
Documentation spéciale **Proservo NMS80/81/83**

Manuel de sécurité fonctionnelle

Jaugeur asservi pour la mesure de niveau de haute précision sur liquides et solides en vrac avec un signal de sortie 4-20 mA et une sortie tout ou rien

Sommaire

	2
Autres valeurs caractéristiques	
importantes pour la sécurité	
Durée de vie utile des composants électriques !	5
Informations relatives au document	6
	6
	6
Symboles utilisés	
	7
bocumentation dapparen complementaire	,
Transa diamanaila autoriaéa	0
Types d'appareils autorisés	
Marquage SIL sur la plaque signalétique	9
	_
	9
	9
	9
Restrictions concernant l'utilisation dans des applications	
de sécurité	0
Utilisation dans des systèmes de protection 12	2
Comportement de l'appareil pendant le fonctionnement 12	
Configuration des paramètres pour les applications de	_
sécurité	3
Test de fonctionnement périodique	
rest de fonedonnement periodique	,
Cycle de vie	4
Exigences imposées au personnel	
Montage	
Mise en service	
Configuration	
Maintenance	
Réparation	
Modification	8
	_
Annexe 29	
Structure du système de mesure	
Test de fonctionnement périodique	1
Remarques concernant la configuration redondante de	
plusieurs capteurs	
Compléments d'informations	1

2

Déclaration de conformité

SIL_00152_01.16

Declaration of Conformity Functional Safety according to IEC 61508:2010

Supplement 1 / NE130 Form B.1

Endress+Hauser Yamanashi Co., Ltd. 862-1 Mitsukunugi, Sakaigawa-cho, Fuefuki-shi Yamanashi 406-0846 Japan

declares as manufacturer, that the following level device $% \left(1\right) =\left(1\right) \left(1\right) \left($

Proservo NMS80/81/83

is suitable for the use in safety-instrumented systems up to SIL2 according to IEC 61508:2010.

In safety instrumented systems according IEC 61508 and IEC 61511, the instructions of the Safety Manual have to be followed.

Fuefuki, 21-December-2016 Endress+Hauser Yamanashi Co., Ltd.

Yasuyuki Inoue General Manager PC Yamanashi

1/2

A0032861

SIL_00152_01.16

Declaration						
Fault reaction time	-,	60 s				
Diagnostic test interval 5)		60 min				
MTBF ⁴⁾	. 5)	28 y				
PTC ³)		depending on the proof test, see safety manual				
PFH		1.85 · 10 ⁻⁷ h ⁻¹				
PFD_{avg} ($T_1 = 2 years$	s) 2) (single channel architecture)	1.67 · 10 ⁻³				
PFD_{avg} $(T_1 = 1 \text{ year})$		8.59 · 10 ⁻⁴				
SFF (Safe Failure Fr		98 9				
$\lambda_{total}^{\ 1\},2\}$		894				
$\lambda_{SD}^{1),2)}$		23 F				
$\lambda_{SU}^{1),2)}$		252				
$\lambda_{DD}^{\ 1),2)}$		620	5 FIT			
$\lambda_{DU}^{\ 1),2)}$		185	FIT			
Safety function		MIN	, MAX, Range			-
FMEDA						
maruware sarety mit	egity	Multi channel use (HFT ≥ 1)		SIL 2 capable	SIL 3 capable	
Hardware safety int	earity	Single channel use (HFT = 0)		SIL 2 capable	SIL 3 capable	
Systematic safety in	tegrity			SIL 2 capable	SIL 3 capable	
SIL - Integrit	y					
Test documents		Deve	elopment documents	Test reports	D	Oata sheets
Evaluation through	/ certificate no.	Pros	ervo NMS80/81/83 /	Assessment re	port SIL2 (22.12.2	2016)
			Evaluation by FMEDA acc. to IEC 61508-2 for devices w/o software			
(check only <u>one</u> box	()		Evaluation of HW/S	vv field data to	verity "prior use"	acc. to
Type of evaluation			change request acc.	to IEC 61508-	2, 3	
		-	FMEDA and change Evaluation of "Prove			SW incl. EMEDA and
Safety manual		SDU	Complete HW/SW e	valuation para	llel to developme	nt incl.
	OII		f version 01.02.ZZ 1920G			
Valid hardware versi Valid software versi			f manufacturing date	arter Nov.28,2	.010	
Operating mode			ow Demand Mode		emand Mode	Continuous Mode
Device type acc. to I	EC 61508-2		Гуре А	☐ Type B		
Safety function(s)		_	, MAX, Range			
Process variable/fu	nction	+	el measurement, Curre	nt in measure	ment	
Fault current a) Fa		a) ≤ 3.6 mA ; ≥ 21 mA b) open contact				
Safety-related outp		a) 420 mA b) relay contact				
Order code selectio		x = 0,1,3				
	and permissible types	Level servo, Proservo NMS8x - ********+LA				

2/2

Autres valeurs caractéristiques importantes pour la sécurité

Caractéristiques selon IEC 61508	Valeur
Fonction de sécurité	MIN, MAX, gamme
SIL	SIL 2 (architecture monovoie 1001) SIL 3 (architecture multivoie, également avec redondance homogène, par ex. 1002, 2003)
HFT	0
Type d'appareil	В
Mode de fonctionnement	Mode demande faible, mode demande élevée
SFF	98 %
MTTR	8 h
Intervalle de temps recommandé pour le test de fonctionnement périodique ${\rm T}_1$	3 ans
λ_{sd}	23 FIT
λ_{su}	2 528 FIT
λ_{dd}	6 2 0 5 FIT
λ_{du}	185 FIT
λ_{tot}^{1}	8941 FIT
$\overline{\text{PFD}_{\text{avg}} \text{ pour } T_1 = 1 \text{ an }^2)}$	8,59 ⁻⁴
PFD_{avg} pour $T_1 = 2$ ans $^{2)}$	1,67 ⁻³
PFH	1,85 ⁻⁷ h ⁻¹
MTBF 1)	28 ans
Intervalle de test de diagnostic 3)	60 min
Temps de réaction sur défaut ⁴⁾	60 s
Temps de réaction du système ⁵⁾	En "mode Expert" : Configurable par l'utilisateur

- Selon Siemens SN29500. Cette valeur tient compte des types de défaillances concernant la fonction des composants électroniques.
- 2) Valable pour température ambiante jusqu'à +40 °C (+104 °F). En mode de fonctionnement continu, si la température moyenne se situe aux alentours de +60 °C (+140 °F), un facteur de 2,1 devrait être pris en compte.
- 3) Pendant ce temps, toutes les fonctions de diagnostic sont exécutées au moins une fois.
- 4) Temps entre la détection du défaut et la réponse au défaut.
- 5) Temps de réponse à un échelon selon DIN EN 61298-2 : 274 s

Durée de vie utile des composants électriques

Les taux de défaillance établis des composants électriques s'appliquent au sein de la durée de vie utile selon IEC 61508-2:2010 section 7.4.9.5, note 3. Conformément à la norme DIN EN 61508-2:2011 section 7.4.9.5, note nationale N3, des mesures appropriées prises par le fabricant et l'utilisateur peuvent prolonger la durée de vie utile.

Informations relatives au document

Fonction du document

Le document fait partie du manuel de mise en service et sert de référence pour les paramètres et notes spécifiques à l'application.

- Informations générales relatives à la sécurité fonctionnelle : SIL
- Les informations générales concernant SIL sont disponibles : dans la zone de téléchargement de la page Internet Endress+Hauser : www.fr.endress.com/SIL

Utilisation du document

Informations relatives à la structure du document

Pour la disposition des paramètres selon le menu **Operation**, le menu **Setup**, le menu Diagnostics, avec une brève description, voir le manuel de mise en service de l'appareil

Symboles utilisés

Symboles d'avertissement

Symbole	Signification
⚠ DANGER	DANGER! Cette remarque attire l'attention sur une situation dangereuse qui, lorsqu'elle n'est pas évitée, entraîne la mort ou des blessures corporelles graves.
	AVERTISSEMENT!
AVERTISSEMEN	Cette remarque attire l'attention sur une situation dangereuse qui, lorsqu'elle n'est pas évitée, peut entraîner la mort ou des blessures corporelles graves.
A ATTENTION	ATTENTION! Cette remarque attire l'attention sur une situation dangereuse qui, lorsqu'elle n'est pas évitée, peut entraîner des blessures corporelles de gravité légère ou moyene.
AVIS	AVIS! Cette remarque contient des informations relatives à des procédures et éléments complémentaires, qui n'entraînent pas de blessures corporelles.

