
Istruzioni di funzionamento

Ecograph T, RSG35 Slave Modbus

Connessione Modbus mediante TCP o RS485

Indice:

l Informazioni generali	3
1.1 Prerequisiti	
1.2 Connessione Modbus RTU	
1.3 Connessione Modbus TCP	3
1.3.1 LED di trasmissione	3
1.3.2 LED di collegamento	
1.4 Descrizione funzionale	
1.5 Controllo della disponibilità della funzione Slave Modbus	
2 Impostazioni di configurazione	
2.1 Modbus TCP, RS485	
2.2 Canali universali	
2.2.1 Trasferimento dei dati: master Modbus -> dispositivo:	
2.2.2 Trasferimento dei dati: dispositivo -> Master Modbus:	
2.3 Canali matematici	
2.3.1 Trasferimento dei dati: dispositivo -> Master Modbus:	
2.4 Canali digitali	
2.4.1 Trasferimento dei dati: Master Modbus -> dispositivo:	
2.4.2 Trasferimento dei dati: dispositivo -> Master Modbus:	
2.5 Informazioni generali	
2.6 Indirizzamento	
2.6.1 Master Modbus -> dispositivo: valore istantaneo dei canali universali	
2.6.2 Master Modbus -> dispositivo: stato dell'ingresso digitale	
2.6.2.1 Scrittura simultanea di tutti gli stati	
2.6.2.2 Scrittura dei singoli stati	
2.6.3 Dispositivo -> Master Modbus: canali universali (valore istantaneo)	
2.6.4 Dispositivo -> Master Modbus: canali matematici (risultato)	
2.6.5 Dispositivo -> Master Modbus: canali digitali (stato)	
2.6.5.1 Leggere simultaneamente tutti gli stati	
2.6.5.2 Leggere i singoli stati	
2.6.6 Dispositivo -> Master Modbus: canali digitali (totalizzatore)	
2.6.7 Dispositivo -> Master Modbus: canali universali integrati (totalizzatore)	
2.6.8 Dispositivo -> Master Modbus: canali matematici integrati (totalizzatore)	
2.6.9 Dispositivo -> Master Modbus: lettura dello stato dei relè	
2.6.10 Struttura dei valori di processo	
2.6.10.1 Numero a virgola mobile a 32 bit (IEEE-754)	
2.6.10.2 Numero a virgola mobile a 64 bit (IEEE-754)	
2.6.10.3 Violazioni dei valori di soglia	
2.6.10.4 Stato dei numeri a virgola mobile	
3 Panoramica dei registri	
4 Abbreviazioni/glossario	
5 Indice analitico	32

1 Informazioni generali

Considerare con attenzione i sequenti simboli:

Informazioni e consigli per una rapida messa in servizio

Attenzione: 4

1 Il non rispetto di questo simbolo può causare un difetto o il malfunzionamento del dispositivo.

1.1 Prerequisiti

L'opzione "Slave Modbus" deve essere abilitata nel dispositivo. Per l'aggiornamento di funzioni opzionali, vedere le informazioni nelle Istruzioni di funzionamento.

Modbus RTU mediante RS485 è consentito solo se il dispositivo è dotato di interfaccia RS323/RS485 opzionale (lato posteriore del dispositivo) e solo la RS485 è supportata. Modbus TCP è consentito mediante l'interfaccia Ethernet integrata (lato posteriore del dispositivo).

1.2 Connessione Modbus RTU

L'assegnazione dei morsetti non corrisponde a quella standard. (Modbus su linea seriale - guida specifiche e implementazione V1.02).

Spina	Direzione	Segnale	Descrizione	
Custodia	-	Terra funzionale	Terra di protezione	
1	-	GND	Messa a terra (isolato)	
9	Ingresso	RxD/TxD (+)	Filo RS-485 B	
8	Uscita	RxD/TxD (-)	Filo RS-485 A	

Tab. 1: Assegnazione dei pin del connettore Modbus RTU

1.3 Connessione Modbus TCP

Questa interfaccia è fisicamente identica a quella Ethernet.

1.3.1 LED di trasmissione

LED di stato	Indicatore per
Off	Nessuna comunicazione
Verde, lampeggia	Comunicazione

Tab. 2: Descrizione delle funzioni dei LED di stato per Modbus TCP

1.3.2 LED di collegamento

LED di stato	Indicatore per
Off	Nessuna connessione
Giallo, lampeggia	Attività

Tab. 3: Descrizione delle funzioni dei LED di collegamento per Modbus TCP

1.4 Descrizione funzionale

L'opzione Modbus RTU consente il collegamento del dispositivo al Modbus mediante RS485 con la funzionalità di uno slave Modbus RTU.

Baud supportati: 9600, 19200, 38400, 57600, 115200

Parità: Nessuna, Pari, Dispari (per "Nessuna", l'opzione "2 stop bits" deve essere configurata nel master)

L'opzione Modbus TCP consente di collegare il dispositivo al Modbus TCP con la funzionalità di uno slave Modbus TCP. La connessione Ethernet supporta 10/100 Mbit, full duplex o half duplex.

Nelle impostazioni si può scegliere tra Modbus TCP o Modbus RTU. Non si possono selezionare tutti e due simultaneamente.

