan list				
No.	Modbus RS485 register	Data type	Configuration register	
0	5001	Integer	Scan list register 0	
		Integer		
15	5016	Integer	Scan list register 15	

Reading out data via Modbus RS485

The Modbus master accesses the data area of the Modbus data map to read out the current values of the device parameters defined in the scan list.

Master access to data area	Via register addresses 5051-5081
----------------------------	----------------------------------

System integration LNGmass Modbus RS485

Data area					
Device parameter value	Modbus RS485 register	Data type*	Access**		
Value of scan list register 0	5051	Integer/float	Read/write		
Value of scan list register 1	5053	Integer/float	Read/write		
Value of scan list register					
Value of scan list register 15	5081	Integer/float	Read/write		

Data type depends on the device parameters entered in the scan list.Data access depends on the device parameters entered in the scan list. If the device parameter entered supports read and write access, the parameter can also be accessed via the data area.

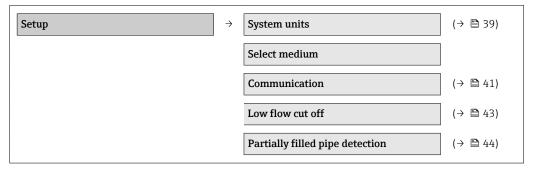
LNGmass Modbus RS485 Commissioning

10 Commissioning

10.1 Function check

Before commissioning the device, make sure that the post-installation and post-connection checks have been performed.

- "Post-installation check" checklist (→ 🖺 21)
- "Post-connection check" checklist (→ 🖺 29)


10.2 Establishing a connection via FieldCare

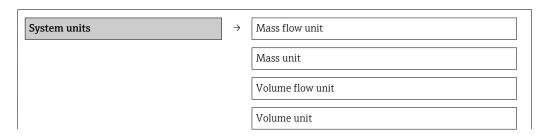
- For establishing a connection via FieldCare (→ 🖺 33)
- For FieldCare user interface (→ 🖺 34)

10.3 Configuring the measuring device

The **Setup** menu with its submenus contains all the parameters needed for standard operation.

Structure of the "Setup" menu

10.3.1 Defining the tag name


To enable fast identification of the measuring point within the system, you can enter a unique designation using the **Device tag** parameter and thus change the factory setting.

- The number of characters displayed depends on the characters used.

10.3.2 Setting the system units

In the **System units** submenu the units of all the measured values can be set.

Structure of the submenu

Commissioning LNGmass Modbus RS485

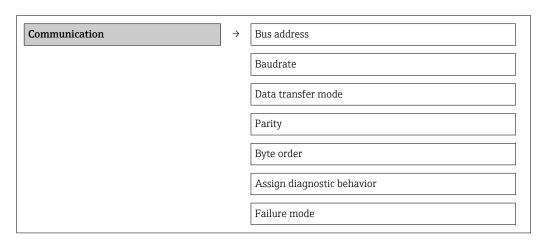
Corrected volume flow unit
Corrected volume unit
Density unit
Reference density unit
Temperature unit
Pressure unit

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Mass flow unit	Select mass flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: kg/h lb/min
Mass unit	Select mass unit. Result The selected unit is taken from: Mass flow unit parameter	Unit choose list	Country-specific: kg lb
Volume flow unit	Select volume flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: l/h gal/min (us)
Volume unit	Select volume unit. Result The selected unit is taken from: Volume flow unit parameter	Unit choose list	Country-specific: l gal (us)
Corrected volume flow unit	Select corrected volume flow unit. Result The selected unit applies for: Output Low flow cut off Simulation process variable	Unit choose list	Country-specific: NI/h Sft³/h
Corrected volume unit	Select corrected volume unit. Result The selected unit is taken from: Corrected volume flow unit parameter	Unit choose list	Country-specific: NI Sft ³
Density unit	Select density unit. Result The selected unit applies for: Output Simulation process variable Density adjustment (in Expert menu)	Unit choose list	Country-specific: kg/l lb/ft³
Reference density unit	Select reference density unit.	Unit choose list	kg/Nl

LNGmass Modbus RS485 Commissioning

Parameter	Description	Selection	Factory setting
Temperature unit	Select temperature unit. Result The selected unit applies for: Output Reference temperature Simulation process variable	Unit choose list	Country-specific: • °C (Celsius) • °F (Fahrenheit)
Pressure unit	Select process pressure unit.	Unit choose list	Country-specific: bar psi


10.3.3 Configuring the communication interface

The **"Communication" submenu** guides you systematically through all the parameters that have to be configured for selecting and setting the communication interface.

Navigation

"Setup" menu \rightarrow Communication

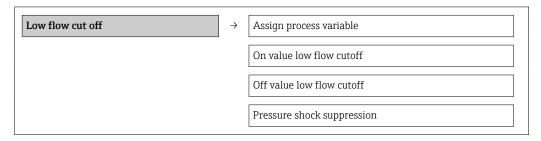
Structure of the submenu

Parameter overview with brief description

Parameter	Description	User entry / Selection	Factory setting	
Bus address	Enter device address.	1 to 247	247	
Baudrate	Define data transfer speed.	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD 	19200 BAUD	
Data transfer mode	Select data transfer mode.	• ASCII • RTU	RTU	
Parity	Select parity bits.	 Odd Even None / 1 stop bit None / 2 stop bits 	Even	
Byte order	Select byte transmission sequence.	0-1-2-33-2-1-01-0-3-22-3-0-1	1-0-3-2	

Commissioning LNGmass Modbus RS485

Parameter	Description	User entry / Selection	Factory setting
Assign diagnostic behavior	Select diagnostic behavior for MODBUS communication.	OffAlarm or warningWarningAlarm	Alarm
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication.	NaN valueLast valid value	NaN value


LNGmass Modbus RS485 Commissioning

10.3.4 Configuring the low flow cut off

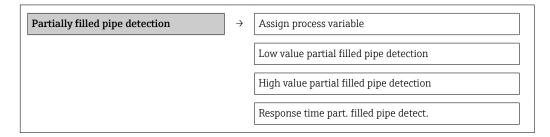
The **Low flow cut off** submenu contains parameters that must be configured for the configuration of low flow cut off.

Navigation

"Setup" menu \rightarrow Low flow cut off

Parameter overview with brief description

Parameter	Prerequsite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for low flow cut off.	OffMass flowVolume flowCorrected volume flow	Mass flow
On value low flow cutoff	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter on value for low flow cut off.	Positive floating- point number	For liquids: depends on country and nominal diameter
Off value low flow cutoff	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter off value for low flow cut off.	0 to 100.0 %	50 %
Pressure shock suppression	One of the following options is selected in the Assign process variable parameter: Mass flow Volume flow Corrected volume flow	Enter time frame for signal suppression (= active pressure shock suppression).	0 to 100 s	0 s


Commissioning LNGmass Modbus RS485

10.3.5 Configuring the partial filled pipe detection

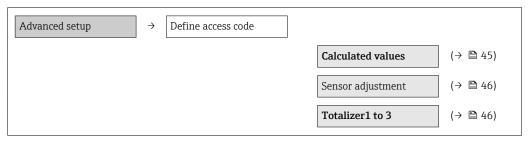
The **Partially filled pipe detection** submenu contains parameters that have to be set for configuring empty pipe detection.

Navigation

"Setup" menu → Partially filled pipe detection

Parameter overview with brief description

Parameter	Prerequsite	Description	Selection / User entry	Factory setting
Assign process variable	-	Select process variable for partially filled pipe detection.	 Off Density Reference density	Off
Low value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter lower limit value for deactivating partialy filled pipe detection.	Signed floating-point number	Country-dependent: • 0.2 kg/l • 12.5 lb/ft ³
High value partial filled pipe detection	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter upper limit value for deactivating partialy filled pipe detection.	Signed floating-point number	Country-dependent: • 6 kg/l • 374.6 lb/ft ³
Response time part. filled pipe detect.	One of the following options is selected in the Assign process variable parameter: Density Reference density	Enter time before diagnostic message is displayed for partially filled pipe detection.	0 to 100 s	1s

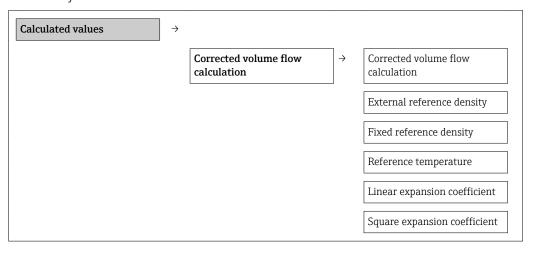

LNGmass Modbus RS485 Commissioning

10.4 Advanced settings

The **Advanced setup** submenu with its submenus contains parameters for specific settings.

