Functional safety manual Liquiphant M/S with FEL58 and Nivotester FTL325N

Level Limit Measuring System

Application

Minimum detection (also dry running protection) of all types of liquids in tanks to satisfy particular safety systems requirements as per IEC 61508/IEC 61511-1.

The measuring device fulfils the requirements concerning

- For safety functions up to SIL 2
- Explosion protection by intrinsic safety or flameproof enclosure
- EMC to EN 61326 and NAMUR Recommendation NE 21

Your benefits

- For minimum detection up to SIL 2
- Independently assessed (Functional Assessment) by *exida.com* to IEC 61508/IEC 61511-1
- Monitoring for corrosion on the tuning fork of the sensor
- No calibration
- Fault message for circuit break and short-circuit
- Functional test of subsequent devices at the push of a button
- Protected against outside vibration
- Easy commissioning

Table of contents

SIL declaration of conformity3
Introduction5General depiction of a safety system(protection function)5
Structure of the measuring system
Settings and installation instructions10Installation instructions10
Response in operation and failure11Repair11
Recurrent function tests of the measuring system . 11
Appendix12Specific values and wiring options for the measuring system12
Exida Management Summary 19 Supplementary Documentation 21

SIL declaration of conformity

SIL-14004a/00

SIL-Declaration of Conformity

Functional Safety according to IEC 61508 / 61511 Supplement 1 / NE130 Form B.1 and IGR 49-02-15 Datasheet 1

Endress+Hauser GmbH+Co. KG, Hauptstraße 1, 79689 Maulburg

declares as manufacturer, that the following type of the

Liquiphant M/S with electronic insert FEL58 and Nivotester FTL325N

is suitable for the use in safety-instrumented systems according to IEC61508, if the safety instructions and following parameters are observed.

This declaration of conformity is only valid for the customer listed in the cover letter of the responsible Endress+Hauser sales center and for the listed products in delivery status.

Maulburg, 30.01.2014 Endress+Hauser GmbH+Co. KG

i. V

Dr. Arno Götz Dept. Manager Product Safety Research & Development

i.V. D. Fruiherf

Dr. Dietmar Frühauf Dept. Manager Level Limit Switch Research & Development

SIL-14004a/00

	People for Process Automation				
General		Gallen - L			
Device decignation and permissible types	Liquiphant	M/S with electronic i	nsert FE	EL58 and Nivoteste	er FTL325N
Device designation and permissible types	For more d	etails please have a lo	ok at th	ne safety manual S	D170F
Safety-related output signal	NAMUR in	terface [CONF 1]; Rela	ais [CON	NF 2]	
Fault current	< 1,2 mA [CONF 1]			
Process variable/function	Dry runnin	g protection or operat	ing min	imum detection	
Safety function(s)	MIN detect	lion			
Device type acc. to IEC 61508-2	🗌 Тур А		\boxtimes	Тур В	
Operating mode	🛛 Low De	mand Mode		High Demand or C	Continuous Mode
Valid Hardware-Version	As of delive	ery date October 2000	1		
Valid Software-Version	As of 1.0				
Safety manual	SD170F				
		Complete HW/SW e FMEDA and change	evaluati reques	on parallel to deve at acc. to IEC 6150	elopment incl. 8-2, 3
Type of evalutation (check only <u>one</u> box)	\boxtimes	Evaluation of "Prov	en-in-u	se" performance fo	or HW/SW incl. FMEDA
		Evaluation of HW/SW field data to verify "prior use" acc. to IEC 61511			
		Evaluation by FMEDA acc. to IEC61508-2 for devices w/o software			
Evaluation through – report no.	exida E+H	exida E+H 02/6-16 R013			
Test documents	Developme	ent documents	Test	reports	Data sheets
SIL - Integrity					
Systematic safety integrity				SIL 2 capable	SIL 3 capable
	Single char	Single channel use (HFT = 0)		SIL 2 capable	SIL 3 capable
Hardware safety integrity	Multi chan	Multi channel use (HFT ≥1)		SIL 2 capable	SIL 3 capable
FMEDA					
	Liquiphant FEL58 ³	M/S with electronic in	nsert	Liquiphant M/S FEL58 and Nivot	with electronic insert tester FTL325N ⁴
Safety function	MIN detect	ion		MIN detection	
λ _{DU} ^{*1)}	72.7 FIT			84 FIT	
λ _{DD} ^{*1)}	12.7 FIT			12.7 FIT	
λ _{su} ^{*1)}	187 FIT			530 FIT	
λ _{so} '1)	65.6 FIT			65.6 FIT	
SFF - Safe Failure Fraction	78 %			88 %	
PTC *2)	- %			- %	
λ _{total} *1)	338 FIT			692 FIT	
Diagnostic test interval	18			3	
Fault reaction time	-			-	
Comments					
³ This information based on the configuration 1 [⁴ This information based on the configuration 2 [⁴ Other configurations see SD2655 under yourse of the configurations see SD2655 under yourse of the configuration see SD2655 under yourse of t	CONF 1] in the exi CONF 2] in the exi	da test report da test report			
ource configurations see SDZ02F under WWW.end	icasiconi/ SIL				