1.5 Controllo della disponibilità della funzione Slave Modbus

In /Menu principale/Diagnostica/Info dispositivo/Opzioni dispos. o /Menu principale/Configurazione/Impost. avanzate/Sistema/Opzioni dispos., si può verificare se l'opzione Slave Modbus è abilitata in Bus di campo. In Comunicazione, si può determinare l'interfaccia hardware che consente la comunicazione:

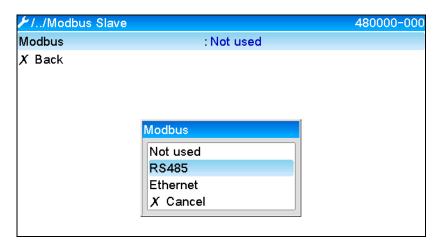

Q.//Device options	990005-000
Slot 1	: Universal inputs
Slot 2	: Universal inputs
Slot 3	: Not assigned
Communication	: USB + Ethernet + RS232/485
Fieldbus	: Modbus Slave
Application	: Maths
X Back	

Fig. 1 Controllo della disponibilità della funzione Slave Modbus

2 Impostazioni di configurazione

2.1 Modbus TCP, RS485

L'interfaccia da utilizzare per il Modbus può essere selezionata in /Configurazione/Impost. avanzate/Comunicazione/Slave Modbus:

Se è selezionata l'opzione Modbus RTU (RS485), si possono configurare i seguenti parametri:

- Indirizzo unità (1...247)
- Baudrate (9600, 19200, 38400, 57600, 115200)
- Parità (Nessuna, Pari, Dispari)

Se è selezionata l'opzione Modbus TCP (Ethernet), si può configurare il seguente parametro:

• Porta TCP porta (standard: 502)

Se si utilizza il Modbus TCP, le impostazioni dell'interfaccia Ethernet possono essere eseguite in /Configurazione/Impost. avanzate/Comunicazione/Ethernet:

Inoltre, si può impostare un periodo di timeout in **/Esperto/Impost. avanzate/Comunicazione/Slave Modbus/Timeout** alla cui scadenza il canale selezionato viene impostato su "Non valido".

Il timeout si riferisce solo ai canali che ricevono valori dal master Modbus. Non ha effetto sui canali che sono solo letti dal master Modbus.

2.2 Canali universali

Tutti gli ingressi universali (12) e quelli digitali (6) sono abilitati e possono essere utilizzati come ingressi Modbus anche se non sono disponibili sotto forma di schede a innesto.

2.2.1 Trasferimento dei dati: master Modbus -> dispositivo:

In /Configurazione/Impost. avanzate/Ingressi/Ingressi universali/Ingresso universale X, si può impostare il parametro Segnale su Slave Modbus:

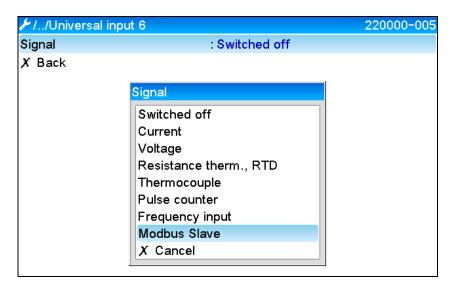


Fig. 2: Impostazione dell'ingresso universale su Modbus

Con questa impostazione, l'ingresso universale può essere scritto da un master Modbus come indicato nel capitolo 2.6.1.

2.2.2 Trasferimento dei dati: dispositivo -> Master Modbus:

Il master Modbus può leggere gli ingressi universali 1...12 come descritto nel capitolo 2.6.3.

2.3 Canali matematici

2.3.1 Trasferimento dei dati: dispositivo -> Master Modbus:

In /Configurazione/Impost. avanzate/Applicazione/Matematica sono disponibili in opzione dei canali matematici.

I risultati possono essere letti dal master Modbus (v. Par. 2.6.5 2.6.4).

2.4 Canali digitali

2.4.1 Trasferimento dei dati: Master Modbus -> dispositivo:

In /Configurazione/Ingressi/Ingressi digitali/Ingresso digitale X, si può impostare il parametro Funzione su Slave Modbus:

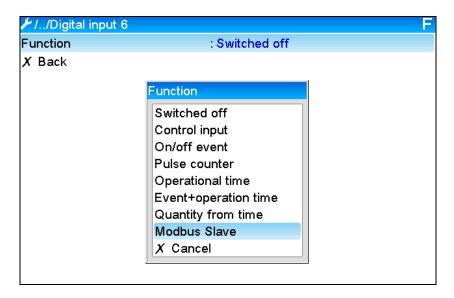


Fig. 3: Configurazione del canale digitale su Modbus

Con questa impostazione, il canale digitale può essere scritto da un master Modbus come indicato nel capitolo 2.6.2.

Lo stato digitale trasmesso dal master Modbus ha nel dispositivo la stessa funzione dello stato di un canale digitale realmente presente.

2.4.2 Trasferimento dei dati: dispositivo -> Master Modbus:

Ingresso di controllo o evento on/off

Il master Modbus può richiamare lo stato digitale del canale digitale così configurato (v. capitolo 2.6.5).

Contatore di impulsi o tempo di funzionamento

Il master Modbus può richiamare il totalizzatore o il tempo di funzionamento totale del canale digitale così configurato (v. capitolo 2.6.6).

Evento+ore di lavoro

Il master Modbus può richiamare lo stato digitale del canale digitale e il totalizzatore del canale digitale così configurato (v. capitolo 2.6.5 e 2.6.6).

2.5 Informazioni generali

Sono supportate le funzioni 03: Read Holding Register e 16: Write Multiple Register.

