Valid as of version 01.00.zz (Device firmware)

Products Solutions

Services

Supplementary documentation **Proline Promag 100**

Heartbeat Technology Application Package

Proline Promag 100 Table of contents

Table of contents

1	Document information	. 4
1.1	Document function	4
1.2	Using this document	. 4
1.3	Used Symbols	4
1.4	Documentation	
2	Product features and availability	. 6
2.1	Product features	6
2.2	Availability (product list and order option) \dots	
3	Product description	. 8
3.1	Overview	
3.2	Detailed product description	
3.3	Performance characteristics	
ر.ر	remormance characteristics	10
4	System integration	11
4.1	Automated data exchange	11
4.2	Data exchange performed by the user (asset	
	management system)	13
5	Commissioning	14
5.1	Availability	14
5.2	Heartbeat Diagnostics	14
5.3	Heartbeat Monitoring	14 15
5.4	Heartbeat Verification	10
6	Operation	16
6.1	Heartbeat Diagnostics	16
6.2	Heartbeat Monitoring	16
6.3	Heartbeat Verification	16
7	Function	23
7.1	Self-monitoring using Heartbeat	
	Technology	23
7.2	Heartbeat Technology - integration	23
7.3	Heartbeat Verification – data management	
7.4	Module	
8	Use cases	32
8.1	Diagnostics	32
8.2	Condition Monitoring	32
8.3	Heartbeat Monitoring	32
8.4	Heartbeat Verification	33
J. I	near ocur vermeation	رر
9	Glossary and terminology	35
10	Registered trademarks	36

Document information Proline Promag 100

1 Document information

1.1 Document function

The document is part of the Operating Instructions and serves as a reference for application-specific parameters, providing a detailed explanation of each individual parameter of the operating menu.

1.2 Using this document

1.2.1 Information on the document structure

For the alignment of parameters with short descriptions according to the **Display/ Operation**, **Setup**, **Diagnostics** menu structure, Operating Instructions manual for the device.

For information about the operating philosophy, see the "Operating philosophy" chapter in the device's Operating Instructions

1.3 Used Symbols

1.3.1 Symbols for certain types of information

Symbol	Meaning
A0011193	Tip Indicates additional information.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011195	Reference to page Refers to the corresponding page number.
A0011196	Reference to graphic Refers to the corresponding graphic number and page number.
A0013140	Operation via local display Indicates navigation to the parameter via the local display.
A0013143	Operation via operating tool Indicates navigation to the parameter via the operating tool.
A0013144	Write-protected parameter Indicates a parameter that can be locked against changes by entering a user-specific code.

1.3.2 Symbols in graphics

Symbol	Meaning
1, 2, 3	Item numbers
A, B, C,	Views
A-A, B-B, C-C,	Sections

Proline Promag 100 Document information

1.4 **Documentation**

This manual does not replace the Operating Instructions included in the scope of supply.

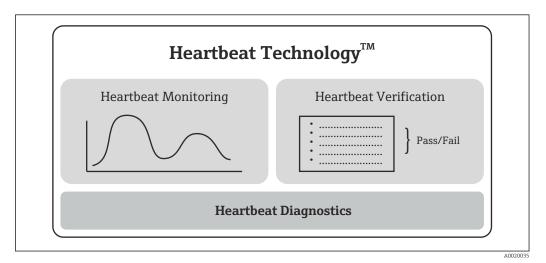
For detailed information, refer to the Operating Instructions and other documentation on the CD-ROM provided or visit "www.endress.com/deviceviewer".

This manual is an integral part of the following Operating Instructions:

Sensor	HART	Modbus RS485	PROFIBUS DP	EtherNet/IP
Е	BA01305D	BA01306D	BA01307D	BA01308D
Н	BA01171D	BA01175D	BA01237D	BA01173D
P	BA01172D	BA01176D	BA01238D	BA01174D

This Special Documentation is available:

- On the CD-ROM supplied with the device (depending on the device version ordered)
- In the Download area of the Endress+Hauser internet page: www.endress.com \rightarrow Download


1.4.1 Content and scope

This manual contains descriptions of the additional parameters and technical data that are available with the Heartbeat Technology application package.

2 Product features and availability

2.1 Product features

Proline flowmeters with Heartbeat Technology offer diagnostic functions through continuous self-monitoring (**Heartbeat Diagnostics**), the transmission of additional measured variables to an external Condition Monitoring system (**Heartbeat Monitoring**) and the in-situ verification of flowmeters in the application (**Heartbeat Verification**).

■ 1 Heartbeat Technology: Overview of modules and correlated functions

Heartbeat Diagnostics is a basic function of all the Proline measuring devices.

The **Heartbeat Monitoring** and **Heartbeat Verification** modules are optional (\rightarrow) (\rightarrow) 7).

2.1.1 Heartbeat Diagnostics

The **Heartbeat Diagnostics** function provides information on the device status and is represented in the form of status signals (device diagnostics). **Heartbeat Diagnostics** is a basic function of all the Proline measuring devices.

For more information on diagnostics, see the "Diagnostics and troubleshooting" section of the Operating Instructions.

2.1.2 Heartbeat Monitoring

Continuous output of monitoring measured values for monitoring in an external Condition Monitoring system. The measured values are transmitted to a Condition Monitoring system via the outputs provided on the measuring device.

2.1.3 Heartbeat Verification

The functionality of the device is checked on demand. The results of the check are saved as a data set in the measuring device and documented in the form of a verification report.

It is recommended to use the **Heartbeat Verification** function for the first time directly as part of the commissioning routine $(\rightarrow \implies 14)$.

2.2 Availability (product list and order option)

Heartbeat Technology is available for all Proline measuring principles. This enables the use of the function for the entire installed base of Proline flowmeters.

Please contact your Endress+Hauser sales organization for further information.

Order option

Heartbeat Diagnostics is a basic function of all the Proline measuring devices. The **Heartbeat Monitoring** and **Heartbeat Verification** modules are optional and are indicated as order options in the product price list:

Order feature "Application Package", **EB** "Heartbeat Verification + Monitoring" option

If this order option is selected, the functionalities for **Heartbeat Monitoring** and **Heartbeat Verification** are already available in the device on leaving the factory. It is also possible to upgrade to this function during the life cycle of the measuring device.

- Heartbeat Technology is compatible with all the system integration options. Interfaces with digital communication are required to access the data saved in the measuring device. The speed of data transmission depends on the type of communication interface used.
- Please contact your Endress+Hauser service or sales organization for further information regarding product availability and upgrades to existing measuring devices.

For information on how to enable the function .

Product description Proline Promag 100

3 Product description

3.1 Overview

The "Heartbeat Verification + Monitoring" application package can be used to verify the functionality of the device in the application (**Heartbeat Verification**); the measuring device can also be used to output additional measured variables to an external Condition Monitoring system (**Heartbeat Monitoring**).

This documentation complements the Operating Instructions and describes the additional functions that are available when the "Heartbeat Verification + Monitoring" option is ordered. The documentation is an integral part of the Operating Instructions.

