Technical Information **Proline Promag P 200**

Electromagnetic flowmeter

The flowmeter for highest medium temperatures with genuine loop-powered technology

Application

- The measuring principle is virtually independent of pressure, density, temperature and viscosity
- Dedicated for chemical and process applications with corrosive liquids and high medium temperatures

Device properties

- Nominal diameter: max. DN 200 (8")
- All common Ex approvals
- Liner made of PTFE or PFA
- Loop-powered technology
- Robust two-chamber housing
- Plant safety: worldwide approvals (SIL, Haz. area)

Your benefits

- Versatile applications wide variety of wetted materials
- Energy-saving flow measurement no pressure loss due to cross-section constriction
- Maintenance-free no moving parts
- Convenient device wiring separate connection compartment
- Safe operation no need to open the device due to display with touch control, background lighting
- Integrated verification Heartbeat Technology™

Table of contents

Document information	
Function and system design	
Measuring system	
Safety	
Input	
Measuring range	
Operable flow range	6
Output	7 7
Output signal Signal on alarm	
Load	
Ex connection data	10
Low flow cut off	13 13
Protocol-specific data	13
Power supply	17
Terminal assignment	17
Pin assignment, device plug	18 18
Power consumption	19
Current consumption	19
Power supply failure	19
Electrical connection	20
Potential equalization	23 24
Cable entries	24
Cable specification	24
Overvoltage protection	25
Performance characteristics	25
Reference operating conditions	25 26
Repeatability	26
Influence of ambient temperature	26
Installation	27
Mounting location	27
Orientation	28 28
Adapters	28
Special mounting instructions	29
Environment	29
Ambient temperature range	29 30
Storage temperature	30 30
Shock resistance	30
Vibration resistance	30
Mechanical load	30
Electromagnetic compatibility (EMC)	30

Process	31 31 31 33 34 34 34 34 34
Mechanical construction	35 36 38 38 39 40 40 40
Operability	41 41 42 44
Certificates and approvals	45 45 45 46 46 46 46 46
Ordering information	47
Application packagesDiagnostics functionsHeartbeat Technology	47 47 47
Accessories	48 48 49 49 50
Documentation Standard documentation Supplementary device-dependent documentation	50 50 51
Registered trademarks	51

Document information

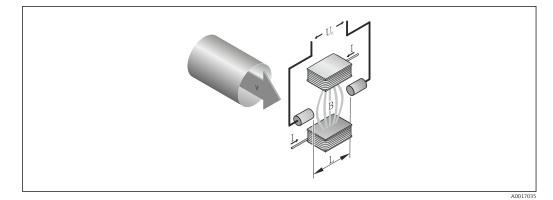
Symbols used

Electrical symbols

Symbol	Meaning	Symbol	Meaning
	Direct current	\sim	Alternating current
\sim	Direct current and alternating current	<u>+</u>	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.	Ą	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Symbols for certain types of information

Symbol	Meaning
	Permitted Procedures, processes or actions that are permitted.
	Preferred Procedures, processes or actions that are preferred.
\mathbf{X}	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
Ĩ	Reference to documentation
	Reference to page
	Reference to graphic
	Visual inspection


Symbols in graphics

Symbol	Meaning	Symbol	Meaning
1, 2, 3,	Item numbers	1. , 2. , 3	Series of steps
A, B, C,	Views	A-A, B-B, C-C,	Sections
EX	Hazardous area	×	Safe area (non-hazardous area)
≈ →	Flow direction		

Function and system design

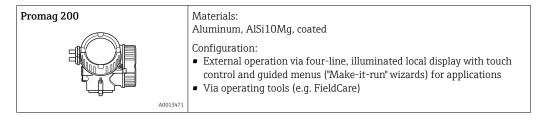
Measuring principle

Following *Faraday's law of magnetic induction*, a voltage is induced in a conductor moving through a magnetic field.

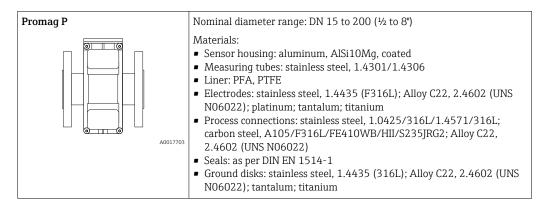
- Ue Induced voltage
- *B Magnetic induction (magnetic field)*
- L Electrode spacing
- I Current
- v Flow velocity

In the electromagnetic measuring principle, the flowing medium is the moving conductor. The voltage induced (U_e) is proportional to the flow velocity (v) and is supplied to the amplifier by means of two measuring electrodes. The flow volume (Q) is calculated via the pipe cross-section (A). The DC magnetic field is created through a switched direct current of alternating polarity.

Formulae for calculation


- Induced voltage $U_e = B \cdot L \cdot v$
- Volume flow $Q = A \cdot v$

Measuring system


The device consists of a transmitter and a sensor.

The device is available as a compact version: The transmitter and sensor form a mechanical unit.

Transmitter

Sensor

Safety

IT security

We only provide a warranty if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the device settings.

IT security measures in line with operators' security standards and designed to provide additional protection for the device and device data transfer must be implemented by the operators themselves.

Input

Measured variable	Direct measured variables Volume flow (proportional to induced voltage)	_
	Calculated measured variables Mass flow	
Measuring range	Typically $v = 0.01$ to 10 m/s (0.03 to 33 ft/s) with the specified accuracy	_

Nom diam		Recommended flow	Factory settings		
		output		Low flow cut off (v ~ 0.04 m/s)	
[mm]	[in]	[dm³/min]	[dm ³ /min]	[dm ³]	[dm ³ /min]
15	1/2	4 to 100	25	0,2	0,5
25	1	9 to 300	75	0,5	1
32	-	15 to 500	125	1	2
40	1 ½	25 to 700	200	1,5	3
50	2	35 to 1 100	300	2,5	5
65	-	60 to 2 000	500	5	8
80	3	90 to 3 000	750	5	12
100	4	145 to 4700	1200	10	20
125	-	220 to 7 500	1850	15	30
150	6	20 to 600 m ³ /h	150 m ³ /h	0.03 m ³	2.5 m ³ /h
200	8	35 to 1 100 m ³ /h	300 m ³ /h	0.05 m ³	5 m ³ /h

Flow characteristic values in SI units

Flow characteristic values in US units

	ninal neter	Recommended flow	Factory settings		
	Min./max. full scale value (v ~ 0.3/10 m/s)		Full scale value current output (v ~ 2.5 m/s)	Pulse value (~ 2 pulse/s)	Low flow cut off (v ~ 0.04 m/s)
[in]	[mm]	[gal/min]	[gal/min]	[gal]	[gal/min]
1/2	15	1.0 to 27	6	0,1	0,15
1	25	2.5 to 80	18	0,2	0,25
1 1/2	40	7 to 190	50	0,5	0,75
2	50	10 to 300	75	0,5	1,25
3	80	24 to 800	200	2	2,5
4	100	40 to 1250	300	2	4
6	150	90 to 2 650	600	5	12
8	200	155 to 4850	1200	10	15

To calculate the measuring range, use the Applicator sizing tool $\rightarrow \ \bigspace{0.1em}{49}$

Recommended measuring range

"Flow limit" section $\rightarrow \square 34$

Operable flow range

Over 1000 : 1

Output

Output signal

Current output

Current output	4-20 mA HART (passive)
Resolution	< 1 µA
Damping	Adjustable: 0.0 to 999.9 s
Assignable measured variables	Volume flowMass flow

Pulse/frequency/switch output

Function	Can be set to pulse, frequency or switch output
Version	Passive, open collector
Maximum input values	 DC 35 V 50 mA For information on the Ex connection values → ⁽¹⁾ 10
Voltage drop	 For ≤ 2 mA: 2 V For 10 mA: 8 V
Residual current	≤ 0.05 mA
Pulse output	
Pulse width	Adjustable: 5 to 2 000 ms
Maximum pulse rate	100 Impulse/s
Pulse value	Adjustable
Assignable measured variables	Volume flowMass flow
Frequency output	
Output frequency	Adjustable: 0 to 1 000 Hz
Damping	Adjustable: 0 to 999 s
Pulse/pause ratio	1:1
Assignable measured variables	Volume flowMass flow
Switch output	
Switching behavior	Binary, conductive or non-conductive
Switching delay	Adjustable: 0 to 100 s
Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior Limit value Volume flow Mass flow Flow direction monitoring Status Empty pipe detection Low flow cut off

FOUNDATION Fieldbus

Signal encoding	Manchester Bus Powered (MBP)
Data transfer	31.25 KBit/s, Voltage mode

PROFIBUS PA

Signal encoding	Manchester Bus Powered (MBP)
Data transfer	31.25 KBit/s, Voltage mode

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Current output

HART

Device diagnostics	Device condition can be read out via HART Command 48

Pulse/frequency/switch output

Pulse output

Failure mode	Choose from: • Actual value • No pulses
	The Public

Frequency output

Choose from: • Actual value • 0 Hz • Defined value: 0 to 1250 Hz
 Defined value: 0 to 1250 Hz

Switch output

Failure mode	Choose from:	
	 Current status 	
	 Open 	
	Closed	

FOUNDATION Fieldbus

Status and alarm messages	Diagnostics in accordance with FF-912
Error current FDE (Fault Disconnection Electronic)	0 mA

PROFIBUS PA

Status and alarm messages	Diagnostics in accordance with PROFIBUS PA Profile 3.02
Error current FDE (Fault Disconnection Electronic)	0 mA

Load

Local display

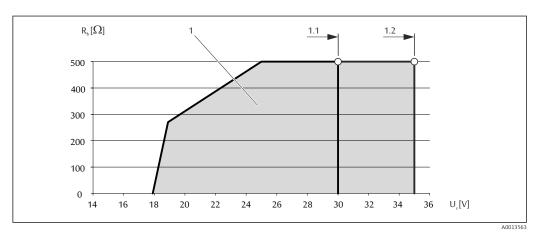
Plain text display	With information on cause and remedial measures	
Backlight	Additionally for device version with SD03 local display: red lighting indicates a device error.	