I seguenti valori possono essere trasmessi dal Master Modbus al dispositivo:

- Valori analogici (istantanei)
- Stati digitali

I seguenti valori possono essere trasmessi dal **dispositivo al Master Modbus**:

- Valori analogici (istantanei)
- Valori analogici integrati (totalizzatore)
- Canali matematici (risultato: stato, valore istantaneo, tempo di funzionamento, totalizzatore)
- Canali matematici integrati (totalizzatore)
- Stati digitali
- Contatore impulsi (totalizzatore)
- Ore di funzionamento
- Stato dei relè

2.6 Indirizzamento

Gli esempi di interrogazione/risposta si riferiscono a Modbus RTU mediante RS485. Gli indirizzi del registro sono tutti su base 0.

2.6.1 Master Modbus -> dispositivo: valore istantaneo dei canali universali

I valori dei canali universali 1-12 devono essere scritti mediante **16 Write Multiple Register**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Universale 1
Universale 2
Universale 3
Universale 4
Universale 5
Universale 6
Universale 7
Universale 8
Universale 9
Universale 10
Universale 11
Universale 12

Reg. dec.	Reg. esad.	Lungh., byte
200	0C8	6
203	0CB	6
206	0CE	6
209	0D1	6
212	0D4	6
215	0D7	6
218	0DA	6
221	ODD	6
224	0E0	6
227	0E3	6
230	0E6	6
233	0E9	6

Reg. dec.	Reg. esad.	Lungh., byte
5200	1450	10
5205	1455	10
5210	145A	10
5215	145F	10
5220	1464	10
5225	1469	10
5230	146E	10
5235	1473	10
5240	1478	10
5245	147D	10
5250	1482	10
5255	1487	10

Tab. 4: Indirizzi di registro degli ingressi universali

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Scrittura del canale universale 6 con il valore 123.456 (32 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5
	00	80	42	F6	E9	79
		Stato del	Nı	umero	a virgo	la
		numero a	mo	obile =	123.4	56
		virgola		(32 bit	t float)	
		mobile				

Registro	Valore (hex)
215	080 0
216	42F6
217	E979

Interrogazione: Indirizzo slave 01

Funzione 10 16: Write Multiple Registers

Registro 00 D7 Registro 215 N. registro 00 03 3 registri

N. byte 06 Stato 00 80

FLP 42 F6 E9 79 123.456

CRC 28 15

Risposta: Indirizzo slave 01

Funzione 10 16: Write Multiple Registers

Registro 00 D7 Registro 271

N. registro 00 03 CRC 30 30

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) del numero a virgola mobile (64 bit float) trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Scrittura del canale universale 6 con il valore 123.456 (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	5E	DD	2F	1A	9F	BE	77
		Stato del								
		numero a	Num	iero a i	virgola 1	mohile	= 123	456 (6	Δ hit fl	loat)
		virgola	Ivuii	icio a	virgoia	inobiic	12).	טן טכד.) T DIC II	ισατή
		mobile								

Registro	Valore
	(hex)
5225	00 80
5226	405E
5227	DD2F
5228	1A9F
5229	BE77

Interrogazione:	Indirizzo slave	01
-----------------	-----------------	----

Funzione 10 16: Write Multiple Registers

Registro 14 69 Registro 5225 N. registro 00 05 5 registri

N. byte OA Stato 00 80

FLP 40 5E DD 2F 1A 9F BE 77 123.456

CRC 67 56

Risposta: Indirizzo slave 01

Funzione 10 16: Write Multiple Registers

Registro 14 69 Registro 5225

N. registro 00 05 CRC D5 E6

2.6.2 Master Modbus -> dispositivo: stato dell'ingresso digitale

2.6.2.1 Scrittura simultanea di tutti gli stati

Gli stati degli ingressi digitali 1-6 devono essere scritti mediante **16 Write Multiple Registers**.

Canale		Reg. esad.	Lungh., byte
Digitale 1-6	1240	4D8	2

Tab. 5: Indirizzi di registro degli ingressi digitali, Master Modbus -> dispositivo

Esempio: Impostazione dell'ingresso digitale 4 su high (tutti gli altri su low), indirizzo slave 1

Byte 0	Byte 1
stato (bit 15-8)	stato (bit 7-0)
00000000	0000 1 000
Compre O	Bit 3 high
Sempre 0	digitale 4

Registro	Valore (hex)
1240	0008

Interrogazione:	Indirizzo slave Funzione Registro N. registro N. byte Stato digitale CRC	01 10 04 D8 00 01 02 00 08 F0 8E	16: Write Multiple Registers Registro 1240 1 registro Digitale 4 su high
Risposta:	Indirizzo slave Funzione Registro N. registro CRC	01 10 04 D8 00 01 80 C2	16: Write Multiple Registers Registro 1240

2.6.2.2 Scrittura dei singoli stati

Gli stati degli ingressi digitali 1-6 devono essere scritti mediante **16 Write Multiple Registers**.

Channel	Reg. dec.	Reg. esad.	Lungh., byte
Digitale 1	1200	4B0	2
Digitale 2	1201	4B1	2
Digitale 3	1202	4B2	2
Digitale 4	1203	4B3	2
Digitale 5	1204	4B4	2
Digitale 6	1205	4B5	2

Tab. 6: Indirizzi di registro degli ingressi digitali, Master Modbus -> dispositivo

Esempio: Impostazione dell'ingresso digitale 4 su high, indirizzo slave 1

Byte 0	Byte 1	
stato (bit 15-8)	stato (bit 7-0)	
00000000	00001000	
Sempre 0	Bit 3 high	
Semple 0	digitale 4	

Registro	Valore (hex)
1203	0001

Interrogazione:	Indirizzo slave Funzione Registro N. registro N. byte Stato digitale CRC	01 10 04 B3 00 01 02 00 01 38 53	16: Write Multiple Registers Registro 1203 1 registro Digitale 4 su high
Risposta:	Indirizzo slave Funzione Registro N. registro CRC	01 10 04 B3 00 01 F1 1E	16: Write Multiple Registers Registro 1203