Proline measuring devices with Heartbeat Technology have an integrated self-monitoring system that monitors the entire measuring chain from the sensor to the outputs. This integrated self-monitoring system supplies additional information (measured variables) for the direct assessment of the state of the measuring device, and information on process influences that affect the measuring function and performance.

The information gathered during self-monitoring is made available by the **Heartbeat Diagnostics**, **Heartbeat Monitoring** and **Heartbeat Verification** functions in a variety of ways $(\rightarrow \ \ \)$ 6):

- The **Heartbeat Diagnostics** function supplies continuous information about the state of the measuring device. It is represented in the form of status signals (device diagnostics).
- With Heartbeat Monitoring it is possible to output additional monitoring-specific measured values for monitoring in an external Condition Monitoring system during continuous operation. The measured values are transmitted to a Condition Monitoring system via the outputs provided on the measuring device.
- The flowmeter is verified on demand using the **Heartbeat Verification** function. The results of the check are documented as a data set in the measuring device and in the form of a verification report. The result of the verification is a statement on the condition of the device: **Pass** or **Fail**.

3.2 Detailed product description

3.2.1 Heartbeat Diagnostics

Purpose

With the **Heartbeat Diagnostics** function, information on the status of the measuring device is generated on the basis of continuous self-monitoring and represented in the form of status signals (device diagnostics). The diagnostic data are classified and contain information on the cause of the error and remedial measures.

Aim

Continuously output status signals via the operating interfaces and to the higher-level system (system integration).

Advantages

- Continuous monitoring and integration with the higher-order system ensure that information on the condition of the measuring device is available in real time and processed in time.
- Remedial measures are provided for each diagnostic event to ensure that problems can be rectified quickly.

Customer and industry requirements

The status signals are classified in accordance with VDI/VDE 2650 and NAMUR Recommendation NE 107.

For more information on diagnostics, see the "Diagnostics and troubleshooting" section of the Operating Instructions.

Proline Promag 100 Product description

3.2.2 Heartbeat Monitoring

Purpose

Condition Monitoring is defined as the continuous monitoring of flowmeter measured variables in an external system. This is different from the continuous self-monitoring performed by the device, which forms the basis for device diagnostics. On the basis of continuous self-monitoring, **Heartbeat Monitoring** makes additional monitoring-specific measured values available. A range of measured variables is provided that relates to the measuring performance of the flowmeter.

The analysis of these continuous measured variables in a Condition Monitoring system makes it possible to assess these measured variables from the perspective of the application. Device diagnostics assesses measured variables with regard to the condition of the measuring device (system integrity, operation outside of manufacturer's specifications) and with regard to any restrictions or interruptions in the measuring function due to unsuitable process conditions. The purpose of **Heartbeat Monitoring**, on the other hand, is to use additional measured variables in the context of the application. Therefore the measured variables are interpreted in the Condition Monitoring system as opposed to interpretation by the flowmeter. The flowmeter only serves to supply the information.

Aim

To monitor the application, relevant monitoring-specific measured values are transmitted to a Condition Monitoring system via the outputs provided at the measuring device. The monitoring-specific measured values are assessed in the Condition Monitoring system and used to control measures in the area of maintenance (such as cleaning) or process optimization. Ideally these measures can be implemented before the process safety or product quality of the application is affected.

Possible applications for Promag Condition Monitoring include:

- Magnetite-containing media
- Multi-phase fluids (gas content in liquid fluids)
- Applications in which the sensor is exposed to a programmed amount of wear
- Applications with cathodic protection systems
- Applications with pipes that are not grounded

Advantages

- Measured variables preprocessed in the measuring device are made available for easy integration into the Condition Monitoring system.
- Early detection of changes (trends) to ensure plant availability and product quality.
- Use of information for the proactive planning of measures (cleaning).
- Identification of undesirable process conditions as the basis to optimizing the facility and the processes.

Customer and industry requirements

- For a product to have a high level of quality, the process quality must be monitored continuously and the quality of flow measurement must remain constant.
- High system availability requires the prevention of unscheduled downtime and short turnaround times for repair work proactive, forward planning is a prerequisite for this.

3.2.3 Heartbeat Verification

Purpose

Heartbeat Verification uses the self-monitoring function of the Proline flowmeters to check the measuring device functionality. Verification is performed on demand. During the verification process, the system checks whether the measuring device components comply with the factory specifications. Both the sensor and the electronic modules are included in the tests. The results of the check are saved as a data set in the measuring device and documented in the form of a verification report, if required. The request for verification can come from a higher-order system via the system integration interface. The overall result of the device function test (**Pass/Fail**) can also be relayed to this higher-order system. The result of the verification is a statement on the condition of the measuring device: **Pass** or **Fail**. Data interpretation by the user is not required.

Product description Proline Promag 100

Aim

To confirm the consistent quality of the measurement in the life cycle of the product by periodically checking the measuring device functionality. Creation of traceable documentation of the condition of the measuring device in the life cycle of the products.

Advantages

- The functionality is integrated in the measuring device and therefore available via all the operating and system integration interfaces. No onsite presence is required to use the function, thereby saving time and making the function easily available at any time.
- As the measuring device interprets and documents the results of the verification itself (**Pass/Fail**), no special knowledge is required on the part of the user.
- The documentation of the verification (verification report) can be used to prove quality measures to a third party.
- The use of the Heartbeat Verification function as a method to test Proline measuring devices in the application means it can replace other maintenance tasks (periodic check, repeat calibration) or be used to extend the testing intervals.

Customer and industry requirements

- Compliance with ISO 9001 (measuring points relevant to quality)
- Testing of measuring points with regard to energy monitoring, utilities and greenhouse gas emissions
- Testing of measuring points as regards billing

3.3 Performance characteristics

Heartbeat Technology™ carries out checks on the measuring device which increase the reliability of the measured value output.

3.3.1 Heartbeat Diagnostics

Heartbeat Diagnostics carries out diagnostic tests in the electronics modules based on continuous self-monitoring. The test scope achieved using these diagnostic tests is referred to as Total Test Coverage – TTC.

The TTC is expressed by the following formula for random errors (calculation based on FMEDA as per IEC 61508):

$$TTC = (\lambda_{TOT} - \lambda_{du}) / \lambda_{TOT}$$

 λ_{TOT} : Rate of all theoretically possible failures

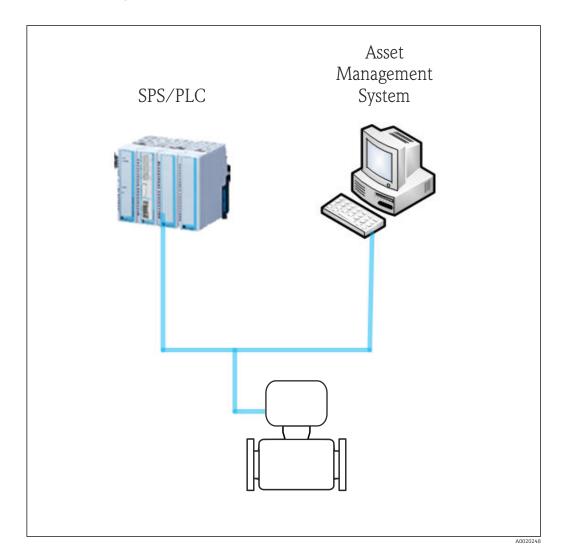
 λ_{du} : Rate of undetected dangerous failures

Only dangerous undetected failures are not identified by the instrument diagnosis and, if they occur, can distort the measured value that is output or interrupt the output of measured values.

