BA 034D/06/en/03.00 No. 50085726 CV 5.0 *prowirl 77* Vortex Flow Measuring System (Version: PFM)

Operating Manual

Switch settings for PFM version (for copying)

The dip switches shown above are to be set according to the application (gas/liquid) and the nominal diameter of the instrument.

Switch settings for liquid measurement

		DIP switch number							
Nominal diameter	1	2	3	4		5	6	7	8
DN 15	1	0	0	1		0	1	0	0
DN 25, DN 40	1	0	1	0		1	1	1	0
DN 50	1	0	1	1		1	1	1	0
DN 80	0	0	1	0		1	1	1	0
DN 100	0	0	1	0		1	1	1	0
DN 150300	0	0	1	1		1	1	1	0

Switch settings for steam and gas measurement

		DIP switch number							
Nominal diameter	1	2	3	4		5	6	7	8
DN 15, DN 25	1	0	0	0		0	0	0	0
DN 40	0	0	0	0		0	0	0	0
DN 50	0	0	0	0		0	0	1	0
DN 80	0	1	1	1		0	0	1	0
DN 100, DN 150	1	0	0	1		0	1	0	0
DN 200300	1	1	1	0		0	1	1	0

Contents

1	Safety Instructions	5
	1.1 Correct usage	5 5 5
	operation	6 6 6
2	System Description	7
	2.1 Prowirl 77 measuring system (PFM version)	7
3	Mounting and Installation	9
	 3.1 General information	9 10 13 14
4	Electrical Connection	15
	4.1 Connecting the transmitter4.2 Wiring diagram	15 15
5	Switch Settings	17
6	Trouble-shooting	19
7	Dimensions and Weights	21
	 7.1 Dimensions Prowirl 77 W 7.2 Dimensions Prowirl 77 F 7.3 Dimensions Prowirl 77 H 7.4 Dimensions flow conditioner (DIN) 7.5 Dimensions flow conditioner (ANSI) 	21 22 24 25 26
8	Technical Data	27
	8.1 Measuring ranges (sensor)	32
9	Index	33

Registered Trademarks

HART®

Registered trademark of the HART Communication Foundation, Austin, USA

KALREZ[®], VITON[®] Registered trademarks of E.I. Du Pont de Nemours & Co., Wilmington, USA

GYLON[®] Registered trademark of Garlock Sealing Technologies, Palmyra, NY, USA

INCONEL[®] Registered trademark of Inco Alloys International, Inc., Huntington, USA

1 Safety Instructions

1.1 Correct usage

- Prowirl 77 is only to be used for measuring the volumetric flow rate of saturated steam, superheated steam, gases and liquids.
- The manufacturer assumes no liability for damage caused by incorrect use of the instrument.
- Instruments which are ordered with hazardous area approvals are supplied with separate "Ex documentation", which is an integral part of this Operating Manual. The instructions and connected loads provided in this supplement must be closely observed! An appropriate pictogram is shown on the front page of the Ex documentation according to the approval given and the test centre.

1.2 Dangers and notes

All instruments are designed to meet state-of-the-art safety requirements, have been tested, and have left the works in an operationally perfectly safe condition. The devices were developed according to EN 61010 "Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory Procedures". A hazardous situation may occur if the flowmeter is not used for the purpose it was designed for or is used incorrectly. Please carefully note the information provided in this Operating Manual indicated by the pictograms:

Warning!

A "warning" indicates actions or procedures which, if not performed correctly, may lead to personal injury or a safety hazard.

Please strictly observe the instructions supplied and proceed carefully.

Caution!

A "caution" indicates actions or procedures which, if not performed correctly, may lead to faulty operation or destruction of the instrument. Please strictly observe the respective instructions.

Note!

A "note" indicates actions or procedures which, if not performed correctly, may indirectly affect operation or lead to an unexpected instrument response.

1.3 Operational safety

- The Prowirl 77 measuring system fulfills the general safety regulations according to EN 61010 and the interference immunity regulations (EMC) according to European standard EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 as well as NAMUR recommendations.
- Housing ingress protection IP 67 according to EN 60529.

1.4 Personnel for installation, start-up and operation

- Mounting, electrical installation, start-up and maintenance of the instrument may only be carried out by trained personnel authorised by the operator of the facility. Personnel must absolutely and without fail read and understand this Operating Manual before carrying out its instructions.
- The instrument may only be operated by personnel who are authorised and trained by the operator of the facility. All instructions in this manual are to be observed.
- In case of corrosive fluids, the compatibility of the material of all wetted parts such as meter body, bluff body, sensor and gaskets is to be verified. This also applies to fluids used to clean the Prowirl 77 flowmeter. Endress+Hauser will be pleased to provide any help required.
- The installer has to make sure that the measuring system is correctly wired up according to the wiring diagrams. The measuring system is to be grounded.