Symboles pour certains types d'information

Symbole	Signification
A0011193	Conseil Signale des informations complémentaires.
Î	Renvoi à la documentation
A The state of the	Renvoi à la page
	Renvoi au schéma
1., 2., 3	Série d'étapes

Symboles utilisés dans les graphiques

Symbole	Signification
1, 2, 3,	Repères
1., 2., 3	Série d'étapes
A, B, C,	Vues

Documentation d'appareil complémentaire

Documentation	Commentaire
Information technique: TI01248G/00 (NMS80) TI01249G/00 (NMS81) TI01250G/00 (NMS83)	La documentation est disponible sur Internet : → www.fr.endress.com
Manuel de mise en service BA01456G/00 (NMS80) BA01459G/00 (NMS81) BA01462G/00 (NMS83)	La documentation est disponible sur Internet : → www.fr.endress.com
Instructions condensées : • KA01200G/00 (NMS80) • KA01203G/00 (NMS81) • KA01206G/00 (NMS83)	 Le document est fourni avec l'appareil. La documentation est disponible sur Internet : → www.fr.endress.com
Les Conseils de sécurité dépendent de l'option "Agrément" sélectionnée.	Des Conseils de sécurité supplémentaires (XA, ZE) sont fournis avec la version d'appareil certifiée. Veuillez vous reporter à la plaque signalétique pour les Conseils de sécurité pertinents.

Ce manuel de sécurité supplémentaire s'applique en plus du manuel de mise en service, de l'Information technique et des Conseils de sécurité ATEX. La documentation d'appareil complémentaire doit être observée pendant l'installation, la mise en service et le fonctionnement. Les exigences spécifiques à la fonction de protection sont décrites dans le présent manuel de sécurité.

Types d'appareils autorisés

Les détails concernant la sécurité fonctionnelle, figurant dans le présent manuel, se réfèrent aux versions d'appareil répertoriées ci-dessous et sont valables à partir de la version de software et de hardware spécifiée. Sauf spécification contraire, toutes les versions suivantes peuvent également être utilisées pour les fonctions de sécurité. Un processus de modification selon IEC 61508 est appliqué pour les changements d'appareil.

Versions d'appareil valables pour une utilisation de sécurité :

Caractéristique de commande	Désignation	Option
010	Agrément	Toutes
020	Type de connecteur	Toutes
030	Alimentation ; affichage	Toutes
040	Sortie primaire	Toutes ¹⁾ E1 420 mA HART Ex d/XP H1 420 mA HART Ex i/IS
050	E/S secondaire analogique	Toutes ¹⁾ A1 Ex d/XP, 1x 420 mA HART, 1x entrée RTD A2 Ex d/XP, 2x 420 mA HART, 2x entrée RTD B1 Ex i/IS, 1x 420 mA HART, 1x entrée RTD B2 Ex i/IS, 2x 420 mA HART, 2x entrée RTD
060	E/S secondaire numérique Ex d/XP	Toutes ¹⁾ A1 2x relais + 2x module, discret A2 4x relais + 4x module, discret A3 6x relais + 6x module, discret B2 Modbus RS485 + 2x relais + 2x module, discret B3 Modbus RS485 + 4x relais + 4x module, discret
070	Boîtier	Toutes, à l'exception de Y
080	Pression de process	Toutes
090	Raccordement électrique	Toutes
110	Gamme de mesure ; fil ; diamètre	Toutes, à l'exception de Y
120	Matériau du displacer ; type	Toutes, à l'exception de Y
130	Joint de process	Toutes
140	Raccord process	Toutes
150	Précision, agrément pour transactions commerciales	Toutes
500	Langues de programmation ; affichage	Toutes
540	Pack d'applications	Toutes
570	Service	Toutes
580	Test ; certificat	Toutes
590	Agrément additionnel	LA ²⁾ SIL
610	Accessoire monté	Toutes
620	Accessoire compris	Toutes

Caractéristique de commande	Désignation	Option
850	Version du firmware	Si aucune version n'est sélectionnée ici, le dernier logiciel compatible SIL est fourni. En guise d'alternative, la version logicielle suivante peut être sélectionnée : 7601.02.zz
895	Repère	Toutes

- 1) Au moins l'une des versions listées doit être sélectionnée.
- 2) Une sélection additionnelle d'autres versions est possible.
- Version firmware valide : à partir de 01.02.zz (→ plaque signalétique de l'appareil)
- Version hardware valide (électronique) : à partir de la date de production 23.11.2016 (→ plaque signalétique de l'appareil)

Marquage SIL sur la plaque signalétique

Les appareils certifiés SIL sont marqués avec le symbole suivant sur la plaque signalétique : $\textcircled{\scriptsize 100}$

Fonction de sécurité

Définition de la fonction de sécurité

Les fonctions de sécurité de l'appareil sont les suivantes :

Fonction de sécurité 1 (mesure de niveau)

- Surveillance du seuil maximum du niveau (sécurité antidébordement)
- Surveillance du seuil minimum du niveau (protection contre la marche à vide)
- Surveillance d'une gamme de niveau

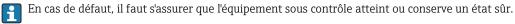
Les fonctions de sécurité comprennent la mesure du niveau d'un liquide.

Fonction de sécurité 2 (mesure de l'entrée courant)

Surveillance de l'entrée courant

La fonction de sécurité comprend la mesure du courant d'un appareil connecté.

Signal de sécurité


Numérique

Le signal de sécurité de l'appareil est le contact de relais fermé de la sortie numérique. Toutes les mesures de sécurité se réfèrent exclusivement à ce signal.

La valeur de niveau (fonction de sécurité 1 : mesure de niveau) ou le courant de l'entrée analogique (fonction de sécurité 2 : mesure de l'entrée courant) sont convertis correctement en une valeur de sortie numérique. Le contact de relais est fermé dans la gamme de validité et ouvert en dehors de cette gamme.

Le signal de sortie de sécurité est transmis à une unité logique aval, par ex. un automate programmable ou un transmetteur de signaux de seuil, où il est surveillé par rapport aux événements cuivants :

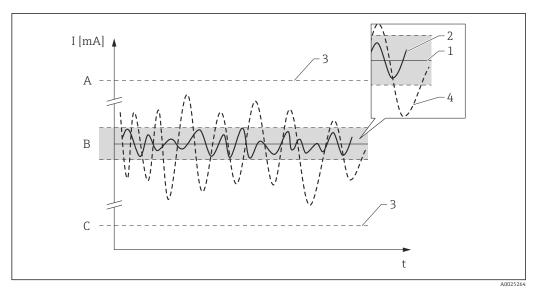
- Dépassement par excès et/ou par défaut d'une limite de niveau spécifique.
- Occurrence d'une erreur, par ex. contact ouvert (interruption du câble de liaison signal).

Analogique

Le signal de sécurité de l'appareil est le signal de la sortie analogique 4...20 mA. Toutes les mesures de sécurité se réfèrent exclusivement à ce signal.

L'appareil peut également communiquer via HART à des fins d'information et contient toutes les fonctions HART avec les informations d'appareil additionnelles.

Le signal de sortie de sécurité est transmis à une unité logique aval, par ex. un automate programmable ou un transmetteur de signaux de seuil, où il est surveillé par rapport aux événements suivants :


- Dépassement par excès et/ou par défaut d'une limite de niveau spécifique.
- L'occurrence d'un défaut, par ex. courant de défaut (≤3,6 mA, ≥21,0 mA), interruption ou courtcircuit du câble de signal).
- i

En cas de défaut, il faut s'assurer que l'équipement sous contrôle atteint ou conserve un état sûr.