Heartbeat Diagnostics checks the device function within the specified measuring tolerance using a defined TTC.

3.3.2 Heartbeat Verification

Heartbeat Verification is carried out on demand and, by means of additional checks, complements the diagnostics performed during diagnosis: internal verification also checks the 4 to 20 mA current output, and external verification supports the testing of all output modules.


This reduces the proportion of failures which are not detected during diagnosis (λ_{du}): using the Heartbeat Verification test sequences described, an additional 5 % of these failures can be detected.

Proline Promag 100 System integration

4 System integration

For basic information on system integration, see the "System integration" section of the Operating Instructions.

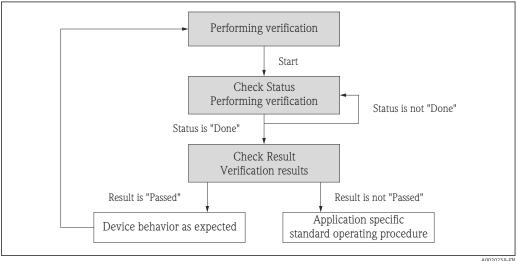
The Heartbeat Technology functions are available via the digital interfaces. The functionalities can be used via an asset management system and the automation infrastructure (e.g. PLC).

Here, data exchange can be either automated or performed by a user.

4.1 Automated data exchange

Heartbeat Diagnostics	Heartbeat Monitoring	Heartbeat Verification
 Analyze field device	 Continuous trend analysis Additional monitoring of measured	 Instrument check via self-
diagnostics Diagnostic events for	variables for processing in a	monitoring Start verification and upload
integration with the PLC	Condition Monitoring system	verification results

System integration Proline Promag 100


4.1.1 Automated data exchange: Heartbeat Monitoring

The following procedure describes the work flow that is principally involved in the automated handling of the **Heartbeat Monitoring** function, and the use of data for Condition Monitoring:

- The host application configures the cyclic services of the field device for Heartbeat Monitoring
- The field device communicates PVs (process variables) from **Heartbeat Monitoring**
- The host application analyzes the Heartbeat Monitoring PVs (e.g. trends, limit value monitoring)
- The host application initiates application-specific standard operating procedures (e.g. a "Maintenance Required" alarm is signaled or maintenance instructions are triggered)
- The fieldbus-specific implementation (HART, Modbus RS485, PROFIBUS DP, EtherNet/IP) is described in the "Technical data" section of the Operating Instructions under "Output".

4.1.2 Automated data exchange: Heartbeat Verification

The self-monitoring function integrated in the measuring device can by activated by a control system and the results can be checked. The following procedure must be implemented for this purpose:

A0020258-E

- Verification performance:
 - The verification is started using the "Start verification" parameter.
- Verification status:
 - On completion of the verification, the value of the "Status" parameter changes to "**Done**".
- Verification result:
 - The overall result of the verification is indicated in the "Overall result" parameter. Different application-specific measures must be performed by the system depending on the result, e.g. a "Maintenance Required" alarm is triggered if "Passed" is not displayed as the result.

Proline Promag 100 System integration

4.2 Data exchange performed by the user (asset management system)

Heartbeat Diagnostics	Heartbeat Monitoring	Heartbeat Verification
Identify remedial measures Information on the cause of the error and remedial measures are provided in the asset management system	Configuration of the monitoring system	 Instrument verification via self-monitoring Start verification Upload, archive and document verification results including detailed results

Commissioning Proline Promag 100

5 Commissioning

5.1 Availability

If the optional package for **Heartbeat Monitoring** and **Heartbeat Verification** was ordered for the flowmeter from the factory, the function is already available when the measuring device is delivered to the customer. The function is accessed via the operating interfaces of the measuring device, via the Web server or Endress+Hauser's FieldCare asset management software. No particular measures are required to put the function into operation.

Ways to check function availability in the measuring device:

- Using the serial number: W@M Device viewer $^{1)} \rightarrow$ Order code "Heartbeat Verification + Monitoring", option **EB**
- In the operating menu: Check whether the function is indicated in the operating menu: Diagnostics → Heartbeat If the "Heartbeat" option is available the function is activated.

If the function cannot be accessed in the measuring device, the optional package was not selected. It is then possible to upgrade to this function during the life cycle of the measuring device. On most flowmeters it is possible to activate the function without having to upgrade the firmware.

5.1.1 Activation without firmware upgrade

You require a conversion kit from Endress+Hauser to enable the function without upgrading the firmware. Among other things, this kit contains an activation code which must be entered via the operating menu to activate the "Heartbeat Verification + Monitoring" function.

The activation function is available under "Setup \rightarrow Advanced setup \rightarrow Enter access code".

Once activated, the **Heartbeat Monitoring** and **Heartbeat Verification** modules are permanently available in the measuring device.

Activation without firmware upgrade is possible as of the following firmware versions:

- HART: 01.00.zz
- PROFIBUS DP: 01.00.zz
- Modbus: 01.00.zz
- EtherNet/IP: 01.00.zz

5.2 Heartbeat Diagnostics

The diagnostics functions are part of the basic features of Proline flowmeters: See the "Diagnostics and troubleshooting" section of the Operating Instructions.

5.3 Heartbeat Monitoring

Heartbeat Monitoring is put into operation by activating the monitoring function and assigning the measured variables, which are relevant for monitoring from the point of view of the application, to the outputs on the measuring device. Once commissioning is completed, the selected monitoring-specific measured variables are continuously available at the outputs.

1) www.endress.com/deviceviewer

Proline Promag 100 Commissioning

Activating/deactivating the monitoring function

The transmission of monitoring-specific measured variables is switched on or off in the operating menu: $\frac{1}{2}$

 $(\rightarrow \blacksquare 16)$

5.3.1 Parameter selection: Outputs

The monitoring-specific parameters listed below can be assigned to the outputs for continuous transmission to a Condition Monitoring system.

Some parameters are only available if the "Heartbeat Monitoring" function is enabled in the measuring device.

Parameter	Description	Value range
Noise 1)	This parameter indicates the degree to which the differential signal from both measuring electrodes is dispersed.	0 to +3.0 · 10 ⁺³⁸
Coil current shot time	Rise time of coil current for buildup of magnetic field	2 to 500 ms
Reference electrode potential against PE	Voltage of reference electrode based on potential of measuring tube	-30 to +30 V

1) Only available if the "Heartbeat Monitoring" function is enabled in the measuring device

5.4 Heartbeat Verification

It is not necessary to commission the **Heartbeat Verification** function. The configuration (factory reference) required as part of **Heartbeat Verification** is recorded during calibration at the factory and is permanently stored in the measuring device. When verifying in the application, the current situation of the measuring device is compared against this factory reference.