"Setup" menu → Advanced setup

Overview of the parameters and submenus in the "Advanced setup" menu taking the example of the Web browser


10.4.1 Calculated values

The **Calculated values** submenu contains parameters for calculating the corrected volume flow.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Calculated values

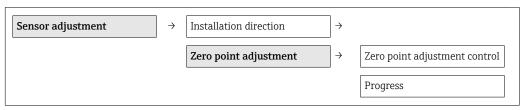
Structure of the submenu

Parameter overview with brief description

Parameter	Prerequsite	Description	Selection / User entry	Factory setting
Corrected volume flow calculation	_	Select reference density for calculating the corrected volume flow.	 Fixed reference density Calculated reference density Reference density by API table 53 External reference density 	Calculated reference density
External reference density	_	Shows external reference density.	Floating point number with sign	0 kg/Nl

Commissioning LNGmass Modbus RS485

Parameter	Prerequsite	Description	Selection / User entry	Factory setting
Fixed reference density	The following option is selected in the Corrected volume flow calculation parameter: Fixed reference density	Enter fixed value for reference density.	Positive floating- point number	0.001 kg/Nl
Reference temperature	The following option is selected in the Corrected volume flow calculation parameter: Calculated reference density	Enter reference temperature for calculating the reference density.	-273.15 to 99 999 °C	20 °C
Linear expansion coefficient	The following option is selected in the Corrected volume flow calculation parameter: Calculated reference density	Enter linear, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	0.0
Square expansion coefficient	-	For media with a non-linear expansion pattern: enter the quadratic, medium-specific expansion coefficient for calculating the reference density.	Signed floating-point number	0.0


10.4.2 Carrying out a sensor adjustment

The **Sensor adjustment** submenu contains parameters that pertain to the functionality of the sensor.

Navigation

"Setup" menu → Advanced setup → Sensor adjustment

Structure of the submenu

Parameter overview with brief description

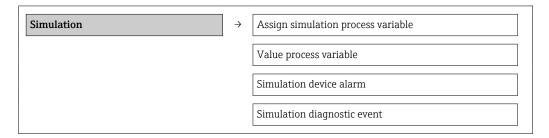
Parameter	Description	Selection / User interface	Factory setting
Installation direction	Set sign of flow direction to match the direction of the arrow on the sensor.	Flow in arrow directionFlow against arrow direction	Flow in arrow direction
Zero point adjustment control	Start zero point adjustment.	CancelBusyZero point adjust failureStart	Cancel
Progress	Shows the progress of the process.	0 to 100 %	0 %

10.4.3 Configuring the totalizer

In the "Totalizer 1 to 3" submenu the individual totalizers can be configured.

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Totalizer 1 to 3


LNGmass Modbus RS485 Commissioning

10.5 Simulation

The **"Simulation" submenu** enables you to simulate, without a real flow situation, various process variables in the process and the device alarm mode and to verify downstream signal chains (switching valves or closed-control loops).

Navigation

"Diagnostics" menu → Simulation

Parameter overview with brief description

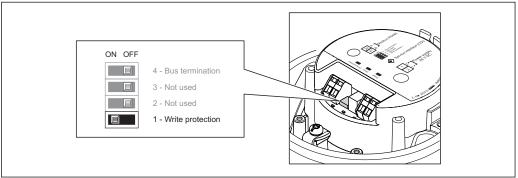
Parameter	Prerequsite	Description	Selection / User entry	Factory setting
Assign simulation process variable		Select a process variable for the simulation process that is activated.	■ Off ■ Mass flow ■ Volume flow ■ Corrected volume flow ■ Density ■ Reference density ■ Temperature ■ Dynamic viscosity ■ Kinematic viscosity ■ Temp. ■ compensated dynamic viscosity ■ Temp. ■ Temp. ■ Temp. ■ Temp. ■ Target mass flow ■ Carrier mass flow	Off
Value process variable	A process variable is selected in the Assign simulation process variable parameter.	Enter the simulation value for the selected process variable.	Signed floating-point number	0
Simulation device alarm	-	Switch the device alarm on and off.	■ Off ■ On	Off
Simulation diagnostic event	-	Enter the diagnostic number for the diagnostic event.	Positive integer	65 533

10.6 Protecting settings from unauthorized access

The following option exists for protecting the configuration of the measuring device from unintentional modification after commissioning: Write protection via write protection switch

Commissioning LNGmass Modbus RS485

10.6.1 Write protection via write protection switch


The write protection switch makes it possible to block write access to the entire operating menu with the exception of the following parameters:

- External pressure
- External temperature
- Reference density
- All parameters for configuring the totalizer

The parameter values are now read only and cannot be edited any more:

- Via service interface (CDI)
- Via Modbus RS485

For device version with Modbus RS485 communication types

A001795

- 1. Depending on the housing version, loosen the securing clamp or fixing screw of the housing cover.
- 2. Depending on the housing version, unscrew or open the housing cover.
- 3. Setting the write protection switch on the main electronics module to the ON position enables the hardware write protection. Setting the write protection switch on the main electronics module to the OFF position (factory setting) disables the hardware write protection.
 - If hardware write protection is enabled: the **Locking status** parameter displays the **Hardware locked** option($\rightarrow \triangleq 49$); if disabled, the **Locking status** parameter does not display any option ($\rightarrow \triangleq 49$)
- 4. Reverse the removal procedure to reassemble the transmitter.

LNGmass Modbus RS485 Operation

11 Operation

11.1 Reading device locking status

The write protection types that are currently active can be determined using the **Locking status** parameter.

Navigation

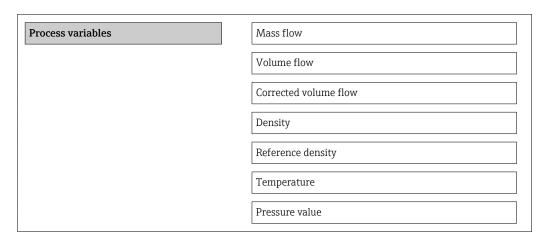
"Operation" menu → Locking status

Function scope of "Locking status" parameter

Options	Description
Hardware locked	The locking switch (DIPswitch) for locking the hardware is activated on the main electronic module. This prevents write access to the parameters ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Temporarily locked	Due to internal processing in the device (e.g. up-/downloading of data, reset), write access to the parameters is blocked for a short time. Once the internal processing has been completed, the parameters can be changed once again.

11.2 Reading measured values

Using the **Measured values** submenu, it is possible to read all the measured values.


"Diagnostics" menu → Measured values

11.2.1 Process variables

The **Process variables** submenu contains all the parameters needed to display the current measured values for every process variable.

Navigation

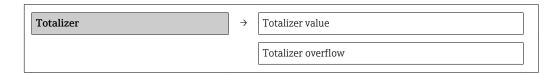
"Diagnostics" menu \rightarrow Measured values \rightarrow Process variables

Parameter overview with brief description

Parameter	Description	User interface
Mass flow	Displays the volume flow currently measured.	Signed floating-point number
Volume flow	Displays the mass flow currently calculated.	Signed floating-point number
Corrected volume flow	Displays the temperature currently measured.	Signed floating-point number
Density	Displays the corrected volume flow currently calculated.	Signed floating-point number
Reference density	Displays the saturated steam pressure currently calculated.	Signed floating-point number

Operation LNGmass Modbus RS485

Parameter	Description	User interface
Temperature	Displays the steam quality currently calculated.	Signed floating-point number
Pressure value	Displays either a fixed or external pressure value.	Signed floating-point number


11.2.2 Totalizer

The **"Totalizer" submenu** contains all the parameters needed to display the current measured values for every totalizer.

Navigation

"Diagnostics" menu \rightarrow Measured values \rightarrow Totalizer

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequsite	Description	User interface	Factory setting
Totalizer value	In the Assign process variable parameter of the Totalizer 1 to 3 submenu one of the following options is selected: Volume flow Corrected volume flow Mass flow Total mass flow Condensate mass flow Energy flow Heat flow difference	Displays the current totalizer counter value.	Signed floating-point number	0 kg
Totalizer overflow	In the Assign process variable parameter of the Totalizer 1 to 3 submenu one of the following options is selected: Volume flow Corrected volume flow Mass flow Total mass flow Condensate mass flow Energy flow Heat flow difference	Displays the current totalizer overflow.	-32 000.0 to 32 000.0	0

11.3 Adapting the measuring device to the process conditions

The following are available for this purpose:

- Basic settings using the **Setup** menu(→ 🖺 39)
- Advanced settings using the **Advanced setup** submenu(→ 🗎 45)

LNGmass Modbus RS485 Operation

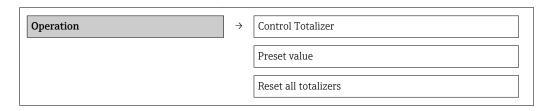
11.4 Performing a totalizer reset

In the **Operation** submenu the totalizers are reset:

- Control Totalizer
- Reset all totalizers

Function scope of "Control Totalizer" parameter

Options	Description
Totalize	The totalizer is started.
Reset + hold	The totaling process is stopped and the totalizer is reset to 0.
Preset + hold	The totaling process is stopped and the totalizer is set to its defined start value from the Preset value parameter.
Reset + totalize	The totalizer is reset to 0 and the totaling process is restarted.
Preset + totalize	The totalizer is set to the defined start value in Preset value parameterand the totaling process is restarted.


Function scope of "Reset all totalizers" parameter

Options	Description
Reset + totalize	Resets all totalizers to 0 and restarts the totaling process. This deletes all the flow values previously totalized.

