Special Documentation **Proline Promass I 300 FOUNDATION Fieldbus**

Viscosity Measurement application package

Table of contents

1	Document information 4
1.1 1.2 1.3 1.4	Document function4Using this document4Symbols used4Documentation5
2	System integration
2.1 2.2 2.3	Input6Output7Performance characteristics8
3	Commissioning 9
3.1 3.2 3.3	Availability9Advanced settings9Simulation11
4	Operation 13
4.1	Reading measured values 13
5	Viscosity fundamentals 14
5.1 5.2 5.3	Definitions of viscosity (general)14Differentiating viscous behavior16Principle of viscosity measurement with
5.4	Promass I
5.5	value
6	Comparison tables for viscosities 22

1 Document information

1.1 Document function

This document is part of the Operating Instructions and serves as a reference for application-specific parameters and notes.

It provides detailed information on:

- Every individual parameter in the operating menu
- Advanced technical specifications
- General principles and application tips

1.2 Using this document

1.2.1 Information on the document structure

For the arrangement of the parameters as per the **Operation** menu, **Setup** menu, **Diagnostics** menu, along with a short description, see the Operating Instructions for the device

For information about the operating philosophy, see the "Operating philosophy" chapter in the device's Operating Instructions

1.3 Symbols used

1.3.1 Symbols for certain types of information

Symbol	Meaning
i	Tip Indicates additional information.
Ĩ	Reference to documentation
	Reference to page
	Reference to graphic
►	Notice or individual step to be observed
1., 2., 3	Series of steps
L >	Result of a step
	Operation via local display
	Operation via operating tool
	Write-protected parameter

1.3.2 Symbols in graphics

Symbol	Meaning
1, 2, 3	Item numbers
A, B, C,	Views
A-A, B-B, C-C,	Sections

1.4 Documentation

This manual is Special Documentation. It is not a substitute for the Operating Instructions supplied with the device.

For detailed information, refer to the Operating Instructions and other documentation on the CD-ROM provided or visit "www.endress.com/deviceviewer".

The Special Documentation is an integral part of the following Operating Instructions:

Measuring device	Documentation code
Promass I 300	BA01520D

This Special Documentation is available:

- On the CD-ROM supplied with the device (depending on the device version ordered) In the Download Area of the Endress+Hauser Internet site:
- www.endress.com \rightarrow Download

1.4.1 Content and scope

This Special Documentation contains a description of the additional parameters and technical data that are provided with the Viscosity application package. All the parameters that are not relevant to viscosity measurement are described in the Operating Instructions.

For general information on viscosity and viscosity measurement, see the "Viscosity fundamentals" section $\rightarrow~\textcircled{B}$ 14

2 System integration

2.1 Input

2.1.1 Measuring range

Measuring ranges for liquids

DN		Measuring range full scale values $\dot{m}_{min(F)}$ to $\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
8	3⁄8	0 to 2 000	0 to 73.50
15	1/2	0 to 6 500	0 to 238.9
15 FB	½ FB	0 to 18000	0 to 661.5
25	1	0 to 18000	0 to 661.5
25 FB	1 FB	0 to 45 000	0 to 1654
40	11/2	0 to 45 000	0 to 1654
40 FB	1½ FB	0 to 70 000	0 to 2 573
50	2	0 to 70 000	0 to 2 573
50 FB	2 FB	0 to 180 000	0 to 6615
80	3	0 to 180 000	0 to 6615
FB = Full bore	FB = Full bore		

Measuring ranges for gases

The full scale values depend on the density of the gas and can be calculated with the formula below:

 $\dot{m}_{max(G)} = \dot{m}_{max(F)} \cdot \rho_G : x$

m _{max(G)}	Maximum full scale value for gas [kg/h]	
m _{max(F)}	max(F) Maximum full scale value for liquid [kg/h]	
$\dot{\mathbf{m}}_{\max(G)} < \dot{\mathbf{m}}_{\max(F)}$ $\dot{\mathbf{m}}_{\max(G)}$ can never be greater than $\dot{\mathbf{m}}_{\max(F)}$		
ρ _G	Gas density in [kg/m ³] at operating conditions	
x	Constant dependent on nominal diameter	