2.6.3 Dispositivo -> Master Modbus: canali universali (valore istantaneo)

Gli ingressi universali 1-12 sono letti mediante **03 Read Holding Register (4x)**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Universale 1
Universale 2
Universale 3
Universale 4
Universale 5
Universale 6
Universale 7
Universale 8
Universale 9
Universale 10
Universale 11
Universale 12

Reg.	Reg.	Lungh.,
dec.	esad.	byte
200	0C8	6
203	0CB	6
206	0CE	6
209	0D1	6
212	0D4	6
215	0D7	6
218	0DA	6
221	ODD	6
224	0E0	6
227	0E3	6
230	0E6	6
233	0E9	6

Reg. dec.	Reg. esad.	Lungh., byte
5200	1450	10
5205	1455	10
5210	145A	10
5215	145F	10
5220	1464	10
5225	1469	10
5230	146E	10
5235	1473	10
5240	1478	10
5245	147D	10
5250	1482	10
5255	1487	10

Tab. 7: Indirizzi di registro degli ingressi universali, dispositivo -> Master Modbus

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Lettura del canale analogico 1 con il valore 82.47239685 (32 bit float), indirizzo slave 1

Byte

I	0	1	2 3		4	5
ĺ	00	80	42	A4	F1	DE
-	Violazioni valore soglia	Stato del numero a virgola mobile		umero i mob 82.472	ile =	

Registro	Valore (hex)
200	00 80
201	42A4
202	F1DE

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 00 C8 Registro 200 N. registro 00 03 3 registri

CRC 84 35

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte 06 6 byte

Stato 00 80

FLP 42 A4 F1 DE 82.47239685

CRC B0 F8

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (64 bit float) che è trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Lettura del canale analogico 1 con il valore 82.4723968506 (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	54	9E	3B	CO	00	00	00
	Violazioni	Stato del								
	valore	numero a	Numero a virgola mobile = 82.4723968506							
	soglia	virgola	(64 bit float)							
		mobile								

Registro	Valore
	(hex)
5200	0080
5201	4054
5202	9E3B
5203	C000
5204	0000

Interrogazione:	Indirizzo slave	01
-----------------	-----------------	----

Funzione 03 03: Read Holding Register

Registro14 50Registro 5200N. registro00 055 registri

CRC 80 28

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte OA 10 byte

Stato 00 80

FLP 40 54 9E 3B CO 00 00 00 82.4723968506

CRC 91 3E

2.6.4 Dispositivo -> Master Modbus: canali matematici (risultato)

I risultati dei canali matematici sono richiamati mediante **03 Read Holding Register (4x)**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Matematica 1
Matematica 2
Matematica 3
Matematica 4

Reg. dec.	Reg. esad.	Lungh., byte
1500	5DC	6
1503	5DF	6
1506	5E2	6
1509	5E5	6

Reg. dec.	Reg. esad.	Lungh., byte
6500	1964	10
6505	1969	10
6510	196E	10
6515	1973	10

Tab. 8: Indirizzi di registro dei canali matematici, dispositivo -> Master Modbus

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Lettura Matematica 1 (risultato valore istantaneo), (32 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5
	00	80	46	40	E6	B7
	Violazioni	Stato del	Numero in v		in virgo	ola
	valore	numero a	mobile =			
	soglia	virgola	12345.6787		l	
		mobile				

Registro	Valore (hex)
1500	0080
1501	4640
1502	E6B7

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 05 DC Registro 1500 N. registro 00 03 3 registri

CRC C4 FD

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte 06 6 byte

Stato 00 80

FLP 46 40 E6 B7 12345.67871

CRC 3E 21

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (64 bit float) trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Lettura Matematica 1 (risultato valore istantaneo), (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	C8	1C	D6	E6	31	F8	A1
·	Violazioni	Stato del	N							
	valore	numero a	Numero a virgola mobile = 12345,6789							
	soglia	virgola	(64 bit float)							
		mobile								

Registro	Valore
	(hex)
6500	0080
6501	40C8
6502	1CD6
6503	E631
6504	F8A1

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 19 64 Registro 6500 N. registro 00 05 5 registri

CRC C3 4A

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte OA 10 byte

Stato 00 80

FLP 40 C8 1C D6 E6 31 F8 A1 12345.6789

CRC A7 FD

Esempio: Lettura Matematica 1-4 (risultato stato), indirizzo slave 1

Gli stati dei canali matematici 1-4 sono richiamati mediante 03 Read Holding Register (4x).

Channel	, ,	Reg. esad.	Lungh., byte
Mat. 1-4	1800	708	2

Tab. 9: Indirizzo di registro per lo stato dei canali matematici, dispositivo -> Master Modbus

Byte 0	Byte 1	
	stato (bit 5-0)	
00000000	00000011	
Sempre 0	Bit 0 e 1 high	
Semple 0	Mat. 1 e 2	

Registro	Valore (hex)
1800	0003

Interrogazione:	Indirizzo slave Funzione Registro N. registro CRC	01 03 07 08 00 01 04 BC	3: Read Holding Register Registro 1800 1 registro
Risposta:	Indirizzo slave Funzione Numero Stati CRC	01 03 02 00 03 F8 45	16: Write Multiple Registers 2 byte Matematica 1 e 2 stato high

2.6.5 Dispositivo -> Master Modbus: canali digitali (stato)

2.6.5.1 Leggere simultaneamente tutti gli stati

Gli stati degli ingressi digitali 1-6 sono richiamati mediante 03 Read Holding Register (4x).