Status signal as per NAMUR recommendation NE 107

Operating tool

- Via digital communication:
 - HART protocol
 - FOUNDATION Fieldbus
 - PROFIBUS PA
- Via service interface

Plain text display With information on cause and remedial measures
--


Additional information on remote operation $\rightarrow \square 42$

Load for current output: 0 to 500 $\Omega,$ depending on the external supply voltage of the power supply unit

Calculation of the maximum load

Depending on the supply voltage of the power supply unit (U_S), the maximum load (R_B) including line resistance must be observed to ensure adequate terminal voltage at the device. In doing so, observe the minimum terminal voltage

- For $U_S = 18$ to 18.9 V: $R_B \le (U_S 18$ V): 0.0036 A
- For $U_S = 18.9$ to 24.5 V: $R_B \le (U_S 13.5 \text{ V})$: 0.022 A
- For $U_S = 24.5$ to 30 V: $R_B \le 500 \Omega$

1 Operating range

- 1.1 For order code for "Output", option A "4-20 mA HART"/option B "4-20 mA HART, pulse/frequency/switch output" with Ex i
- 1.2 For order code for "Output", option A "4-20 mA HART"/option B "4-20 mA HART, pulse/frequency/switch output" with non-Ex and Ex d

Sample calculation

Supply voltage of the power supply unit: $U_S = 19 \text{ V}$ Maximum load: $R_B \le (19 \text{ V} - 13.5 \text{ V})$: 0.022 A = 250 Ω

Ex connection data

Safety-related values

Type of protection Ex d

Order code for "Output"	Output type	Safety-related values
Option A	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
Option B	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option E	FOUNDATION Fieldbus	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option G	PROFIBUS PA	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	

1) Internal circuit limited by R_i = 760.5 Ω

Ex nA type of protection

Order code for "Output"	Output type	Safety-related values
Option A	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
Option B	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option E	FOUNDATION Fieldbus	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option G	PROFIBUS PA	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$

1) Internal circuit limited by $R_i = 760.5 \Omega$

Type of protection XP

Order code for "Output"	Output type	Safety-related values
Option A	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
Option B	4-20mA HART	U _{nom} = DC 35 V U _{max} = 250 V
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option E	FOUNDATION Fieldbus	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1}$
Option G	PROFIBUS PA	$U_{nom} = DC 32 V$ $U_{max} = 250 V$ $P_{max} = 0.88 W$
	Pulse/frequency/switch output	$U_{nom} = DC 35 V$ $U_{max} = 250 V$ $P_{max} = 1 W^{1)}$

1) Internal circuit limited by R_i = 760.5 Ω

Intrinsically safe values

Type of protection Ex ia

Order code for "Output"	Output type	Intrinsically safe values
Option A	4-20mA HART	$\begin{array}{l} U_i = DC \; 30 \; V \\ I_i = \; 300 \; mA \\ P_i = \; 1 \; W \\ L_i = \; 0 \; \mu H \\ C_i = \; 5 \; nF \end{array}$
Option B	4-20mA HART	
	Pulse/frequency/switch output	$ \begin{array}{l} U_i = DC \; 30 \; V \\ I_i = \; 300 \; mA \\ P_i = \; 1 \; W \\ L_i = \; 0 \; \mu H \\ C_i = \; 6 \; nF \end{array} $
Option E	FOUNDATION Fieldbus	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Pulse/frequency/switch output	$ \begin{array}{l} U_{i} = 30 \ V \\ l_{i} = 300 \ mA \\ P_{i} = 1 \ W \\ L_{i} = 0 \ \mu H \\ C_{i} = 6 \ nF \end{array} $

Order code for "Output"	Output type	Intrinsically safe values	
	PROFIBUS PA		
	Pulse/frequency/switch output	$\begin{array}{l} U_i = 30 \ V \\ l_i = 300 \ mA \\ P_i = 1 \ W \\ L_i = 0 \ \mu H \\ C_i = 6 \ nF \end{array}$	

Type of protection Ex ic

Order code for "Output"	Output type	Intrinsically safe values	
Option A	4-20mA HART	$\begin{array}{l} U_{i} = DC \ 35 \ V \\ I_{i} = n.a. \\ P_{i} = 1 \ W \\ L_{i} = 0 \ \mu H \\ C_{i} = 5 \ nF \end{array}$	
Option B	4-20mA HART	$U_i = DC 35 V$ $I_i = n.a.$ $P_i = 1 W$ $L_i = 0 \mu H$ $C_i = 5 nF$	
	Pulse/frequency/switch output	$ \begin{array}{l} U_i = DC \ 35 \ V \\ I_i = n.a. \\ P_i = 1 \ W \\ L_i = 0 \ \mu H \\ C_i = 6 \ nF \end{array} $	
Option E	FOUNDATION Fieldbus	$\begin{array}{ll} \mbox{STANDARD} & \mbox{FISCO} \\ U_i = 32 \ V & U_i = 17.5 \ V \\ l_i = 300 \ mA & l_i = n.a. \\ P_i = n.a. & P_i = n.a. \\ L_i = 10 \ \mu H & L_i = 10 \ \mu H \\ C_i = 5 \ nF & C_i = 5 \ nF \end{array}$	
	Pulse/frequency/switch output	$U_{i} = 35 V$ $l_{i} = 300 mA$ $P_{i} = 1 W$ $L_{i} = 0 \mu H$ $C_{i} = 6 nF$	
Option G	PROFIBUS PA	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	Pulse/frequency/switch output	$ \begin{array}{l} U_{i} = 35 \ V \\ l_{i} = 300 \ mA \\ P_{i} = 1 \ W \\ L_{i} = 0 \ \mu H \\ C_{i} = 6 \ nF \end{array} $	

Type of protection IS

Order code for "Output"	Output type	Intrinsically safe values	
Option A	4-20mA HART	$ \begin{array}{l} U_i = DC \; 30 \; V \\ I_i = \; 300 \; mA \\ P_i = \; 1 \; W \\ L_i = \; 0 \; \mu H \\ C_i = \; 5 \; nF \end{array} $	
Option B	4-20mA HART	$ \begin{array}{l} U_{i} = DC \; 30 \; V \\ I_{i} = \; 300 \; mA \\ P_{i} = \; 1 \; W \\ L_{i} = \; 0 \; \mu H \\ C_{i} = \; 5 \; nF \end{array} $	
	Pulse/frequency/switch output	$ \begin{array}{l} U_i = DC \; 30 \; V \\ I_i = \; 300 \; mA \\ P_i = \; 1 \; W \\ L_i = \; 0 \; \mu H \\ C_i = \; 6 \; nF \end{array} $	
Option E	FOUNDATION Fieldbus	$\begin{array}{ll} \mbox{STANDARD} & \mbox{FISCO} \\ U_i = 30 \ V & U_i = 17.5 \ V \\ l_i = 300 \ mA & l_i = 550 \ mA \\ P_i = 1.2 \ W & P_i = 5.5 \ W \\ L_i = 10 \ \mu H & L_i = 10 \ \mu H \\ C_i = 5 \ nF & C_i = 5 \ nF \end{array}$	
	Pulse/frequency/switch output	$U_{i} = 30 V$ $l_{i} = 300 mA$ $P_{i} = 1 W$ $L_{i} = 0 \mu H$ $C_{i} = 6 nF$	
Option G	PROFIBUS PA	$\begin{array}{lll} & \text{STANDARD} & \text{FISCO} \\ & U_i = 30 \ V & U_i = 17.5 \ V \\ & l_i = 300 \ \text{mA} & l_i = 550 \ \text{mA} \\ & P_i = 1.2 \ W & P_i = 5.5 \ W \\ & L_i = 10 \ \mu\text{H} & L_i = 10 \ \mu\text{H} \\ & C_i = 5 \ \text{nF} & C_i = 5 \ \text{nF} \end{array}$	
	Pulse/frequency/switch output	$ \begin{array}{l} U_{i} = 30 \ V \\ l_{i} = 300 \ mA \\ P_{i} = 1 \ W \\ L_{i} = 0 \ \mu H \\ C_{i} = 6 \ nF \end{array} $	

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

All outputs are galvanically isolated from one another.

HART

Protocol-specific data

Manufacturer ID	0x11
Device type ID	0x48
HART protocol revision	7
Device description files (DTM, DD)	Information and files under: www.endress.com
HART load	 Min. 250 Ω Max. 500 Ω

Dynamic variables	 Read out the dynamic variables: HART command 3 The measured variables can be freely assigned to the dynamic variables. Measured variables for PV (primary dynamic variable) Off Volume flow Mass flow
	Measured variables for SV, TV, QV (secondary, tertiary and quaternary dynamic variable) • Volume flow • Mass flow • Totalizer 1 • Totalizer 2 • Totalizer 3
Device variables	Read out the device variables: HART command 9 The device variables are permanently assigned.

FOUNDATION Fieldbus

Manufacturer ID	0x452B48		
Ident number	0x1048		
Device revision	1		
DD revision	Information and files under:		
CFF revision	www.endress.comwww.fieldbus.org		
Device Tester Version (ITK version)	6.1.1		
ITK Test Campaign Number	IT094200		
Link Master capability (LAS)	Yes		
Choice of "Link Master" and "Basic Device"	Yes Factory setting: Basic Device		
Node address	Factory setting: 247 (0xF7)		
Supported functions	The following methods are supported: • Restart • ENP Restart • Diagnostic		
Virtual Communication Relationships (VCRs)			
Number of VCRs	44		
Number of link objects in VFD	50		
Permanent entries	1		
Client VCRs	0		
Server VCRs	10		
Source VCRs	43		
Sink VCRs	0		
Subscriber VCRs	43		
Publisher VCRs	43		
Device Link Capabilities			
Slot time	4		
Min. delay between PDU	8		
Max. response delay	Min. 5		

Transducer Blocks

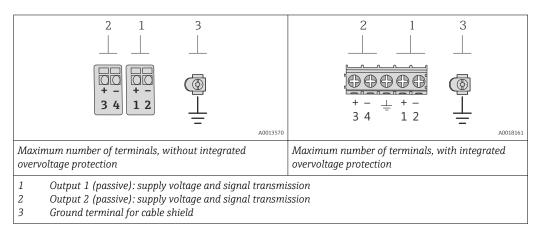
Block	Contents	Output values	
Setup Transducer Block (TRDSUP)	All parameters for standard commissioning.	No output values	
Advanced Setup Transducer Block (TRDASUP)	All parameters for more accurate measurement configuration.	No output values	
Display Transducer Block (TRDDISP)	Parameters for configuring the local display.	No output values	
HistoROM Transducer Block (TRDHROM)	Parameters for using the HistoROM function.	No output values	
Diagnostic Transducer Block (TRDDIAG)	Diagnostics information.	Process variables (AI Channel) • Temperature (7) • Volume flow (9) • Mass flow (11)	
Expert Configuration Transducer Block (TRDEXP)	Parameters that require the user to have in- depth knowledge of the operation of the device in order to configure the parameters appropriately.	No output values	
Expert Information Transducer Block (TRDEXPIN)	Parameters that provide information about the state of the device.	No output values	
Service Sensor Transducer Block (TRDSRVS)	Parameters that can only be accessed by Endress +Hauser Service.	No output values	
Service Information Transducer Block (TRDSRVIF)	Parameters that provide Endress+Hauser Service with information about the state of the device.	No output values	
Total Inventory Counter Transducer Block (TRDTIC)	Parameters for configuring all the totalizers and the inventory counter.	Process variables (AI Channel) • Totalizer 1 (16) • Totalizer 2 (17) • Totalizer 3 (18)	
Heartbeat Technology Transducer Block (TRDHBT)	Parameters for the configuration and comprehensive information about the results of the verification.	No output values	
Heartbeat Results 1 Transducer Block (TRDHBTR1)	Information about the results of the verification.	No output values	
Heartbeat Results 2 Transducer Block (TRDHBTR2)	Information about the results of the verification.	No output values	
Heartbeat Results 3 Transducer Block (TRDHBTR3)	Information about the results of the verification.	No output values	
Heartbeat Results 4 Transducer Block (TRDHBTR4)	Information about the results of the verification.	No output values	