Our internal company quality management system ensures information on safety-related systematic faults which become evident in the future \boxtimes

*1) FIT = Failure In Time, Number of failures per 10⁹ h *2) PTC = Proof Test Coverage (Diagnostic coverage for proof test)

SIL-14004a

Introduction

-

For general informationen about SIL please refer to: www.endress.com/sil

General depiction of a safety system (protection function)

Parameter tables for determining Safety Integrity Level (SIL)

The following tables are used to define the reachable SIL, the requirements pertaining to the "Average Probability of Dangerous Failure on Demand" (PFDavg), the "Hardware Fault Tolerance" (HFT) and the "Safe Failure Fraction" (SFF) of the safety system. The specific values for the Liquiphant M/S + Nivotester FTL325N measuring system can be found in the Appendix.

Permitted probabilities of dangerous failures on demand of the complete safety related system dependent on the SIL (e.g. exceeding a defined MIN level/switch point) (Source: IEC 61508, Part 1):

SIL	PFD _{avg}
4	$\geq 10^{-5} \text{ to} < 10^{-4}$
3	$\geq 10^{-4}$ to $< 10^{-3}$
2	$\geq 10^{-3} \text{ to} < 10^{-2}$
1	$\ge 10^{-2} \text{ to} < 10^{-1}$

The following table shows the achievable Safety Integrity Level (SIL) as a function of the probability fraction of safety-oriented failures and the "hardware fault tolerance" of the complete safety system for type B systems (complex components, not all faults are known or can be described).

SFF	HFT		
	0	1 (0) ¹⁾	2 (1) ¹
< 60%	not allowed	SIL 1	SIL 2
60% to < 90%	SIL 1	SIL 2	SIL 3
90% to < 99%	SIL 2	SIL 3	
≥ 99%	SIL 3		

1) In accordance with IEC 61511-1 (FDIS) (Section 11.4.4), the HFT can be reduced by one (values in brackets) if the devices used fulfil the following conditions:

- the device is proven in use,

- only process-relevant parameters can be changed at the device (e.g. measuring range, ...),

- changing the process-relevant parameters is protected (e.g. password, jumper, ...),

- the safety function requires less than SIL 4.

All conditions apply to Liquiphant M/S + Nivotester FTL325N.

A B

The safety function applies to all settings in MIN safety (monitoring of the covered state) and use of

Structure of the measuring system

Level limit measuring system The measuring system's devices are displayed in the following diagram (example).

1 FEL - Electronic insert

2 Liquiphant M/S

Nivotester FTL325N (one-channel) Nivotester FTL325N (three-channel)

Safety function

the NO contacts of the level relays.