Restrictions concernant l'utilisation dans des applications de sécurité

- Le système de mesure doit être utilisé correctement pour l'application spécifique, en tenant compte des propriétés du produit et des conditions ambiantes. Il convient de suivre scrupuleusement les instructions du manuel de mise en service concernant les situations critiques du process et les conditions de montage. Les limites spécifiques à l'application doivent être observées.
- Informations sur le signal de sécurité, (→ 🖺 9).
- Les restrictions suivantes s'appliquent à une utilisation de sécurité :
 - Les interférences électromagnétiques puissantes se manifestant sous forme d'impulsions sur la ligne peuvent provoquer des écarts $≥ \pm 2$ % transitoires (< 1 s) du signal de sortie. Pour cette raison, un filtrage avec une constante de temps de ≥ 1 s devrait être appliqué dans l'unité logique aval.
 - La plage d'erreur est spécifique à l'appareil et est définie selon les modes FMEDA (modes de défaillance, effets et analyse de diagnostics) à la livraison. Cela englobe tous les facteurs d'influence décrits dans l'information technique (par ex. non-linéarité, non-reproductibilité, hystérésis, dérive du zéro, dérive de température, perturbations électromagnétiques).
 Selon IEC / EN 61508, les défaillances liées à la sécurité sont classées dans différentes catégories, voir la table suivante. La table montre les implications pour le signal de sécurité de la sortie analogique et pour l'incertitude de mesure.

Défaut lié à la sécurité	Explication	Implications pour le signal de sortie de sécurité	Implications pour l'incertitude de mesure (Position, voir figure → 🖺 11)
Pas de défaut de l'appareil	"Safe" : Pas de défaut	None	1 Est dans la spécification (voir TI, BA)
λ_{SD}	"Safe detected" : défaillance non dangereuse pouvant être détectée	Entraîne la signalisation du mode failsafe par le signal de sortie (voir, → 🖺 12)	3 Pas d'implications
λ _{SU}	"Safe undetected" : défaillance non dangereuse ne pouvant pas être détectée	Est dans la plage d'erreur définie	2 Peut être au-delà de la spécification
$\lambda_{ m DD}$	"Dangerous detected" : défaillance dangereuse pouvant être détectée (Diagnostic au sein de l'appareil)	Entraîne la signalisation du mode failsafe par le signal de sortie (voir, → 🖺 12)	3 Pas d'implications
λ_{DU}	"Dangerous undetected" : défaillance dangereuse ne pouvant pas être détectée	Peut être en dehors de la plage d'erreur définie	4 Peut être en dehors de la plage d'erreur définie

- Alarme haute ≥ 21 mA Plage d'erreur ±2 % Α
- В
- Alarme basse ≤ 3.6 mA

Défaillances dangereuses non détectées dans ce scénario

Un défaut dangereux non détecté est considéré comme un signal de sortie incorrect qui s'écarte de la valeur réelle de plus de 2 %, mais qui est toujours dans la gamme de 4...20 mA ou le contact de relais reste fermé.

Utilisation dans des systèmes de protection

Comportement de l'appareil pendant le fonctionnement

Numérique

Comportement de l'appareil à la mise sous tension

Lorsqu'il est mis sous tension, l'appareil passe par une phase de diagnostic durant environ 30 secondes. Le contact de relais est ouvert au cours de cette période. Pendant la phase de diagnostic, aucune communication n'est possible via l'interface de service (CDI) ou via un protocole (HART, V1, Modbus).

Comportement de l'appareil en mode demande fonction de sécurité

L'appareil affiche une valeur de sortie numérique correspondant au seuil devant être surveillé. Le contact de relais est fermé dans la gamme de validité et ouvert en dehors de cette gamme. Cela doit être surveillé et faire l'objet d'un traitement ultérieur dans une unité logique connectée.

Comportement de l'appareil en présence d'alarmes et d'avertissements

Le contact de relais est toujours ouvert en cas d'alarme ou d'avertissement. Cela doit être surveillé et faire l'objet d'un traitement ultérieur dans une unité logique connectée.

Messages d'alarme et d'avertissement

Des informations additionnelles sont fournies par les messages d'alarme et d'avertissement sous forme de codes d'erreur et de messages en texte clair associés.

La table suivante montre la corrélation entre le code d'erreur et la sortie du contact de relais :

Code d'erreur 1)	Contact de relais (type de message)	Remarque
Fxxx	Ouvert	xxx = nombre à trois chiffres
Mxxx	correspond au mode de mesure	xxx = nombre à trois chiffres
Cxxx	correspond au mode de mesure	xxx = nombre à trois chiffres
Sxxx	correspond au mode de mesure	xxx = nombre à trois chiffres

¹⁾ Les codes d'erreur sont indiqués dans le manuel de mise en service.

Analogique

Comportement de l'appareil à la mise sous tension

Lorsqu'il est mis sous tension, l'appareil passe par une phase de diagnostic durant environ 30 secondes. La sortie courant est réglée au courant de défaut ≤3,6 mA pendant cette période.

Pendant la phase de diagnostic, aucune communication n'est possible via l'interface de service (CDI) ou via un protocole (HART, V1, Modbus).

Comportement de l'appareil en mode demande fonction de sécurité

L'appareil délivre une valeur de courant correspondant au seuil devant être surveillé. Cette valeur doit être surveillée et faire l'objet d'un traitement ultérieur dans une unité logique connectée.

Comportement de l'appareil en présence d'alarmes et d'avertissements

En cas d'alarme, le courant de sortie peut être réglé à une valeur \leq 3,6 mA ou \geq 21,0 mA.

Dans certains cas (par ex. coupure de courant, une rupture de câble et des défauts dans la sortie courant elle-même, où le courant de défaut $\geq 21,0$ mA ne peut pas être réglé, des courants de sortie $\leq 3,6$ mA surviennent indépendamment du courant de défaut configuré.

Dans certains autres cas (par ex. court-circuit du câblage), des courants de sortie $\geq 21,0$ mA surviennent indépendamment du courant de défaut configuré.

Pour la surveillance d'alarme, l'unité logique en aval doit être capable de reconnaître les courants de défaut du niveau supérieur pour le signal de défaut ($\geq 21,0$ mA) et du niveau inférieur pour le signal de défaut ($\leq 3,6$ mA).

Messages d'alarme et d'avertissement

Des informations additionnelles sont fournies par les messages d'alarme et d'avertissement sous forme de codes d'erreur et de messages en texte clair associés.

La table suivante montre la corrélation entre le code d'erreur et la sortie courant :

Code d'erreur 1)	Sortie courant (type de message)	Remarque
Fxxx	≥ 21,0 mA ou ≤ 3,6 mA	xxx = nombre à trois chiffres
Mxxx	correspond au mode de mesure	xxx = nombre à trois chiffres
Cxxx	correspond au mode de mesure	xxx = nombre à trois chiffres
Sxxx	correspond au mode de mesure	xxx = nombre à trois chiffres

1) Les codes d'erreur sont indiqués dans le manuel de mise en service.

Exceptions:

Code d'erreur 1)	Sortie courant (type de message)	Remarque
C400	≥ 21,0 mA ou ≤ 3,6 mA	Simulation mode de défaillance

.) Les codes d'erreur sont indiqués dans le manuel de mise en service.

Configuration des paramètres pour les applications de sécurité

Il est recommandé d'effectuer une réinitialisation avant de régler les paramètres.

Aller à : Setup \rightarrow Advanced setup \rightarrow Administration

Device reset = To factory defaults

Ceci remet tous les paramètres aux valeurs définies.

Etalonnage du point de mesure - fonction de sécurité 1 (mesure de niveau)

L'étalonnage du point de mesure est décrit dans le manuel de mise en service ($\rightarrow \triangleq 7$).

Indiquer le type de configuration a) ou b) à utiliser. Les deux configurations peuvent être utilisées en parallèle ou en combinaison avec la fonction de sécurité 2 (mesure de l'entrée courant).