DN		x
[mm]	[in]	[kg/m ³]
8	3⁄8	60
15	1/2	80
15 FB	½ FB	90
25	1	90
25 FB	1 FB	90
40	11/2	90
40 FB	1½ FB	90
50	2	90
50 FB	2 FB	110

DN		x
[mm]	[in]	[kg/m³]
80	3	110
FB = Full bore		

Calculation example for gas

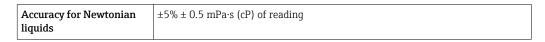
- Sensor: Promass I, DN 50
- Gas: Air with a density of 60.3 kg/m³ (at 20 °C and 50 bar)
- Measuring range (liquid): 70000 kg/h
- $x = 90 \text{ kg/m}^3$ (for Promass I, DN 50)

Maximum possible full scale value:

 $\dot{m}_{max(G)} = \dot{\dot{m}}_{max(F)} \cdot \rho_{G}$: x = 70 000 kg/h \cdot 60.3 kg/m³ : 90 kg/m³ = 46 900 kg/h

2.2 Output

Extended options if the viscosity application package is used


Output values (from measuring device to automation system)	Analog Input modules (slot 1 to 14) Dynamic viscosity Kinematic viscosity Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity
	The range of options increases if the measuring device has one or more application packages.

Input/output value	Process variable	Category	Permitted in slots
Output value	Dynamic viscosity	Viscosity ¹⁾	114
	Kinematic viscosity		
	Temp. compensated dynamic viscosity		
	Temp. compensated kinematic viscosity		

1) Only available with the "Viscosity" application package.

2.3 Performance characteristics

2.3.1 Maximum measured error

■ 1 Error curve indicating the relative error as a % for dynamic viscosity in cP

1 Maximum measured error

2 Typical measuring points of viscosity calibration

2.3.2 Repeatability

±0.5% of reading

3 Commissioning

3.1 Availability

If the optional **Viscosity Measurement** package was ordered for the flowmeter ex works, the function is available when the measuring device is delivered from the factory. The function is accessed via the operating interfaces of the measuring device, via the Web server or Endress+Hauser's FieldCare asset management software. No particular measures are required to put the function into operation.

Ways to check function availability in the measuring device:

- Using the serial number:
- W@M Device viewer $^{1)} \rightarrow$ Order code option **EG** "Viscosity measurement" In the operating menu:
- Check whether the function appears in the operating menu: Diagnostics \rightarrow Measured values \rightarrow Process variables \rightarrow Viscosity

If the "Viscosity" option is available the function is activated.

If the function cannot be accessed in the measuring device, the optional package was not selected. It is then possible to upgrade to this function during the life cycle of the measuring device. On most flowmeters it is possible to activate the function without having to upgrade the firmware.

3.1.1 Activation without firmware upgrade

If the viscosity option is retrofitted during the flowmeter's life cycle, viscosity calibration must be performed. The device must be returned to the factory for this.

Activation without firmware upgrade is possible as of the following firmware versions: FOUNDATION Fieldbus H1: 01.00.zz

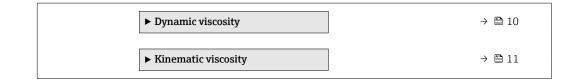
3.1.2 Firmware upgrade before activation

If you have a measuring device that requires a firmware upgrade before the function can be activated, please contact your Endress+Hauser service organization.

This function requires service-level access to the device.

A firmware upgrade is required for measuring devices with earlier firmware versions (see "3.1.1 Activation without firmware upgrade"). In addition the reference condition of the sensor must be recorded and selected during commissioning.

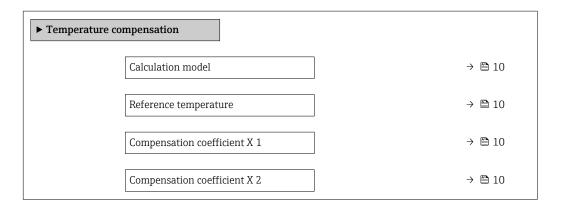
Please contact your Endress+Hauser service or sales organization for further information regarding product availability and upgrades to existing measuring devices.