Device	Setting	As-delivered state
Liquiphant	Density switch setting: 0,5Density switch setting: 0,7	Density switch setting: 0,7
	"MIN" safety	"MAX" safety
Nivotester	Error current signal < 1,2 mA	Error current signal < 1,2 mA
F1L325N-#3#3	All settings except "AS function" (see Section "Settings and installation instruc- tions")	Three-channel operation
	The DIL switch for failure indication (short-circuit and cable break-monitoring) must be set into position ON.	Failure switch "ON"
Nivotester	Error current signal < 1,2 mA	Error current signal < 1,2 mA
F1L325N-#1#1		One-channel operation
	The DIL switch for failure indication (short-circuit and cable break-monitoring) must be set into position ON.	Failure switch "ON"

The following settings are permitted for the safety function:

The level relay always works in quiescent current safety; i.e. the relay releases when:

- the switch point is undershot (level falls below response height)
- a fault occurs
- the mains voltage fails

In addition to the level relay, the alarm relay works in quiescent current safety and releases when:

- one of the following faults occurs:
 - the sensor connection is interrupted
 - the sensor connection short circuits
- the mains voltage fails

When the alarm relay releases, the level relay also releases.

Permitted device typesThe details pertaining to functional safety in this manual relate to the device versions listed below and are valid as of the specified firmware and hardware version. Unless otherwise specified, all subsequent versions can also be used for safety instrumented systems.

Unless otherwise specified, all subsequent versions can also be used for safety instrumented systems. A modification process according to IEC 61508 is applied for device changes.

Valid device versions for safety-related use:

Liquiphant M FTL50, FTL50H, FTL51, FTL51C, FTL51H+ FEL58

Feature	Designation	Option model
010	Approval	all
020	Process connection	all
030	Probe length; Type	all
040	Electronics; Output	8 FEL58; SIL NAMUR+test button (H-L signal)
050	Housing; Cable entry	all
060	Additional option	all

Valid firmware version: as of 01.00.00 Valid hardware version (electronics): as of 01.00

Valid device versions for safety-related use:

Liquiphant S FTL70, FTL71+ FEL58

Feature	Designation	Option model
010	Approval	all
020	Process connection	all
030	Probe length	all
040	Electronics; Output	8 FEL58; SIL NAMUR+test button (H-L signal)
050	Housing; Cable entry	all
060	Additional option	all
070	Application	all

Valid firmware version: as of 01.00.00 Valid hardware version (electronics): as of 01.00

Valid device versions for safety-related use:

Nivotester FTL325N

Feature	Designation	Option model	
010	Approval	 G ATEX II 3(1)G Ex nC/A (ia) IIC T4, SIL, IECEx Zone 2 H ATEX II (1)GD (Ex ia) IIC, WHG, SIL, IECEx (Ex ia) IIC (Liquiphant M / Liquiphant S) N NEPSI (Ex ia) IIC, SIL (Liquiphant M / Liquiphant S) P FM IS Cl. I, II, III Div. 1 Gr. A-G, SIL (Liquiphant M / Liquiphant S) T CSA IS Cl. I, II, III Div. 1 Gr. A-G, SIL (Liquiphant M / Liquiphant S) W TIIS Ex ia IIC, SIL, labeling in Japan 	
020	Housing	all	
030	Power Supply	all	
040	Switch output	all	

Safety function data

- The **mandatory settings** and data for the safety function can be found in chapter "Safety function", $\rightarrow \triangleq 6$ and chapter "Settings and installation instructions", $\rightarrow \triangleq 10$.
- The measuring system reacts in \leq 0,9 s.

MTTR is set at eight hours. Safety systems **without a self-locking function** must be monitored or set to an otherwise safe state after carrying out the safety function within MTTR.