Function blocks

Block	Number of blocks	Contents	Process variables (Channel)
Resource Block (RB)	1	This Block (extended functionality) contains all the data that uniquely identify the device; it is the equivalent of an electronic nameplate for the device.	-
Analog Input Block (AI)	4	This Block (extended functionality) receives the measurement data provided by the Sensor Block (can be selected via a channel number) and makes the data available for other blocks at the output.	Process variables (AI Channel)Temperature (7)Volume flow (9)Mass flow (11)
		Execution time: 25 ms	
Discrete Input Block (DI)	2	This Block (standard functionality) receives a discrete value (e.g. indicator that measuring range has been exceeded) and makes the value available for other blocks at the output.	 Switch output state (101) Empty pipe detection (102) Low flow cut off (103) Status verification (105)
		Execution time: 19 ms	
PID Block (PID)	1	This Block (standard functionality) acts as a proportional-integral-differential controller and can be used universally for control in the field. It enables cascading and feedforward control. Execution time: 25 ms	-
Multiple Digital Output Block (MDO)	1	This Block (standard functionality) receives several discrete values and makes them available for other blocks at the output. Execution time: 19 ms	Channel_DO (122) Value 1: Reset totalizer 1 Value 2: Reset totalizer 2 Value 3: Reset totalizer 3 Value 4: Flow override Value 5: Start heartbeat verification Value 6: Status switch output Value 7: Not assigned Value 8: Not assigned
Integrator Block (IT)	1	This Block (standard functionality) integrates a measured variable over time or totalizes the pulses from a Pulse Input Block. The Block can be used as a totalizer that totalizes until a reset, or as a batch totalizer whereby the integrated value is compared against a target value generated before or during the control routine and generates a binary signal when the target value is reached.	_
		Execution time: 21 ms	

PROFIBUS PA

Manufacturer ID	0x11
Ident number	0x1563
Profile version	3.02
Device description files (GSD, DTM, DD)	Information and files under: • www.endress.com • www.profibus.org


Output values (from measuring device to automation system)	Analog input 1 to 2 Mass flow Volume flow Digital input 1 to 2 Empty pipe detection Low flow cut off Status switch output Status verification Totalizer 1 to 3 Mass flow Volume flow Corrected volume flow
Input values (from automation system to measuring device)	 Corrected volume now Digital output 1 to 3 (fixed assignment) Digital output 1: switch positive zero return on/off Digital output 2: switch switch output on/off Digital output 3: start verification Totalizer 1 to 3 Totalize Reset and hold Preset and hold Operating mode configuration: Net flow total Forward flow total Reverse flow total
Supported functions	 Identification & Maintenance Simplest device identification on the part of the control system and nameplate PROFIBUS upload/download Reading and writing parameters is up to ten times faster with PROFIBUS upload/download Condensed status Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur
Configuration of the device address	 DIP switches on the I/O electronics module Local display via operating tools (e.g. FieldCare)

Power supply

Terminal assignment

Transmitter

Connection versions

Order code for "Output"	Terminal numbers			
	Output 1		Output 2	
	1 (+) 2 (-)		3 (+)	4 (-)
Option A	4-20 mA HART (passive)		-	
Option $\mathbf{B}^{(1)}$	4-20 mA HA	ART (passive)	Pulse/frequency/switch output (passive)	
Option $\mathbf{E}^{(1)(2)}$	FOUNDATION Fieldbus Pulse/frequency/switch outp (passive)			
Option G ¹⁾³⁾	PROFIBUS PA Pulse/frequency/switch out (passive)			

1)

Output 1 must always be used; output 2 is optional. FOUNDATION Fieldbus with integrated reverse polarity protection. 2)

3) PROFIBUS PA with integrated reverse polarity protection.

Pin assignment, device plug PROFIBUS PA

Device plug for signal transmission (device side)

	Pin		Assignment	Coding	Plug/socket
$2 \rightarrow 3$	1	+	PROFIBUS PA +	А	Plug
	2		Grounding		
A0019021	3	-	PROFIBUS PA -		
	4		Not assigned		

FOUNDATION Fieldbus

Device plug for signal transmission (device side)

	Pin		Assignment	Coding	Plug/socket
	1	+	Signal +	А	Plug
	2	-	Signal –		
A0019021	3		Not assigned		
	4		Grounding		

Supply voltage

Transmitter

An external power supply is required for each output.

Order code for "Output"	Minimum terminal voltage	Maximum terminal voltage
Option A ^{1) 2)} : 4-20 mA HART	 For 4 mA: ≥ DC 18 V For 20 mA: ≥ DC 14 V 	DC 35 V
Option B ^{1) 2)} : 4-20 mA HART, pulse/frequency/ switch output	 For 4 mA: ≥ DC 18 V For 20 mA: ≥ DC 14 V 	DC 35 V

Order code for "Output"	Minimum terminal voltage	Maximum terminal voltage
Option E ³⁾ : FOUNDATION Fieldbus, pulse/ frequency/switch output	≥ DC 9 V	DC 32 V
Option G ³⁾ : PROFIBUS PA, pulse/frequency/switch output	≥ DC 9 V	DC 32 V

1) External supply voltage of the power supply unit with load.

2) For device versions with SD03 local display: The terminal voltage must be increased by DC 2 V if backlighting is used.

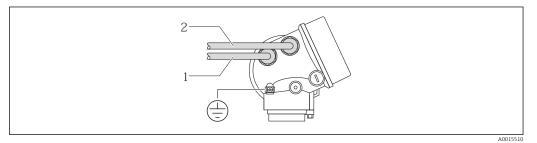
3) For device version with SD03 local display: The terminal voltage must be increased by DC 0.5 V if backlighting is used.

For information about the load see $\rightarrow \square 9$

Various power supply units can be ordered from Endress+Hauser: see "Accessories" section $\rightarrow \cong 50$

For information on the Ex connection values $\rightarrow \cong 10$

Power consumption

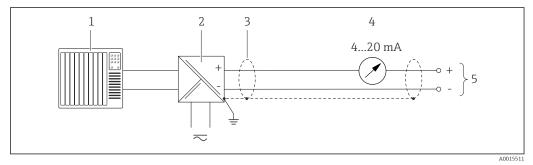

Order code for "Output"	Maximum power consumption
Option A: 4-20 mA HART	770 mW
Option B : 4-20 mA HART, pulse/ frequency/switch output	Operation with output 1: 770 mWOperation with output 1 and 2: 2 770 mW
Option E : FOUNDATION Fieldbus, pulse/ frequency/switch output	Operation with output 1: 576 mWOperation with output 1 and 2: 2 576 mW
Option G : PROFIBUS PA, pulse/frequency/ switch output	 Operation with output 1: 512 mW Operation with output 1 and 2: 2 512 mW

For information on the Ex connection values $\rightarrow \cong 10$

Current consumption	Current output		
-	For every 4-20 mA or 4-20 mA HART current output: 3.6 to 22.5 mA		
	If the option Defined value is selected in the Failure mode parameter : 3.59 to 22.5 mA		
	PROFIBUS PA		
	16 mA		
	FOUNDATION Fieldbus		
	16 mA		
Power supply failure	 Totalizers stop at the last value measured. Configuration is retained in the device memory (HistoROM). Error messages (incl. total operated hours) are stored. 		

Electrical connection

Connecting the transmitter



1 Cable entry for output 1

2 Cable entry for output 2

Connection examples

Current output 4-20 mA HART

■ 1 Connection example for 4-20 mA HART current output (passive)

- 1 Automation system with current input (e.g. PLC)
- Active barrier for power supply with integrated resistor for HART communication (≥ 250 Ω)(e.g. RN221N)
 Connection for HART operating devices →
 ^B 42
 Observe the maximum load →
 ^B 9
- 3 Cable shield, observe cable specifications
- 4 Analog display unit: observe maximum load $\rightarrow \cong 9$
- 5 Transmitter

Pulse/frequency output

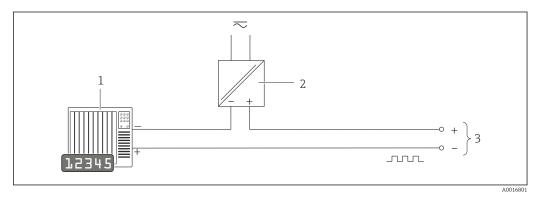
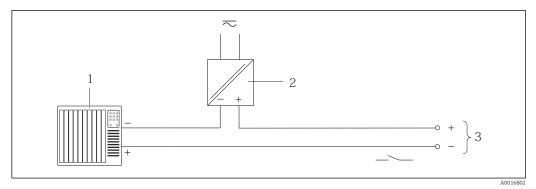
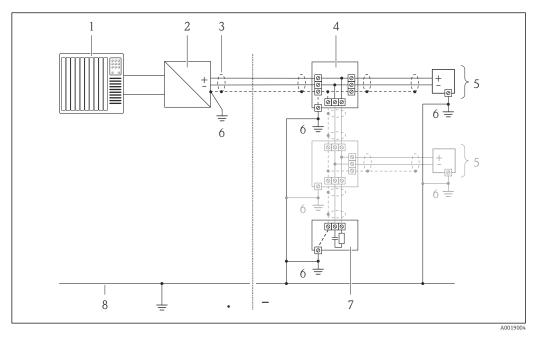



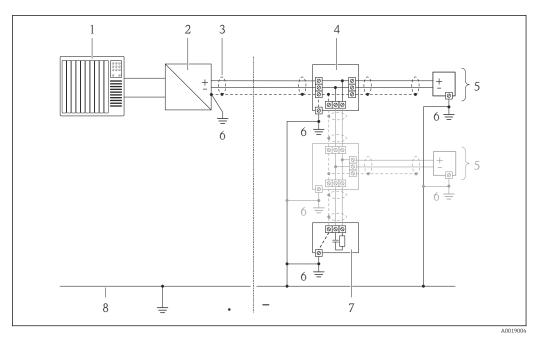
Image: 2Connection example for pulse/frequency output (passive)

- 1 Automation system with pulse/frequency input (e.g. PLC)
- 2 Power supply
- 3 Transmitter: observe input values $\rightarrow \square 7$


Switch output

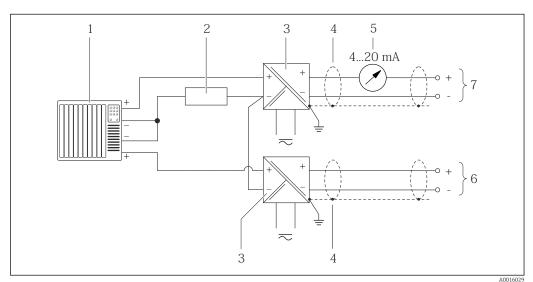
🛃 3 Connection example for switch output (passive)

- Automation system with switch input (e.g. PLC) 1
- 2 3 Power supply
- Transmitter: observe input values


PROFIBUS-PA

€ 4 Connection example for PROFIBUS-PA

- 1 Control system (e.g. PLC)
- Segment coupler PROFIBUS DP/PA
- 2 3 Cable shield
- 4 5 T-box
- Measuring device
- 6 Local grounding
- 7 Bus terminator
- 8 Potential matching line


FOUNDATION Fieldbus

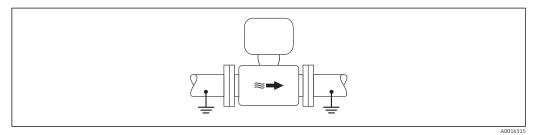
🛃 5 Connection example for FOUNDATION Fieldbus

- 1
- Control system (e.g. PLC) Power Conditioner (FOUNDATION Fieldbus) 2
- 3 Cable shield
- 4 T-box
- 5 Measuring device
- 6 Local grounding
- 7 Bus terminator
- 8 Potential matching line

HART input

💽 6 Connection example for HART input with a common negative

- Automation system with HART output (e.g. PLC) 1
- 2 *Resistor for HART communication* ($\geq 250 \Omega$): *observe maximum load* $\rightarrow \square 9$
- 3 Active barrier for power supply (e.g. RN221N) Cable shield, observe cable specifications 4
- Analog display unit: observe maximum load $\rightarrow \cong 9$ 5
- 6 Pressure transmitter (e.g. Cerabar M, Cerabar S): see requirements
- 7 Transmitter


Potential equalization	Requirements
	Please consider the following to ensure correct measurement:Same electrical potential for the fluid and sensor
	- Company internal group diag concents

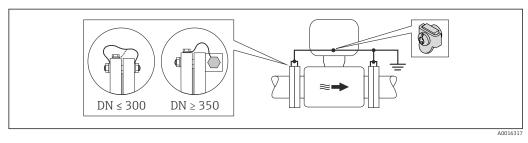
- Company-internal grounding concepts
- Pipe material and grounding

For devices intended for use in hazardous locations, please observe the guidelines in the Ex documentation (XA).