- a) Valeur de niveau (source) (1) -> signal de sécurité : sortie analogique (2)
- b) Valeur de niveau (source) (1) -> signal de sécurité : sortie numérique (3)

Valeur de niveau (source) (1)

Veiller à ce que l'application soit correctement configurée.

Aller à : Setup

Réglage

- Level source = Level
- Empty et Tank reference height doivent être réglés correctement.
- High stop level et Low stop level doivent être réglés correctement.

Aller à : Setup → Gauge command

Réglage

Gauge command = Level

Sortie analogique (2)

Veiller à ce que la bonne sortie soit configurée (Analog I/O B1-3 ou Analog I/O C1-3).

Aller à : Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Analog I/O

Réglage

- Operating mode = 4..20mA output ou HART slave +4..20mA output
- Analog input source = Tank level
- 0 % value doit être réglé correctement.
- 100 % value doit être réglé correctement.
- Used for SIL/WHG = Enabled

Sortie numérique (3)

Sélectionner en premier lieu un bloc d'alarme (Alarme 1, Alarme 2, Alarme 3 ou Alarme 4) pour les réglages des seuils.

Aller à : Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm X

Réglage

- Alarm mode = On
- Alarm value source = Tank level (selon la source)
- HH alarm value, H alarm value, L alarm value et LL alarm value doivent être configurés en fonction de l'application de sorte que la gamme de validité se trouve dans les limites HH, H et L, LL.

Veiller à ce que la bonne sortie soit configurée (Digital A1-2, Digital A3-4, Digital B1-2, Digital B3-4, Digital C1-2, Digital C3-4, Digital D1-2, Digital D3-4).

Aller à : Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xy-z

Réglage

- Operating mode = Output passive
- Digital input source = bloc alarme sélectionné : Alarm 1 any, Alarm 2 any, Alarm 3 any ou Alarm 4 any
- Used for SIL/WHG = Enabled doit être réglé pour pouvoir utiliser cette sortie numérique comme sortie SIL.

Etalonnage du point de mesure - fonction de sécurité 2 (mesure de l'entrée courant)

L'étalonnage du point de mesure est décrit dans le manuel de mise en service $(\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$.

Indiquer le type de configuration c) ou d) à utiliser. Les deux configurations peuvent être utilisées en parallèle ou en combinaison avec la fonction de sécurité 1 (mesure de niveau).

- c) Entrée analogique (source) (1) -> signal de sécurité : sortie analogique (2)
- d) Entrée analogique (source) (1) -> signal de sécurité : sortie numérique (3)

Entrée analogique (source) (1)

Veiller à ce que la bonne source soit configurée (Analog I/O B1-3 ou Analog I/O C1-3).

Aller à : Setup → Advanced setup → Input/output → Analog I/O

Réglage

- Operating mode = 4..20mA input ou HART master+4..20mA input
- Analog input 0% value doit être réglé correctement.
- Analog input 100% value doit être réglé correctement.

Sortie analogique (2)

Veiller à ce que la bonne sortie soit configurée (Analog I/O B1-3 ou Analog I/O C1-3).

Aller à : Setup → Advanced setup → Input/output → Analog I/O

Réglage

- Operating mode = 4..20mA output ou HART slave +4..20mA output
- Analog input source = AIO B1-3 value mA ou AIO C1-3 value mA (selon la source)
- 0 % value
- 100 % value
- Used for SIL/WHG = Enabled

Sortie numérique (3)

Sélectionner en premier lieu un bloc d'alarme (Alarme 1, Alarme 2, Alarme 3 ou Alarme 4) pour les réglages des seuils.

Aller à : Setup \rightarrow Advanced setup \rightarrow Application \rightarrow Alarm \times Alarm \times

Réglage

- Alarm mode = On
- Alarm value source = AIO B1-3 value mA ou AIO C1-3 value mA (selon la source)
- HH alarm value, H alarm value, L alarm value et LL alarm value doivent être configurés en fonction de l'application de sorte que la gamme de validité se trouve dans les limites HH, H et L, LL.

Veiller à ce que la bonne sortie soit configurée (Digital A1-2, Digital A3-4, Digital B1-2, Digital B3-4, Digital C1-2, Digital C3-4, Digital D1-2, Digital D3-4).

Aller à : Setup \rightarrow Advanced setup \rightarrow Input/output \rightarrow Digital Xy-z

Réglage

- Operating mode = Output passive
- Digital input source = bloc alarme sélectionné (Alarm 1 any, Alarm 2 any, Alarm 3 any ou Alarm 4 any)
- Used for SIL/WHG = Enabled doit être réglé pour pouvoir utiliser cette sortie numérique comme sortie SIL.

Méthode de configuration

En utilisant les appareils dans des systèmes de sécurité pour la commande de process, la configuration d'appareil doit répondre à deux exigences :

- Concept de confirmation : test indépendant, éprouvé, des paramètres de sécurité entrés.
- Concept de verrouillage : verrouillage de l'appareil une fois la configuration terminée (si requis par les normes IEC 61511-1 §11.6.4 et NE79 §3).

Pour activer le mode SIL, l'appareil doit passer par une séquence de commande, pendant laquelle l'appareil peut être commandé au moyen de l'afficheur de l'appareil ou du système d'Asset Management (par ex. FieldCare) pour lequel l'intégration est disponible.

"Mode Expert"

Il est possible ici de régler librement un grand nombre de paramètres relatifs à la sécurité. Ainsi les applications difficiles peuvent également être mises en service. La vérification des réglages doit toutefois se faire en approchant directement le niveau dans la cuve ou en employant une méthode similaire.

Une cuve de liquide peut être utilisée par exemple comme méthode de contrôle en cas de surveillance MAX

Une description détaillée des étapes de configuration est donnée dans la section suivante.

C'est seulement dans le cas d'appareils SIL (caractéristique de commande 590 "Agrément additionnel", option LA "SIL") que la séquence de mise en service SIL est visible sur l'afficheur et dans les outils d'exploitation externes. C'est la raison pour laquelle le verrouillage SIL peut uniquement être activé sur ces appareils.

Verrouillage en "mode Expert"

Pour mettre en service l'appareil, exécuter et documenter les étapes suivantes dans l'ordre indiqué $(\rightarrow \ \ \ \ \ \ \ \ \ \)$:

- Effectuer la configuration, voir aussi →
 13.
 La procédure de configuration et la signification des différents paramètres sont décrites dans le manuel de mise en service (→
 7). Respecter les réglages des paramètres dans le tableau suivant (→
 17).
- 2. Démarrer le contrôle de la mise en service et veiller à ce que la distance entre le niveau et la position de référence soit d'au moins 500 mm (19,7 in).

Aller à : Diagnostics \rightarrow Device check \rightarrow Commissioning check

Commissioning check = **Start** (pour plus d'informations, voir manuel de mise en service $\rightarrow \blacksquare 7$).

Un contrôle de la mise en service est réalisé. L'étalonnage du capteur de l'appareil est vérifié et les éventuelles erreurs d'installation sont détectées.

3. Régler le Proservo sur la commande de jauge "Level".

Aller à : Operation \rightarrow Gauge command

Gauge command = Level

Le Proservo retourne au mode niveau. En fonction de la hauteur de la cuve et de la position précédente du displacer, attendre pendant une période suffisante que le displacer atteigne la surface de niveau.

4. Démarrer la séquence de confirmation SIL. Aller à : Setup → Advanced setup → SIL/WHG confirmation SIL/WHG confirmation = Set write protection et entrer le code de verrouillage correspondant (SIL : 7452).

- 5. Appuyer sur "Next" pour confirmer **Commissioning** = **Expert mode**. L'appareil contrôle les réglages des paramètres conformément au tableau suivant (→ 🖺 17) et, le cas échéant, force la commutation des paramètres.
 - **SIL preparation** = **Finished** est affiché lorsque le contrôle est terminé. La séquence de mise en service peut être poursuivie. Appuyer sur "Next" pour confirmer.
- 6. Exécuter le test de fonctionnement.