Supplementary device documentation

Liquiphant M FTL50, FTL50H, FTL51, FTL51H, FTL51C

Documentation	Contents	Comment
Technical Information • FTL50, FTL50H, FTL51, FTL51H: TI00328F/00/EN • FTL51C: TI00347F/00/EN	 Technical data Accessories 	 The documentation is available on the Internet: → www.endress.com.
Operating Instructions FTL50, FTL51: KA00143F/00/A6 KA00163F/00/A6 ¹⁾ FTL50H, FTL51H: KA00144F/00/A6 KA00164F/00/A6 ¹⁾ FTL51C: KA00162F/00/A6 KA00165F/00/A6 ¹⁾	 Installation Wiring Operation Commissioning Troubleshooting Repair Maintenance 	 The documentation is supplied with the device. The documentation is also available on the Internet:. → www.endress.com.
Safety instructions depending on the selected version "Approval"	Safety, installation and operating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfill protection (WHG, German Water Resources Act).	Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele- vant safety instructions.

1) with aluminium housing / separate terminal compartment.

Liquiphant S FTL70, FTL71

Documentation	Contents	Comment
Technical Information TI00354F/00/EN	Technical dataAccessories	 The documentation is available on the Internet: → www.endress.com.
Operating Instructions KA00172F/00/A6 KA00173F/00/A6 ¹⁾	 Installation Wiring Operation Commissioning Troubleshooting Repair Maintenance 	 The documentation is supplied with the device. The documentation is also available on the Internet:. → www.endress.com.
Safety instructions depending on the selected version "Approval"	Safety, installation and operating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfill protection (WHG, German Water Resources Act).	Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele- vant safety instructions.

1) with aluminium housing / separate terminal compartment

Nivotester FTL325N

Documentation	Contents	Comment
Technical Information TI00353F/00/EN	Technical dataAccessories	 The documentation is available on the Internet: → www.endress.com.
 Operating Instructions One-channel device: KA00170F/00/A6 Three-channel device: KA00171F/00/A6 	 Installation Wiring Operation Commissioning Troubleshooting Repair Maintenance 	 The documentation is supplied with the device. The documentation is also available on the Internet:. → www.endress.com.
Safety instructions depending on the selected version "Approval"	Safety, installation and operating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfill protection (WHG, German Water Resources Act).	Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele- vant safety instructions.

Settings and installation instructions

Installation instructions

Please refer to the Operating Instructions (KA) for information regarding the correct installation of Liquiphant M/S + Nivotester FTL325N.

Since the application conditions have an effect on the safety of the measurement, pay attention to the notes in the Technical Information (TI) and Operating Instructions (KA).

The ambient conditions for the Nivotester FTL325N must correspond to IP54 (in accordance with EN 60529).

The manuals on setting the devices can be found in the section "Supplementary device documentation", \rightarrow \geqq 8.

Settings for Liquiphant M/S (FEL58):

- The **density switch setting** must be configured according to the density range of the medium.
- The settings of the **safety mode** has an effect on the function. the DIL switch must be set to MIN for minimum detection in a SIL application.

Settings for Nivotester FTL325N-#3#3 (three-channel version):

Setting	Description	Caution!
CH2	Channel 2+3 in ΔS function	This setting ist not permitted for the safety function!
СНЗ 🕞 и 📻 – – – – –	Channel 1, independent	Channel 1 is permitted for the safety function. The DIL switch for fault messaging (short-circuit and cable break-monitoring) must be set into possition ON.
CH2 CH1 CH1	Channel 2+3 in ΔS function	Channel 2 and 3 in this setting are not permitted for the safety function!

A

Observe the following for the Nivotester FTL325N:

The operator must use suitable measures (e.g. current limiter, fuse) to ensure the relay contact characteristics are not exceeded:

- U \leq 253 V AC 50/60 Hz , I \leq 2 A, P \leq 500 VA at $\cos\phi \geq$ 0,7 or
- $U \le 40 \text{ V DC}, I \le 2 \text{ A}, P \le 80 \text{ W}$

Changes to the measuring system and settings after start-up can impair the protection function!