Navigation

"Operation" menu \rightarrow Operation

Structure of the submenu

Parameter overview with brief description

Parameter	Description	Selection / User entry	Factory setting
Control Totalizer	Control totalizer value.	 Totalize Reset + hold Preset + hold Reset + totalize Preset + totalize 	Totalize
Preset value	Specify start value for totalizer.	Signed floating-point number	0 kg
Reset all totalizers	Reset all totalizers to 0 and start.	CancelReset + totalize	Cancel

12 Diagnostics and troubleshooting

12.1 General troubleshooting

For output signals

Problem	Possible causes	Remedy
Green power LED on the main electronics module of the transmitter is dark	Supply voltage does not match that specified on the nameplate.	Apply the correct supply voltage $(\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Green power LED on the main electronics module of the transmitter is dark	Power supply cable connected incorrectly	Check the terminal assignment .
Green power LED on Safety Barrier Promass 100 is dark	Supply voltage does not match that specified on the nameplate.	Apply the correct supply voltage $(\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Green power LED on Safety Barrier Promass 100 is dark	Power supply cable connected incorrectly	Check the terminal assignment $(\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Device measures incorrectly.	Configuration error or device is operated outside the application.	Check and correct parameter configuration. Observe limit values specified in the "Technical Data".

For access

Problem	Possible causes	Remedy
No write access to parameters	Hardware write protection enabled	Set the write protection switch on the main electronics module to the OFF position ($\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
No connection via Modbus RS485	Modbus RS485 bus cable connected incorrectly	Check the terminal assignment .
No connection via Modbus RS485	Modbus RS485 cable incorrectly terminated	Check terminating resistor (→ 🖺 28).
No connection via Modbus RS485	Incorrect settings for the communication interface	Check the Modbus RS485 configuration (→ 🖺 41).
No connection via service interface	Incorrect configuration of USB interface on PC or driver not installed correctly.	Observe the documentation for the Commubox. FXA291: Document "Technical Information" T100405C

12.2 Diagnostic information via light emitting diodes

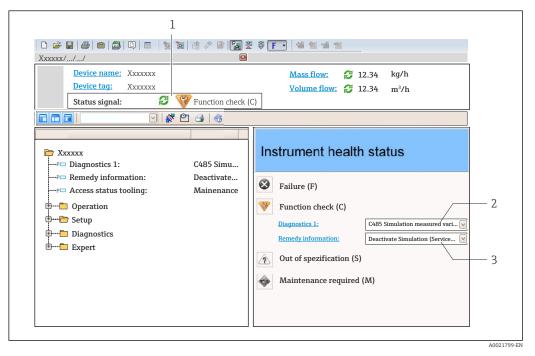
12.2.1 Transmitter

Various light emitting diodes (LEDs) on the main electronics module of the transmitter provide information on device status.

LED	Color	Meaning
Power	Off	Supply voltage is off or too low
	Green	Supply voltage is ok
Alarm	Off	Device status is ok
	Flashing red	A device error of diagnostic behavior "Warning" has occurred

LED	Color	Meaning
	Red	 A device error of diagnostic behavior "Alarm" has occurred Boot loader is active
Communication	Flashing white	Modbus RS485 communication is active

12.2.2 Safety Barrier Promass 100


Various light emitting diodes (LEDs) on the Safety Barrier Promass 100 provide status information.

LED	Color	Color
Power	Off	Supply voltage is off or too low.
	Green	Supply voltage is ok.
Communication	Flashing white	Modbus RS485 communication is active.

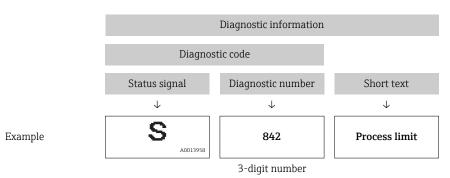
12.3 Diagnostic information in FieldCare

12.3.1 Diagnostic options

Any faults detected by the measuring device are displayed on the home page of the operating tool once the connection has been established.

- 1 Status area with status signal
- 2 Diagnostic informatio ($\rightarrow \stackrel{\triangle}{=} 54$)n
- 3 Remedial measures with Service ID
- Furthermore, diagnostic events that have occurred can be viewed in the **Diagnostics** menu:
 - Via parameters
 - Via submenu (\rightarrow 🖺 58)

Status signals


The status signals provide information on the state and reliability of the device by categorizing the cause of the diagnostic information (diagnostic event).

Symbol	Meaning
A0017271	Failure A device error has occurred. The measured value is no longer valid.
A0017278	Function check The device is in service mode (e.g. during a simulation).
A0017277	Out of specification The device is operated: Outside its technical specification limits (e.g. outside the process temperature range)
A0017276	Maintenance required Maintenance is required. The measured value is still valid.

The status signals are categorized in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

Diagnostic information

The fault can be identified using the diagnostic information. The short text helps you by providing information about the fault.

12.3.2 Calling up remedy information

Remedy information is provided for every diagnostic event to ensure that problems can be rectified quickly:

- On the home page
- Remedy information is displayed in a separate field below the diagnostics information.
- In the **Diagnostics** menu
 Remedy information can be called up in the working area of the user interface.

The user is in the **Diagnostics** menu.

- 1. Call up the desired parameter.
- 2. On the right in the working area, mouse over the parameter.
 - ► A tool tip with remedy information for the diagnostic event appears.

12.4 Diagnostic information via communication interface

12.4.1 Reading out diagnostic information

Diagnostic information can be read out via Modbus RS485 register addresses.

- Via register address **6821** (data type = string): diagnosis code, e.g. F270
- Via register address **6859** (data type = integer): diagnosis number, e.g. 270
- For an overview of diagnostic events with diagnosis number and diagnosis code $(\rightarrow \stackrel{\triangle}{=} 56)$

12.4.2 Configuring error response mode

Error response mode for Modbus RS485 communication can be configured in the **Communication** submenu using 2 parameters.

Navigation path

"Setup" menu \rightarrow Communication

Parameter overview with brief description

Parameter	Description	Options	Factory setting
Assign diagnostic behavior	Select diagnostic behavior for MODBUS communication.	OffAlarm or warningWarningAlarm	Alarm
Failure mode	Select measured value output behavior when a diagnostic message occurs via Modbus communication.	NaN valueLast valid valueNaN = not a number	NaN value
	This parameter operates in accordance with the option selected in the Assign diagnostic behavior parameter.		

12.5 Adapting the diagnostic information

12.5.1 Adapting the diagnostic behavior

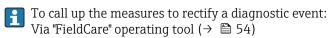
Each item of diagnostic information is assigned a specific diagnostic behavior at the factory. The user can change this assignment for certain diagnostics information in the **Diagnostic behavior** submenu .

"Expert" menu → System → Diagnostic handling → Diagnostic behavior

You can assign the following options to the diagnostic number as the diagnostic behavior:

Options	Description
Alarm	Measurement is interrupted. Measured value output via Modbus RS485 and totalizers assume the defined alarm condition. A diagnostic message is generated.
Warning	Measurement is resumed. Measured value output via Modbus RS485 and totalizers are not affected. A diagnostic message is generated.
Logbook entry only	The device continues to measure. The diagnostic message is entered in the Event logbook (events list) submenu only and is not displayed in alternation with the measured value display.
Off	The diagnostic event is ignored, and no diagnostic message is generated or entered.

12.6 Overview of diagnostic information

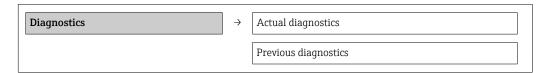

Diagnostic number	Short text	Repairing action	Status signal from the factory	Diagnostic behaviour from the factory
Diagnostic of se	ensor			
022	Sensor temperature	1.Change main electronic module 2.Change sensor	F	Alarm
044	Sensor drift	1.Check or change main electronics 2.Change sensor	S	Alarm 1)
046	Sensor limit	Inspect sensor Check process condition	S	Alarm 1)
062	Sensor connection	1.Change main electronic module 2.Change sensor	F	Alarm
082	Data storage	Check module connections Contact service	F	Alarm
083	Memory content	1. Restart device 2. Contact service	F	Alarm
144	Measuring error too high	Check or change sensor Check process conditions	F	Alarm 1)
190	Special event 1	Contact service	F	Alarm
191	Special event 5	Contact service	F	Alarm
192	Special event 9	Contact service	F	Alarm 1)
Diagnostic of el	lectronic			_
242	Software incompatible	Check software Flash or change main electronics module	F	Alarm
270	Main electronic failure	Change main electronic module	F	Alarm
271	Main electronic failure	Restart device Change main electronic module	F	Alarm
272	Main electronic failure	Restart device Contact service	F	Alarm
273	Main electronic failure	Change electronic	F	Alarm
274	Main electronic failure	Change electronic	S	Warning 1)
311	Electronic failure	1. Reset device 2. Contact service	F	Alarm
390	Special event 2	Contact service	F	Alarm
391	Special event 6	Contact service	F	Alarm
392	Special event 10	Contact service	F	Alarm 1)
Diagnostic of co	onfiguration			
410	Data transfer	Check connection Retry data transfer	F	Alarm
411	Up-/download active	Up-/download active, please wait	С	Warning
438	Dataset	Check data set file Check device configuration Up- and download new configuration	М	Warning