Pour la surveillance MIN et MAX, au moins une valeur de niveau/entrée courant supérieure (surveillance MAX) ou inférieure (surveillance MIN) au point de commutation doit être approchée.

Pour la surveillance de gamme, 5 valeurs de niveau/d'entrée courant couvrant l'ensemble de la gamme de mesure devraient être approchées. Dans ce cadre, vérifier que le signal de sécurité (sortie courant/contact relais) répond correctement dans chacun des cas.

7. Confirmer que le test de fonctionnement a été réussi.

Confirm function test = Yes.

marqué "WP" situé sur l'électronique principale).

- 8. Set write protection = Entrer à nouveau le code de verrouillage (SIL : 7452). Vérifier l'état de verrouillage une fois le verrouillage SIL effectué.
 Aller à : Setup → Advanced setup
 Locking status = SIL locked doit être confirmé en sélectionnant "✓".
- 9 En option, le verrouillage du hardware peut également être activé (via le commutateur DIP

Autres réglages de paramètres

Les paramètres suivants affectent la fonction de sécurité. Ils peuvent toutefois être configurés librement selon l'application.

Il est recommandé d'inscrire les valeurs configurées!

Paramètre	Nom du paramètre
Setup	Upper density
Setup	Process condition
Setup	High stop level
Setup	Low stop level
Setup	Empty
Mesure de l'entrée courant : Setup → Advanced setup → Input/output → Analog I/O	0 % value
	100 % value

Les paramètres suivants affectent la fonction de sécurité et ne sont pas librement configurables en mode Expert. Au lieu de cela, ils sont réglés automatiquement aux valeurs de sécurité mentionnées lors du démarrage de la confirmation SIL :

Paramètre	Présélection
Operation → Gauge command → Gauge command	Level
	None
	None
$ Setup \rightarrow Advanced \ setup \rightarrow Input/output \rightarrow Digital \ Xy-z \rightarrow Contact \ type $	Normally closed
$ Setup \rightarrow Advanced \ setup \rightarrow Input/output \rightarrow Digital \ Xy-z \rightarrow Output \ simulation $	Disable
	No
	No
$ Setup \rightarrow Advanced \ setup \rightarrow Application \rightarrow Alarm \ \rightarrow Alarm \ X \rightarrow Error \ value $	All alarms
$Setup \to Advanced \ setup \to Application \to Alarm \ X \to Alarm \ mode$	On
Setup → Advanced setup → Safety settings → Output out of range	Alarm
	Off
	Off
Expert \rightarrow Input/output \rightarrow Digital Xy-z \rightarrow Error on event	Any error
Expert → Input/output → Analog I/O → Error on event	Any error
Expert → Input/output → Analog I/O → Output out of range	Alarm
Expert \rightarrow Input/output \rightarrow Analog I/O \rightarrow Feedback threshold	1 s

Ces paramètres, qui ne sont pas mentionnés, n'influencent pas la fonction de sécurité et peuvent être configurés à toute valeur significative. La visibilité des paramètres mentionnés dans le menu de configuration dépend en partie du rôle utilisateur, des options logicielles commandées et de la configuration des autres paramètres.

Déverrouillage d'un appareil SIL

AATTENTION

Le déverrouillage de l'appareil a pour effet de désactiver les fonctions de diagnostic et l'appareil peut ne pas être capable d'exécuter sa fonction de sécurité une fois déverrouillé.

Par conséquent, des mesures indépendantes doivent être prises pour s'assurer de l'absence de danger pendant que l'appareil est déverrouillé.

Pour le déverrouillage, procéder comme suit :

- 1. Contrôler la position de l'interrupteur de protection en écriture du hardware (commutateur DIP marqué "WP" sur l'électronique principale) et régler cet interrupteur sur "OFF".
- 2. Sélectionner la séquence Setup → Advanced setup → Deactivate SIL/WHG et entrer le code de déverrouillage correspondant (SIL : 7452) pour le paramètre **Reset write protection**.
 - Le message "Fin de séquence" indique que l'appareil a été déverrouillé avec succès.

Test de fonctionnement périodique

Contrôler la capacité de fonctionnement et la fiabilité des fonctions de sécurité à intervalles appropriés! L'utilisateur doit déterminer les intervalles de temps.

Dans une architecture monovoie, la valeur PFD_{avg} devant être utilisée dépend du taux de diagnostic de couverture du test de fonctionnement périodique (PTC = Proof Test Coverage – couverture du test de fonctionnement périodique) et de la durée de vie escomptée (LT = Lifetime – durée de vie), comme spécifié dans la formule suivante :

$$PFD_{avg} = \frac{1}{2} \bullet PTC \bullet \lambda_{DU} \bullet T_{l} + \lambda_{DD} \bullet MTTR + \frac{1}{2} \bullet (1 - PTC) \bullet \lambda_{DU} \bullet LT$$

A0024244

Pour les tests de fonctionnement périodiques décrits ci-dessous sont spécifiées les couvertures du test de fonctionnement périodique respectives, qui peuvent être utilisées pour le calcul. Les taux de couverture du test de fonctionnement dépendent de la séquence de test spécifique.

Une séquence de test pour le test de fonctionnement doit être sélectionnée dans le tableau suivant pour chaque fonction de sécurité utilisée. Si les deux fonctions de sécurité sont utilisées, deux séquences de test doivent être réalisées pour le test de fonctionnement.

Fonction de sécurité 1 (mesure de niveau)		PTC
	Séquence de test A – Approcher le niveau	99%
	Séquence de test B – Simuler le niveau	91%
Fonction de sécurité 2 (mesure de l'entrée courant)		
	Séquence de test C – Appliquer des courants réels	99%

Vous devez également vérifier que tous les joints de couvercles et entrées de câble sont étanches.

ATTENTION

Pour garantir la sécurité du process.

► Pendant le test de fonctionnement périodique, des mesures de surveillance alternatives doivent être prises pour garantir la sécurité du process.

Si l'un des critères de test issu des séquences de test suivantes n'est pas satisfait, l'appareil ne doit plus être utilisé en tant qu'élément d'un système de protection. Le but du test de fonctionnement périodique est de détecter les défauts aléatoires de l'appareil (λ_{du}). L'impact de défauts systématiques sur la fonction de sécurité n'est pas couvert par ce test et doit être évalué séparément. Les défauts systématiques peuvent être occasionnés, par exemple, par les propriétés des matériaux du process, les conditions de fonctionnement, la formation de dépôt ou la corrosion.

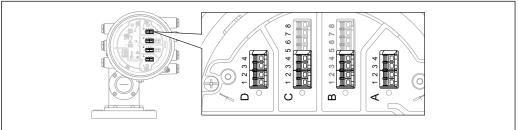
Séquence de test A (approcher le niveau)

Préparation

- 1. La surveillance des seuils et la surveillance de la gamme peuvent également être réalisées lorsque le mode SIL est actif.
- 2. Si le signal de sécurité "Analogique" est utilisé, connecter un appareil de mesure adapté (précision recommandée supérieure à ± 0.1 mA) à la sortie courant.
- 3. Si le signal de sécurité "Numérique" est utilisé, connecter un appareil de mesure adapté (testeur de résistance/mesure de résistivité), (précision recommandée supérieure à $\pm 0,1~\Omega$) à la sortie numérique.
- 4. Déterminer le réglage de sécurité (surveillance des limites ou de la gamme de niveau).

Procédure pour la surveillance des limites de niveau

- 1. Contrôler la fonction de sécurité : approcher au moins un niveau immédiatement supérieur (surveillance MAX) ou inférieur (surveillance MIN) au seuil devant être surveillé.
- 2. Contrôler la fonction de sécurité : lire le courant de sortie (mA)/la valeur ohmique du relais (Ω) , l'enregistrer et évaluer sa précision.
- 3. Si (en tant qu'option) la fonction du point de mesure doit être vérifiée immédiatement avant le point de détection : contrôle de la fonction avant le point de détection MIN ou MAX : approche d'un niveau immédiatement inférieur (surveillance MAX) ou supérieur (surveillance MIN) au seuil devant être surveillé. Lire le courant de sortie/la valeur ohmique du relais, l'enregistrer et évaluer sa précision. Ceci ne contrôle pas la fonction de sécurité de l'appareil.
- 4. Le test a été réussi si les valeurs de courant/valeurs ohmiques du relais déclenchent ou exécutent la fonction requise.