Connection example, standard scenario

Metal, grounded pipe

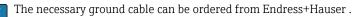
Potential equalization via measuring tube


Connection example in special situations

Unlined and ungrounded metal pipe

This connection method also applies in situations where:

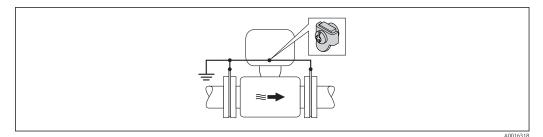
- The customary potential equalization is not used
- Equalizing currents are present


Ground cable	Copper wire, at least 6 mm ² (0.0093 in ²)

8 Potential equalization via ground terminal and pipe flanges

Note the following when installing:

- Connect both sensor flanges to the pipe flange via a ground cable and ground them.
- Connect the connection housing of the transmitter or sensor to ground potential by means of the ground terminal provided for the purpose. To mount the ground cable:
 - If DN \leq 300 (12"): Mount the ground cable directly on the conductive flange coating of the sensor with the flange screws.
 - If DN \geq 350 (14"): Mount the ground cable directly on the metal transport bracket.



Plastic pipe or pipe with insulating liner

This connection method also applies in situations where:

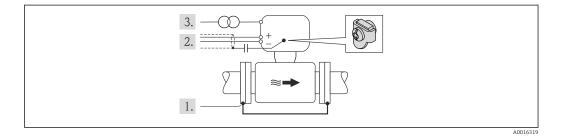
- The customary potential equalization is not used
- Equalizing currents are present

Gr	cound cable	Copper wire, at least 6 mm^2 (0.0093 in ²)
----	-------------	---

Potential equalization via ground terminal and ground disks

Note the following when installing:

The ground disks must be connected to the ground terminal via the ground cable and be connected to ground potential.


ň

Pipe with a cathodic protection unit

This connection method is only used if the following two conditions are met:

- Metal pipe without liner or pipe with electrically conductive liner
- Cathodic protection is integrated in the personal protection equipment

Ground cable	Copper wire, at least 6 mm^2 (0.0093 in^2)
--------------	---

Note the following when installing:

The sensor is installed in the pipe in a way that provides electrical insulation.

The necessary ground cable can be ordered from Endress+Hauser .

Terminals	 For device version without integrated overvoltage protection: plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm² (20 to 14 AWG)
	 For device version with integrated overvoltage protection: screw terminals for wire cross-sections 0.2 to 2.5 mm² (24 to 14 AWG)
Cable entries	 Cable gland (not for Ex d): M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in) Thread for cable entry: For non-Ex and Ex: NPT ½" For non-Ex and Ex (not for CSA Ex d/XP): G ½" For Ex d: M20 × 1.5
Cable specification	Permitted temperature range
	 -40 °C (-40 °F) to +80 °C (+176 °F) Minimum requirement: cable temperature range ≥ ambient temperature +20 K
	Signal cable
	Current output
	For 4-20 mA HART: Shielded cable recommended. Observe grounding concept of the plant.

Pulse/frequency/switch output

Standard installation cable is sufficient.

FOUNDATION Fieldbus

Twisted, shielded two-wire cable.

For further information on planning and installing FOUNDATION Fieldbus networks see:

- Operating Instructions for "FOUNDATION Fieldbus Overview" (BA00013S)
- FOUNDATION Fieldbus Guideline
- IEC 61158-2 (MBP)

PROFIBUS PA

Twisted, shielded two-wire cable. Cable type A is recommended.

 $\widehat{\mathbf{i}}$ For further information on planning and installing PROFIBUS PA networks see:

- Operating Instructions "PROFIBUS DP/PA: Guidelines for planning and commissioning" (BA00034S)
- PNO Directive 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

Overvoltage protection

The device can be ordered with integrated overvoltage protection for diverse approvals: *Order code for "Accessory mounted", option NA "Overvoltage protection"*

Input voltage range	Values correspond to supply voltage specifications ¹⁾
Resistance per channel	2 · 0.5 Ω max
DC sparkover voltage	400 to 700 V
Trip surge voltage	< 800 V
Capacitance at 1 MHz	< 1.5 pF
Nominal discharge current (8/20 µs)	10 kA
Temperature range	-40 to +85 °C (-40 to +185 °F)

1) The voltage is reduced by the amount of the internal resistance $I_{\text{min}} \cdot R_i$

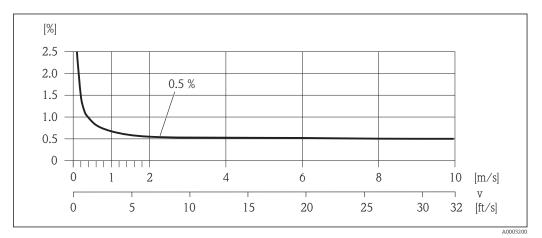
Depending on the temperature class, restrictions apply to the ambient temperature for device versions with overvoltage protection

Performance characteristics

Reference operating conditions	 In accordance with DIN EN 29104 Water, typically 15 to 45 °C (59 to 113 °F); 2 to 6 bar (29 to 87 psi) Data as indicated in the calibration protocol ±5 °C (±41 °F) and ±2 bar (±29 psi) Accuracy based on accredited calibration rigs traced to ISO 17025 Medium temperature: +28 ± 2 °C (+82 ± 4 °F) Ambient temperature: +22 ± 2 °C (+72 ± 4 °F) Warm-up period: 30 min
	 Installation Inlet run > 10 × DN Outlet run > 5 × DN Sensor and transmitter grounded. The sensor is centered in the pipe. To calculate the measuring range, use the <i>Applicator</i> sizing tool → ≅ 49

Maximum measured error

Error limits under reference operating conditions


o.r. = of reading

Volume flow

±0.5 % o.r. ± 2 mm/s (0.08 in/s)

Fluctuations in the supply voltage do not have any effect within the specified range.

Accuracy of outputs

The outputs have the following base accuracy specifications.

Current output

Accuracy	±10 µA

Pulse/frequency output

o.r. = of reading

Max. ±100 ppm o.r.

Repeatability

o.r. = of reading

Accuracy

Volume flow

Max. ± 0.2 % o.r. \pm 2 mm/s (0.08 in/s)

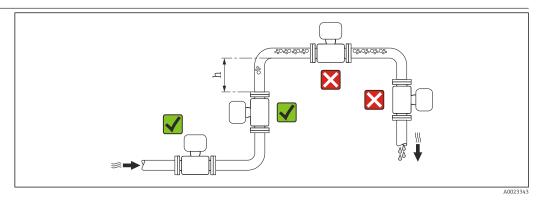
Influence of ambient temperature

Current output o.r. = of reading

Additional error, in relation to the span of 16 mA:

Temperature coefficient at zero point (4 mA)	0.02 %/10 K
Temperature coefficient with span (20 mA)	0.05 %/10 K

Pulse/frequency output


o.r. = of reading

Temperature coefficientMax. ±100 ppm o.r.

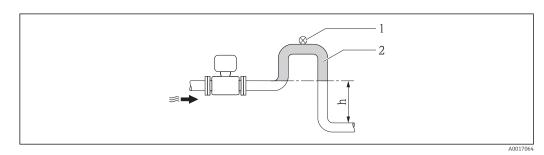
Installation

No special measures such as supports are necessary. External forces are absorbed by the construction of the device.

Mounting location

Preferably install the sensor in an ascending pipe, and ensure a sufficient distance to the next pipe elbow: $h \ge 2 \times DN$

To prevent measuring errors arising from accumulation of gas bubbles in the measuring tube, avoid the following mounting locations in the pipe:

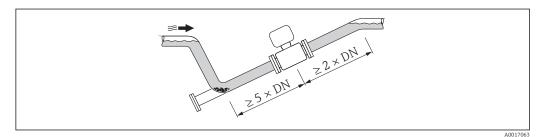

Highest point of a pipeline.

Directly upstream of a free pipe outlet in a down pipe.

Installation in down pipes

Install a siphon with a vent valve downstream of the sensor in down pipes whose length $h \ge 5 \text{ m}$ (16.4 ft). This precaution is to avoid low pressure and the consequent risk of damage to the measuring tube. This measure also prevents the system losing prime.

For information on the liner's resistance to partial vacuum

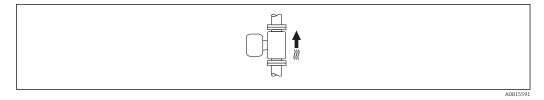


I1 Installation in a down pipe

- 1 Vent valve
- 2 Pipe siphon
- h Length of down pipe

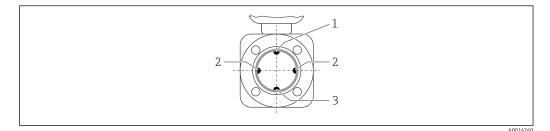
Installation in partially filled pipes

A partially filled pipe with a gradient necessitates a drain-type configuration. The empty pipe detection (EPD) function offers additional protection by detecting empty or partially filled pipes.


Orientation

The direction of the arrow on the sensor nameplate helps you to install the sensor according to the flow direction (direction of medium flow through the piping).

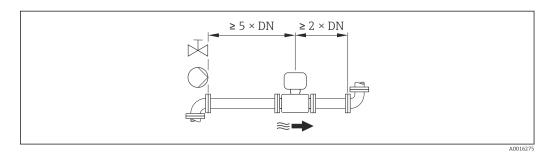
An optimum orientation position helps avoid gas and air accumulations and deposits in the measuring tube.