Diagnostic number	Short text	Repairing action	Status signal from the factory	Diagnostic behaviour from the factory
453	Flow override	Deactivate flow override	С	Warning
484	Simulation failure mode	Deactivate simulation	С	Alarm
485	Simulation measured variable	Deactivate simulation	С	Warning
590	Special event 3	Contact service	М	Alarm
591	Special event 7	Contact service	М	Alarm
592	Special event 11	Contact service	М	Alarm 1)
Diagnostic of pr	ocess		<u>'</u>	
830	Ambient temperature	Reduce ambient temp. around the sensor housing	S	Warning
831	Ambient temperature	Increase ambient temp. around the sensor housing	S	Warning
832	Ambient temperature	Reduce ambient temperature	S	Warning 1)
833	Ambient temperature	Increase ambient temperature	S	Warning 1)
834	Process temperature	Reduce process temperature	S	Warning 1)
835	Process temperature	Increase process temperature	S	Warning 1)
843	Process limit	Check process conditions	S	Warning
862	Partly filled pipe	1.Check for gas in process 2. Adjust detection limits	S	Warning
910	Tubes not oscillating	Check electronic Inspect sensor	F	Alarm
912	Inhomogeneous	Check process cond. Increase system pressure	S	Warning ¹⁾
913	Inhomogeneous	Check process conditions Check electronic modules or sensor	S	Alarm 1)
944	Monitoring failed	Check process conditions for Heartbeat Monitoring	S	Warning ¹⁾
990	Special event 4	Contact service	F	Alarm
991	Special event 8	Contact service	F	Alarm
992	Special event 12	Contact service	F	Alarm 1)

Diagnostic status is changeable.

12.7 Pending diagnostic events

The **Diagnostics** menu allows the user to view the current diagnostic event and the previous diagnostic event separately.



Other pending diagnostic events can be displayed in the **Diagnostic list** submenu($\rightarrow \implies 58$)

Navigation

"Diagnostics" menu

Structure of the submenu

Parameter overview with brief description

Parameter	Prerequsite	Description	User interface	Factory setting
Actual diagnostics	1 diagnostic event has occurred.	Displays the current diagnostic event along with the diagnostic information. If two or more messages occur simultaneously, the message with the highest priority is shown on the display.	Symbol for diagnostic behavior, diagnostic code and short message.	-
Previous diagnostics	2 diagnostic events have already occurred.	Displays the diagnostic event that occurred prior to the current diagnostic event along with the diagnostic information.	Symbol for diagnostic behavior, diagnostic code and short message.	-

12.8 Diagnostic list

In the **Diagnostic list** submenu, up to 5 currently pending diagnostic events can be displayed along with the related diagnostic information. If more than 5 diagnostic events are pending, the events with the highest priority are shown on the display.

Navigation path

Diagnostics menu → **Diagnostic list** submenu

To call up the measures to rectify a diagnostic event: Via "FieldCare" operating tool ($\rightarrow \stackrel{\triangle}{=} 54$)

12.9 Event logbook

12.9.1 Event history

A chronological overview of the event messages that have occurred is provided in the events list which contains a maximum of 20 message entries. This list can be displayed via FieldCare if necessary.

Navigation path

Event list: $\mathbf{F} \rightarrow \text{Tool box} \rightarrow \text{Additional functions}$

For information on the event list, see the FieldCare user interface

This event history includes entries for:

- Diagnostic events (→ 🖺 56)
- Information events ($\rightarrow \implies 59$)

In addition to the operation time of its occurrence and possible troubleshooting measures, each event is also assigned a symbol that indicates whether the event has occurred or is ended:

- Diagnostic event
 - Đ: Event has occurred
 - ←: Event has ended
- Information event
 - ⊕: Event has occurred
- To call up the measures to rectify a diagnostic event: Via "FieldCare" operating tool $(\rightarrow \ \ \)$ 54)
- For filtering the displayed event messages ($\rightarrow \triangleq 59$)

12.9.2 Filtering the event logbook

Using the **Filter options** parameter, you can define which category of event messages is displayed in the **Events list** submenu.

Navigation path

"Diagnostics" menu \rightarrow Event logbook \rightarrow Filter options

Filter categories

- All
- Failure (F)
- Function check (C)
- Out of specification (S)
- Maintenance required (M)
- Information (I)

12.9.3 Overview of information events

Unlike a diagnostic event, an information event is displayed in the event logbook only and not in the diagnostic list.

Info number	Info name
I1000	(Device ok)
I1089	Power on
11090	Configuration reset
I1091	Configuration changed
I1110	Write protection switch changed
I1111	Density adjust failure
I1151	History reset
I1209	Density adjustment ok
I1221	Zero point adjust failure
I1222	Zero point adjustment ok
I1444	Device verification passed
I1445	Device verification failed
I1446	Device verification active
I1447	Record application reference data
I1448	Application reference data recorded
I1449	Recording application ref. data failed
I1450	Monitoring off
I1451	Monitoring on

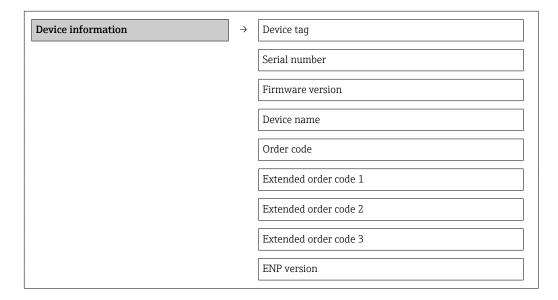
Info number	Info name
I1457	Failed:Measured error verification
I1459	Failed: I/O module verification
I1460	Failed: Sensor integrity verification
I1461	Failed: Sensor verification
I1462	Failed:Sensor electronic module verific.

12.10 Resetting the measuring device

Using the **Device reset** parameter it is possible to reset the entire device configuration or some of the configuration to a defined state.

"Setup" menu \rightarrow Advanced setup \rightarrow Administration

Function scope of "Device reset" parameter


Options	Description
Cancel	No action is executed and the user exits the parameter.
To delivery settings	Every parameter for which a customer-specific default setting was ordered is reset to this customer-specific value. All other parameters are reset to the factory setting. This option is not visible if no customer-specific settings have been ordered.
Restart device	The restart resets every parameter whose data are in the volatile memory (RAM) to the factory setting (e.g. measured value data). The device configuration remains unchanged.
History reset	Every parameter is reset to its factory setting.

12.11 Device information

The **Device information** submenu contains all the parameters that display different information for identifying the device.

Navigation

"Diagnostics" menu \rightarrow Device information

Parameter overview with brief description

Parameter	Description	User interface	Factory setting
Device tag	Enter tag for measuring point.	Max. 32 characters, such as letters, numbers or special characters (e.g. @, %, /)	Promass 100
Serial number	Displays the serial number of the measuring device.	Max. 11-digit character string comprising letters and numbers.	79AFFF16000
Firmware version	Displays the device firmware version installed.	Character string with the following format: xx.yy.zz	01.02
Device name	Displays the name of the transmitter.	Character string composed of letters, numbers and certain punctuation marks.	Promass 100
Order code	Displays the device order code.	Character string composed of letters, numbers and certain punctuation marks	-
Extended order code 1	Displays the 1st part of the extended order code.	Character string	-
Extended order code 2	Displays the 2nd part of the extended order code.	Character string	-
Extended order code 3	Displays the 3rd part of the extended order code.	Character string	-
ENP version	Displays the version of the electronic nameplate.	Character string in the format xx.yy.zz	2.02.00

12.12 Firmware history

Release date	Firmware version	Order code for "Firmware version"	Firmware changes	Documentation type	Documentation
04.2013	01.02.00	Option 78	Original firmware	Operating Instructions	BA01261D/06/EN/01.13

- Flashing the firmware to the current version or to the previous version is possible via the service interface (CDI).
- For the compatibility of the firmware version with the previous version, the installed device description files and operating tools, observe the information about the device in the "Manufacturer's information" document.
- The manufacturer's information is available:
 - \bullet In the Download Area of the Endress+Hauser Internet site: www.endress.com \rightarrow Download
 - Specify the following details:
 - Product root, e.g. 8E1B
 - Text search: Manufacturer's information
 - Search range: documentation

Maintenance LNGmass Modbus RS485

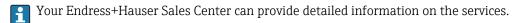
13 Maintenance

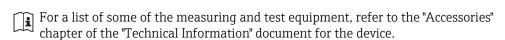
13.1 Maintenance tasks

No special maintenance work is required.

13.1.1 Exterior cleaning

When cleaning the exterior of measuring devices, always use cleaning agents that do not attack the surface of the housing or the seals.


13.1.2 Interior cleaning


Observe the following points for CIP and SIP cleaning:

- Use only cleaning agents to which the process-wetted materials are adequately resistant.
- Observe the maximum permitted medium temperature for the measuring device $(\rightarrow \bigcirc 3)$.