Procédure pour la surveillance de gamme

- 1. Approcher cinq niveaux au sein de la gamme devant être surveillée.
- 2. Pour chaque valeur de niveau, lire le courant de sortie (mA)/la valeur ohmique du relais (Ω), l'enregistrer et évaluer sa précision.
- 3. Le test a été réussi si les valeurs de courant/valeurs ohmiques du relais dans l'étape 2 se trouvent dans le niveau de précision requis.

Autosurveillance des relais

Il faut réaliser une autosurveillance du relais si le signal de sécurité "Numérique" est utilisé.

Exemple de désignation des bornes : Si le module Digital IO utilisé pour la fonction de sécurité est installé dans le slot D et les contacts 3 et 4 sont utilisés, Digital D3-4 doit être utilisé à la place de Digital Xy-z dessous.

A0032860

- 1. Désactiver le mode SIL. Aller à : Setup → Advanced setup → Deactivate SIL/WHG et entrer le code de déverrouillage correspondant (SIL : 7452) pour le paramètre **Reset write protection**.
- 2. Réaliser un autotest de l'appareil de la façon suivante. Aller à : Setup → Advanced setup
- 3. Régler : Input/output = Digital Xy-z
- 4. Vérifier que **Contact type = Normally closed** (réglage par défaut SIL).
- 5. Régler : **Output simulation = Simulating inactive**.
- **6.** Vérifier que le contact est fermé (résistance < 1 Ω) entre les contacts Xy et Xz.

- 7. Régler : **Output simulation = Fault 1**.
- 8. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 9. Régler : Output simulation = Simulating inactive.
- 10. Vérifier que le contact est fermé (résistance $< 1 \Omega$) entre les contacts Xy et Xz.
- 11. Régler : Output simulation = Fault 2.
- 12. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 13. Régler : Output simulation = Simulating active.
- 14. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 15. Régler : **Output simulation = Disable**.

Le test a été réussi si les valeurs ohmiques du relais dans les étapes 5-14 se trouvent dans le niveau de précision requis.

Fin de la séquence de test A

L'appareil a échoué au test de fonctionnement si la valeur de courant/valeur ohmique du relais escomptée à un niveau spécifique dévie de > ±2 %. Pour la suppression des défauts, se reporter au manuel de mise en service (→ 🗎 7). 99 % des défaillances dangereuses indétectées sont détectées à l'aide de ce test (couverture du test de fonctionnement périodique, PTC = 0,99).

AATTENTION

Une fois la séquence de test A réalisée

► Le mode SIL doit être réactivé (→ 🖺 15).

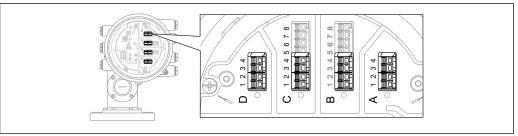
Séquence de test B (simuler le niveau)

Préparation

- Désactiver le mode SIL. Aller à : Setup → Advanced setup → Deactivate SIL/WHG et entrer le code de déverrouillage correspondant (SIL : 7452) pour le paramètre Reset write protection.
- 2. Si le signal de sécurité "Analogique" est utilisé, connecter un appareil de mesure adapté (précision recommandée supérieure à ±0,1 mA) à la sortie courant.
- 3. Si le signal de sécurité "Numérique" est utilisé, connecter un appareil de mesure adapté (testeur de résistance/mesure de résistivité), (précision recommandée supérieure à $\pm 0,1~\Omega$) à la sortie numérique.
- 4. Déterminer le réglage de sécurité (surveillance des limites ou de la gamme de niveau).

Procédure pour la surveillance des limites de niveau (niveau)

- 1. Aller à : Expert \rightarrow Sensor \rightarrow Sensor diag \rightarrow Start self check
- 2. Régler : Self check = Start. Une fois l'autotest terminé, le message suivant s'affiche : Status self check = passed.
 - └ L'autotest a été réussi.
- 3. Aller à : Diagnostics → Simulation
- 4. Régler: Simulation distance on = On. Simulation d'un niveau directement inférieur (surveillance MAX) ou directement supérieur (surveillance MIN) au seuil devant être surveillé. Pour simuler le niveau, il faut calculer le niveau par rapport à la distance (valeur entrée) (niveau = distance vide).
- 5. Lire le courant de sortie (mA), l'enregistrer et évaluer sa précision.
- 6. Lire l'état du contact de relais (Ω) , l'enregistrer et évaluer sa précision.
- 7. Simuler un niveau directement supérieur (surveillance MAX) ou directement inférieur (surveillance MIN) au seuil.
- 8. Lire le courant de sortie (mA), l'enregistrer et évaluer sa précision.
- 9. Lire l'état du contact de relais (Ω) , l'enregistrer et évaluer sa précision.
- 10. Le test a été réussi si les valeurs de courant et l'état du contact de relais déclenchent la fonction de sécurité dans l'étape 7 uniquement, et non dans l'étape 4.


Procédure pour la surveillance de gamme

- 1. Aller à : Expert \rightarrow Sensor \rightarrow Sensor diag \rightarrow Start self check
- 2. Régler : Self check = Start. Une fois l'autotest terminé, le message suivant s'affiche : Status self check = passed.
- 3. Simuler cinq niveaux au sein de la gamme devant être surveillée. Voir la procédure pour la surveillance des seuils (niveau), étape 4.
- 4. Pour chaque valeur de niveau, lire le courant de sortie (mA) et l'état de commutation du relais (Ω) , les enregistrer et évaluer leur précision.
- 5. Le test a été réussi si les valeurs de courant et l'état de commutation du relais dans l'étape 4 se trouvent dans les limites de précision requises.

Autosurveillance des relais

Il faut réaliser une autosurveillance du relais si le signal de sécurité "Numérique" est utilisé.

Exemple de désignation des bornes : Si le module Digital IO utilisé pour la fonction de sécurité est installé dans le slot D et les contacts 3 et 4 sont utilisés, Digital D3-4 doit être utilisé à la place de Digital Xy-z dessous.

A0032860

- 1. Désactiver le mode SIL. Aller à : Setup → Advanced setup → Deactivate SIL/WHG et entrer le code de déverrouillage correspondant (SIL : 7452) pour le paramètre **Reset write protection**.
- 2. Réaliser un autotest de l'appareil de la façon suivante. Aller à : Setup → Advanced setup
- 3. Régler : Input/output = Digital Xy-z
- 4. Vérifier que **Contact type** = **Normally closed** (réglage par défaut SIL).
- 5. Régler : Output simulation = Simulating inactive.
- **6.** Vérifier que le contact est fermé (résistance <1 Ω) entre les contacts Xy et Xz.
- 7. Régler : **Output simulation = Fault 1**.
- 8. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 9. Régler : Output simulation = Simulating inactive.
- 10. Vérifier que le contact est fermé (résistance $< 1 \Omega$) entre les contacts Xy et Xz.
- 11. Régler : Output simulation = Fault 2.
- 12. Vérifier que le contact est ouvert (résistance > 1 M Ω) entre les contacts Xy et Xz.
- 13. Régler : Output simulation = Simulating active.
- 14. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 15. Régler : Output simulation = Disable.

Le test a été réussi si les valeurs ohmiques du relais dans les étapes 5 -14 se trouvent dans le niveau de précision requis.

Fin de la séquence de test B

- L'appareil a échoué au test de fonctionnement si la valeur de courant/les valeurs ohmiques du relais escomptées à un niveau spécifique dévient de $> \pm 2$ %. Pour la suppression des défauts, se reporter au manuel de mise en service ($\rightarrow \blacksquare$ 7). 91 % des défaillances dangereuses indétectées sont détectées à l'aide de ce test (couverture du test de fonctionnement périodique, PTC = 0,88).
- Si le groupe de menus "Expert" est sélectionné, une invite pour l'entrée du code d'accès apparaît sur l'affichage. Si un code d'accès a été défini sous Setup → Advanced setup → Administration → Define access code , ce code doit être entré ici. Si aucun code d'accès n'a été défini, l'invite peut être validée en appuyant sur la touche "E".