There is no longer any contact protection once the housing cover is removed.

Please observe all provisions valid for your country pertaining to opening, repair and installation of electrical devices.

1.5 Repairs, dangerous chemicals

The following procedures must be carried out before a Prowirl 77 is sent to Endress+Hauser for repair:

- A note must be enclosed with the instrument, containing a description of the fault, the application and the chemical and physical properties of the fluid being measured.
- Remove all residue which may be present. Pay special attention to the gasket grooves and crevices where fluid may be present. This is especially important if the fluid is dangerous to health, e.g. corrosive, poisonous, carcinogenic, radioactive, etc.
- No instrument should be returned to us without all dangerous material being removed first.

Incomplete cleaning of the instrument may result in waste disposal requirements or cause harm to personnel (burns, etc.). Any costs arising from this will be charged to the operator of the instrument.

1.6 Technical improvements

The manufacturer reserves the right to modify technical data without prior notice. Your local E+H Sales Office will supply you with all current information and any updates to this Operating Manual.

2 System Description

The Prowirl 77 vortex flowmeter measures the volumetric flow of steam, gases and liquids for fluid temperatures in the range of –200...+400 °C and at nominal pressures up to PN 160 / ANSI class 600. Prowirl 77 measures the volumetric flow at operating conditions.

2.1 Prowirl 77 measuring system (PFM version)

A measuring system consists of:

- Prowirl 77 transmitter in the version "PFM"
- Prowirl 77 W, Prowirl 77 F or Prowirl 77 H body

Fig. 1 Prowirl 77 measuring system

The Prowirl 77 transmitter is available in two other versions:

- Version: "4...20 mA/HART"
- Version: "PROFIBUS-PA"

Operation of those versions is not included in this Operating Manual.

Separate Operating Manuals for those instruments are available on request.

The various Prowirl 77 transmitters can be freely combined with all meter body versions. This guarantees flexibility when matching a complete meter to specific industrial process conditions.

3 Mounting and Installation

3.1 General information

Protection IP 67 (EN 60529)

The instruments fulfil all the requirements for IP 67. The following points must always be observed in order to ensure IP 67 protection after installation in the field or after servicing:

- Housing gaskets must be clean and undamaged when inserted in the gasket groove. The gaskets may need to be dried, cleaned or replaced.
- All housing screws and the housing cover must be firmly tightened.
- The cables used for connecting must have an outer diameter in the specified range.
- The cable gland must be firmly tightened (see Fig. 2).
- The cable must loop down before entering the cable gland to ensure that no moisture can enter (see Fig. 2).
- Any unused cable glands are to be replaced with a plug.
- The protective bushing should not be removed from the cable gland.

Fig. 2 Protection IP 67

Temperature ranges

- The maximum approved ambient and process temperatures must be observed (see page 28).
- Observe also the instructions on piping insulation and mounting position (see page 11).

3.2 Installation

A vortex flowmeter requires a fully developed flow profile as a prerequisite for measuring volume accurately. The following points must therefore be noted when mounting the Prowirl 77 in the pipeline.

Pipe inner diameter

When ordering, ensure that the nominal diameter and pipe schedule (DIN/ANSI/JIS) are correct, since calibration of the flowmeter and therefore the achieveable accuracy of the measuring point are dependent on these specifications.

Inlet and outlet sections

To ensure an undisturbed flow profile, the vortex flowmeter should be mounted upstream of any flow disturbances such as pipe elbows, reducers or valves, otherwise the longest possible section of piping should be between the disturbance and the flowmeter.

The figures on the left show the *minimum* section of straight piping downstream of the disturbance as multiples of the nominal diameter of the pipe in DN. If two or more flow disturbances are located upstream, then the longest inlet section recommended should be used.

There must also be a straight outlet section of sufficient length downstream from the flowmeter to ensure that the vortices are properly developed.

Flow conditioner

With limited space and large pipes, it is not always possible to use the inlet sections given above. In such cases the specially developed perforated plate flow conditioner (see pages 25 and 26) can be fitted as shown on the left.

The flow conditioner is held between two piping flanges and centred with the flange bolts. It reduces the length of the inlet section downstream from flow disturbances to 10 x DN while maintaining full measurement accuracy.