13.2 Measuring and test equipment

Endress+Hauser offers a wide variety of measuring and test equipment, such as W@M or device tests.

13.3 Endress+Hauser services

Endress+Hauser offers a wide variety of services for maintenance such as recalibration, maintenance service or device tests.

Your Endress+Hauser Sales Center can provide detailed information on the services.

LNGmass Modbus RS485 Repair

14 Repair

14.1 General notes

Repair and conversion concept

The Endress+Hauser repair and conversion concept provides for the following:

- The measuring devices have a modular design.
- Spare parts are grouped into logical kits with the associated Installation Instructions.
- Repairs are carried out by Endress+Hauser Service or by correspondingly trained customers.
- Certified devices can be converted into other certified devices by Endress+Hauser Service or at the factory only.

Notes for repair and conversion

For repair and modification of a measuring device, observe the following notes:

- Use only original Endress+Hauser spare parts.
- Carry out the repair according to the Installation Instructions.
- Observe the applicable standards, federal/national regulations, Ex documentation (XA) and certificates.
- Document every repair and each conversion and enter them into the W@M life cycle management database.

14.2 Spare parts

W@M Device Viewer (www.endress.com/deviceviewer):

All the spare parts for the measuring device, along with the order code, are listed here and can be ordered. If available, users can also download the associated Installation Instructions.

Measuring device serial number:

- Is located on the nameplate of the device.

14.3 Endress+Hauser services

Contact your Endress+Hauser Sales Center for information on services and spare parts.

14.4 Return

The measuring device must be returned if repairs or a factory calibration are required, or if the wrong measuring device has been ordered or delivered. According to legal regulations, Endress+Hauser, as an ISO-certified company, is required to follow certain procedures when handling returned products that are in contact with medium.

To ensure swift, safe and professional device returns, please read the return procedures and conditions on the Endress+Hauser website at www.services.endress.com/return-material

14.5 Disposal

14.5.1 Removing the measuring device

1. Switch off the device.

Repair LNGmass Modbus RS485

2. **WARNING!** Danger to persons from process conditions. Beware of hazardous process conditions such as pressure in the measuring device, high temperatures or aggressive fluids.

Carry out the mounting and connection steps from the chapters "Mounting the measuring device" and "Connecting the measuring device" in the logically reverse sequence. Observe the safety instructions.

14.5.2 Disposing of the measuring device

WARNING

Danger to personnel and environment from fluids that are hazardous to health.

► Ensure that the measuring device and all cavities are free of fluid residues that are hazardous to health or the environment, e.g. substances that have permeated into crevices or diffused through plastic.

Observe the following notes during disposal:

- Observe valid federal/national regulations.
- Ensure proper separation and reuse of the device components.

LNGmass Modbus RS485 Accessories

15 Accessories

Various accessories, which can be ordered with the device or subsequently from Endress +Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

15.1 Communication-specific accessories

Accessories	Description
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop. For details, see "Technical Information" TI00405C

15.2 Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results
	Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
	Applicator is available: Via the Internet: https://wapps.endress.com/applicator On CD-ROM for local PC installation.
W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress +Hauser also takes care of maintaining and updating the data records. W@M is available: Via the Internet: www.endress.com/lifecyclemanagement On CD-ROM for local PC installation.
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.
	For details, see Operating Instructions BA00027S and BA00059S

Technical data LNGmass Modbus RS485

16 Technical data

16.1 Application

The measuring device is suitable for flow measurement of liquids and gases only.

Depending on the version ordered, the measuring device can also measure potentially explosive, flammable, poisonous and oxidizing media.

To ensure that the device remains in proper operating condition for its service life, use the measuring device only for media against which the process-wetted materials are adequately resistant.

16.2 Function and system design

Measuring principle

Mass flow measurement based on the Coriolis measuring principle

Measuring system

The device consists of a transmitter and a sensor. If a device with Modbus RS485 intrinsically safe is ordered, the Safety Barrier Promass 100 is part of the scope of supply and must be implemented to operate the device.

One device version is available: compact version, transmitter and sensor form a mechanical unit.

For information on the structure of the device $(\rightarrow \implies 11)$

16.3 Input

Measured variable

Direct measured variables

- Mass flow
- Density
- Temperature

Calculated measured variables

- Volume flow
- Corrected volume flow
- Reference density

Measuring range

Measuring ranges for liquids

DN		Measuring range full scal	e values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	0 to 2 000	0 to 73.5
15	1/2	0 to 6 500	0 to 238
25	1	0 to 18 000	0 to 660

Recommended measuring range

"Flow limit" section ($\rightarrow \blacksquare 73$)

LNGmass Modbus RS485 Technical data

Operable flow range

Over 1000:1.

Flow rates above the preset full scale value are not overridden by the electronics unit, with the result that the totalizer values are registered correctly.

16.4 Output

Output signal

Modbus RS485

Physical interface In accordance with EIA/TIA-485-A standard	
Terminating resistor	Integrated, can be activated via DIP switch on the transmitter electronics module

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Modbus RS485

Failure mode	Choose from:	
	 NaN value instead of current value Last valid value 	

Operating tool

Via service interface

Plain text display	With information on cause and remedial measures
--------------------	---

Light emitting diodes (LED)

Status indicated by various light emitting diodes	
owing information is displayed depending on the device version: y voltage active	
rransmission active e alarm/error has occurred	

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The following connections are galvanically isolated from each other:

- Outputs
- Power supply

Protocol-specific data

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0

Technical data LNGmass Modbus RS485

Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	• ASCII • RTU
Data access	Each device parameter can be accessed via Modbus RS485. ☐ For Modbus register information (→ 🗎 77)

16.5 Power supply

Terminal assignment

(→ 🖺 24)

Supply voltage

Transmitter

- \bullet For device version with all communication types except Modbus RS485 intrinsically safe: DC 20 to 30 V
- For device version with Modbus RS485 intrinsically safe: power supply via Safety Barrier Promass 100

The power unit must be tested to ensure it meets safety requirements (e.g. PELV, SELV).

Safety Barrier Promass 100

DC 20 to 30 V

Power consumption

Transmitter

Order code for	Maximum
"Output"	Power consumption
Option M : Modbus RS485, for use in intrinsically safe areas	2.45 W

Safety Barrier Promass 100

Order code for	Maximum
"Output"	Power consumption
Option M : Modbus RS485, for use in intrinsically safe areas	4.8 W

LNGmass Modbus RS485 Technical data

Current consumption

Transmitter

Order code for	Maximum	Maximum
"Output"	Current consumption	switch-on current
Option M : Modbus RS485, for use in intrinsically safe areas	145 mA	16 A (<0.4 ms)

Safety Barrier Promass 100

Order code for "Output"	Maximum Current consumption	Maximum switch-on current
Option M : Modbus RS485, for use in intrinsically safe areas	230 mA	10 A (<0.8 ms)

Power supply failure

- Totalizers stop at the last value measured.
- Configuration is retained in the device memory.
- Error messages (incl. total operated hours) are stored.

Electrical connection

(→ 🖺 26)

Potential equalization

No special measures for potential equalization are required.

Terminals

Transmitter

Spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Safety Barrier Promass 100

Plug-in screw terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)

Cable entries

- Cable gland: M20 × 1.5 with cable ϕ 6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - NPT ½"
 - G ½"
 - M20

Cable specification

(→ 🖺 22)

16.6 Performance characteristics

Reference operating conditions

- Error limits based on ISO 11631
- Water with +15 to +45 °C (+59 to +113 °F) at 2 to 6 bar (29 to 87 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

To obtain measured errors, use the *Applicator* sizing tool (→ 🖺 77)

Maximum measured error

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base accuracy

Mass flow and volume flow (liquids)

±0.15 % o.r.

Technical data LNGmass Modbus RS485

Page 10 Design fundamentals (→ 🖺 71)

Density (liquids)

- Reference conditions:±0.0005 g/cm³
- Standard density calibration:±0.02 g/cm³ (valid over the entire temperature range and density range)

Temperature

 $\pm 0.5 \,^{\circ}\text{C} \pm 0.005 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.9 \,^{\circ}\text{F} \pm 0.003 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

Zero point stability

DN		Zero poin	t stability
[mm]	[in]	[kg/h]	[lb/min]
8	3/8	0.2	0.0074
15	1/2	0.65	0.0239
25	1	1.8	0.0662

Flow values

Flow values as turndown parameter depending on nominal diameter.

SI units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
8	2 000	200	100	40	20	4
15	6500	650	325	130	65	13
25	18 000	1800	900	360	180	36

US units

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
3/8	73.5	7.35	3.675	1.47	0.735	0.147
1/2	238	23.8	11.9	4.76	2.38	476
1	660	66	33	13.2	6.6	1.32

Repeatability

o.r. = of reading; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = medium temperature

Base repeatability

Mass flow and volume flow (liquids)

±0.075 % o.r.