Response in operation and failure

The response in operation and failure is descriped in the documentation, which can be found in the section "Supplementary device documentation", $\rightarrow \mathbb{B} 8$.

Repair

In the event of failure of a SIL-labeled Endress+Hauser device, which has been operated in a protection function, the "Declaration of Contamination and Cleaning" with the corresponding note "Used as SIL device in protection system" must be enclosed when the defective device is returned

Recurrent function tests of the measuring system

The operativeness of the minimum detection must be checked annually if the PFD_{avg} values given in the Appendix are used.

The check must be carried out in such a way that it is proven that the minimum detection functions perfectly in interaction with all components. This is guaranteed when the response height is lowered in an emptying process. If it is not practical to empty to the response height, suitable simulation of the level or of the physical measuring effect must be used to make the level sensor respond.

If the operativeness of the level sensor / transmitter can be determined otherwise (exclusion of faults that impair function), the check can also be completed by simulating the corresponding output signal.

In the case of recurrent tests, each permitted setting must be checked, especially whether all the alarm switches are set to ON.

Note the following points for the function test:

- Each individual channel must be checked e.g. by lowering the level.
- Relay contact switching can be checked by using a hand multimeter at the terminals or by observing the minimum detection components (e.g. horn, adjuster).
- In multi-channel devices, all channels which do not carry out a safety function must be included in the recurrent function tests if faulty functioning cannot be detected by any other means.
- As a positive test result, an uncovered tuning fork must be detected and trigger the alarm for minimum detection.
- If fork uncovering is not detected during the recurrent test, the monitored process must be set to a safe state by means of additional or other measures and/or kept in the safe state until the safety system is repaired.

Appendix

Specific values and wiring options for the measuring system

The tables show the specific values and wiring options for the measuring system.

- Note the following points on the tables below: -
 - The PFD_{avq} values for multichannel systems already contain common cause failures for the associated wiring scheme.
 - The PFD_{avg} values are only valid for the associated wiring scheme. Wiring schemes other than those shown in the Appendix were not assessed and thus do not bear any information relevant to safety. Using NC contacts instead of NO contacts requires further consideration of the installation means.
 - The wiring scheme shows the number of devices (Liquiphant and Nivotester) and the limit relay contact circuits (open, when the sensor signals uncovering).
 - For every channel, which performs a safety function, the failure indication (cable break/short circuit) must be switched on.
 - With several devices in a wiring scheme, they all indicate the same displayed settings.

For safety related use for MIN detection, the following application errors must be excluded:

Liquiphant M/S:

- Permanent and/or heavy build-up or "non-Newtonian media".
- Solid proportions of the medium with a diameter > 5.0 mm. (0.2 in).
- Corrosion: The Liquiphant may only be used in media to which the process-wetted parts are resistant. If coated sensors are used, measures must therefore be taken to ensure that there is no damage during installation and operation.

The errors may cause that the demand mode of the safety function is not detected and the Liquiphant will not switch as intended.

Liquiphant S:

■ Hydrogen diffusion at temperatures over 180 °C (356 °F) and over 64 bar (928 psi).

	1001 architecture (CONF 1)
Liquiphant (FEL58) Settings	1) Density 0,7 / 0,5 2) MIN safety
Evaluated NAMUR transmitter	Error current signal 40022180
SIL	SIL 2
HFT	0
SFF	78.5%
PFD _{avg} **	3.2 x 10 ⁻⁴
Wiring scheme	Ask the manufacturer in question for the NAMUR transmitter parameters relevant to safety.
Recurrent test e.g. lowering the level	** TI (test interval) = annual

	1001 architecture (CONF 2)
Liquiphant (FEL58) Settings	1) Density 0,7 / 0,5 2) MIN safety
Nivotester FTL325N-#1#1 Settings (One-channel device)	Error current signal A0022180
SIL	SIL 2
HFT	0
SFF	87.9%
PFD _{avg} **	3.7 x 10 ⁻⁴
Wiring scheme	► CH1 [7] CH1:
Recurrent test e.g. lowering the level	** TI (test interval) = annual