The measuring device also offers the empty pipe detection function to detect partially filled measuring pipes in the event of outgassing fluids or variable process pressures.

Vertical

Optimum for self-emptying pipe systems and for use in conjunction with empty pipe detection.

Horizontal

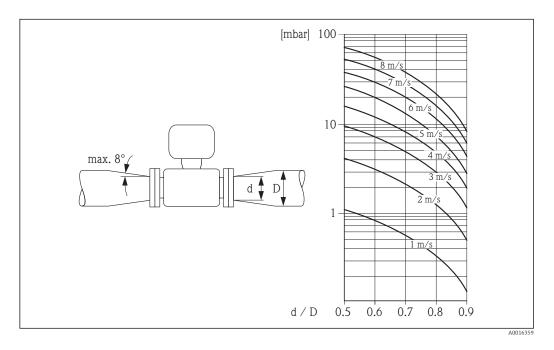


- 1 EPD electrode for empty pipe detection
- 2 Measuring electrodes for signal detection
- 3 Reference electrode for potential equalization
- The measuring electrode plane must be horizontal. This prevents brief insulation of the two measuring electrodes by entrained air bubbles.
 - Empty pipe detection only works if the transmitter housing is pointing upwards as otherwise there is no guarantee that the empty pipe detection function will actually respond to a partially filled or empty measuring tube.

Inlet and outlet runs

If possible, install the sensor upstream from fittings such as valves, T-pieces or elbows.

Observe the following inlet and outlet runs to comply with accuracy specifications:



Adapters

Suitable adapters to DIN EN 545 (double-flange reducers) can be used to install the sensor in largerdiameter pipes. The resultant increase in the rate of flow improves measuring accuracy with very slow-moving fluids. The nomogram shown here can be used to calculate the pressure loss caused by reducers and expanders:

- Calculate the ratio of the diameters d/D.
- From the nomogram read off the pressure loss as a function of flow velocity (downstream from the reduction) and the d/D ratio.

The nomogram only applies to liquids with a viscosity similar to that of water.

Special mounting	Display protection
instructions	To ensure that the optional display protection can be easily opened, maintain the following minimum head clearance: 350 mm (13.8 in)

Environment

Ambient temperature range

Transmitter	-40 to +60 °C (-40 to +140 °F)
Local display	-20 to $+60$ °C (-4 to $+140$ °F), the readability of the display may be impaired at temperatures outside the temperature range.
Sensor	 Process connection material, carbon steel: -10 to +60 °C (+14 to +140 °F) Process connection material, stainless steel: -40 to +60 °C (-40 to +140 °F)
Liner	Do not exceed or fall below the permitted temperature range of the liner .

If operating outdoors:

- Install the measuring device in a shady location.
- Avoid direct sunlight, particularly in warm climatic regions.
- Avoid direct exposure to weather conditions.

Weather protection covers can be ordered from Endress+Hauser: see "Accessories" section $\rightarrow \cong 48$

Temperature tables

The following interdependencies between the permitted ambient and fluid temperatures apply when operating the device in hazardous areas:

NOTICE

The ambient temperature changes for installations with overvoltage protection in conjunction with temperature classes T5 and T6.

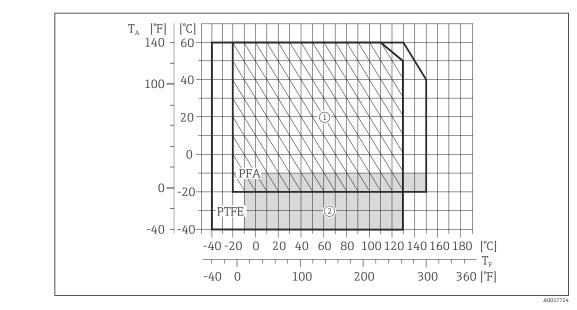
The following applies for basic specification, position 1, 2 (approval) = BJ, B5, BH, IJ, I6, IH, C2, NF, N6, NH, NK, MJ:

 $\bullet \quad T_a = T_a - 2 \text{ K}$

SI units

Т _а [°С]	T6 [85 °C]	T5 [100 ℃]	T4 [135 ℃]	T3 [200 °C]	T2 [300 °C]	T1 [450 °C]
40	80	95	130	150	150	150
55	-	95	130	150	150	150
60 ¹⁾	-	95	130	150	150	150

1) The following applies for Basic specification, Position 3 (Output) = A, B, E, G: $P_i = 0.85 W$

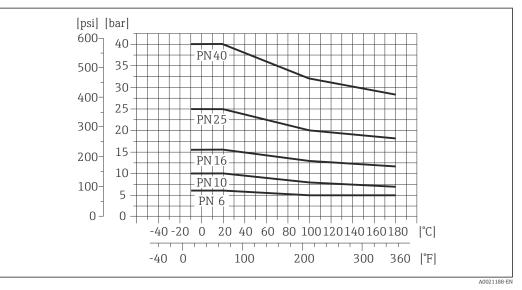

US units

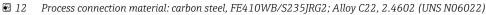
	T _a [°F]	T6 [185 °F]	T5 [212 °F]	T4 [275 °F]	T3 [392 °F]	T2 [572 °F]	T1 [842 °F]				
	104	176	203	266	302	302	302				
	131	-	203	266	302	302	302				
	140 1)	-	203	266	302	302	302				
	1) The following applies for basic specification, position 3 (output) = A, B, E, G: $P_i = 0.85$ W										
Storage temperature			corresponds to priate measuring	the operating te 1g sensors.	emperature ran	ige of the meas	uring				
	Select a sbacteria iIf protect	nfestation can	where moistu damage the lin tective covers a	re cannot collec er. re mounted the		-					
Degree of protection	Transmitter As standard: IP66/67, type 4X enclosure When housing is open: IP20, type 1 enclosure Display module: IP20, type 1 enclosure										
	Sensor IP66/67, type 4X enclosure										
	Connector IP67, only in screwed situation										
Shock resistance	As per IEC/	EN 60068-2-3	1								
Vibration resistance	Acceleratio	Acceleration up to 2 g, according to IEC 60068-2-6									
Mechanical load	Protect the transmitter housing against mechanical effects, such as shock or impact.Never use the transmitter housing as a ladder or climbing aid.										
Electromagnetic	As per IEC/	EN 61326 and	NAMUR Recor	nmendation 21	(NE 21)						
compatibility (EMC)	For de	tails, refer to tl	ne Declaration	of Conformity.							

Process

Medium temperature range

- -20 to +150 °C (-4 to +302 °F) for PFA
- -40 to +130 °C (-40 to +266 °F) for PTFE

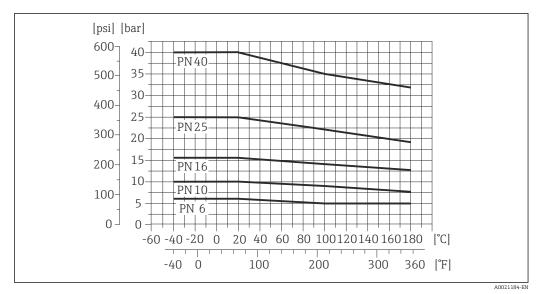


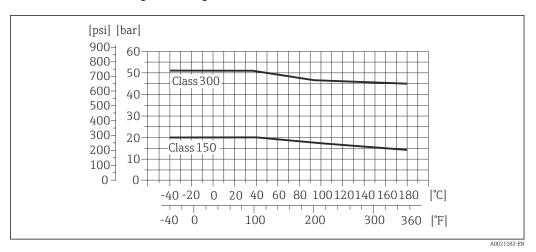

- T_A Ambient temperature
- T_F Medium temperature
- 1 Hatched area: harsh environment only up to +130 °C (+266 °F)
- 2 Gray area: the ambient and fluid temperature range of -10 to -40 °C (-14 to -40 °F) applies to stainless flanges only

\geq 20 µS/cm for liquids in general

The following pressure-temperature ratings refer to the entire device and not just the process connection.

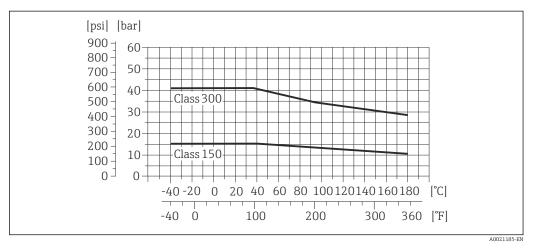
Process connection: flange according to EN 1092-1 (DIN 2501)



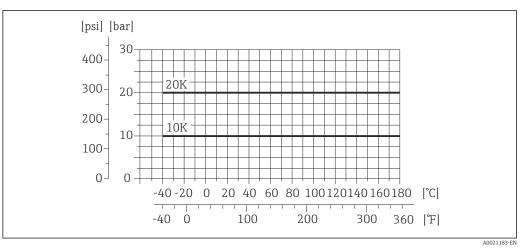

Conductivity

ratings

Pressure-temperature



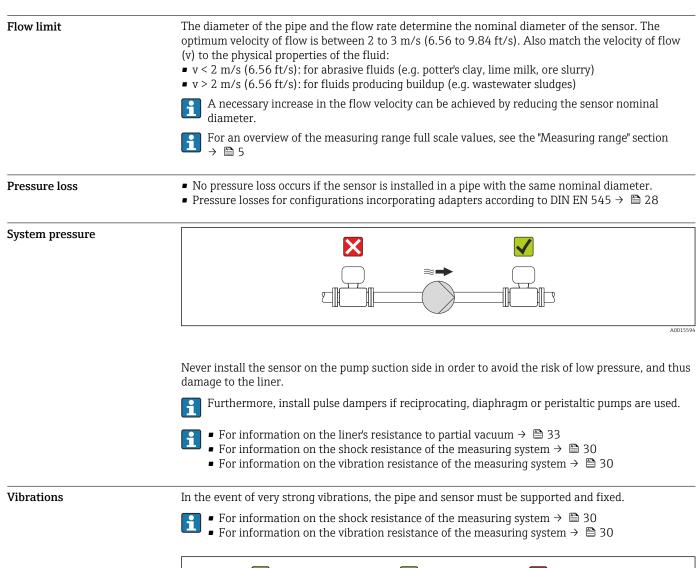
🖻 13 Process connection material: stainless steel, 1.4571 (F316L)

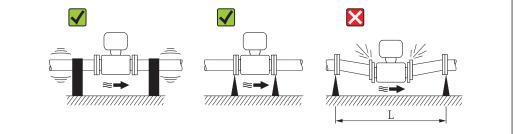

Process connection: flange according to ASME B16.5

I4 Process connection material: carbon steel, A105

🖻 15 Process connection material: stainless steel, F316L

Process connection: flange according to JIS B2220

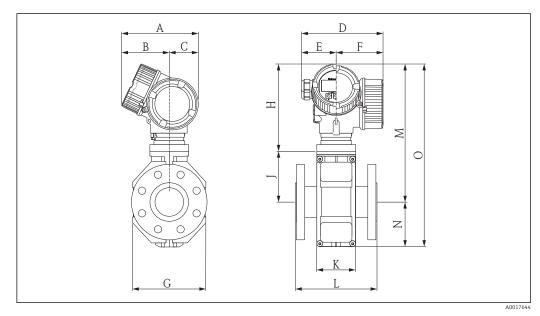

Pressure tightness


"-" = no specifications possible

Liner: PFA									
Nominal	Nominal diameter Limit values for absolute pressure in [mbar] ([psi]) for fluid temperatures:								
[mm]	[in]	+25 °C (+77 °F)	+80 °C (+176 °F)	+100 to +180 °C (+212 to +356 °F)					
25	1	0 (0)	0 (0)	0 (0)					
32	-	0 (0)	0 (0)	0 (0)					
40	1 1/2	0 (0)	0 (0)	0 (0)					
50	2	0 (0)	0 (0)	0 (0)					
65	-	0 (0)	-	0 (0)					
80	3	0 (0)	_	0 (0)					
100	4	0 (0)	_	0 (0)					
125	-	0 (0)	-	0 (0)					
150	6	0 (0)	-	0 (0)					
200	8	0 (0)	_	0 (0)					