It is advisable to perform an initial verification when commissioning the measuring device or directly after activating the **Heartbeat Verification** function and to save the results as the initial situation in the life cycle of the measuring device ($\rightarrow \stackrel{\triangle}{=} 16$).

5.4.1 Recording of customer and location

It is possible to manually record reference data relating to the customer and the location. If this function is used, these reference data appear in the verification report.

Reference data are recorded in the operating menu:

- "Setup → Advanced setup → Heartbeat setup → Heartbeat base settings → Customer"
- "Setup → Advanced setup → Heartbeat setup → Heartbeat base settings → Location"
- "Expert → Diagnostics → Heartbeat → Heartbeat base settings → Customer"
- "Expert → Diagnostics → Heartbeat → Heartbeat base settings → Location"

Operation Proline Promag 100

6 Operation

6.1 Heartbeat Diagnostics

The diagnostics functions are part of the basic features of Proline flowmeters.

For more information on diagnostics, see the "Diagnostics and troubleshooting" section of the Operating Instructions.

6.2 Heartbeat Monitoring

Activating/deactivating the monitoring function

Once the device has been commissioned successfully, the continuous transmission of monitoring-specific measured variables to the outputs is switched on or off in the operating menu:

- "Setup → Advanced setup → Heartbeat setup → Heartbeat monitoring"
- "Expert → Diagnostics → Heartbeat → Heartbeat monitoring"

6.3 Heartbeat Verification

6.3.1 Initial verification

It is advisable to perform an initial verification when commissioning the measuring device and to save the results as the initial situation in the life cycle of the measuring device.

6.3.2 Product features

For basic information on the product features of **Heartbeat Verification**($\Rightarrow \triangleq 8$). Refer to this section of the manual before continuing device operation.

6.3.3 Operation – performing a verification

Verification is performed on demand and started in the operating menu or via the Verification-DTM.

Access via the operating menu and Web server:

- "Diagnostics → Heartbeat → Performing verification"
- "Expert → Diagnostics → Heartbeat → Performing verification"

Access via FieldCare DTM:

"Heartbeat \rightarrow Performing verification"

Measurement is interrupted briefly while the verification is being carried out. The output of measured values resumes; in the meantime, a "last valid value" is output. The interruption lasts for a maximum of 2 to 7 minutes, depending on the sensor type. The interruption to operation is indicated by a diagnostic message as well as a "Function check" status signal, see also "Diagnostic behavior" section.

Diagnostic behavior

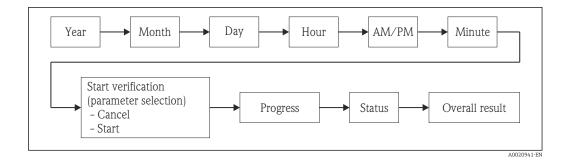
A diagnostic event signals that verification is being performed: Event "302 – Device verification active". The status signal switches to "C – Function check".

Factory setting: Warning. The output of measured values resumes; in the meantime, a "last valid value" is output. The signal outputs and totalizers are not affected.

The diagnostic behavior can be reconfigured by the user if necessary: If set to alarm, measured value output is interrupted, and the signal outputs and totalizers adopt the defined alarm condition.

Proline Promag 100 Operation

For additional information on the diagnostic behavior, see the "Diagnostics and troubleshooting" section in the Operating Instructions.


Terminal assignment

Parameters for "Performing verification/Start"

Parameter	Description	Selection/ User entry	Default setting
Year	Entry for date and time (field 1): Year verification is performed	999	10
Month	Entry for date and time (field 2): Month verification is performed	 January February March April May June July August September October November December 	January
Day	Entry for date and time (field 3): Day verification is performed	131	1
Hour	Entry for date and time (field 4): Hour verification is performed	• 112 • 023	12
AM/PM	Entry for date and time (field 5): Morning or afternoon	■ AM ■ PM	AM
Minute	Entry for date and time (field 6): Minute verification is performed	059	0
Start verification	Start the verification	Cancel Start	Cancel
Progress	The progress is displayed	0100 %	0
Status	 Verification status Done: The last verification is finished and the device is ready for the next verification Busy: The verification is running Failed: A precondition for performing the verification is not met. The verification cannot be started (e.g. due to unstable process parameters) Not done: A verification has never been performed on this measuring device 	DoneBusyFailedNot done	Done
Overall result	 Overall result of the verification Failed: At least one test group was outside the specifications. Passed: All verified test groups complied with the specifications (result "Passed"). The overall result is also "Passed" if the result for an individual test group is "Check not done" and the result for all other test groups is "Passed". Check not done: No verification was performed for any of the test groups (result for all test groups is "Check not done"). 	■ Failed ■ Passed ■ Check not done	Check not done

Performing the verification: sequence of steps

Operation Proline Promag 100

The entry for the date and time is saved in addition to the current operating time and the results of the verification and also appears in the verification report.

6.3.4 Verification results

The results of the verification can be called up via the operating menu or via the FieldCare Verification-DTM.

Access via the operating menu and Web server:

- "Diagnostics → Heartbeat → Verification results"
- "Expert \rightarrow Diagnostics \rightarrow Heartbeat \rightarrow Verification results"

Access via FieldCare DTM:

"Heartbeat → Verification results"

Parameter/Test group verification results

Parameter/Test group	Description	Selection/ User entry/ Partial result	Default setting
Date/time	Entry for date and time in real time	User entry	0
Verification ID	Consecutive numbering of the verification results in the measuring device ¹⁾	-	-
Operating time	Operating time of the measuring device at the time of verification ¹⁾	-	-
Overall result	Overall result of the verification	FailedPassedCheck not done	Check not done
Sensor	Result for sensor test group	FailedPassedCheck not done	Check not done
Sensor electronic module	Result for sensor electronic module test group	FailedPassedCheck not done	Check not done
I/O module	Result for I/O module test group I/O module monitoring For current output: Accuracy of the current	■ Failed ■ Passed ■ Check not done ■ Limit value for current output: ■ ±1 % ■ ±100 µA	Check not done

1) Is automatically recorded by the measuring device $\ensuremath{\mathsf{I}}$

Proline Promag 100 Operation

Classification of results

- Failed: At least one individual test in the test group was outside the specifications.
- Passed: All individual tests in the test group complied with the specifications. The result is also "Passed" if the result of an individual test is "Check not done" and the result of all other tests is "Passed".
- Check not done: No test has been performed for this test group.

Classification of overall results

- Failed: At least one test group was outside the specifications.
- Passed: All verified test groups complied with the specifications (result "Passed"). The overall result is also "Passed" if the result for an individual test group is "Check not done" and the result for all other test groups is "Passed".
- Check not done: No verification was performed for any of the test groups (result for all test groups is "Check not done").