ATTENTION

Une fois la séquence de test B réalisée

- ▶ Après la procédure de test, la simulation doit être désactivée et l'appareil verrouillé à nouveau : Set write protection = Entrer le code de verrouillage (SIL : 7452). Vérifier l'état de verrouillage : Locking status = SIL locked doit être confirmé en sélectionnant "√".
- ▶ Le mode SIL doit être réactivé (\rightarrow 🖺 15).

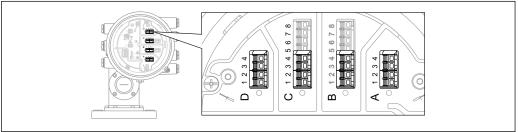
Séquence de test C (appliquer des courants réels)

Préparation

- 1. La surveillance des seuils et la surveillance de la gamme peuvent également être réalisées lorsque le mode SIL est actif.
- 2. Si le signal de sécurité "Analogique" est utilisé, connecter un appareil de mesure adapté (précision recommandée supérieure à ± 0.1 mA) à la sortie courant.
- 3. Si le signal de sécurité "Numérique" est utilisé, connecter un appareil de mesure adapté (testeur de résistance/mesure de résistivité), (précision recommandée supérieure à \pm 0,1 Ω) à la sortie numérique.
- 4. Déterminer le réglage de sécurité (surveillance des limites ou de la gamme de niveau).

Procédure pour la surveillance des seuils (courant)

- 1. Entrer un courant directement inférieur (surveillance MAX) ou directement supérieur (surveillance MIN) au seuil de courant devant être surveillé (par ex. par simulation sur un appareil connecté).
- 2. Lire le courant de sortie (mA), l'enregistrer et évaluer sa précision.
- 3. Lire l'état de commutation du relais (Ω) , l'enregistrer et évaluer sa précision.
- 4. Entrer un courant directement supérieur (surveillance MAX) ou directement inférieur (surveillance MIN) au seuil de courant devant être surveillé.
- 5. Lire le courant de sortie (mA), l'enregistrer et évaluer sa précision.
- 6. Lire l'état de commutation du relais (Ω) , l'enregistrer et évaluer sa précision.
- 7. Le test a été réussi si le courant et l'état de commutation du relais déclenchent la fonction de sécurité dans les étapes 5 et 6 uniquement, et non dans les étapes 2 et 3.


Procédure pour la surveillance de gamme (courant)

- 1. Entrer cinq valeurs de courant dans la gamme devant être surveillée (par ex. par simulation sur un appareil connecté).
- 2. Pour chaque valeur de courant, lire le courant de sortie (mA) et l'état de commutation du relais (Ω) , les enregistrer et évaluer leur précision.
- 3. Le test a été réussi si les valeurs de courant et l'état de commutation du relais dans l'étape 2 se trouvent dans les limites de précision requises.

Autosurveillance des relais

Il faut réaliser une autosurveillance du relais si le signal de sécurité "Numérique" est utilisé.

Exemple de désignation des bornes : Si le module Digital IO utilisé pour la fonction de sécurité est installé dans le slot D et les contacts 3 et 4 sont utilisés, Digital D3-4 doit être utilisé à la place de Digital Xy-z dessous.

A003286

- 1. Désactiver le mode SIL. Aller à : Setup → Advanced setup → Deactivate SIL/WHG et entrer le code de déverrouillage correspondant (SIL : 7452) pour le paramètre **Reset write protection**.
- 2. Réaliser un autotest de l'appareil de la façon suivante. Aller à : Setup → Advanced setup
- 3. Régler : Input/output = Digital Xy-z
- 4. Vérifier que **Contact type** = **Normally closed** (réglage par défaut SIL).
- 5. Régler : **Output simulation = Simulating inactive**.
- **6.** Vérifier que le contact est fermé (résistance <1 Ω) entre les contacts Xy et Xz.

24

- 7. Régler : **Output simulation = Fault 1**.
- 8. Vérifier que le contact est ouvert (résistance > 1 M Ω) entre les contacts Xy et Xz.
- 9. Régler : Output simulation = Simulating inactive.
- 10. Vérifier que le contact est fermé (résistance $< 1 \Omega$) entre les contacts Xy et Xz.
- 11. Régler : Output simulation = Fault 2.
- 12. Vérifier que le contact est ouvert (résistance >1 $M\Omega$) entre les contacts Xy et Xz.
- 13. Régler : Output simulation = Simulating active.
- 14. Vérifier que le contact est ouvert (résistance > 1 $M\Omega$) entre les contacts Xy et Xz.
- 15. Régler : Output simulation = Disable.

Le test a été réussi si les valeurs ohmiques du relais dans les étapes 5-14 se trouvent dans le niveau de précision requis.

Fin de la séquence de test C

- L'appareil a échoué au test de fonctionnement si la valeur de courant/les valeurs ohmiques du relais escomptées à un niveau spécifique dévient de $> \pm 2$ %. Pour la suppression des défauts, se reporter au manuel de mise en service ($> \bowtie 7$). 99 % des défaillances dangereuses indétectées sont détectées à l'aide de ce test (couverture du test de fonctionnement périodique, PTC = 0,99).
- Si le groupe de menus "Expert" est sélectionné, une invite pour l'entrée du code d'accès apparaît sur l'affichage. Si un code d'accès a été défini sous Setup → Advanced setup → Administration

Define access code, ce code doit être entré ici. Si aucun code d'accès n'a été défini, l'invite peut être validée en appuyant sur la touche "E".

ATTENTION

Une fois la séquence de test C réalisée

► Le mode SIL doit être réactivé (→

15).

Cycle de vie

Exigences imposées au personnel

Le personnel chargé de l'installation, la mise en service, le diagnostic, la réparation et la maintenance doit remplir les conditions suivantes :

- Le personnel qualifié et formé doit disposer d'une qualification qui correspond à cette fonction et à cette tâche
- Etre habilité par le propriétaire / l'exploitant de l'installation
- Etre familiarisé avec les réglementations nationales
- Avant le début du travail, avoir lu et compris les instructions figurant dans les manuels et la documentation complémentaire, ainsi que les certificats (selon l'application)
- Suivre les instructions et respecter les conditions fondamentales

Le personnel d'exploitation doit remplir les conditions suivantes :

- Etre formé et habilité par le propriétaire / l'exploitant de l'installation conformément aux exigences liées à la tâche
- Suivre les instructions du présent manuel

Mise en service

La mise en service de l'appareil est décrite dans le manuel de mise en service correspondant ($\Rightarrow \triangleq 7$).

La mise en service de l'appareil est décrite dans le manuel de mise en service correspondant ($\Rightarrow \triangleq 7$).

Configuration

La configuration de l'appareil est décrite dans le manuel de mise en service correspondant ($\Rightarrow \triangleq 7$).

Maintenance

Veuillez vous reporter au manuel de mise en service correspondant pour les informations concernant la maintenance et le réétalonnage, $(\rightarrow \blacksquare 7)$.

Des mesures de surveillance alternatives doivent être prises pour garantir la sécurité du process pendant la configuration, le test de fonctionnement périodique et les opérations de maintenance relatifs à l'appareil.

Réparation

Réparation signifie restauration de l'intégrité fonctionnelle par le remplacement des composants défectueux. Pour cela, il faut utiliser des composants du même type. Nous vous recommandons de documenter la réparation. Il faut, entre autres, consigner le numéro de série de l'appareil, la date de réparation, le type de réparation et le nom de la personne ayant réalisé la réparation.