Liner: PTFE

Nominal diameter Limit values for absolute pressure in [mbar] ([psi]) for fluid tempe						
[mm]	[in]	+25 °C (+77 °F)	+80 °C (+176 °F)	+100 °C (+212 °F)	+130 °C (+266 °F)	
15	1/2	0 (0)	0 (0)	0 (0)	100 (1.45)	
25	1	0 (0)	0 (0)	0 (0)	100 (1.45)	
32	-	0 (0)	0 (0)	0 (0)	100 (1.45)	
40	1 1/2	0 (0)	0 (0) 0 (0)		100 (1.45)	
50	2	0 (0)	0 (0)	0 (0)	100 (1.45)	
65	-	0 (0)	-	40 (0.58)	130 (1.89)	
80	3	0 (0)	-	40 (0.58)	130 (1.89)	
100	4	0 (0)	-	135 (1.96)	170 (2.47)	
125	-	135 (1.96)	_	240 (3.48)	385 (5.58)	
150	6	135 (1.96)	_	240 (3.48)	385 (5.58)	
200	8	200 (2.90)	_	290 (4.21)	410 (5.95)	


■ 17 Measures to avoid device vibrations (L > 10 m (33 ft))

Mechanical construction

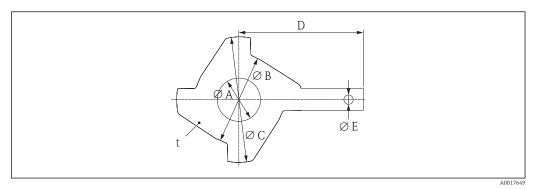
Dimensions in SI units

Compact version

Order code for "Housing", option C "GT20 two-chamber, aluminum coated"

DN	L 1)	A	B ²⁾	С	D ³⁾	E	F ³⁾	G	Н	J	К	M 4)	N	0 ⁴⁾
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	200	162	102	60	165	75	90	120	190	90	94	280	84	364
25	200	162	102	60	165	75	90	120	190	90	94	280	84	364
32	200	162	102	60	165	75	90	120	190	90	94	280	84	364
40	200	162	102	60	165	75	90	120	190	90	94	280	84	364
50	200	162	102	60	165	75	90	120	190	90	94	280	84	364
65	200	162	102	60	165	75	90	180	190	115	94	305	109	414
80	200	162	102	60	165	75	90	180	190	115	94	305	109	414
100	250	162	102	60	165	75	90	180	190	115	94	305	109	414
125	250	162	102	60	165	75	90	260	190	155	140	345	150	495
150	300	162	102	60	165	75	90	260	190	155	140	345	150	495
200	350	162	102	60	165	75	90	324	190	180	156	370	180	550

The length (L) is always the same, irrespective of the selected pressure rating. For version without local display: values - 7 mm For version with overvoltage protection (OVP): values + 8 mm 1)

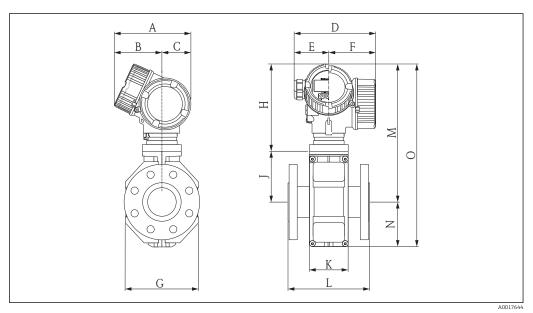

2)

3)

4) For version without local display: values - 10 mm

Accessories

Ground disk for flange connection



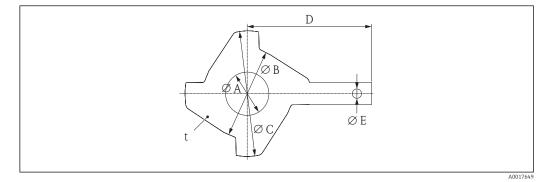
DN	А	В	С	D	Е	t
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	16	43	61.5	73	6.5	2
25	26	62	77.5	87.5	6.5	2
32	35	80	87.5	94.5	6.5	2
40	41	82	101	103	6.5	2
50	52	101	115.5	108	6.5	2
65	68	121	131.5	118	6.5	2
80	80	131	154.5	135	6.5	2
100	104	156	186.5	153	6.5	2
125	130	187	206.5	160	6.5	2
150	158	217	256	184	6.5	2
200	206	267	288	205	6.5	2

Dimensions in US units

Compact version

Order code for "Housing", option C "GT20 two-chamber, aluminum coated"

DN	L 1)	Α	B ²⁾	С	D ³⁾	Е	F ³⁾	G	Н	J	К	M ⁴⁾	N	0 ⁴⁾
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/2	7.87	6.38	4.02	2.36	6.50	2.95	3.54	4.72	7.46	3.54	3.7	11.0	3.31	14.3
1	7.87	6.38	4.02	2.36	6.50	2.95	3.54	4.72	7.46	3.54	3.7	11.0	3.31	14.3
1 1/4	7.87	6.38	4.02	2.36	6.50	2.95	3.54	4.72	7.46	3.54	3.7	11.0	3.31	14.3
1 1/2	7.87	6.38	4.02	2.36	6.50	2.95	3.54	4.72	7.46	3.54	3.7	11.0	3.31	14.3
2	7.87	6.38	4.02	2.36	6.50	2.95	3.54	4.72	7.46	3.54	3.7	11.0	3.31	14.3
2 1/2	7.87	6.38	4.02	2.36	6.50	2.95	3.54	7.09	7.46	4.53	3.7	12.0	4.29	16.3
3	7.87	6.38	4.02	2.36	6.50	2.95	3.54	7.09	7.46	4.53	3.7	12.0	4.29	16.3
4	9.84	6.38	4.02	2.36	6.50	2.95	3.54	7.09	7.46	4.53	3.7	12.0	4.29	16.3
5	9.84	6.38	4.02	2.36	6.50	2.95	3.54	10.2	7.46	6.10	5.51	13.6	5.91	19.5
6	11.8	6.38	4.02	2.36	6.50	2.95	3.54	10.2	7.46	6.10	5.51	13.6	5.91	19.5
8	13.8	6.38	4.02	2.36	6.50	2.95	3.54	12.8	7.46	7.09	6.14	14.6	7.09	21.7


The length (L) is always the same, irrespective of the selected pressure rating. For version without local display: values - 0.28 in For version with overvoltage protection (OVP): values + 0.31 in For version without local display: values - 0.39 in 1)

2)

3) 4)

Accessories

Ground disk for flange connection

DN	А	В	С	D	Е	t
[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/2	0.63	1.69	2.42	2.87	0.26	0.08
1	1.02	2.44	3.05	3.44	0.26	0.08
1 ¼	1.38	3.15	3.44	3.72	0.26	0.08
1 1⁄2	1.61	3.23	3.98	4.06	0.26	0.08
2	2.05	3.98	4.55	4.25	0.26	0.08
2 1⁄2	2.68	4.76	5.18	4.65	0.26	0.08
3	3.15	5.16	6.08	5.31	0.26	0.08
4	4.09	6.14	7.34	6.02	0.26	0.08
5	5.12	7.36	8.13	6.30	0.26	0.08
6	6.22	8.54	10.1	7.24	0.26	0.08
8	8.11	10.5	11.3	8.07	0.26	0.08

Weight

Compact version

- Including the transmitter (1.9 kg (4.2 lbs))Weight specifications apply to standard pressure ratings and without packaging material.

Weight in SI units

Nominal d	liameter	EN (DIN), AS ¹	.)	ASME		JIS		
[mm]	[in]	Pressure rating	[kg]	Pressure rating	[kg]	Pressure rating	[kg]	
15	1/2	PN 40	5.0	Class 150	5.0	10K	5.0	
25	1	PN 40	5.8	Class 150	5.8	10K	5.8	
32	1 ¼	PN 40	6.5	Class 150	-	10K	5.8	
40	1 1/2	PN 40	7.9	Class 150	7.9	10K	6.8	
50	2	PN 40	9.1	Class 150	9.1	10K	7.8	
65	2 1⁄2	PN 16	10.5	Class 150	-	10K	9.6	
80	3	PN 16	12.5	Class 150	12.5	10K	11.0	
100	4	PN 16	14.5	Class 150	14.5	10K	13.2	
125	5	PN 16	20.0	Class 150	-	10K	19.5	
150	6	PN 16	24.0	Class 150	24.0	10K	23.0	
200	8	PN 10	43.5	Class 150	43.5	10K	40.4	

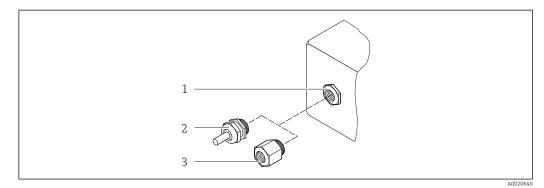
For flanges to AS, only DN 25 and 50 are available. 1)

Weight in US units

Nominal	diameter	ASME			
[mm]	[in]	Pressure rating	[lbs]		
15	1/2	Class 150	11.0		
25	1	Class 150	12.8		
32	1 ¼	Class 150	-		
40	1 ½	Class 150	17.4		
50	2	Class 150	20.1		
65	2 1/2	Class 150	-		
80	3	Class 150	27.6		
100	4	Class 150	32.0		
125	5	Class 150	-		
150	6	Class 150	52.9		
200	8	Class 150	95.9		

Measuring tube specifi	ication
------------------------	---------

Nom diam	ninal neter		Pre	essure rati	ng	Process connection internal diameter				
		EN (DIN)			AS 4087	JIS	PFA		PTFE	
[mm]	[in]	[bar]	[psi]	[bar]	[bar]	[bar]	[mm]	[in]	[mm]	[in]
15	1/2	PN 40	Class 150	-	-	20K	-	-	15	0.59
25	1	PN 40	Class 150	Table E	-	20K	23	0.91	26	1.02
32	-	PN 40	-	_	-	20K	32	1.26	35	1.38
40	1 1/2	PN 40	Class 150	-	-	20K	36	1.42	41	1.61