Canale	Reg.	Reg.	Lungh.,
	dec.	esad.	byte
Digitale 1-6	1240	4D8	2

Tab. 10: Indirizzi di registro di tutti gli ingressi digitali, dispositivo -> Master Modbus

Esempio: Lettura degli stati degli ingressi digitali 1-6, indirizzo slave 1

Byte 0	Byte 1
stato (bit 15-8)	stato (bit 7-0)
00000000	00100100
Sampra O	Bit 2 e 5 high
Sempre 0	Digitale 3 e 6

Registro	Valore (hex)
1240	0024

Interrogazione:	Indirizzo slave Funzione Registro N. registro CRC	01 03 04 D8 00 01 05 01	3: Read Holding Register Registro 720 1 registro
Risposta:	Indirizzo slave Funzione Numero Stati CRC	01 03 02 00 24 b8 5F	16: Write Multiple Registers 2 byte Digitale 3 e 6 high

2.6.5.2 Leggere i singoli stati

Gli stati degli ingressi digitali 1-6 sono richiamati mediante 03 Read Holding Register (4x).

Canale	Reg.	Reg.	Lungh.,
	dec.	esad.	byte
Digitale 1	1200	4B0	2
Digitale 2	1201	4B1	2
Digitale 3	1202	4B2	2
Digitale 4	1203	4B3	2
Digitale 5	1204	4B4	2
Digitale 6	1205	4B5	2

Tab. 11: Indirizzi di registro degli ingressi digitali, dispositivo -> Master Modbus

Esempio: Lettura dell'ingresso digitale 6, indirizzo slave 1

Byte 0	Byte 1	
	stato bit 0	
00000000	00000001	
Sempre 0	Bit 0 high	
Semple 0	Digitale 6	

Registro	Valore (hex)
1205	0001

Interrogazione:	Indirizzo slave Funzione Registro N. registro CRC	01 03 04 B5 00 01 94DC	3: Read Holding Register Registro 1205 1 registro
Risposta:	Indirizzo slave Funzione Numero Stato digitale CRC	01 03 02 00 01 79 84	3: Read Holding Register 2 byte Digitale 6 su high

2.6.6 Dispositivo -> Master Modbus: canali digitali (totalizzatore)

I totalizzatori degli ingressi digitali 1-6 sono richiamati mediante **03 Read Holding Register (4x)**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Digitale 1
Digitale 2
Digitale 3
Digitale 4
Digitale 5
Digitale 6

Reg. dec.	Reg. esad.	Lungh., byte
1300	514	6
1303	517	6
1306	51A	6
1309	51D	6
1312	520	6
1315	523	6

Reg. dec.	Reg. esad.	Lungh., byte
6300	708	10
6305	70D	10
6310	712	10
6315	717	10
6320	71C	10
6325	721	10

Tab. 12: Indirizzi di registro per i totalizzatori degli ingressi digitali, dispositivo -> Master Modbus

Il primo registro (byte low) comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Lettura del totalizzatore dell'ingresso digitale 6 (32 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5
	00	80	40	C 9	99	9A
	Violazioni	Stato del	Numero in virgola			ola
	valore	numero a	mobile =			
	soglia	virgola	65552.0			
		mobile				

Registro	Valore (hex)
1315	0800
1316	40C9
1317	999A

Interrogazione: Indirizzo slave 01

Funzione 03 3: Read Holding Register

Registro 05 23 Registro 1315 N. registro 00 03 3 registri

CRC F4 CD

Risposta: Indirizzo slave 01

Funzione 03 3: Read Holding Register

Numero 06 6 byte Stato digitale 00 80 40 C9 99 9A 6.3

CRC OF 6E

Il primo registro (byte low) comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (64 bit float) trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Lettura del totalizzatore dell'ingresso digitale 6 (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	19	33	33	39	80	00	00
	Violazioni	Stato del								
	valore soglia	numero a virgola mobile	N	umero	a virgo	la mob	oile = 6.	.3 (64 l	bit floa	t)

Registro	Valore
	(hex)
6325	0800
6326	4019
6327	3333
6328	3980
6329	0000

Interrogazione:	Indirizzo slave	01
Interrogazione:	Indirizzo slave	01

Funzione 03 03: Read Holding Register

Registro 18 B5 Registro 6325 N. registro 00 05 5 registri

CRC 92 8F

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte OA 10 byte

Stato 00 80

FLP 40 19 33 33 39 80 00 00 6.3

CRC C5 32

2.6.7 Dispositivo -> Master Modbus: canali universali integrati (totalizzatore)

I totalizzatori degli ingressi universali 1-6 sono richiamati mediante **03 Read Holding Register (4x)**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Universale 1
Universale 2
Universale 3
Universale 4
Universale 5
Universale 6
Universale 7
Universale 8
Universale 9
Universale 10
Universale 11
Universale 12

Reg.	Reg.	Lungh.,
dec.	esad.	byte
800	320	6
803	323	6
806	326	6
809	329	6
812	32C	6
815	32F	6
818	332	6
821	335	6
824	338	6
827	33B	6
830	33E	6
833	341	6

Reg.	Reg.	Lungh.,
dec.	esad.	byte
5800	16A8	10
5805	16AD	10
5810	16B2	10
5815	16B7	10
5820	16BC	10
5825	16C1	10
5830	16C6	10
5835	16CB	10
5840	16D0	10
5845	16D5	10
5850	16DA	10
5855	16DF	10