	1001 architecture (CONF 3)
Liquiphant (FEL58) Settings	1) Desnity 0,7 / 0,5 2) MIN safety
Nivotester FTL325N-#3#3 Settings (Three-channel device)	Error current signal < 1,2 mA
SIL	SIL 2
HFT	0
SFF	87.7%
PFD _{avg} **	4.1 x 10 ⁻⁴
Wiring scheme	СН1 Г/1 СН2 Г/1 СН3 Г/1 СН2, СН3: моо22193
Recurrent test e.g. lowering the level	** TI (test interval) = annual

	1002 architecture (CONF 4)
Liquiphant (FEL58) Settings	1) Density 0,7 / 0,5 2) MIN safety
Nivotester FTL325N-#3#3 Settings (Three-channel device)	Error current signal < 1,2 mA
SIL	SIL 2
HFT	1
SFF	87.9%
PFD _{avg} **	2.1 x 10 ⁻⁵
Wiring scheme	СН1 ГЛ СН2 ГЛ СН3 ГЛ СН1 + CH2 Л0022198
Recurrent test e.g. lowering the level	** TI (test interval) = annual

	2003 architecture (CONF 5)
Liquiphant (FEL58) Settings	1) Denisty 0,7 / 0,5 2) MIN safety
Nivotester FTL325N-#3#3 Settings (Three-channel device)	Error current signal < 1,2 mA
SIL	SIL 2
HFT	1
SFF	87.3%
PFD _{avg} **	2.4 x 10 ⁻⁵
Wiring scheme	
Recurrent test e.g. lowering the level	** TI (test interval) = annual

	1001 architecture (CONF 6)
Liquiphant (FEL58) Settings	1) Density 0,7 / 0,5 2) MIN safety
Nivotester FTL325N-#3#3 Settings (Three-channel device)	CH3 CH2 CH1 CH1 A0022204 Error current signal < 1,2 mA
SIL	SIL 2
HFT	0
SFF	87.9%
PFD _{avg} **	3.7 x 10 ⁻⁴
Wiring scheme	СН1 ГЛ Ж. (- <u>СН2 ГЛ</u> СН1:
Recurrent test e.g. lowering the level	** TI (test interval) = annual