Page 1 Design fundamentals (→ 1 → 71)

Density (liquids)

 $\pm 0.00025 \text{ g/cm}^3$

Temperature

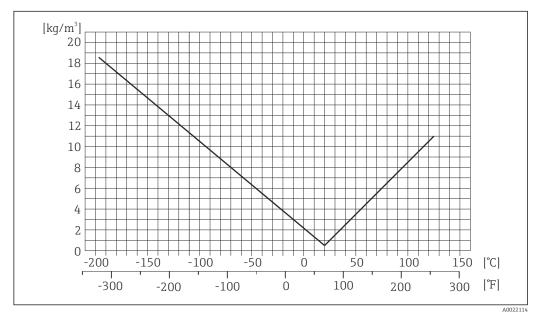
 $\pm 0.25 \,^{\circ}\text{C} \pm 0.0025 \cdot \text{T} \,^{\circ}\text{C} \, (\pm 0.45 \,^{\circ}\text{F} \pm 0.0015 \cdot (\text{T} - 32) \,^{\circ}\text{F})$

70

LNGmass Modbus RS485 Technical data

Response time

- The response time depends on the configuration (damping).
- Response time in the event of erratic changes in the measured variable (only mass flow): after 100 ms, 95 % of the full scale value


Influence of medium temperature

Mass flow and volume flow

When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the sensor is ± 0.0002 % of the full scale value/°C (± 0.0001 % of the full scale value/°F).

Density

When there is a difference between the density calibration temperature and the process temperature, the typical measured error of the sensor is $\pm 0.0001 \text{ g/cm}^3$ /°C ($\pm 0.00005 \text{ g/cm}^3$ /°F). Field density calibration is possible.

 \blacksquare 13 Field density calibration, for example at +20 °C (+68 °F)

Temperature

 $\pm 0.005 \cdot \text{T} \, ^{\circ}\text{C} \, (\pm 0.005 \cdot (\text{T} - 32) \, ^{\circ}\text{F})$

Influence of medium pressure

A difference between the calibration pressure and process pressure does not affect accuracy.

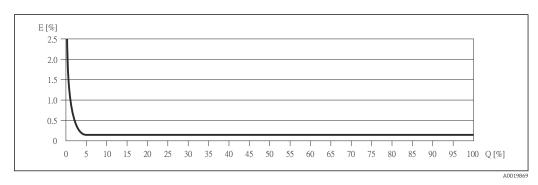
Design fundamentals

o.r. = of reading, o.f.s. = of full scale value

BaseAccu = base accuracy in % o.r., BaseRepeat = base repeatability in % o.r.

MeasValue = measured value; ZeroPoint = zero point stability

Calculation of the maximum measured error as a function of the flow rate


Flow rate	Maximum measured error in % o.r.
≥ ZeroPoint BaseAccu · 100	± BaseAccu
A0021332	AU021337
$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	$\pm \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021333	A0021334

Technical data LNGmass Modbus RS485

Calculation of the maximum repeatability as a function of the flow rat	Calculation c	f the maximum r	epeatability as a	function of	the flow rate
--	---------------	-----------------	-------------------	-------------	---------------

Flow rate	Maximum repeatability in % o.r.
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	± BaseRepeat
A0021335	AUU21340
$<\frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$	$\pm \frac{1}{2} \cdot \frac{\text{ZeroPoint}}{\text{MeasValue}} \cdot 100$
A0021336	A0021337

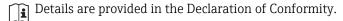
Example for max. measured error

- E Error: Maximum measured error as % o.r. (example)
- Q Flow rate as %

ightharpoonup Design fundamentals (ightharpoonup ightharpoonup 71)

16.7 Installation

"Mounting requirements" ($\rightarrow \square$ 18)


16.8 Environment

Ambient temperature range	(→ 🖺 19)
Storage temperature	-40 to $+80$ °C (-40 to $+176$ °F), preferably at $+20$ °C ($+68$ °F)
Climate class	DIN EN 60068-2-38 (test Z/AD)
Degree of protection	Transmitter and sensor ■ As standard: IP66/67, type 4X enclosure ■ When housing is open: IP20, type 1 enclosure
	Safety Barrier Promass 100 IP20
Shock resistance	As per IEC/EN 60068-2-31
Vibration resistance	Acceleration up to 1 g, 10 to 150 Hz, based on IEC/EN 60068-2-6

LNGmass Modbus RS485 Technical data

Electromagnetic compatibility (EMC)

- As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)
- Complies with emission limits for industry as per EN 55011 (Class A)

16.9 Process

Medium temperature range

Sensor

-196 to +125 °C (-320 to +257 °F)

Seals

No internal seals

Medium density

0 to 5000 kg/m^3 (0 to 312 lb/cf)

Pressure-temperature ratings

An overview of the material load diagrams (pressure/temperature curves) for the process connections is provided in the "Technical Information" document for the device on the CD-ROM provided.

Secondary containment pressure range

The sensor housing is filled with helium and protects the electronics and mechanics inside.

The housing does not have pressure vessel classification.

Reference value for the pressure loading capacity of the sensor housing: 16 bar (232 psi)

Flow limit

Select the nominal diameter by optimizing between the required flow range and permissible pressure loss.

For an overview of the measuring range full scale values, see the "Measuring range" section $(\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \)$

- The minimum recommended full scale value is approx. 1/20 of the maximum full scale value
- In most applications, 20 to 50 % of the maximum full scale value can be considered ideal
- Select a lower full scale value for abrasive substances (such as liquids with entrained solids): flow velocity <1 m/s (<3 ft/s).

Pressure loss

To calculate the pressure loss, use the *Applicator* sizing tool ($\Rightarrow \triangleq 77$)

Technical data LNGmass Modbus RS485

16.10 Mechanical construction

Design, dimensions

For the dimensions and installation lengths of the device, see the "Technical Information" document, "Mechanical construction" section

Weight

Compact version

Weight in SI units

All values (weight) refer to devices with EN/DIN PN 40 flanges. Weight information in [kg].

DN [mm]	Weight [kg]
8	6
15	6
25	8

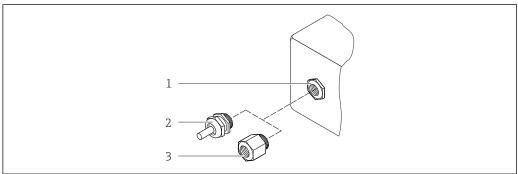
Weight in US units

All values (weight) refer to devices with EN/DIN PN 40 flanges. Weight information in [lbs].

DN [in]	Weight [lbs]
3/8	13
1/2	13
1	18

Safety Barrier Promass 100

49 g (1.73 ounce)


Materials

Transmitter housing

Order code for "Housing", option ${\bf A}$ "Compact, aluminum coated": Coated aluminum AlSi $10{
m Mg}$

LNGmass Modbus RS485 Technical data

Cable entries/cable glands

A0020640

■ 14 Possible cable entries/cable glands

- 1 Cable entry in transmitter housing, wall-mount housing or connection housing with internal thread M20 x 1.5
- 2 Cable gland M20 x 1.5
- 3 Adapter for cable entry with internal thread G ½" or NPT ½"

Order code for "Housing", option A "Compact, coated aluminum"

The various cable entries are suitable for hazardous and non-hazardous areas.

Cable entry/cable gland	Material
Cable gland M20 × 1.5	Nickel-plated brass
Adapter for cable entry with internal thread G ½"	
Adapter for cable entry with internal thread NPT ½"	

Sensor housing

- Acid and alkali-resistant outer surface
- Stainless steel 1.4301 (304)

Measuring tubes

- Stainless steel 1.4539 (904L); manifold: 1.4404 (316L)
- Surface quality:
 - Not polished
 - $Ra_{max} = 0.8 \mu m (32 \mu in)$

Process connections

For all process connections: Stainless steel 1.4404 (316/316L)

List of all available process connections ($\rightarrow \implies 76$)

Seals

Welded process connections without internal seals

Safety Barrier Promass 100

Housing: Polyamide

Technical data LNGmass Modbus RS485

Process connections

Flanges:

- EN 1092-1 (DIN 2501)
- ASME B16.5

For information on the materials of the process connections ($\rightarrow \triangleq 75$)

16.11 Operability

Remote operation

Service interface (CDI)

Operation of the measuring device with the service interface (CDI) via: "FieldCare" operating tool with COM DTM "CDI Communication FXA291" via Commubox

FXA291

Languages

Can be operated in the following languages:

Via "FieldCare" operating tool:

English, German

16.12 Certificates and approvals

CE mark

The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

C-Tick symbol

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval

The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

Modbus RS485 certification

The measuring device meets all the requirements of the MODBUS/TCP conformity test and has the "MODBUS/TCP Conformance Test Policy, Version 2.0". The measuring device has successfully passed all the test procedures carried out and is certified by the "MODBUS/TCP Conformance Test Laboratory" of the University of Michigan.

16.13 Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered from Endress+Hauser either directly with the device or subsequently. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website; www.endress.com.