Nom diam			Pre	essure rati	ng	Process connection internal diameter				
		EN (DIN)	ASME	AS 2129	AS 4087	JIS	PI	7A	PT	FE
[mm]	[in]	[bar]	[psi]	[bar]	[bar]	[bar]	[mm]	[in]	[mm]	[in]
50	2	PN 40	Class 150	Table E	PN 16	10K	48	1.89	52	2.05
65	-	PN 16	-	-	-	10K	63	2.48	67	2.64
80	3	PN 16	Class 150	-	-	10K	75	2.95	80	3.15
100	4	PN 16	Class 150	-	-	10K	101	3.98	104	4.09
125	-	PN 16	-	-	-	10K	126	4.96	129	5.08
150	6	PN 16	Class 150	-	-	10K	154	6.06	156	6.14
200	8	PN 10	Class 150	-	-	10K	201	7.91	202	7.95

Materials

Transmitter housing

- Order code for "Housing", option **C** "Compact, aluminum coated":
- Aluminum, AlSi10Mg, coated
- Window material: glass

Cable entries/cable glands

🖻 18 Possible cable entries/cable glands

- 1 Cable entry in transmitter housing with internal thread M20 x 1.5
- 2 Cable gland M20 x 1.5
- 3 Adapter for cable entry with internal thread $G \frac{1}{2}$ or NPT $\frac{1}{2}$ "

Order code for "Housing", option C "GT20 two-chamber, aluminum coated"

Cable entry/cable gland	Type of protection	Material
Cable gland M20 × 1.5	Non-ExEx iaEx ic	Plastic
	Adapter for cable entry with internal thread G ½"	Nickel-plated brass
Adapter for cable entry with internal thread NPT ½"	For non-Ex and Ex (except for CSA Ex d/XP)	Nickel-plated brass
Thread NPT ½" via adapter	For non-Ex and Ex	

Device plug

Electrical connection	Material
Plug M12x1	 Socket: stainless steel, 1.4401/316 Contact housing: plastic, PUR, black Contacts: metal, CuZn, gold-plated Threaded connection seal: NBR

Sensor housing

Coated aluminum AlSi10Mg

Measuring tubes

Stainless steel, 1.4301/304/1.4306/304L; for flanges made of carbon steel with Al/Zn protective coating $% \lambda = 0.012$

Liner

- PFA
- PTFE

Process connections

EN 1092-1 (DIN 2501) Stainless steel, 1.4571 (F316L); carbon steel, FE410WB/S235JRG2; Alloy C22, 2.4602 (UNS N06022) (with Al/Zn protective varnish)

ASME B16.5

Stainless steel, F316L; carbon steel, A105 (with Al/Zn protective varnish)

JIS B2220

Stainless steel, 1.0425 (F316L); carbon steel, S235JRG2/HII (with Al/Zn protective varnish)

Electrodes

Stainless steel, 1.4435 (F316L); Alloy C22, 2.4602 (UNS N06022); platinum; tantalum; titanium

Seals

In accordance with DIN EN 1514-1

Accessories

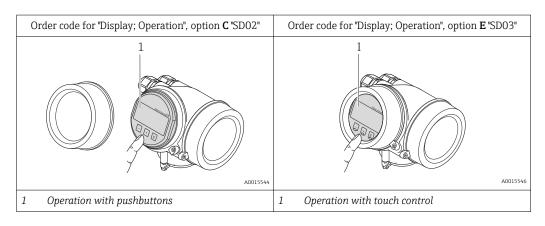
Weather protection cover Stainless steel 1.4404 (316L)

Ground disks

Stainless steel, 1.4435 (F316L); Alloy C22, 2.4602 (UNS N06022); tantalum; titanium

Fitted electrodes	 Measuring electrodes, reference electrodes and electrodes for empty pipe detection: Standard: stainless steel, 1.4435 (F316L); Alloy C22, 2.4602 (UNS N06022); tantalum, titanium Optional: only platinum measuring electrodes
Process connections	 EN 1092-1 (DIN 2501); dimensions as per DIN 2501, DN 65 PN 16 only as per EN 1092-1 ASME B16.5 JIS B2220 AS 2129 Table E AS 4087 PN 16 for information on the materials of the process connections → ≅ 40
Surface roughness	Stainless steel electrodes, 1.4435 (F316L); Alloy C22, 2.4602 (UNS N06022); platinum; tantalum; titanium: ≤ 0.3 to 0.5 μm (11.8 to 19.7 μin) (All data relate to parts in contact with fluid)

Liner with PFA: $\leq 0.4 \ \mu m \ (15.7 \ \mu in)$ (All data relate to parts in contact with fluid)


Operability

Operating concept	Operator-oriented menu structure for user-specific tasks Commissioning Operation Diagnostics Expert level
	 Quick and safe commissioning Guided menus ("Make-it-run" wizards) for applications Menu guidance with brief explanations of the individual parameter functions
	 Reliable operation Operation in the following languages: Via local display: English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Swedish, Turkish, Chinese, Japanese, Bahasa (Indonesian), Vietnamese, Czech Via "FieldCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese Uniform operating philosophy applied to device and operating tools If replacing the electronic module, transfer the device configuration via the integrated memory (integrated HistoROM) which contains the process and measuring device data and the event logbook. No need to reconfigure.
	Efficient diagnostics increase measurement availability Troublesheating measures can be called up via the device and in the energy tools

- Troubleshooting measures can be called up via the device and in the operating tools
- Diverse simulation options, logbook for events that occur and optional line recorder functions

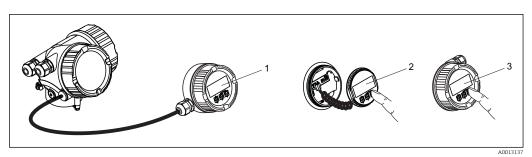
Local operation

Via display module

Display elements

- 4-line display
- With order code for "Display; operation", option E:
- White background lighting; switches to red in event of device errors
- Format for displaying measured variables and status variables can be individually configured
- Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F)
 The readability of the display may be impaired at temperatures outside the temperature range.

Operating elements

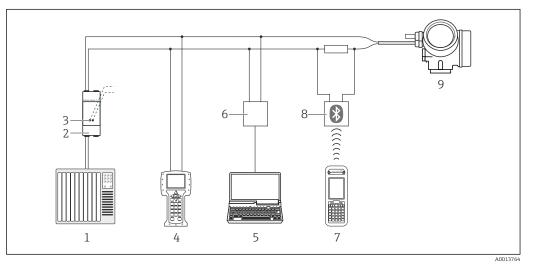

- With order code for "Display; operation", option **C**:
- Local operation with 3 push buttons: 🕑, 💿, 🕥
- With order code for "Display; operation", option **E**:
 - External operation via touch control; 3 optical keys:), , ,
- Operating elements also accessible in various hazardous areas

Additional functionality

- Data backup function
- The device configuration can be saved in the display module.
- Data comparison function
 - The device configuration saved in the display module can be compared to the current device configuration.
- Data transfer function

The transmitter configuration can be transmitted to another device using the display module.

Via remote display and operating module FHX50

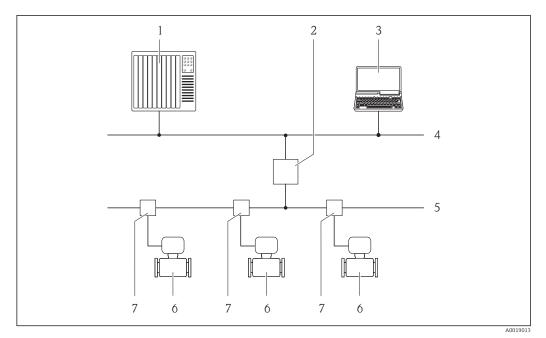

I9 Operating options via FHX50

- 1 Housing of remote display and operating module FHX50
- 2 SD02 display and operating module, push buttons: cover must be opened for operation
- 3 SD03 display and operating module, optical buttons: operation possible through cover glass

Remote operation

Via HART protocol

This communication interface is available in device versions with a HART output.

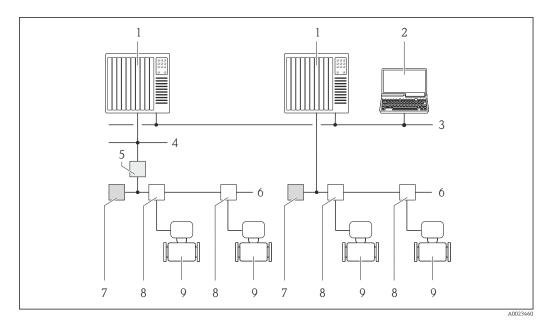


20 Options for remote operation via HART protocol

- 1 Control system (e.g. PLC)
- 2 Transmitter power supply unit, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 475
- 4 Field Communicator 475
- 5 Computer with operating tool (e.g. FieldCare, AMS Device Manager, SIMATIC PDM)
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 or SFX370
- 8 VIATOR Bluetooth modem with connecting cable
- 9 Transmitter

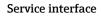
Via PROFIBUS PA network

This communication interface is available in device versions with PROFIBUS PA.

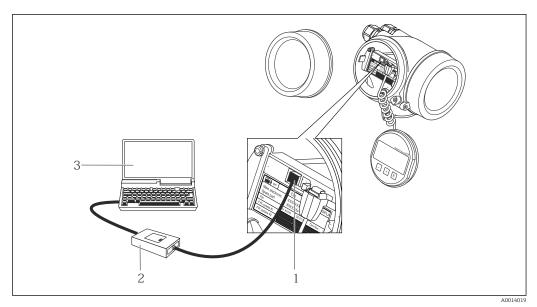


🖻 21 Options for remote operation via PROFIBUS PA network

- Automation system 1
- 2 3
- Segment coupler PROFIBUS DP/PA Computer with PROFIBUS network card
- 4 PROFIBUS DP network
- 5 PROFIBUS PA network
- 6 Measuring device
- 7 T-box


Via FOUNDATION Fieldbus network

This communication interface is available in device versions with FOUNDATION Fieldbus.



■ 22 Options for remote operation via FOUNDATION Fieldbus network

- 1 Automation system
- 2 Computer with FOUNDATION Fieldbus network card
- 3 Industry network
- 4 High Speed Ethernet FF-HSE network
- 5 Segment coupler FF-HSE/FF-H1
- 6 FOUNDATION Fieldbus FF-H1 network
- 7 Power supply FF-H1 network
- 8 T-box
- 9 Measuring device

Via service interface (CDI)

1 Service interface (CDI = Endress+Hauser Common Data Interface) of the measuring device

- Commubox FXA291
 Computer with "Field
- 3 Computer with "FieldCare" operating tool with COM DTM "CDI Communication FXA291"

Certificates and approvals

CE mark	The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.
	Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.
C-Tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".
Ex approval	The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.
	The separate Ex documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales center.