3.2 Advanced settings

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity

► Viscosity		
	► Temperature compensation	→ 🗎 10


¹⁾ www.endress.com/deviceviewer

3.2.1 Temperature compensation

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Temperature compensation

Parameter overview with brief description

Parameter	Description	Selection / User entry	Factory setting	
Calculation model	Select a formula for the temperature compensation of viscosity.	 Power law Exponential Polynomial	Polynomial	
Reference temperature	Enter reference temperature used to calculate the temperature compensated viscosity.	−273.15 to 99 999 °C	0 °C	
Compensation coefficient X 1	Enter compensation coefficient used to calculate the temperature compensated viscosity.	Signed floating-point number	0	
Compensation coefficient X 2	Enter compensation coefficient used to calculate the temperature compensated viscosity.	Signed floating-point number	0	

3.2.2 Dynamic viscosity

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Dynamic viscosity

Parameter	Description	Selection / User entry	Factory setting
Dynamic viscosity unit	Select dynamic viscosity unit.	Unit choose list	Pa s
	Result		
	The selected unit applies for: • Dynamic viscosity parameter (gases) • Dynamic viscosity parameter (liquids)		
User dynamic viscosity text	Enter text for the user specific unit of the dynamic viscosity.		UserDynVis
User dynamic viscosity factor	With user-specific unit: Enter a factor which is multiplicated with the measured dynamic viscosity value.	Signed floating-point number	1.0
User dynamic viscosity offset	With user-specific unit: Enter zero point shift which is added or subtracted to/from the measured value of the dynamic viscosity.	Signed floating-point number	0

Parameter overview with brief description

3.2.3 Kinematic viscosity

Navigation

"Setup" menu \rightarrow Advanced setup \rightarrow Viscosity \rightarrow Kinematic viscosity

► Kinematic viscosi	ty	
[Kinematic viscosity unit	→ 🖺 11

Parameter overview with brief description

Parameter	Description	Selection / User entry	Factory setting
Kinematic viscosity unit	Select kinematic viscosity unit. Unit choose list		cSt
User kinematic viscosity text	Enter text for the user specific unit of the kinematic viscosity.	•	
User kinematic viscosity factor	With user-specific unit: Enter a factor which is multiplicated with the measured kinematic viscosity value.	Signed floating-point number	1.0
User kinematic viscosity offset	With user-specific unit: Enter zero point shift which is added or subtracted to/from the measured value of the kinematic viscosity.	Signed floating-point number	0

3.3 Simulation

Navigation

"Diagnostics" menu \rightarrow Simulation \rightarrow Assign simulation process variable

► Simulation		
	Assign simulation process variable	→ 🗎 12

Parameter overview with brief description

Parameter	Description	Selection	Factory setting
Assign simulation process variable	Select a process variable for the simulation process that is activated.	 Off Mass flow Volume flow Corrected volume flow Density Reference density Temperature Dynamic viscosity Kinematic viscosity Temp. compensated dynamic viscosity Temp. compensated kinematic viscosity Concentration Target mass flow Carrier mass flow 	Off

4 Operation

4.1 Reading measured values

Navigation

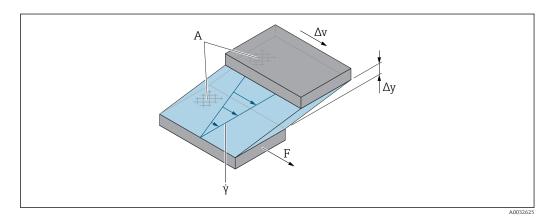
"Diagnostics" menu \rightarrow Measured values \rightarrow Process variables

► Process variables	
Dynamic viscosity	→ 🗎 13
Kinematic viscosity	→ 🗎 13
Temp. compensated dynamic viscosity	→ 🗎 13
Temp. compensated kinematic viscosity	→ 🗎 13

Parameter overview with brief description

Parameter	Prerequisite	Description	User interface
Dynamic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the dynamic viscosity currently calculated. Dependency The unit is taken from the Dynamic viscosity unit parameter (→ 🗎 11).	Signed floating-point number
Kinematic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the kinematic viscosity currently calculated. <i>Dependency</i> The unit is taken from the Kinematic viscosity unit parameter (→ 🗎 11).	Signed floating-point number
scosity "Application package", option EG "Viscosity" The software options currently		Displays the temperature compensation currently calculated for the viscosity. Dependency The unit is taken from the Dynamic viscosity unit parameter ($\rightarrow \square 11$).	Signed floating-point number
Temp. compensated kinematic viscosity	For the following order code: "Application package", option EG "Viscosity" The software options currently enabled are displayed in the Software option overview parameter.	Displays the temperature compensation currently calculated for the kinetic viscosity. Dependency The unit is taken from the Kinematic viscosity unit parameter (0578) $(\rightarrow \cong 11)$.	Signed floating-point number