Test groups

- Sensor: Electrical components of the sensor (signals, circuits and cables)
- Sensor electronic module: Electronic module for exciting the sensor and converting
- I/O electronics module: Results of input and output modules installed at the measuring device

For more information on the test groups and individual tests ($\rightarrow \equiv 19$).

Interpretation

The results for a test group (e.g. sensor) contain the result of several individual tests. All the individual tests must be passed for the test group to pass. The same applies for the overall result: All the test groups must pass for the overall result to be "passed". Information on the individual tests is provided in the verification report and in the detailed verification results which can be accessed via the Verification-DTM.

6.3.5 Detailed verification results

The detailed verification results and process conditions at the time of the verification can be accessed via the FieldCare Verification-DTM.

- Verification results: "VerificationDetailedResults → VerificationSensorResults"
- ullet Process conditions: "VerificationDetailedResults o VerificationActualProcessConditions"

The detailed verification results listed below provide information on the results of the individual tests within a test group.

Parameters for "Detailed verification results"

Individual test	Description	Result/limit value
"Sensor" test group		
Coil current shot time	Monitoring of symmetry in the exciter circuit for coil current shot times while both field polarities are changed	No value range Passed / Failed
Coil hold voltage	Monitoring of symmetry in holding voltages of exciter circuit for driving the coil current for both field polarities	No value range Passed / Failed
Coil current	Monitoring of coil current at input/output	No value range Passed / Failed
"Sensor electronic module" test group		
Reference voltage	Monitoring of reference voltages in flowmeter circuit and exciter circuit	No value range Passed / Failed

Operation Proline Promag 100

Individual test	Description	Result/limit value
Linearity of electrode signal amplifier	Monitoring of flowmeter circuit with regard to gain and linearity	No value range Passed / Failed
Offset electrode signal amplifier	Monitoring of flow measurement amplifier with regard to zero point	

Furthermore, the current process conditions at the time of verification are recorded, thereby improving the comparability of the results.

Process conditions

Process conditions	Description, value range
Verification value conductivity	Actual measured value for medium conductivity (if switched on)
Process temperature verification value	Actual measured value for medium temperature (if available)
Verification value volume flow	Actual measured value for volume flow
Electronic temperature	Current measured value for the electronic temperature in the transmitter

6.3.6 Verification report

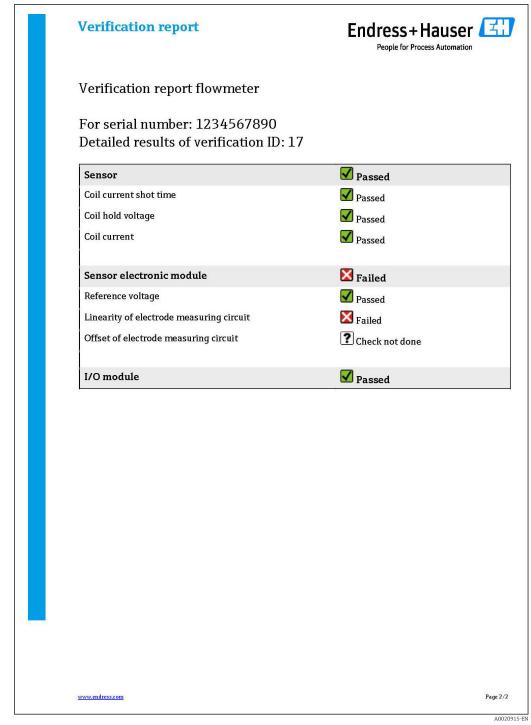
The results of the verification can be documented in the form of a verification report using a Web server or the FieldCare asset management software. The verification report is created on the basis of the data set saved in the measuring device after verification. As the verification results are automatically and uniquely identified with the verification ID and the operating time, they are suitable for the traceable documentation of the verification of flowmeters.

Creating the verification report

 $(\rightarrow \triangleq 24)$

Content of the verification report

The verification report is a two-page report. The first page contains information to identify the measuring point and the verification result and confirms that verification has been performed.


- Customer: Customer reference
- Device information: Information on the place of operation (tag) and the current configuration of the measuring point. This information is managed in the measuring device and included in the verification report.
- Calibration: Information on the calibration factor and zero point setting for the sensor.
 To ensure that the measuring device complies with the factory specification, these values must correspond to those of the last calibration or repeat calibration.
- Verification information: The operating time and verification ID are used to uniquely assign the verification results for the traceable documentation of the verification. The manual entry for the date and time is saved in addition to the current operating time in the measuring device and also appears in the verification report.
- Verification results: Overall result of the verification. The verification is only passed if all
 the test groups pass. The results for the test groups are indicated on the second page of
 the report.
- Validity Disclaimer: As a prerequisite for the validity of the verification report, the **Heartbeat Verification** function must be activated on the measuring device concerned and must have been performed by an operator tasked to carry out this job by the customer. Alternatively, an Endress+Hauser service technician or a service provider authorized by Endress+Hauser can be tasked with performing the verification.

Proline Promag 100 Operation

Verification report	Endress + Hauser People for Process Automation
Verification report flo	owmeter
Customer	Mr. Smith
Device information	
Location Location 14	Device tag M-745
Module name Promag P	Nominal diameter DN25
Device name Promag 100	Order code 5P1B25-725
Serial number 1234567890	Firmware version 01.00.07
Calibration	
Calibration factor 1.15	Zero point 10
Verification information	
Operating time 12d15h32min12 s	Date/time 01.12.2010/12:00
Verification ID 17	
Verification results	
Overall result*	X Failed
Detailed results	See next page
*Overall result: Result of the com	nplete device functionality test via Heartbeat Technology
Notes	
Validity of the verification report ■ For devices with the Heartbeat	Verification enabled software option
Validity of the verification report For devices with the Heartbeat For verifications, carried out by provider	

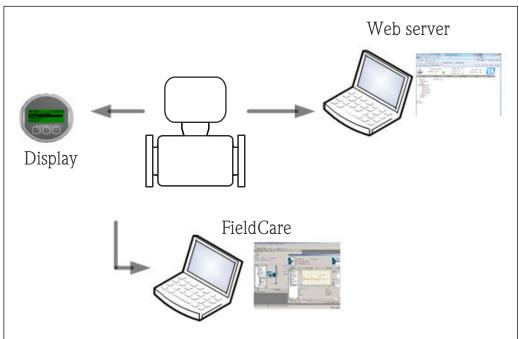
■ 2 Verification report (Page 1)

Operation Proline Promag 100

■ 3 Verification report (Page 2)

Data administration using web server and FieldCare verification DTM ($\Rightarrow \; \stackrel{\textstyle \triangle}{=} \; 24)$