ATEX, IECEx

Currently, the following versions for use in hazardous areas are available:

Ex d

Category	Type of protection
II2G / Zone 1	Ex d[ia] IIC T6-T1 Gb
II2D / Zone 21	Ex tb IIIC T** Db

Ex ia

Category	Type of protection
II2G / Zone 1	Ex ia IIC T6-T1 Gb
III2D / Zone 21	Ex tb IIIC T** Db

Ex nA

Category	Type of protection
II3G / Zone 2	Ex nA IIC T6-T1 Gc

Ex ic

Category	Type of protection	
II3G / Zone 2	Ex ic IIC T6-T1 Gc	

cCSAus

Currently, the following versions for use in hazardous areas are available:

XP

Category	Type of protection	
Class I/II/III Division 1 Groups ABCDEFG	XP (Ex d Flameproof version)	

IS

Category	Type of protection
Class I/II/III Division 1 Groups ABCDEFG	IS (Ex i Intrinsically safe version), Entity parameter $^{\rm 1)}$

1) Entity and NIFW parameter in accordance with Control Drawings

	NI	
	Category	Type of protection
	Class I Division 2 Groups ABCD	NI (Non-incendive version), NIFW parameter $^{1)}$
	1) Entity and NIFW parameter in accordance with Co	ntrol Drawings
Functional safety	The measuring device can be used for flow monitor (single-channel architecture) and SIL 3 (multichan and is independently evaluated and certified by the The following types of monitoring in safety equipm	nel architecture with homogeneous redundancy) e TÜV in accordance with IEC 61508.
	Volume flow	
	Functional Safety Manual with information of	n the SIL device $\rightarrow \cong 51$
HART certification	HART interface	
	The measuring device is certified and registered by The measuring system meets all the requirements Certified according to HART 7	of the following specifications:
	 The device can also be operated with certified de 	vices of other manufacturers (interoperability)
FOUNDATION Fieldbus certification	FOUNDATION Fieldbus interface	
certification	The measuring device is certified and registered by system meets all the requirements of the following Certified in accordance with FOUNDATION Field 	specifications:
	 Interoperability Test Kit (ITK), revision version 6 Physical Layer Conformance Test 	.1.1 (certificate available on request)
	• The device can also be operated with certified de	vices of other manufacturers (interoperability)
Certification PROFIBUS	PROFIBUS interface	
	The measuring device is certified and registered by measuring system meets all the requirements of th Certified in accordance with PROFIBUS PA Profil	ne following specifications:
	 The device can also be operated with certified de 	vices of other manufacturers (interoperability)
Other standards and	• EN 60529	
guidelines	Degrees of protection provided by enclosures (IP EN 61010-1	code)
	Safety requirements for electrical equipment for IEC/EN 61326	measurement, control and laboratory use
	Emission in accordance with Class A requiremen requirements).	ts. Electromagnetic compatibility (EMC
	ANSI/ISA-61010-1 (82.02.01): 2004	r Measurement, Control and Laboratory Use - Part
	1 General Requirements • CAN/CSA-C22.2 No. 61010-1-04	
		r Measurement, Control and Laboratory Use - Part
	 NAMOR NE 21 Electromagnetic compatibility (EMC) of industria NAMUR NE 32 	al process and laboratory control equipment
	Data retention in the event of a power failure in a microprocessors	field and control instruments with
	NAMUR NE 43	
	Standardization of the signal level for the breakd analog output signal. • NAMUR NE 53	lown information of digital transmitters with

- NAMUR NE 105
- Specifications for integrating fieldbus devices in engineering tools for field devices • NAMUR NE 107
- Self-monitoring and diagnosis of field devices
- NAMUR NE 131 Requirements for field devices for standard applications

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com → Select your country → Products → Select measuring technology, software or components → Select the product (picklists: measurement method, product family etc.) → Device support (right-hand column): Configure the selected product → The Product Configurator for the selected product opens.
- From your Endress+Hauser Sales Center: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
 - Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
 - Automatic verification of exclusion criteria
 - Automatic creation of the order code and its breakdown in PDF or Excel output format
 - Ability to order directly in the Endress+Hauser Online Shop

Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Diagnostics functions	Package	Description
	HistoROM extended function	Comprises extended functions concerning the event log and the activation of the measured value memory.
		Event log: Memory volume is extended from 20 message entries (basic version) to up to 100 entries.
		 Data logging (line recorder): Memory capacity for up to 1000 measured values is activated. 250 measured values can be output via each of the 4 memory channels. The recording interval can be defined and configured by the user. Data logging is visualized via the local display or FieldCare.

Heartbeat Technology	Package	Description
	Heartbeat Verification	 Heartbeat Verification: Makes it possible to check the device functionality on demand when the device is installed, without having to interrupt the process. Access via local operation or other operating interfaces, such as FieldCare for instance. Documentation of device functionality within the framework of manufacturer specifications, for proof testing for instance. End-to-end, traceable documentation of the verification results, including report. Makes it possible to extend calibration intervals in accordance with operator's risk assessment.

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific acc	essories
---------------------	----------

s For the transmitter

Accessories	Description
Remote display FHX50	 FHX50 housing to accommodate a display module → ⁽¹⁾ 42. FHX50 housing suitable for: SD02 display module (push buttons) SD03 display module (touch control) Housing material: Plastic PBT Stainless steel CF-3M (316L, 1.4404) Length of connecting cable: up to max. 60 m (196 ft) (cable lengths available for order: 5 m (16 ft), 10 m (32 ft), 20 m (65 ft), 30 m (98 ft))
	 The measuring device can be ordered with the FHX50 housing and a display module. The following options must be selected in the separate order codes: Order code for measuring device, feature 030: Option L or M "Prepared for FHX50 display" Order code for FHX50 housing, feature 050 (device version): Option A "Prepared for FHX50 display" Order code for FHX50 housing, depends on the desired display module in feature 020 (display, operation): Option C: for an SD02 display module (push buttons) Option E: for an SD03 display module (touch control)
	 The FHX50 housing can also be ordered as a retrofit kit. The measuring device display module is used in the FHX50 housing. The following options must be selected in the order code for the FHX50 housing: Feature 050 (measuring device version): option B "Not prepared for FHX50 display" Feature 020 (display, operation): option A "None, existing displayed used" For details, see Special Documentation SD01007F
Overvoltage protection for 2-wire devices	 Ideally, the overvoltage protection module should be ordered directly with the device. See product structure, characteristic 610 "Accessory mounted", option NA "Overvoltage protection". Separate order necessary only if retrofitting. OVP10: For 1-channel devices (characteristic 020, option A): OVP20: For 2-channel devices (characteristic 020, options B, C, E or G) For details, see Special Documentation SD01090F.
Weather protection cover	Is used to protect the measuring device from the effects of the weather: e.g. rainwater, excess heating from direct sunlight or extreme cold in winter. For details, see Special Documentation SD00333F
Ground cable	Set, consisting of two ground cables for potential equalization.

For the sensor

Accessories	Description
Ground disks	Are used to ground the fluid in lined measuring tubes to ensure proper measurement. For details, see Installation Instructions EA00070D

Communication-specific	Accessories	Description
accessories	Commubox FXA195	For intrinsically safe HART communication with FieldCare via the USB interface.
	HART	For details, see "Technical Information" TI00404F
	Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.
		For details, see the "Technical Information" document TI405C/07
	HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values.
		For details, see "Technical Information" TI00429F and Operating Instructions BA00371F
	Wireless HART adapter SWA70	Is used for the wireless connection of field devices. The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks with minimum cabling complexity.
		For details, see Operating Instructions BA00061S
	Fieldgate FXA320	Gateway for the remote monitoring of connected 4-20 mA measuring devices via a Web browser.
		For details, see "Technical Information" TI00025S and Operating Instructions BA00053S
	Fieldgate FXA520	Gateway for the remote diagnostics and remote configuration of connected HART measuring devices via a Web browser.
		For details, see "Technical Information" TI00025S and Operating Instructions BA00051S
	Field Xpert SFX350	Field Xpert SFX350 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the non-Ex area .
		For details, see Operating Instructions BA01202S
	Field Xpert SFX370	Field Xpert SFX370 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the non-Ex area and the Ex area .
		For details, see Operating Instructions BA01202S

Service-specific accessories	Accessories	Description
	Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the data needed to determine the optimum flowmeter: e.g. nominal diameter, pressure drop, performance characteristics or process connections. Graphic illustration of the calculation results Administration, documentation and access to all project-related data and
		parameters throughout the entire life cycle of a project.
		 Applicator is available: Via the Internet: https://wapps.endress.com/applicator On CD-ROM for local PC installation.

W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant information is available for every measuring device over time entire life cycle, such as the device status, spare parts, device-specific documentation, etc. The application already contains the data of your Endress+Hauser device. Endress +Hauser also takes care of maintaining and updating the data records. W@M is available: • Via the Internet: www.endress.com/lifecyclemanagement • On CD-ROM for local PC installation.
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. For details, see Operating Instructions BA00027S and BA00059S

System components	Accessories	Description
	Memograph M graphic display recorder	The Memograph M graphic display recorder provides information on all relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
		For details, see "Technical Information" TI00133R and Operating Instructions BA00247R
	RN221N	Active barrier with power supply for safe separation of 4-20 mA standard signal circuits. Offers bidirectional HART transmission.
		For details, see "Technical Information" TI00073R and Operating Instructions BA00202R
	RNS221	Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidirectional communication is possible via the HART communication jacks.
		For details, see "Technical Information" TI00081R and Brief Operating Instructions KA00110R

Documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- The CD-ROM provided for the device (depending on the device version, the CD-ROM might not be part of the delivery!)
 - The W@M Device Viewer : Enter the serial number from the nameplate (www.endress.com/deviceviewer)
 - The *Endress+Hauser Operations App*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

Standard documentation Brief Operating Instructions

Measuring device	Documentation code
Promag P 200	KA01121D

Operating Instructions

Measuring device	Documentation code		
	HART	FOUNDATION Fieldbus	PROFIBUS PA
Promag P 200	BA01111D	BA01378D	BA01376D

Device Parameters

Measuring device	Documentation code		
	HART	FOUNDATION Fieldbus	PROFIBUS PA
Promag 200	GP01026D	GP01028D	GP01027D

Supplementary devicedependent documentation

Safety Instructions

Contents	Documentation code
ATEX/IECEx Ex d[ia], Ex tb	XA01015D
ATEX/IECEx Ex ia, Ex tb	XA01016D
ATEX/IECEx Ex nA, Ex ic	XA01017D
cCSAus XP (Ex d)	XA01018D
cCSAus IS (Ex i)	XA01019D
NEPSI Ex d	XA01179D
NEPSI Ex i	XA01178D
NEPSI Ex nA, Ex ic	XA01180D
INMETRO Ex d	XA01309D
INMETRO Ex i	XA01310D
INMETRO Ex nA	XA01311D

Special Documentation

Contents	Documentation code
Information on the Pressure Equipment Directive	SD01056D
Functional Safety Manual	SD01451D
Heartbeat Technology	SD01452D

Installation Instructions

Contents	Documentation code
Installation Instructions for spare part sets	Specified for each individual accessory

Registered trademarks

HART®

Registered trademark of the HART Communication Foundation, Austin, USA

PROFIBUS®

Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany

FOUNDATIONTM Fieldbus

Registration-pending trademark of the Fieldbus Foundation, Austin, Texas, USA

Applicator[®], **FieldCare[®]**, **Field XpertTM**, **HistoROM[®]**, **Heartbeat TechnologyTM** Registered or registration-pending trademarks of the Endress+Hauser Group

www.addresses.endress.com