Exida Management Summary

		excellence	ida.com®			excellence	<i>tida</i>.con in dependable autom
As Liquiphant M/S with	NAMUR output FEL 58 ar	nd Nivotester FTL325N are	supposed to be	Table 6: Summary for [C	CONF 5]		
proven-in-use devices demonstration for the	, an assessment of the device and its software w	 hardware with addition as carried out. Therefore 	al proven-in-use according to the	T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF
requirements of IEC 61.	511-1 FDIS Ed.1 27-09-02 s	section 11.4.4 and the asses	ssment described	PFD _{AVG} = 2,37E-05	PFD _{AVG} = 1,42E-04	PFD _{AVG} = 3,40E-04	> 87 %
In section 5.1 a narowa	re rauit tolerance of U IS Sun a SFF of 60% to < 90%	ticient tor ail 2 (sud-) syste	ims peing Type b	3 = 6.56F-08 1/h			
Table 2. Summary for [0	ONE 41			λ _{su} = 6,25E-07 1/h			
				1 = 1 27E-08 1/h			
T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF 70 M	$\lambda_{du} = 1,27$ E-00 1/11 $\lambda_{du} = 1,03$ E-07 1/h			
PFUAVG = 3,18E-04	PFUAVG = 1,39E-03	Pru _{AVG} = 3,1/E-U3	> 10 %				
$\lambda_{sd} = 6,56E-08 \ 1/h$				Table 7: Summary for [C	CONF 6]		
λ _{su} = 1,87E-07 1/h				T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF
λ _{dd} = 1,27E-08 1/h				PFD _{AVG} = 3,68E-04	PFD _{AVG} = 1,84E-03	PFD _{AVG} = 3,66E-03	> 87 %
λ _{du} = 7,27E-08 1/h				λ _{ed} = 6.56E-08 1/h			
Table 3: Summary for [C	ONF 2]			λ _{sii} = 5.30E-07 1/h			
T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF	λ _{dd} = 1,2/E-U8 1/h			
PFD _{AVG} = 3,68E-04	PFD _{AVG} = 1,84E-03	PFD _{AVG} = 3,66E-03	> 87 %	λ _{du} = 8,40E-08 1/h			
$\lambda_{sd} = 6,56E-08 \ 1/h$				The boxes marked in	yellow (🔄) mean that th	e calculated PFD _{AVG} value	es are within th
$\lambda_{su} = 5,30E-07 \ 1/h$				not claim more than 35	5% of this range, i.e. to be b	better than or equal to 3,50	DE-03. The boxe
$\lambda_{dd} = 1,27E-08 \ 1/h$				marked in green (m)	mean that the calculated PFI	D _{AVG} values are within the	allowed range fo
$\lambda_{du} = 8,40E-08 \ 1/h$				SIL 2 according to table the requirement to not	e z or rec o roug-r and table claim more than 35% of th	e 3.1 of Alvalva-64.01-1 lis range, i.e. to be better	than or equal t
Table 4: Summary for [C	ONF 3]			3,50E-03.			
T[Proof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF	The functional assess	sment according to IEC 61	508 has shown that Liqu	uiphant M/S wit
PFD _{AVG} = 4,09E-04	PFD _{AVG} = 2,04E-03	PFD _{AVG} = 4,07E-03	> 87 %	SIL 2 according to tab	ole 2 of IEC 61508-1 and tab	ble 3.1 of ANSI/ISA-84.01-	-1996 and a Sat
λ _{ed} = 6.56E-08 1/h				Failure Fraction (SFF)	of > 80%. Based on the ve SII 2 Safety Functions in te	Prification of "prior use" the series of IEC 64544-4 EDIS	hey can be use
3 = 5 87F-07 1/h						Contraction of the second seco	Lui zi - 00-02.
3 = 1 27E-08 1/h				A user or Liquipriarit IVI failure rates in a prot	abilistic model of a safetv	instrumented function (S	V can unite thes
$\lambda_{du} = 9,33E-08 1/h$				suitability in part for sai	fety instrumented system (SI	S) usage in a particular saf	fety integrity lev
Table 5: Summary for IC	ONF 41			5.7 along with all assun	interates for unreferit operations.	מווא המומוומוש וש מופסווובת	
TIProof] = 1 year	T[Proof] = 5 years	T[Proof] = 10 years	SFF				
PFD _{AVG} = 2,07E-05	PFD _{AVG} = 1,10E-04	PFD _{AVG} = 2,35E-04	> 87 %				
Leg 1 (consisting of [CC	<u>DNF 2]):</u>	eg 2 (consisting of [CONF 3]	D:				
$\lambda_{sd} = 6,56E-08 \ 1/h$	As.	_d = 6,56E-08 1/h					
λ _{su} = 5,30E-07 1/h	λsi	u = 5,87E-07 1/h					
$\lambda_{dd} = 1,27E-08 \ 1/h$	Adi	_d = 1,27E-08 1/h					
λ _{du} = 8,40Ε-08 1/n	Ad	u = 9,33E-08 1/h		Exida Ma			
© exida.com GmbH		e+h 02-6-16 r013	v1 r1.1, May 15, 2003	© exida.com GmbH		e+h 02-6-16 r013	v1 r1.1, May 15, 20
stephan Aschenbrenner			rage 3 01 34	Stephen Aschenolenner			rage 4 or
				ary 4			

Exida Mana

Supplementary Documentation Safety in the Process Industry - reducing risks with SIL CP01008Z/11/EN.

www.addresses.endress.com