Fig. 3 Inlet and outlet piping requirements

Installation site

The Prowirl 77 can be mounted in any position in the piping. An arrow on the meter body shows the direction of flow.

For measuring liquids in vertical pipes, the meter should be installed in upwards directed flow (Fig. A) to ensure a full pipe.

For horizontal pipelines, positions B, C and D are possible. With hot piping (e.g. steam), position C or D must be selected in order to respect the maximum permissible ambient temperature at the electronics.

For ambient temperature \rightarrow see page 28

Fig. 4 Orientation

Pressure and temperature measurement points

Pressure and temperature measurement points are to be mounted *downstream* of the Prowirl 77 in order to affect vortex formation as little as possible.

Fig. 5 Mounting pressure and temperature sensors

Pipeline insulation wafer/flanged version

Pipeline insulation is often used to prevent energy loss in hot processes.

Caution!

When insulating, ensure that sufficient pipe stand surface area is exposed. The exposed area serves as a radiator and protects the electronics from overheating.

Caution!

Fig. 6 Pipeline insulation wafer/flanged version

Piping insulation high pressure version

The pipe stand must be free from insulation in order to guarantee temperature radiation and therefore to keep the electronics from overheating.

min. 100 mm

Minimum spacing

When servicing or connecting the E+H "Flowjack" simulator, it is necessary to remove the transmitter housing from the housing support.

When installing in the piping, observe the following cable lengths and minimum space:

- Minimum space: 100 mm in all directions
- Cable length required:
 - L + 150 mm

Fig. 8 Minimum spacing for mounting and removing the transmitter housing

Caution!

Removing the transmitter from the pipe stand is to be carried out by E+H service personnel only!

Caution

3.3 Mounting the flowmeter

Caution!

Note the following points before installing the flowmeter:

- Remove all packaging used for transport and protective coverings from the flowmeter before installing the flowmeter in the pipeline.
- Ensure that the inner diameters of the gaskets are identical or larger than those of the meter body and process piping. Gaskets which protrude into the flow affect vortex formation behind the bluff body and lead to inaccurate measurement. Therefore, the gaskets delivered by E+H come with a slightly bigger inner diameter than the measuring pipe.
- Ensure that the direction of the arrow on the meter body agrees with the direction of flow in the pipeline.
- Face-to-face lengths:
 - Prowirl W (wafer version), 65 mm
 - Prowirl F (flanged version) \rightarrow see page 22
 - Prowirl H (high pressure version) \rightarrow see page 24

Mounting Prowirl W

Mounting the wafer is carried out using a mounting set consisting of:

- bolts
- centering rings
- nuts
- washers
- gaskets

3.4 Electronics housing rotation

The electronics housing of Prowirl 77 can be rotated in 90° steps on the pipe stand to put the wiring compartment and the cable gland in the best position.

This is carried out as follows:

- ① Remove the securing screw at the pipe stand (minimum one turn).
- ② Pull out the electronics housing to the mechanical stop and then rotate it to the position required (in 90° steps). Push the housing back into the housing support.
- ③ Fasten the securing screw.

Fig. 10 Rotating the electronics housing

4 Electrical Connection

4.1 Connecting the transmitter

Caution!

- All relevant national installation regulations must be observed.
- When installing an Ex version transmitter, please read the separate Ex documentation supplied.
- The power supply is max. 30 V DC, for the Ex d/XP version max. 36 V DC.

Procedure:

- 1. Unscrew the front cover.
- 2. Loosen the Phillips screws on the upper cover plate and let it swing down.
- 3. Feed the power and signal cables through the cable gland.
- 4. Wire up according to the wiring diagrams shown on this page.
- The wiring pcb slides out forward for easier access to the terminals.
- 5. Replace the cover plate and secure.
- 6. Screw the front cover securely again to the transmitter housing.

4.2 Wiring diagram

Fig. 11 Wiring diagram Prowirl 77 "PFM"

5 Switch Settings

Factory setting

The DIP switch setting is configured for the correct nominal diameter. The application ("gas" or "liquid") is programmed according to the order; if no specification is made, the device is configured for liquids.

Warning!

Instruments which are ordered with hazardous area approvals are provided with separate "Ex documentation". The instructions provided in this supplement must be read before opening any covers.

- 1 Remove the housing cover.
- ② Set the DIP switches according to the application (gas/liquid) and the nominal diameter of the instrument.
- ③ Replace and secure the housing cover.