Tab. 13: Indirizzi di registro per il totalizzatore dell'ingresso universale, dispositivo -> Master Modbus

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Lettura del totalizzatore per il canale universale 1 con il valore 26557.48633 (32 bit float), indirizzo slave 1

Rvte	
Dytt	

,	0	1	2	3	4	5
	00	80	46	CF	7A	E6
	Violazioni	Stato	Nı	umero	in virgo	ola
	valore	del	mobile =			
	soglia	numero	26557.48633			3
		a virgola				
		mobile				

Registro	Valore (hex)
800	0080
801	46CF
802	7AE6

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 03 20 Registro 800 N. registro 00 03 3 registri

CRC 04 45

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte 06 6 byte

Stato 00 80

FLP 46 CF 7A E6 3192.73242

CRC E6 FE

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) e le violazioni del valore di soglia (v. capitolo 2.6.10.3) del numero a virgola mobile (64 bit float) trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Lettura del totalizzatore per il canale universale 1 con il valore 33174.3672951 (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	E0	32	CB	C0	E1	99	A9
	Violazioni	Stato del								
	valore	numero a	Numero a virgola mobile = 33174.3672951 (64 bit float)							
	soglia	virgola								
		mobile								

Registro	Valore		
	(hex)		
5800	0080		
5801	40E0		
5802	32CB		
5803	COE1		
5804	99A9		

Interrogazione:	Indirizzo slave Funzione Registro N. registro CRC	01 03 16 A8 00 05 00 61	03: Read Holdin Registro 5800 5 registri	ng Register
Risposta:	Indirizzo slave Funzione N. byte Stato FLP	01 03 0A 00 80 40 E0 32 CB CC	03: Read Holdi 10 byte) E1 99 A9	ng Register 33174.3672951

C7 54

CRC

2.6.8 Dispositivo -> Master Modbus: canali matematici integrati (totalizzatore)

I totalizzatori dei canali matematici sono richiamati mediante **03 Read Holding Register (4x)**. Il valore può essere trasmesso come 32 bit float o 64 bit float.

Canale
Matematica 1
Matematica 2
Matematica 3
Matematica 4

Reg. dec.	Reg. esad.	Lungh., byte
1700	3C0	6
1703	3C3	6
1706	3C6	6
1709	3C9	6

Reg.	Reg.	Lungh.,
dec.	esad.	byte
6700	7A8	10
6705	7AD	10
6710	7B2	10
6715	7B7	10

Tab. 14: Indirizzi di registro per i totalizzatori dei canali matematici, dispositivo -> Master Modbus

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) del numero a virgola mobile (32 bit float) trasmesso nel secondo e terzo registro.

Esempio: Lettura del totalizzatore del canale matematico 1 (32 bit float), indirizzo slave 1

e	0	1	2	3	4	5
	00	80	4B	29	85	F4
		Stato	Νι	ımero i	n virgo	ola
		del	mobile =			
		numero	33174.3672951		51	
		a virgola				
		mobile				

Registro	Valore (hex)
1700	0080
1701	4B29
1702	85F4

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 06 A4 Registro 1700 N. registro 00 03 3 registri

CRC 44 A0

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte 06 6 byte

Stato 00 80

FLP 4B 29 85 F4 33174.3672951

CRC 85 90

Il primo registro comprende lo stato (v. capitolo 2.6.10.4) del numero a virgola mobile (64 bit float) trasmesso nel secondo, terzo, quarto e quinto registro.

Esempio: Lettura del totalizzatore del canale matematico 1 (64 bit float), indirizzo slave 1

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	41	68	5F	26	35	2A	FC	7E
		Stato del								
		numero a virgola	Numero a virgola mobile = 33174.3672951 (64 bit float)							
		mobile								

Registro	Valore
	(hex)
6700	0080
6701	4168
6702	5F26
6703	352A
6704	FC7E

Interrogazione: Indirizzo slave 01

Funzione 03 03: Read Holding Register

Registro 1A 2C Registro 6700 N. registro 00 05 5 registri

CRC 43 18

Risposta: Indirizzo slave 01

Funzione 03 03: Read Holding Register

N. byte OA 10 byte

Stato 00 80

FLP 41 68 5F 26 35 2A FC 7E 33174.3672951

CRC 83 06

2.6.9 Dispositivo -> Master Modbus: lettura dello stato dei relè

Gli stati dei relè sono richiamati mediante 03 Read Holding Register (4x). Il bit 0 corrisponde al relè 1.

Esempio: Relè 5 in stato attivo

1

Funzione	03	03: Read holding register (4x)
Registro	0C 50	Registro 3152

N. registro 00 01 1 registro

CRC 87 4B

Risposta: Indirizzo slave 01

Funzione 03 03: Read holding register (4x)

N. byte 02 2 byte

Dati 00 10 CRC B9 88

Byte 0	Byte 1			
stato (bit 15-8)	stato (bit 7-0)			
00000000	00010000			
Sempre 0	Bit 4 high			
Sempre 0	relè 5			

Registro	Valore (hex)
3152	0010

Lo stato del relè è determinato da 2 byte di dati, come di seguito descritto:

Byte 1:

Bit 0 = stato relè 1

Bit 1 = stato relè 2

Bit 2 = stato relè 3

Bit 3 = stato relè 4

Bit 4 = stato relè 5

Bit 5 = stato relè 6

1 = attivo, 0 = non attivo

2.6.10 Struttura dei valori di processo

2.6.10.1 Numero a virgola mobile a 32 bit (IEEE-754)

Ottetto	8	7	6	5	4	3	2	1
0	Segno	(E) 2 ⁷	(E) 2 ⁶					(E) 2 ¹
1	(E) 2 ⁰	(M) 2 ⁻¹	(M) 2 ⁻²					(M) 2 ⁻⁷
2	(M) 2 ⁻⁸							(M) 2 ⁻¹⁵
3	(M) 2 ⁻¹⁶							(M) 2 ⁻²³