LNGmass Modbus RS485 Technical data

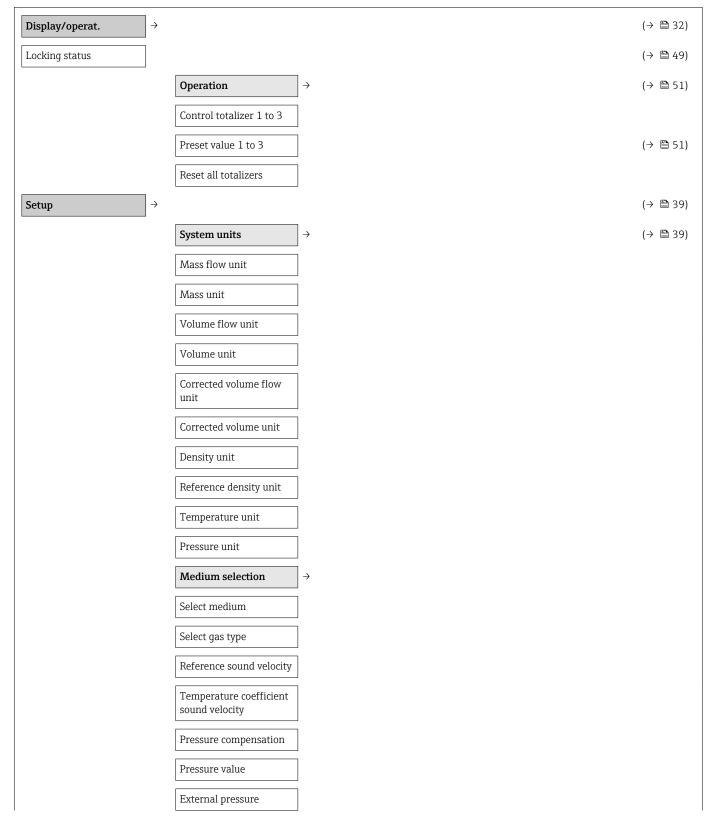
16.14 Accessories

16.15 Supplementary documentation

- For an overview of the scope of the associated Technical Documentation, refer to the following:
 - The CD-ROM provided for the device (depending on the device version, the CD-ROM might not be part of the delivery!)
 - The *W@M Device Viewer*: Enter the serial number from the nameplate (www.endress.com/deviceviewer)
 - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

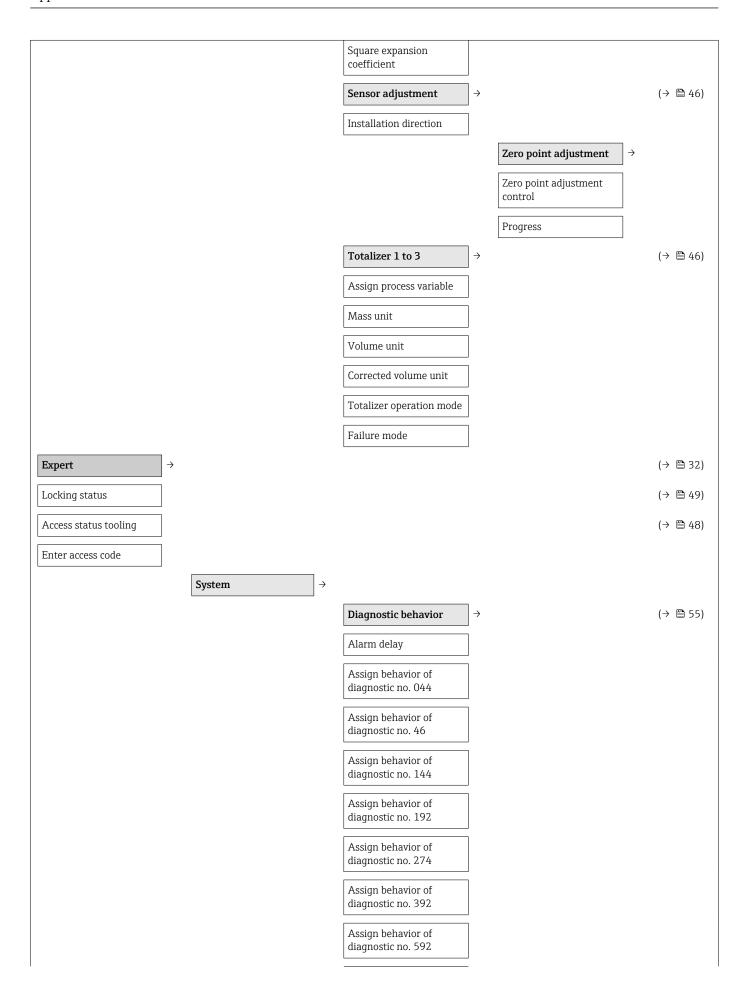
Standard documentation

Communication	Document type	Documentation code
	Brief Operating Instructions	KA01153D
	Technical Information	TI01124D


Supplementary devicedependent documentation

Document type	Contents	Documentation code
Safety Instructions	ATEX/IECEx Ex i	XA01217D
	cCSAus IS	XA01218D
	INMETRO	XA01246D
	NEPSI	XA01247D
Special Documentation	Modbus RS485 Register Information	SD01165D
Installation Instructions		Specified for each individual accessory (→ 🖺 65)
		Overview of accessories available for order (→ 🖺 65)

17 Appendix


17.1 Overview of the operating menu

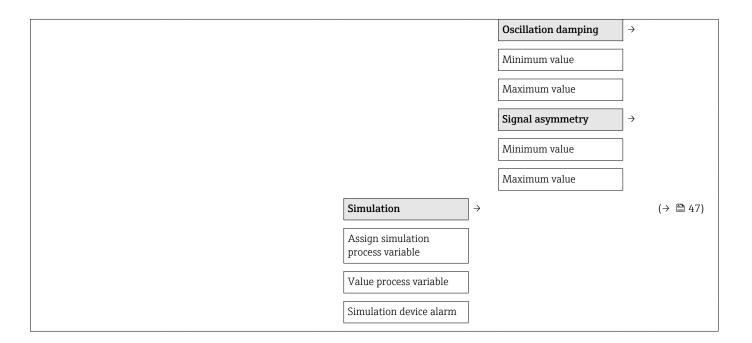
The following table provides an overview of the entire operating menu structure with menus and parameters. The page reference indicates where a description of the parameter can be found in the manual.

78

С	Communication	\rightarrow			(→ 🖺 41)
	Bus address				-
	Baud rate				
	Oata transfer mode				
P	Parity				
В	Byte order				
Ab	Assign diagnostic ehavior				
F	ailure mode				
L	ow flow cut off	\rightarrow			(→ 🖺 43)
Α	Assign process variable				
0	On value low flow cutoff				
O	Off value low flow cutoff				
	Pressure shock uppression				
P d	Partially filled pipe letection	\rightarrow			(→ 🖺 44)
Α	Assign process variable				
L	ow value partial filled oipe detection				
	High value partial filled bipe detection				
R	Response time part. illed pipe detect.				
А	Advanced setup	\rightarrow			(→ 🖺 45)
E	Enter access code				
D	Device tag				(→ 🖺 39)
			Calculated values	\rightarrow	(→ 🖺 45)
			Corrected volume flow calculation		
			External reference density		
			Fixed reference density		
			Reference temperature		
			Linear expansion coefficient		

	Assign behavior of				
	diagnostic no. 832				
	Assign behavior of diagnostic no. 833				
	Assign behavior of diagnostic no. 834				
	Assign behavior of diagnostic no. 835				
	Assign behavior of diagnostic no. 912				
	Assign behavior of diagnostic no. 913				
	Assign behavior of diagnostic no. 944				
	Assign behavior of diagnostic no. 992				
	Management	\rightarrow			
	Device reset				
	Activate SW option				
	SW option overview				
	Permanent storage				
	Device tag				
					(→ 🖺 49)
	Measured values	\rightarrow			(→ 🖺 49)
			Process variables	\rightarrow	(→ 🖺 49)
			Mass flow		
			Volume flow		
			Corrected volume flow		
			Density		
			Reference density		
			Temperature		
			Pressure value		
			Totalizer	\rightarrow	(→ 🖺 50)
			Totalizer value1 to 3		
			Totalizer overflow1 to 3		
	System units	\rightarrow			(→ 🖺 39)
l					

Mass flow unit Mass unit Volume flow unit Volume unit Corrected volume flow unit Corrected volume unit Density unit Reference density unit Temperature unit Pressure unit Date/time format User-specific units User mass text User mass factor User volume text User volume factor User corrected volume text User corrected volume factor User density text User density offset User density factor User pressure text User pressure offset User pressure factor Process param. Flow damping Density damping Flow override Temperature damping (→ 🖺 43) Low flow cut off


Assign process variable On value low flow cutoff Off value low flow cutoff Pressure shock suppression(→ 🖺 44) Partially filled pipe detection Assign process variable Low value partial filled pipe detection High value partial filled pipe detection Response time part. filled pipe detect. Maximum damping partial filled pipe det. Measuring mode Select medium Select gas type Reference sound velocity Temperature coefficient sound velocity External compensation Pressure compensation Pressure value External pressure Temperature mode External temperature (→ 🖺 45) Calculated values Corrected volume flow calculation External reference density Fixed reference density Reference temperature Linear expansion coefficient