5 Viscosity fundamentals


Viscosity describes the flow properties of fluids (liquid and gas). This property depends on forces acting between the molecules. The more viscous a fluid, the stronger these intermolecular forces. As a result, a larger internal resistance has to be overcome to move through the fluid or apply a force to it.

5.1 Definitions of viscosity (general)

Consider a liquid between two parallel plates. If you slide one of the plates parallel against the other in a horizontal direction, $\rightarrow \blacksquare 2$, $\boxdot 14$ a certain force F (shear force) is needed as the liquid acts against the flow movement in the form of an internal resistance.

The relationship between the moving surface A and the shear force F is known as shear stress $\boldsymbol{\tau}.$

$$\tau = \frac{F}{A} \qquad Pa = \frac{N}{m^2}$$

2 Shear rate

А	Friction surface
F	Shear force
Ý	Shear rate
Δv	Change in velocity
Δу	Distance between plates or layer thickness

The relationship between the change in velocity Δv and layer thickness Δy (distance between the plates) is known as the shear rate $\dot{\gamma}$.

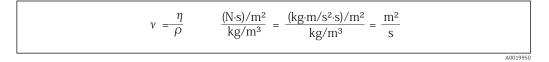
$$\dot{\gamma} = \frac{\Delta y}{\Delta v}$$
 $\frac{m}{m \cdot s} = \frac{1}{s}$

5.1.1 Dynamic viscosity

The dynamic viscosity (\eta) is calculated from the ratio of the shear stress τ to the shear rate $\dot{\gamma}.$

$$\eta = \frac{\tau}{\gamma} = \frac{F/A}{\Delta v/\Delta y} = \frac{F \cdot \Delta y}{A \cdot \Delta v} \qquad \frac{N/m^2}{(m/s)/m} = \frac{N \cdot m}{(m/s) \cdot m^2} = \frac{N \cdot s}{m^2} = Pa \cdot s$$

The SI unit for dynamic viscosity η is the pascal second (Pa \cdot s). The poise (P) unit is also widely used, where:


 $1 \text{ mPa} \cdot \text{s} = 1 \text{ cP}$

 $1 \text{ Pa} \cdot \text{s} = 10 \text{ P}$

A selection of the most common used viscosity units: $\rightarrow \cong 22$.

5.1.2 Kinematic viscosity

The kinematic viscosity v is the quotient from the dynamic viscosity η of the liquid and its density $\rho.$

The SI unit of kinematic viscosity is m^2/s . However, the stokes (St) unit is also widely used, where:

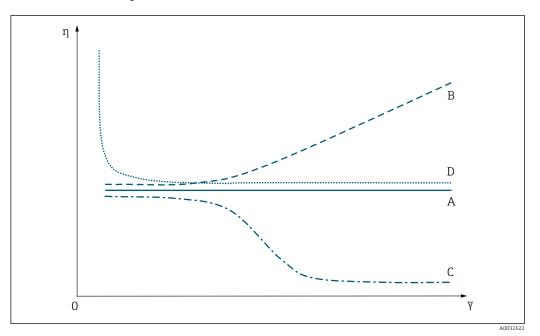
 $1 \text{ m}^2/\text{s} = 1 000 000 \text{ cSt}$

 $1 \text{ mm}^2/\text{s} = 1 \text{ cSt}$ (centistokes)

A selection of the most commonly used viscosity units: $\rightarrow \cong 22$.

5.2 Differentiating viscous behavior

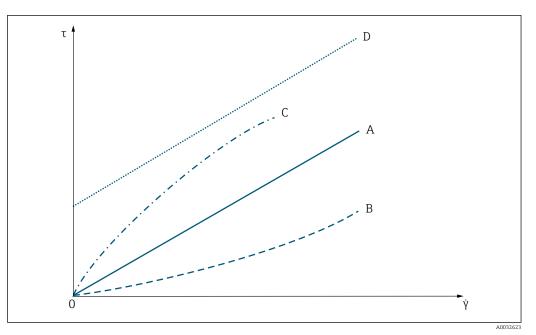
A distinction is made between Newtonian liquids and non-Newtonian liquids based on their viscosity behavior at different shear rates. In Newtonian liquids, the viscosity behavior remains constant at different shear rates. In non-Newtonian liquids, the viscosity behavior changes at different shear rates.