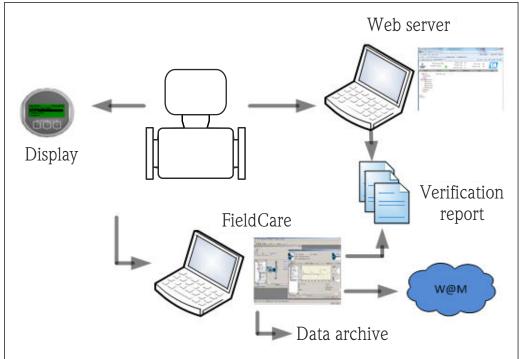
Proline Promag 100 Function


7 Function

7.1 Self-monitoring using Heartbeat Technology

The Heartbeat Technology function is based on reference values that are recorded during the factory calibration, or on series-specific limit values. Device-internal parameters (measuring points) that are correlated with flow measurement (secondary measured variables, comparative values) are recorded during the calibration. The reference values for these parameters are stored permanently in the measuring device and act as the basis for Heartbeat Technology and particularly for the **Heartbeat Verification** function integrated in the measuring device. Throughout the life cycle of the flowmeter, the **Heartbeat Verification** function checks whether the measuring points deviate from the reference condition defined at the time of the calibration and indicates if the deviation is outside the factory specification. The validity of the testing method is additionally ensured by redundant components and signal feedback (feedback loop). This ensures that any component drift is detected.

7.2 Heartbeat Technology - integration


The Heartbeat Technology function is accessible via all the operating interfaces.

A0020243-EN

In addition, it is possible to access the function via the system integration interface, allowing the device to be used without onsite presence in the field. Via the process control system or asset management system, it is possible to periodically check the measuring point with a minimum amount of effort.

Function Proline Promag 100

A0020244-EN

The creation of verification reports is supported by both the Web server integrated in the measuring device and Endress+Hauser's FieldCare asset management software. The FieldCare DTM module for verification also offers the possibility of archiving the verification results and reports to create traceable documentation.

W@M (Web-enabled asset management) from Endress+Hauser is an open information system for lifecycle management – device documentation and administration: project configuration, system integration, operation, maintenance and repair.

7.3 Heartbeat Verification – data management

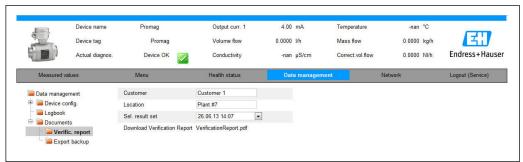
The results of a **Heartbeat Verification** are saved as a non-volatile parameter set in the measuring device memory.

Eight storage areas are available for parameter sets.

New verification results overwrite older data on a "first in – first out" basis.

The results can be documented in the form of a verification report via the Web server and Endress+Hauser's FieldCare asset management software. In addition to the option of printing out the results in a verification report, FieldCare also offers a DTM for archiving the results of the verification. Furthermore, with FieldCare it is also possible to export data from these archives and to analyze trends in the verification results (line recorder function). For details see the "Description of the Verification-DTM" section.

7.3.1 Data management using web server


Print verification report

Using the web server, the menu for printing the verification reports can be accessed via the "Data management" tab. The information on "Customer" and "Location" can be entered in the relevant areas. The information entered here appears in the verification report.

In the "Select result dataset" area, the desired data set with verification results can be selected; verification data sets are referenced by time stamp in the drop-down menu.

Proline Promag 100 Function

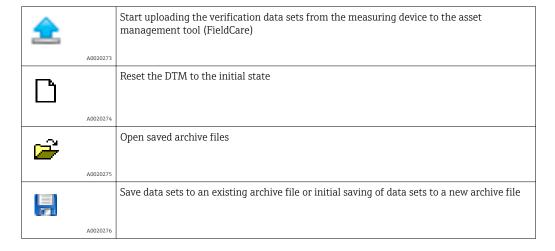
If you select "VerificationReport.pdf", a verification report is generated in PDF format.

A0020878-EN

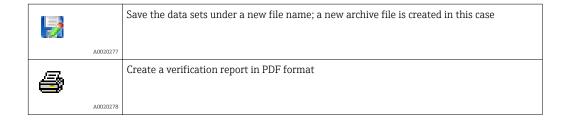
Export of verification results

The verification results (raw data) can be exported to a CSV file using the "Backup export \rightarrow Export parameter" function. Clicking on "Parameters.csv" generates a file in CSV format. This format can be easily converted to a spreadsheet.

A0020886-E

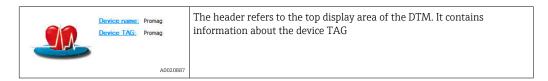

7.3.2 Data management with Verification DTM

Description

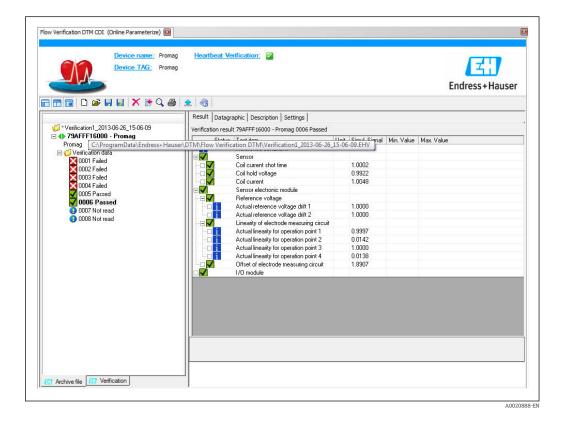

A special DTM for **Heartbeat Verification** is also available in addition to the standard device DTM. This Verification-DTM offers advanced capabilities for performing the verification and managing the results.

Basic functions

The following basic functions are provided:



Function Proline Promag 100

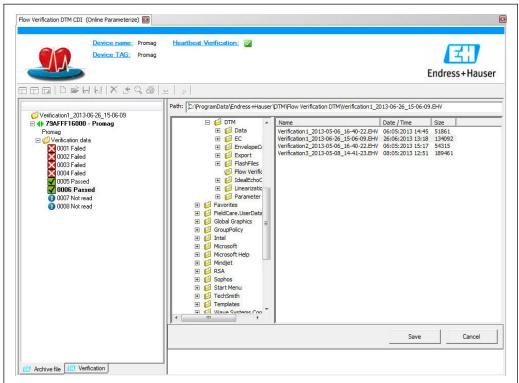

DTM header

The following basic functions are provided:

"Upload" function

Upload the data from the measuring device to the asset management software. This is initiated via the $extbf{ extit{de}}$ icon. This function transmits selected data sets, which are saved in the measuring device, to the asset management software and visualizes them.