Fig. 12 Position of the DIP switches

Switch settings for liquid measurement

		DIP switch number								
Nominal diameter	1	2	3	4		5	6	7	8	
DN 15	1	0	0	1		0	1	0	0	
DN 25, DN 40	1	0	1	0]	1	1	1	0	
DN 50	1	0	1	1]	1	1	1	0	
DN 80	0	0	1	0		1	1	1	0	
DN 100	0	0	1	0		1	1	1	0	
DN 150300	0	0	1	1]	1	1	1	0	

Switch settings for steam and gas measurement

		DIP switch number									
Nominal diameter	1	2	3	4		5	6	7	8		
DN 15, DN 25	1	0	0	0		0	0	0	0		
DN 40	0	0	0	0		0	0	0	0		
DN 50	0	0	0	0		0	0	1	0		
DN 80	0	1	1	1		0	0	1	0		
DN 100, DN 150	1	0	0	1		0	1	0	0		
DN 200300	1	1	1	0		0	1	1	0		

6 Trouble-shooting

The Prowirl 77 measuring system operates without the need for maintenance. However, if a fault should occur or incorrect measurements are suspected, then the following instructions will be of help in identifying the cause of and remedying any possible errors.

Warning!

- All local regulations and all safety instructions in this Operating Manual are to be strictly observed when making electrical connections.
- All data and regulations on Ex instruments in the separate Ex documentation are to be strictly observed.

The Prowirl 77 measuring system is fitted with an LED to indicate its operating status. The LED can only be seen once the aluminium cover to the electronics compartment has been removed.

LED does not light up

- Has the wiring been done according to the wiring diagram on page 15?
- Is the polarity of the power supply correct?
- Is there a voltage between 12 V and 30 V (for the Ex d/XP version between 15 V and 36 V) at Terminals 1 and 2? Check the load on the cabling.

No flow signal

- For liquids: Is the pipeline completely filled? The pipeline must always be completely filled to ensure accurate and reliable flow measurement.
- Have all packing material and protective disks been removed from the meter body?

Poor or strongly varying flow signal

- Is the fluid to be measured single-phase and homogeneous? The fluid must be single-phase and homogeneous, and the pipeline always completely filled to ensure accurate and reliable flow measurement. In many cases the measuring result may be improved under poor conditions by taking the following measures:
 - For liquids with low gas content in horizontal pipelines, the flowmeter should be mounted with the head pointing downward or to one side. This improves the measuring signal as the sensor is positioned away from any gas bubbles.
 - For liquids with low solids content, the electronic housing should not be mounted pointing downward.
 - For steam or gas with low liquid content, the electronic housing should not be mounted pointing downward.
- Do the inlet and outlet sections correspond to the mounting instructions on page 10?
- Are gaskets of the correct internal diameter (inner diameter not smaller than the pipeline) and correctly centred?
- Is the static pressure sufficiently large to prevent cavitation at the flowmeter?
- Is the flow within the measuring range of the flowmeter (see "Technical Data" page 27)?

The start of the measuring range depends on the density and viscosity of the fluid which in turn are functions of temperature. With gases and steam, density is also a function of pressure.

- Are pressure pulsations superimposed on the operating pressure (e.g. due to piston pumps)? These pulsations may affect vortex shedding if they have a similar frequency to that of the vortex shedding itself.
- Have the DIP-switches (see page 17) been set correctly according to the nominal diameter and the application (gas / liquid)?
 The settings determine the filter settings and can thus affect the measuring range.

Flow signal under no-flow conditions

Is the flowmeter subject to vibration greater than 1g? In such cases flow may be indicated under no-flow conditions depending on frequency and direction of the vibrations.

Remedial procedure on flowmeter:

 Turn the meter 90° in the pipe. The measuring system is most responsive to vibration in the direction of sensor displacement. Excessive vibration has less effect on the measuring system in other axes.

Remedial procedure with mechanical layout of the installation:

- If the source of the vibration (e.g. pump or valve) can be identified, then decoupling or supporting the source can reduce vibration.
- Supporting the pipeline near the flowmeter.

Maintenance / Calibration

If correctly installed, the meter will operate without maintenance. If installed as a production quality-relevant (ISO 9000) measurement point, the Prowirl 77 can be recalibrated by Endress+Hauser on accredited calibration rigs, traceable according to EN 45001, and supplied with an internationally recognized certificate according to EA (European cooperation for Accreditation of Laboratories).

7 Dimensions and Weights

Note!