5.2.1 Newtonian liquid

	Example	Viscosity behavior with increasing shear rate
Feature	WaterLube oils	No effect

5.2.2 Non-Newtonian liquid

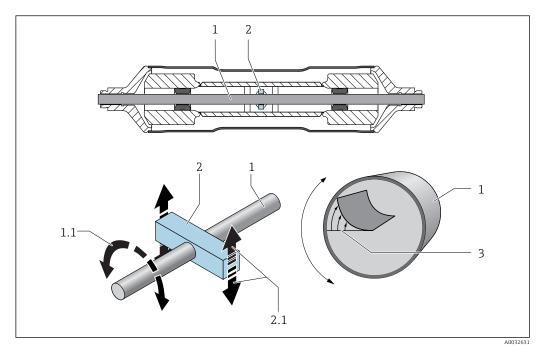
		Example	Viscosity behavior with increasing shear rate
Time-independent behavior	Dilatant liquid	 Concentrated solutions of sugar and water Aqueous suspensions of rice starch Wet sand 	Increases
	Pseudoplastic liquid	 Gelatine Clay Milk Cream Fruit juice concentrate Salad dressings 	Increases
	Bingham liquid	Certain emulsionsOil paint	Decreases but acts like a Newtonian liquid as of a certain shear rate
Time-dependent behavior	Thixotropic liquid	 Yogurt Mayonnaise Margarine Ice cream Paints 	Decreases but assumes the original state when in quiescent state
	Rheopectic liquid	Gypsum in waterPrinter ink	Increases but drops again when in quiescent state


5.2.3 Viscosity and flow curves

☑ 3 Viscosity curves

А	Viscosity curv	ve of a Newto	onian liquid
---	----------------	---------------	--------------

- B Viscosity curve of a dilatant liquid
- C Viscosity curve of a pseudoplastic liquid
- D Viscosity curve of a Bingham-plastic liquid
- γ̈́ Shear rate
- η Dynamic viscosity



4 Flow curves

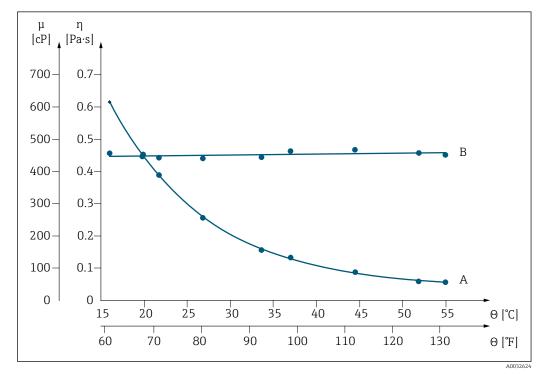
А	Flow curve of a Newtonian liquid
В	Flow curve of a dilatant liquid
С	Flow curve of a pseudoplastic liquid
D	Flow curve of a Bingham-plastic liquid
Ý	Shear rate
τ	Shear stress

5.3 Principle of viscosity measurement with Promass I

The patented measuring principle is based on torsional movement of the measuring tube:

- 1 Measuring tube
- 1.1 Rotational movement of the measuring tube
- 2 Torsion bar
- 2.1 Rotational movement of the torsion bar
- 3 Velocity profile in the medium

A "torsion bar" (2) fitted to the measuring tube (1) imposes a rotational movement (torsional movement) which is used to measure viscosity. This torsional movement creates a velocity profile in the medium (3) across the pipe cross-section. The velocity profile is thus an expression of the fluid viscosity. The viscosity of the medium dampens the oscillation of the measuring tube. Therefore, if viscosity is high, more excitation power (force, in other words) is needed to sustain the torsional movement. Thus, dynamic viscosity is determined by measuring the required excitation power. Fluid density is measured independently and simultaneously, so the kinematic viscosity can be determined as well.