Segno = 0: Numero positivo

Segno = 1: Numero negativo

E = esponente 8 bit, M = mantissa 23 bit

$$\begin{aligned} Zahl &= -1^{VZ} \cdot \left(1 + M\right) \cdot 2^{E - 127} \\ Zahl &= -1^{VZ} \cdot \left(1 + \sum_{i=1}^{23} b_{23 - i} 2^{-i}\right) \cdot 2^{E - 127} \end{aligned}$$

Esempio:

Byte	0	1	2	3	4	5
•	00	80	40	F0	00	00
•	Violazioni	Stato	Numero in virgola			ola
	dei valori	del	mobile =			
	di soglia	numero	7.5			
		a				
		virgola				
		mobile				

2.6.10.2 Numero a virgola mobile a 64 bit (IEEE-754)

Ottetto	8	7	6	5	4	3	2	1
0	Segno	(E) 2 ¹⁰	(E) 2 ⁹					(E) 2 ⁴
1	(E) 2 ³	(E) 2 ²	(E) 2 ¹	(E) 2 ⁰	(M) 2 ⁻¹	(M) 2 ⁻²	$(M) 2^{-3}$	(M) 2 ⁻⁴
2	(M) 2 ⁻⁵							(M) 2 ⁻¹²
3	(M) 2 ⁻¹³							(M) 2 ⁻²⁰
4	(M) 2 ⁻²¹							(M) 2 ⁻²⁸
5	(M) 2 ⁻²⁹							(M) 2 ⁻³⁶
6	(M) 2 ⁻³⁷							(M) 2 ⁻⁴⁴
7	(M) 2 ⁻⁴⁵							(M) 2 ⁻⁵²

Segno = 0: Numero positivo

Segno = 1: Numero negativo

E = esponente 11 bit, M = mantissa 52 bit

$$Zahl = -1^{VZ} \cdot (1+M) \cdot 2^{E-1023}$$

$$Zahl = -1^{VZ} \cdot \left(1 + \sum_{i=1}^{52} b_{52-i} 2^{-i}\right) \cdot 2^{E-1023}$$

Esempio: 40 1E 00 00 00 00 00 00 h

Valore =
$$-1^{0} \cdot 2^{1025-1023} \cdot (1 + 2^{-1} + 2^{-2} + 2^{-3})$$

= $1 \cdot 2^{2} \cdot (1 + 0.5 + 0.25 + 0.125)$
= $1 \cdot 4 \cdot 1.875 = 7.5$

Byte	0	1	2	3	4	5	6	7	8	9
	00	80	40	1E	00	00	00	00	0	0
		Stato del								
		numero a virgola		N	umero	a virgo	la mob	ile = 7.	5	
		mobile								

2.6.10.3 Violazioni dei valori di soglia

Dispositivo -> Master Modbus

Qui sono inseriti gli stati dei primi 8 valori di soglia assegnati al canale.

Bit 0: 1° valore di soglia assegnato

...

Bit 7: 8° valore di soglia assegnato

Bit x = 1: valore di soglia violato = 0: valore di soglia non violato

Esempio:

Se all'ingresso universale 1 si assegnano un valore di soglia per il valore istantaneo e un valore di soglia per l'analisi 1, gli stati dei due valori di soglia sono indicati nei bit 0 e bit 1 nel valore misurato dell'ingresso universale 1 (registro 200) e dell'ingresso universale 1 integrato (registro 800).

Byte	0	1	2	3	4	5
	02	80	40	F0	00	00
	Violazioni valore	Stato del	Numero in virgola mobile = 7.5			ola
	soglia	numero a virgola mobile		,	.5	

Bit 0.0 = 0: primo valore di soglia assegnato non violato; in questo caso valore di soglia per valore istantaneo secondo valore di soglia assegnato violato; in questo caso valore di soglia per valore integrato

2.6.10.4 Stato dei numeri a virgola mobile

Dispositivo -> Master Modbus

0x01

0x01	Interruzione di linea
0x02	Segnale di ingresso troppo alto
0x03	Segnale di ingresso troppo basso
0x04	Valore misurato non valido
0x06	Valore errore
0x07	Errore del sensore/dell'ingresso
80x0	Nessun valore presente (ad es. durante l'inizializzazione della misura)
0x40	Il valore è incerto (valore di errore), nessuna violazione del valore di soglia
0x41	Il valore è incerto (valore di errore), violazione del valore di soglia inferiore o
JX41	gradiente decrescente
0x42	Il valore è incerto (valore di errore), violazione del valore di soglia superiore o
JX4Z	gradiente crescente
08xC	Il valore è OK, nessuna violazione di soglia
0x81	Il valore è OK, violazione del valore soglia inferiore o gradiente decrescente
0x82	Valore OK, violazione del valore di soglia superiore o gradiente crescente

Master Modbus -> dispositivo

0x00..0x3F: valore non valido 0x40..0x7F: valore incerto 0x80..0xFF: valore OK

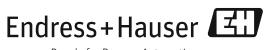
3 Panoramica dei registri

Gli indirizzi del registro sono tutti su base 0, ossia corrispondono al valore trasmesso nel protocollo Modbus.