Les composants suivants peuvent être remplacés par le personnel technique du client si des pièces de rechange d'origine sont utilisées et si les instructions de montage appropriées sont suivies :

Composant	Vérification de l'appareil selon réparation
Module E/S Carte mère Module face avant, étiqueté	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Test de validité ; séquence de test A ou B.
Couvercle, aluminium, hublot en verre Clamp du couvercle Joint torique, boîtier	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Contrôle de la mesure à un niveau arbitraire.
Boîtier électronique, complet	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Test de validité; séquence de test A ou B.
Filtres de boîtier	Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées.
Carte SD avec support	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Test de validité ; séquence de test A ou B.
Kit d'affichage Support de l'afficheur, bague de fixation	Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées.
Kit de bornes, enfichables Kit de bornes, à visser	Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées.
Unité de détection, jaugeur asservi	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).
Câble de la carte mère vers l'électronique, jaugeur asservi	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Test de fonctionnement périodique ; séquence de test A ou B
Module capteur, jaugeur asservi	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).
Support du tambour de mesure	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Lors du démontage du tambour de mesure : L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).
Roulement, support du tambour de mesure, PTFE	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).
Fil de mesure et/ou anneau de fil	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).

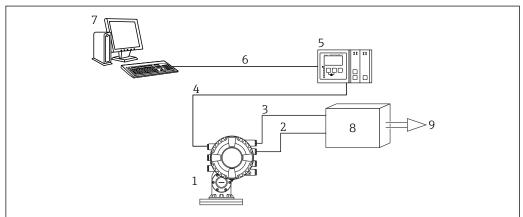
Composant	Vérification de l'appareil selon réparation
Couvercle, boîtier du tambour	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Contrôle de la mesure à un niveau arbitraire.
Couvercle, fenêtre d'étalonnage/couvercle hublot plein	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. Contrôle de la mesure à un niveau arbitraire.
Displacer	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).
Tambour de mesure	 Contrôle visuel afin de vérifier si toutes les pièces sont présentes et correctement montées. L'étalonnage doit être effectué à nouveau (voir manuel de mise en service). Répéter la vérification de la mise en service de l'appareil (Diagnostics → Device check).

Instructions de montage, voir la zone de téléchargement sous www.fr.endress.com.

Le composant remplacé doit être envoyé à Endress+Hauser pour analyse du défaut si l'appareil a été utilisé dans un système de protection et si une erreur de l'appareil ne peut être exclue. Dans ce cas, il faut systématiquement joindre la "Déclaration de matériaux dangereux et de décontamination" et cocher la case "Utilisé comme appareil SIL dans des installations de sécurité" lors du retour de l'appareil défectueux. Veuillez vous reporter à la section "Retour" du manuel de mise en service $(\rightarrow \ \ \)$ 7).

Modification

Les modifications sont des changements effectués sur des appareils conformes SIL déjà livrés ou montés.


- ► Les modifications d'appareils conformes SIL sont généralement effectuées dans le centre de production Endress+Hauser.
- Les modifications d'appareils conformes SIL effectuées sur site, dans l'usine de l'utilisateur, sont possibles après l'approbation fournie par le centre de production Endress+Hauser. Dans ce cas, les modifications doivent être effectuées et documentées par un technicien de maintenance Endress +Hauser.
- ▶ Les modifications d'appareils SIL effectuées par l'utilisateur sont interdites.

Annexe

Structure du système de mesure

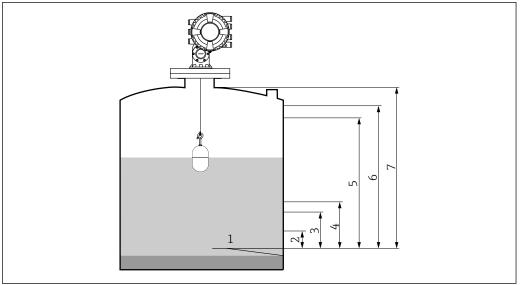
Composants système

Les appareils du système de mesure sont représentés dans le diagramme suivant (exemple) :

Δ0032783

- 1 Proservo NMS80/81/83
- 2 Ligne 4...20 mA
- 3 Sortie tout ou rien
- 4 Bus de terrain (par ex. Modbus, V1)
- 5 Tankvision Tank Scanner NXA820
- 6 Ethernet
- 7 Ordinateur avec Fieldcare
- 8 Unité logique, p. ex. API, transmetteur de signaux de seuil
- 9 Actionneur

Un signal analogique (4-20 mA) proportionnel au niveau est généré dans le transmetteur. Celui-ci est envoyé à une unité logique aval (par ex. API, transmetteur de signaux de seuil, etc.), où il est surveillé afin de déterminer s'il est inférieur ou supérieur à une valeur limite spécifiée.


Le contact de relais est ouvert si le niveau réglé est dépassé par excès ou par défaut, et si des erreurs sont détectées. Pour la surveillance des défauts, l'unité logique doit reconnaître un contact ouvert. La sortie courant suit le niveau. Si des erreurs sont détectées, un courant de défaut est délivré.

Pour la surveillance des défauts, l'unité logique doit reconnaître à la fois les alarmes hautes (\geq 21,0 mA) et les alarmes basses (\leq 3,6 mA).

Description de l'utilisation en tant que système de protection

Le Proservo est un jaugeur asservi de haute précision. Il fonctionne sur le principe du déplacement. Un petit displacer est positionné avec précision dans un liquide à l'aide d'un moteur multiphase. Le displacer est suspendu à un fil de mesure enroulé sur un tambour. L'appareil compte les rotations du tambour afin de déterminer la distance à mesurer.

Configuration de mesure typique

A0032821

- 1 Plaque de niveau de référence : point de référence de la mesure
- 2 Arrêt bas
- 3 4 mA, 0 %
- 4 Alarme L ou LL
- 5 Alarme H ou HH
- 6 20 mA, 100 %
- 7 Arrêt haut

L'appareil peut être utilisé dans cette configuration au sein de systèmes instrumentés de sécurité pour la surveillance de seuil MIN, de seuil MAX et de gamme.

+

Une installation correcte est une condition préalable à un fonctionnement sûr de l'appareil.

Test de fonctionnement périodique

Données spécifiques au système		
Société		
Point de mesure / n° TAG		
Installation		
Type appareil / variante de commande		
Numéro de série de l'appareil		
Nom		
Date		
Code d'accès (si individuel pour chaque appareil)		
Code de verrouillage utilisé	SIL	□ 7452
Signature		

Paramètres de mise en service spécifiques aux appareils	
Upper density	
Process condition	
High stop level	
Low stop level	
Empty	
Tank reference height	

Protocole de test de fonctionnement périodique		
Etape de test	Valeur de consigne	Valeur actuelle
1. Valeur de courant 1		
2. Valeur de courant 2		
3. Valeur de courant 3 (si nécessaire)		
4. Valeur de courant 4 (si nécessaire)		
5. Valeur de courant 5 (si nécessaire)		
Valeur ohmique		

Remarques concernant la configuration redondante de plusieurs capteurs

Cette section fournit des informations supplémentaires concernant la mise en œuvre d'architectures à redondance homogène de capteurs, par ex. 1002 or 2003.

Les facteurs d'influence communs $\mathfrak B$ et $\mathfrak B_D$ indiqués dans la table ci-dessous sont des valeurs minimales pour le Micropilot. Ils doivent être utilisés lors de la conception du sous-système de capteurs.

Valeur minimale ß avec utilisation à redondance homogène	5%	
Valeur minimale $\mathfrak{G}_{\mathbb{D}}$ avec utilisation à redondance homogène	2%	ı

L'appareil satisfait aux exigences SIL 3 en redondance homogène.

Tenir compte du point suivant lors de la réalisation du test de validité : En cas de détection d'une erreur dans l'un des appareils utilisés de façon redondante, les autres appareils doivent être contrôlés pour voir s'il y a la même erreur.

Compléments d'informations

Des informations générales sur la sécurité fonctionnelle (SIL) sont disponibles sous :

www.fr.endress.com/SIL (en français) ou www.endress.com/SIL (en anglais) et dans la brochure Compétence CP01008Z "Sécurité fonctionnelle – SIL - Les systèmes instrumentés de sécurité dans l'industrie des process".

www.addresses.endress.com