5.4 Temperature correction of the viscosity value

The viscosity of a liquid depends on the temperature of the medium. Usually, the viscosity decreases with increasing temperatures.

The temperature effect becomes clear when laboratory and process measurements are compared. The process and laboratory temperatures normally deviate from one another. To be able to compare both measurements, the measuring device can calculate the process viscosity back to a reference temperature using various models. Three calculation models are available for this purpose. $\rightarrow \square 21$. The model selected should be the one for which the viscosity behavior has the lowest error deviations. $\rightarrow \blacksquare 5$, $\blacksquare 20$.

The device calculates the temperature correction of the viscosity value based on the compensation coefficients X1 and X2 . $\rightarrow \textcircled{B} 9$.

The following example illustrates the correction of the viscosity to 20 $^\circ\text{C}$:

☑ 5 Temperature correction of viscosity of glycerin to 20 ℃

μ, η Dynamic viscosit

θ Temperature

- A Measured value under process conditions
- B Calculated standard viscosity referenced to 20°C

5.5 Formula models for temperature correction

The measuring device calculates the temperature correction of the viscosity value on the basis of the following formulas:

Models	Dynamic viscosity η
Power law	$\eta_N = \eta \cdot x_1 \cdot (\theta/\theta_{ref})^{x_2}$
Exponential	$\eta_N = \eta \cdot x_1 \cdot e^{x_2 \cdot (\theta - \theta ref)}$
Polynomial	$\eta_{N} = \eta \cdot [1 + x_{1} \cdot (\theta - \theta_{ref}) + x_{2} \cdot (\theta - \theta_{ref})^{2}$

Models	Kinematic viscosity η
General	$v_N = \eta_N \prime \ \rho_N$

η_N	Dynamic viscosity under standard/laboratory conditions			
η	Dynamic viscosity at process temperature			
x ₁	Compensation coefficient X ₁			
x ₂	Compensation coefficient X ₂			
θ	Process temperature			
θref	Reference temperature			
v _N	Kinematic viscosity under standard/laboratory conditions			
ρ _N	Reference density			

• In the event of large temperature differences between the liquid and the

environment, pipe heating or insulation can help avoid cooling effects of the liquid. • If more than one liquid should be measured with temperature correction the

calculation should take place externally (e.g. in a PLC).

Centipoise (cP) (mPa · s) ¹⁾	Poise (P)	DIN cup 4 (s) ²⁾	Pascal second (Pa \cdot s) ³⁾	°Engler	Ford cup 4 (s) ²
10	0.1	10	0.01	1.83	5
15	0.15	11	0.015	2.32	8
20	0.2	12	0.02	2.87	10
25	0.25	13	0.025	3.46	12
30	0.3	14	0.03	4.07	14
40	0.4	15	0.04	5.33	18
50	0.5	16	0.05	6.62	22
60	0.6	18	0.06	7.93	25
70	0.7	21	0.07	9.23	28
80	0.8	23	0.08	10.54	32
90	0.9	25	0.09	11.86	34
100	1	27	0.1	13.17	37
120	1.2	31	0.12	15.8	43
140	1.4	34	0.14	18.43	48
160	1.6	38	0.16	21.06	54
180	1.8	43	0.18	23.69	58
200	2	46	0.2	26.3	64
220	2.2	51	0.22	28.9	70
240	2.4	55	0.24	31.6	75
260	2.6	58	0.26	34.2	80
280	2.8	63	0.28	36.8	86
300	3	68	0.3	39.4	93
320	3.2	72	0.32	42.1	100
340	3.4	76	0.34	44.7	107
360	3.6	82	0.36	47.4	112
380	3.8	86	0.38	50	119
400	4	90	0.4	52	124
420	4.2	95	0.42	55.1	130
440	4.4	100	0.44	57.6	138
460	4.6	104	0.46	60.4	142
480	4.8	109	0.48	63.0	150
500	5.0	112	0.50	65.8	155
550	5.5	124	0.55	72.4	170
600	6.0	135	0.60	79.0	185
700	7.0	160	0.70	92.1	220
800	8.0	172	0.80	105.2	249
900	9.0	195	0.90	117.8	280
1000	10.0	218	1	131.6	310

6 Comparison tables for viscosities

1) Milli Pascal second

2) Second

3) Pascal second

www.addresses.endress.com