Square expansion coefficient (→ 🖺 46) Sensor adjustment Installation direction Zero point adjustment Zero point adjustment control Progress Variable adjust Mass flow offset Mass flow factor Volume flow offset Volume flow factor Corrected volume flow offset Corrected volume flow factor Density offset Density factor Reference density offset Reference density factor Temperature offset Temperature factor Calibration Calibration factor Zero point Nominal diameter C0 to 5 Testpoints Oscillation frequency $0 \ to \ 1$ Frequency fluctuation0 to 1 Oscillation amplitude 0 to 1 $\,$

				-
	Oscillation damping0 to 1			
	Tube damping fluctuation0 to 1			
	Signal asymmetry			
	Electronic temperature			
	Carrier pipe temperature			
	Exciter current 0 to 1			
$\fbox{\textbf{Communication}} \rightarrow$				(→ 🖺 41)
)		
	Bus address			
	Baud rate			
	Data transfer mode			
	Parity			
	Byte order			
	Telegram delay			
	Assign diagnostic behavior			
	Failure mode			
	Interpreter mode			
		Modbus data map	\rightarrow	(→ 🖺 36)
		Scan list register0 to 15		
		Measured values	\rightarrow	(→ 🖺 49)
		Process variables	\rightarrow	(→ 🖺 49)
		Mass flow		
		Volume flow		
		Density		
		Temperature		
		Pressure value		
		Totalizer	\rightarrow	(→ 🖺 50)
		Totalizer value 1 to 2		
		System units	\rightarrow	(→ 🖺 39)
		Mass flow unit		
I				

Mass unit Volume flow unit Volume unit Density unit Reference density unit Temperature unit Pressure unit Modbus configuration Bus address Application Reset all totalizers Totalizer 1 to 3 Assign process variable Mass unit Volume flow unit Corrected volume unit Totalizer operation mode Control totalizer 1 to 3 Preset value 1 to 3 Failure mode Diagnostics Actual diagnostics Timestamp Previous diagnostics Timestamp Operating time from restart Operating time Diagnostic list Diagnostics 1 to 5 Timestamp Event logbook

Filter options **Device information** Device tag Serial number Firmware version Device name Order code Extended order $code1 \ to \ 3$ ENP version Configuration counter Min/max values Reset min/max values Main electronic temperature Minimum value Maximum value Medium temperature Minimum value Maximum value Carrier pipe temperature Minimum value Maximum value Oscillation frequency Minimum value Maximum value Torsion oscillation frequency Minimum value Maximum value Oscillation amplitude Minimum value Maximum value

LNGmass Modbus RS485

Index

A	Sensor	14
Accuracy	Transmitter	13
Adapting the diagnostic behavior	Device repair	
Ambient temperature range	Device revision	
Application	Device type ID	35
Application packages	Diagnostic information	
Approvals	Communication interface	
Auto scan buffer	Design, description	
see Modbus RS485 Modbus data map	FieldCare	
	Light emitting diodes	
C	Overview	
C-Tick symbol	Remedial measures	
Cable entries	Diagnostic list	58
Technical data 69	DIP switch	
Cable entry	see Write protection switch	
Degree of protection	Disabling write protection	47
CE mark	Display	
Certificates	Current diagnostic event	
Check	Previous diagnostic event	57
Installation	Display values	
Checklist	For locking status	
Post-connection check 29	Disposal	63
Post-installation check	Document	_
Cleaning	Function	
CIP cleaning	Symbols used	
Exterior cleaning	Document function	. 5
Interior cleaning	Е	
SIP cleaning	_	
Climate class	Electrical connection Commubox FXA291	2.7
Commissioning		
Advanced settings	Degree of protection	
Configuring the measuring device	Measuring device	<i>L Z</i>
Configuring error response mode, Modbus RS485 55	Operating tools Via service interface (CDI)	22
Connecting cable	Electromagnetic compatibility	
Connecting the measuring device	Enabling write protection	
Connection	Endress+Hauser services	4/
see Electrical connection	Maintenance	67
Connection preparations	Repair	
Connection tools	Error messages	0,
Current consumption	see Diagnostic messages	
D	Event history	58
Declaration of Conformity	Events list	
Degree of protection	Ex approval	
Design	Extended order code	
Measuring device	Sensor	14
Design fundamentals	Transmitter	
Maximum measured error	Exterior cleaning	
Repeatability	J	
Designated use	F	
Device components	Field of application	
Device description files	Residual risks	. 9
Device documentation	FieldCare	
Supplementary documentation 7	Device description file	
Device locking, status 49	Establishing a connection	33
Device name	Function	33

User interface	Integrating via HART protocol	
Filtering the event logbook	Mounting the sensor	
Firmware	Preparing for electrical connection	
Release date	Preparing for mounting	
Version	Removing	
Firmware history	Repair	
Flow direction	Measuring principle	66
Flow limit	Measuring range	
Function check	For liquids	
Function codes	Measuring range, recommended	
see Parameter	Measuring system	
see Parameter	Medium density	
G	Medium pressure	/ 3
Galvanic isolation	Influence	71
ourvaine isolation	Medium temperature	/ 1
Н	Influence	71
Hardware write protection 48	menu	/ 1
•	Diagnostics	57
I	Operation	
I/O electronics module	Menus	1)
Identifying the measuring device	For measuring device configuration	30
Incoming acceptance	For specific settings	
Influence	Modbus RS485	
Medium pressure	Configuring error response mode	55
Medium temperature	Diagnostic information	
Information on the document 5	Function codes	
Inlet runs	Modbus data map	
Input	Read access	
Inspection check	Reading out data	
Connection	Register addresses	
Received goods	Register information	
Installation	Response time	
Installation conditions	Scan list	
Mounting location	Write access	. 35
Orientation	Modbus RS485 certification	76
System pressure	Mounting dimensions	
Vibrations	see Installation dimensions	
Installation dimensions	Mounting location	
Interior cleaning	Mounting preparations	20
I.	Mounting requirements	
	Inlet and outlet runs	
Low flow cut off	Installation dimensions	
	Mounting tools	20
M	N	
Main electronics module	Nameplate	
Maintenance tasks 62	Safety Barrier Promass 100	15
Manufacturer ID	Sensor	
Manufacturing date	Transmitter	
Materials	Transmitter	1.
Maximum measured error 69	0	
Measured variables	Operable flow range	67
see Process variables	Operating menu	_ ,
Measuring and test equipment 62	Menus, submenus	31
Measuring device	Overview of menus with parameters	
Configuring	Structure	
Conversion	Submenus and user roles	
Design	Operating philosophy	
Disposal		

LNGmass Modbus RS485 Index

Operation	S
Operation options	Safety
Operational safety	Seals
Order code	Medium temperature range 73
Orientation (vertical, horizontal)	Sensor
Outlet runs	Medium temperature range 73
Output	Mounting
Output signal 67	Serial number
Overview	Service interface (CDI)
Operating menu	Settings
P	Adapting the measuring device to the process
	conditions
Packaging disposal	Communication interface 41
Parameter settings	Device reset 60
Calculated values (submenu)	Device tag
Communication (submenu)	Low flow cut off
Device information (submenu)	Partial filled pipe detection 44
Diagnostics (menu) 57 Low flow cut off (wizard) 43	Resetting the totalizer
Operation (submenu)	Sensor adjustment
Partially filled pipe detection (wizard)	Simulation
Process variables (submenu)	System units
Sensor adjustment (submenu)	Totalizer
Simulation (submenu)	Totalizer reset
Totalizer (submenu)	Shock resistance
Performance characteristics	Signal on alarm
Post-connection check (checklist)	Software release
Post-installation check	Spare part
Post-installation check (checklist)	Spare parts
Potential equalization	Status signals
Power consumption	Storage conditions
Power supply failure 69	Storage temperature
Pressure loss	Structure
Pressure range	Operating menu
Secondary containment	Calculated values
Pressure-temperature ratings	Communication
Process connections	Device information
Process variables	Operation
Calculated	Process variables
Measured	Sensor adjustment
Product safety	Simulation
Protecting parameter settings 47	Totalizer
_	Totalizer 1 to 3
R	Submenu
Reading measured values	Events list
Reading out diagnostic information, Modbus RS485 54	Overview
Recalibration	Process variables
Reference operating conditions 69	Supply voltage
Registered trademarks	System design
Remote operation	Measuring system
Repair	see Measuring device design
Notes	System integration
Repair of a device	System pressure
Repeatability	
Replacement	T
Device components	Technical data, overview
Requirements for personnel	Temperature range
Response time	Medium temperature
Returning devices 63	Storage temperature

Index LNGmass Modbus RS485

Terminal assignment	
Terminals	69
Tools	
	22
	20
Transport	16
Transmitter	
Connecting the signal cables	
	16
Troubleshooting	- 2
General	52
U	
Use of the measuring device	
Borderline cases	. 8
Incorrect use	
see Designated use	
User roles	32
V	
•	3 F
Version data for the device	
Vibration resistance	
Vibrations	20
W	
W@M 62,	63
W@M Device Viewer	
Weight	
SI units	74
Transport (notes)	16
US units	74
wizard	
Low flow cut off	
Partially filled pipe detection	
Workplace safety	9
Write protection	
Via write protection switch	
Write protection switch	48