Registro	Valore	Formato	Accesso
200	Universale 1	Stato + 32 bit float	R/W
203	Universale 2	Stato + 32 bit float	R/W
206	Universale 3	Stato + 32 bit float	R/W
209	Universale 4	Stato + 32 bit float	R/W
212	Universale 5	Stato + 32 bit float	R/W
215	Universale 6	Stato + 32 bit float	R/W
218	Universale 7	Stato + 32 bit float	R/W
221	Universale 8	Stato + 32 bit float	R/W
224	Universale 9	Stato + 32 bit float	R/W
227	Universale 10	Stato + 32 bit float	R/W
230	Universale 11	Stato + 32 bit float	R/W
233	Universale 12	Stato + 32 bit float	R/W
800	Universale 1 Totalizzatore	Stato + 32 bit float	R
803	Universale 2 Totalizzatore	Stato + 32 bit float	R
806	Universale 3 Totalizzatore	Stato + 32 bit float	R
809	Universale 4 Totalizzatore	Stato + 32 bit float	R
812	Universale 5 Totalizzatore	Stato + 32 bit float	R
815	Universale 6 Totalizzatore	Stato + 32 bit float	R
818	Universale 7 Totalizzatore	Stato + 32 bit float	R
821	Universale 8 Totalizzatore	Stato + 32 bit float	R
824	Universale 9 Totalizzatore	Stato + 32 bit float	R
827	Universale 10 Totalizzatore	Stato + 32 bit float	R
830	Universale 11 Totalizzatore	Stato + 32 bit float	R
833	Universale 12 Totalizzatore	Stato + 32 bit float	R
1200	Digitale 1 Stato	2 Byte	R/W
1201	Digitale 2 Stato	2 Byte	R/W
1202	Digitale 3 Stato	2 Byte	R/W
1203	Digitale 4 Stato	2 Byte	R/W
1204	Digitale 5 Stato	2 Byte	R/W
1210	Digitale 6 Stato	2 Byte	R/W
1240	Digitale 1-6 Stato	2 Byte	R/W
1300	Digitale 1 Totalizzatore	Stato + 32 bit float	R
1303	Digitale 2 Totalizzatore	Stato + 32 bit float	R
1306	Digitale 3 Totalizzatore	Stato + 32 bit float	R
1309	Digitale 4 Totalizzatore	Stato + 32 bit float	R
1312	Digitale 5 Totalizzatore	Stato + 32 bit float	R
1315	Digitale 6 Totalizzatore	Stato + 32 bit float	R
1700	Matematica 1 Totalizzatore	Stato + 32 bit float	R
1703	Matematica 2 Totalizzatore	Stato + 32 bit float	R
1706	Matematica 3 Totalizzatore	Stato + 32 bit float	R
1709	Matematica 4 Totalizzatore	Stato + 32 bit float	R
5200	Universale 1	Stato + 64 bit float	R/W
5205	Universale 2	Stato + 64 bit float	R/W
5210	Universale 3	Stato + 64 bit float	R/W
5215	Universale 4	Stato + 64 bit float	R/W
5220	Universale 5	Stato + 64 bit float	R/W
5225	Universale 6	Stato + 64 bit float	R/W
5230	Universale 7	Stato + 64 bit float	R/W
5235	Universale 8	Stato + 64 bit float	R/W
5240	Universale 9	Stato + 64 bit float	R/W
5245	Universale 10	Stato + 64 bit float	R/W
5250	Universale 11	Stato + 64 bit float	R/W
5255	Universale 12	Stato + 64 bit float	R/W
5800	Universale 1 Totalizzatore	Stato + 64 bit float	R
5805	Universale 2 Totalizzatore	Stato + 64 bit float	R
5810	Universale 3 Totalizzatore	Stato + 64 bit float	R
5815	Universale 4 Totalizzatore	Stato + 64 bit float	R
5820	Universale 5 Totalizzatore	Stato + 64 bit float	R
5825	Universale 6 Totalizzatore	Stato + 64 bit float	R
5830	Universale 7 Totalizzatore	Stato + 64 bit float	R
5835	Universale 8 Totalizzatore	Stato + 64 bit float	R

5840	Universale 9 Totalizzatore	Stato + 64 bit float	R
5845	Universale 10 Totalizzatore	Stato + 64 bit float	R
5850	Universale 11 Totalizzatore	Stato + 64 bit float	R
5855	Universale 12 Totalizzatore	Stato + 64 bit float	R
6300	Digitale 1 Totalizzatore	Stato + 64 bit float	R
6305	Digitale 2 Totalizzatore	Stato + 64 bit float	R
6310	Digitale 3 Totalizzatore	Stato + 64 bit float	R
6315	Digitale 4 Totalizzatore	Stato + 64 bit float	R
6320	Digitale 5 Totalizzatore	Stato + 64 bit float	R
6325	Digitale 6 Totalizzatore	Stato + 64 bit float	R
6300	Matematica 1 Totalizzatore	Stato + 64 bit float	R
6305	Matematica 2 Totalizzatore	Stato + 64 bit float	R
6310	Matematica 3 Totalizzatore	Stato + 64 bit float	R
6315	Matematica 4 Totalizzatore	Stato + 64 bit float	R
3152	Stato dei relè	2 Byte	R

4 Abbreviazioni/glossario


Master Modbus: di Master Modbus.

tutti gli strumenti come PLC, schede a innesto per PC, ecc., che eseguono una funzione

5 Indice analitico

Baud rate; 4 Canale analogico; 6 Canale matematico; 6 Funzione; 4 Ingressi; 6 LED di stato; 3 Numero in virgola mobile; 27 Stato del numero a virgola mobile; 29 Uscite: 6

www.endress.com/worldwide