Verification results


Details for the verification results are displayed in the "Data area". The data area is split into three tabs:

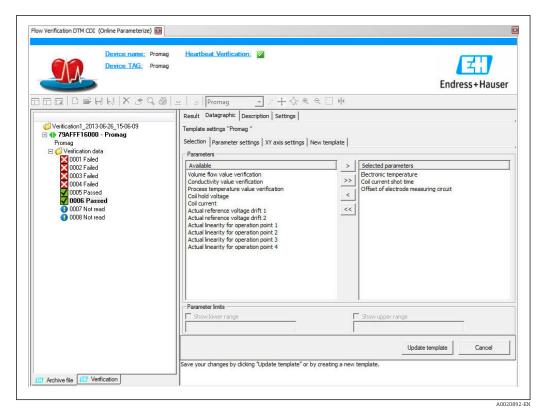
- "Results": Status, test group and detailed results including limit values
- "Data graphic": Visualization of results as a trend curve
- "Description": Additional descriptions and information entered by the user

Proline Promag 100 Function

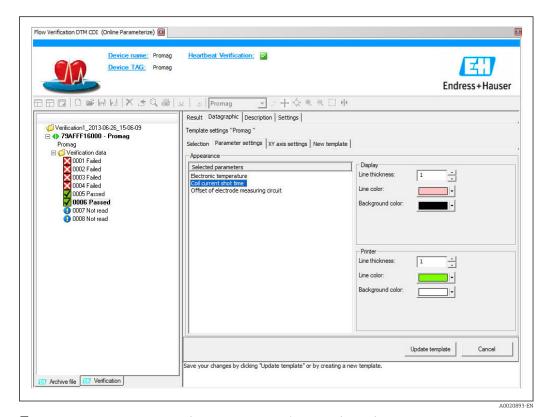
Saving to an archive file

Once uploaded, the data can be saved to an archive file. This is initiated via the licons, and a file with the extension ".EHV" is generated. This file is used to archive the data. It can be read and interpreted by every asset management system with an installed Verification-DTM and is therefore also suitable for analysis by a third party (e.g. Endress +Hauser service organization).

A0020890-EN

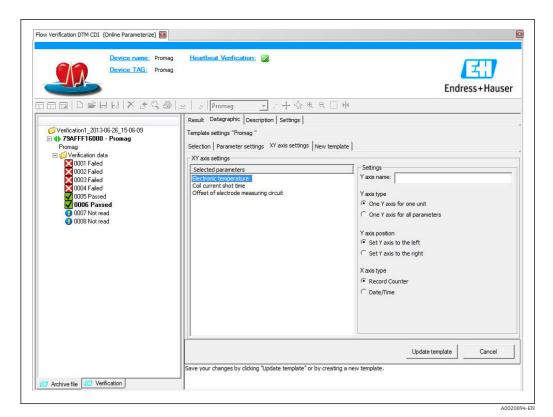

Opening archive files

Archive files that are already available can be opened via the function. Here the archive data are loaded in the Verification-DTM.

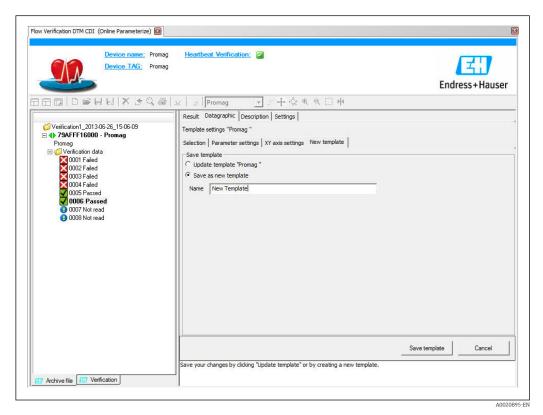

Visualization and trend analysis

The verification data can be visualized in the "Data graphic" tab in the data area. The data saved in the archive are visualized as a graph over time. For this purpose, any of the data available can be selected.

Function Proline Promag 100

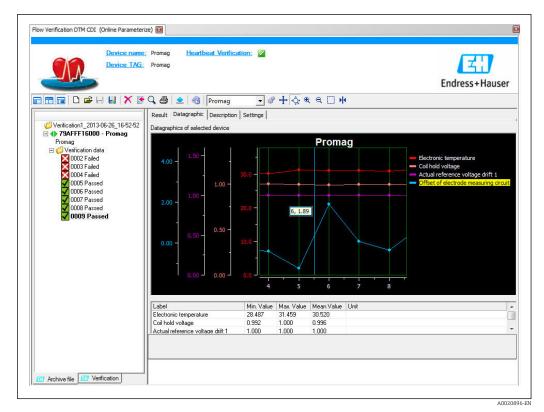


 \blacksquare 4 "Selection": Select the desired parameters using the parameter list



 \blacksquare 5 "Parameter settings": Assign the properties for visualization in the graph

Proline Promag 100 Function



■ 6 "Y-axis settings": Assign the parameters to the y-axis

■ 7 "New template, update template": Adds the selected parameter configuration to the template; "New template, save as new template": Saves the selected parameter configuration under a new template name

Function Proline Promag 100

■ 8 "Trend visualization": Template shows the data in chronological order; the data points are referenced by the verification ID (X-axis), the Y-axis is displayed as defined in the configuration

Creating a verification report

A data set can be selected using the **a** function and used to create a verification report.

7.4 Module

Self-monitoring of the measuring device using Heartbeat Technology comprises the measuring chain from the sensor to the outputs. The table below lists the individual modules (test groups) and possible and recognized causes of errors.

Sensor module

Sensor module/test group	Test and recognized causes of errors
Sensor	Electrical testing of excitation system Testing of coil current with regard to leak current Testing of symmetry of coil current shot times and their required voltages for both field polarities
	Establishing an external magnetic field Impermissible leak current caused by moisture inside the sensor

Proline Promag 100 Function

Electronic module

Electronic module/test group	Test and recognized causes of errors
Sensor electronic module	Testing Monitoring of zero point, gain and linearity of measuring circuit in sensor electronic module Redundant reference voltage monitoring for measuring and exciter circuit in sensor electronic module
	Detection of drift and aging of electronic components due to environmental or process influences (temperature, vibration etc.)
I/O module	Signal feedback for the first current output. Detection of drift and aging of analog output module due to environmental or process influences (temperature, radiation, vibration etc.)

Use cases Proline Promag 100

8 Use cases

8.1 Diagnostics

For information about the standard functions, see the "Diagnostics and troubleshooting" section of the Operating Instructions.

8.2 Condition Monitoring

8.2.1 Definition Condition Monitoring

(→ 🖺 8)

8.2.2 Focus and target applications

Condition Monitoring focuses on measured variables which indicate a change in the performance of the measuring device brought about by process-specific influences. There are two difference categories of process-specific influences:

- Transient process-specific influences that impact the measuring function directly and therefore result in a higher level of measuring uncertainty than would normally be expected (e.g. Measurement of multiphase fluids). These process-specific influences generally do not affect the integrity of the measuring device but do impact measuring performance temporarily.
- Process-specific influences which only impact the integrity of the sensor over the medium term but which also bring about a gradual change in the measuring performance. These influences also affect the integrity of the measuring device on the long term.

Flowmeters with **Heartbeat Monitoring** offer a range of parameters that are particularly suitable for monitoring specific, application-related influences. These target applications are:

- Magnetite-containing media
- Multi-phase fluids (gas content in liquid fluids)
- Applications in which the sensor is exposed to a programmed amount of wear
- Applications with cathodic protection systems
- Applications with pipes that are not grounded

The results of Condition Monitoring must always be interpreted in the context of the application. The parameters available with **Heartbeat Monitoring**, however, display a specific behavioral pattern for the applications listed above. This is explained in greater detail in the following chapters.

8.3 Heartbeat Monitoring

The benefits of **Heartbeat Monitoring** are in direct correlation with the recorded data selection and their interpretation. Good data interpretation is critical for deciding whether a problem has occurred and when and how maintenance should be scheduled/performed (good knowledge of the application is required). The elimination of process effects that cause misleading warnings/interpretation must also be ensured. For this reason it is important to compare the recorded data against a process reference.

Proline Promag 100 Use cases

8.3.1 Overview

This section describes the interpretation of certain monitoring-specific parameters in the context of the application.

Monitoring parameter	Possible reasons for deviation
Noise	A change can be an indicator of multi-phase media (gas content in liquid media or a change in the solids content of the medium) or changing electrical conductivity. This value allows conclusions to be drawn about the process.
Coil current shot time	At constant process temperatures, a change can indicate a possible buildup of magnetite or an increase in the magnetite content of the medium. Strong external magnetic fields influence this value too.
Reference electrode potential against PE	This diagnostic value describes the voltage between the medium and the protective ground. This value is of significance if the measuring system with the reference electrode contacting the medium is disconnected from the protective ground.

8.4 Heartbeat Verification

8.4.1 Scope of the test

Heartbeat Verification uses the self-monitoring function of the Proline flowmeters to check the measuring device functionality. During the verification process, the system checks whether the measuring device components comply with the factory specifications. Both the sensor and the electronic modules are included in the test.

Compared to flow calibration, which incorporates the entire measuring device and assesses the flow measuring performance directly (primary measured variable), **Heartbeat**Verification checks the function of the measuring chain from the sensor to the outputs.

Here, the function checks device-internal parameters that are correlated with flow measurement (secondary measured variables, comparative values). The check is based on reference values that were recorded during the factory calibration.

8.4.2 Interpreting and using the verification results

If a verification is passed, this confirms that the comparison values that are checked are within the factory specification and that the measuring device is working correctly. At the same time, the zero point and calibration factor of the sensor are documented and traceable in the verification report. To ensure that the measuring device complies with the factory specification, these values must correspond to those of the last calibration or repeat calibration.

Confirmation of compliance with the flow specification can only be achieved through validation of the primary measured variable (flow) by means of recalibration or proving.

Recommended course of action if the result of a verification is "Failed":

If the result of a verification is "Failed", it is advisable to begin by repeating verification. This applies in particular if the individual tests of the "Sensor" test group are affected, as a process-specific influence is then possible.

In this case, it is advisable to compare the current process conditions to those of a previous verification ($\Rightarrow ext{ } ext{$

Stabilize or stop flow, ensure that process temperature is stable, drain the sensor if possible.

Use cases Proline Promag 100

Recommended remedial action if the result of the verification is "Failed":

 Calibrate the measuring device
 The calibration has the advantage that the "as found" measuring device state is recorded and the actual measured error is determined.

Direct remedial measures

Take remedial action on the basis of the verification results and the diagnostic information of the measuring device. Narrow down the possible cause of the error by identifying the test group that failed the verification.

Test group	Possible cause of error and recommendation
Sensor	Electrical components of the sensor (signals, circuits and cables): ■ Wiring for remote installation ■ Grounding of sensor ■ Defect in the sensor → replace
Sensor electronic module	Electronic module for exciting the sensor and converting Electronic module drift or defect → replace
I/O electronic module	Results of all the input and output modules installed on the measuring device ■ Check wiring and connections, check the load (current output) ■ I/O module drift or defect → replace

For more information on other possible causes and remedial measures, see the "Diagnostics and troubleshooting" section of the Operating Instructions.

Proline Promag 100 Glossary and terminology

9 Glossary and terminology

Measuring device	Flowmeter in its entirety
Sensor	Entire sensor system. This comprises the measuring tube, the electrodynamic pickups, the excitation system, the wiring, the temperature sensors etc. inside the sensor housing.
FieldCare	Software-based asset management system from Endress+Hauser. FieldCare is used for the documentation and analysis of the verification results.
In-situ	An in-situ check implies that the measuring device does not need to be removed from the application in order to perform the specific check. A reference condition can be established during the in-situ check (e.g. measuring tube filled with water or empty pipe condition). The test is usually performed on demand (e.g. Heartbeat Verification).
Internal references	Heartbeat Technology based on references that are incorporated into the measuring device (flowmeter electronics). References are technology-specific.
Flow calibration	This is the process which establishes a relation between the values of a flow standard (also known as a calibration rig) with its known measuring uncertainties, and the corresponding values of the flowmeter with its associated measuring uncertainties.
	Calibration may be performed with or without adjustment of the calibration factor.
Verification	This involves proving that a flowmeter complies with manufacturer specifications regarding functionality. It also serves as confirmation that the technical characteristics of the measuring device have been implemented, thereby increasing confidence in the measured variable (flow).
	Verification must not be confused with calibration.
Validation	A verification, whereby the manufacturer specifications are deemed adequate for the intended application.
Heartbeat Verification	A dedicated embedded instrumentation, the objective of which is to monitor the functionality of different components of the flowmeter in accordance with manufacturer specifications. It uses internal diagnostic tools to check flowmeter functionality based on factory references and corresponding specifications.
	Heartbeat Verification is not a calibration system.
Verification report	Document in which the results of the Heartbeat Verification are recorded.
Data set	A data set permanently saves a collection of information that comprises the verification results, including the ID, time stamp, device parameters etc. A range of Heartbeat Verification data sets are stored internally in Proline flowmeters.
Metrological traceability	Characteristic of a measurement result based a reference using a documented and unbroken chain of calibrations.
	Each of these calibrations must be linked either to an international measurement standard or a national measurement standard for the intended quantity, in order to have a measuring uncertainty, a clear measurement procedure, accredited technical competence, metrological traceability to the SI (international system of units) and defined calibration intervals.
Condition Monitoring	The concept of Condition Monitoring is based on regular or continuous recording of the system status by measuring and analyzing meaningful measured variables. For the purpose of Condition Monitoring, Heartbeat Monitoring continuously provides measured variables in an external condition monitoring system.

Registered trademarks Proline Promag 100

10 Registered trademarks

HART®

Registered trademark of the HART Communication Foundation, Austin, USA

PROFIBIIS®

Registered trademark of the PROFIBUS User Organization, Karlsruhe, Germany

Modbus®

Registered trademark of SCHNEIDER AUTOMATION, INC.

EtherNet/IPTM

Trademark of ODVA, Inc.

Microsoft®

Registered trademark of the Microsoft Corporation, Redmond, Washington, USA

Applicator®, FieldCare®, Field XpertTM, HistoROM®, Heartbeat TechnologyTM Registered or registration-pending trademarks of the Endress+Hauser Group