The Ex d/XP version has a different housing with seperate wiring department cover and slightly differing dimensions and weights. Please refer to the separate Ex documentation.

7.1 Dimensions Prowirl 77 W

Fig. 13 Dimensions of Prowirl 77 W

For the high/low temperature option, H increases by 40 mm and the weight by approx. 0.5 kg.

D	N	d	D	н	Weight
DIN / JIS	ANSI	[mm]	[mm]	[mm]	[kg]
15	1/2"	16.50	45.0	247	3.0
25	1"	27.60	64.0	257	3.2
40	11⁄2"	42.00	82.0	265	3.8
50	2"	53.50	92.0	272	4.1
80	3"	80.25	127.0	286	5.5
100	4"	104.75	157.2	299	6.5
150	6"	156.75	215.9	325	9.0

For the high/low temperature option, H increases by 40 mm and the weight by approx. 0.5 kg.

DN	Standard	Pressure	d	D	Н	L	Х	Weight
		rating	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
15 / ½"	DIN	PN 40	17.3	95.0				
		Cl. 150	15.7	88.9				
		Cl. 300	15.7	95.0				
		Cl. 150	13.9	88.9	248	200	17	5.0
	ANSI SCHED OU	CI. 300 13.9	95.0					
	JIS SCHED 40	CI. 20K	16.1	95.0				
	JIS SCHED 80	CI. 20K	13.9	95.0				
	DIN	PN 40	28.5	115.0				
		Cl. 150	26.7	107.9				
		Cl. 300	26.7	123.8		200	10	
25 / 1"	ANSI SCHED 80	Cl. 150	24.3	107.9	255		19	7.0
		Cl. 300	24.3	123.8				
	JIS SCHED 40	CI. 20K	27.2	125.0				
	JIS SCHED 80	CI. 20K	24.3	125.0				
	DIN	PN 40	43.1	150				
		Cl. 150	40.9	127				
	ANSI SCHED 40	Cl. 300	40.9	155.6				
40 / 11/2"		Cl. 150	38.1	127	263	200	21	10
	ANSI SCHED OU	Cl. 300	38.1	155.6				
	JIS SCHED 40	CI. 20K	41.2	140				
	JIS SCHED 80	CI. 20K	38.1	140				
		Contir	nued next	page				

DN	Standard	Pressure	d	D	н	L	X	Weight
		rating	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
	DIN	PN 40	54.5	165				
	ANSI SCHED 40	Cl. 150	52.6	152.4				
		Cl. 300	52.6	165	-			
50 / 2"	ANSI SCHED 80	Cl. 150	49.2	152.4	270	200	24	10
3072		Cl. 300	49.2	165	210	200	24	12
	JIS SCHED 40	CI. 10K	52.7	155				
			52.7	155	-			
	JIS SCHED 80	CL 20K	49.2	155				
	DIN	PN 40	82.5	200				
		Cl. 150	78	190.5	-			
	ANSI SCHED 40	Cl. 300	78	210				
		Cl. 150	73.7	190.5	1			
80 / 3"		Cl. 300	73.7	210	283	200	30	20
	IIS SCHED 40	Cl. 10K	78.1	185				
		CI. 20K	78.1	200				
	JIS SCHED 80	CI. 10K	73.7	185				
		CI. 20K	73.7	200				
	DIN	PN 16	107.1	220				
		PN 40	107.1	235	-			
	ANSI SCHED 40	CI. 150	102.4	228.6				
100 / 11		CI. 300	07	204	-	050		
100 / 4"	ANSI SCHED 80	CL 300	97	220.0	295	250	33	27
		CI. 10K	102.3	210	-			
	JIS SCHED 40	CL 20K	102.0	225				
		Cl. 10K	97	210	1			
	JIS SCHED 80	CI. 20K	97	225				
	DIN	PN 16	159.3	285				
		PN 40	159.3	300				
	ANSI SCHED 40	Cl. 150	154.2	279.4				
		Cl. 300	154.2	317.5				
150 / 6"	ANSI SCHED 80	Cl. 150	146.3	279.4	319	300	38	51
		Cl. 300	146.3	317.5	-			
	JIS SCHED 40	CI. 10K	151	280				
		CI. 20K	151	305	-			
	JIS SCHED 80	CL 20K	146.3	280				
		PN 10	140.5	303				63
		PN 16	207.3	340				62
	DIN	PN 25		360	-			68
200 / 8"		PN 40	206.5	375	3/8	300	13	72
20070		Cl. 150		342.9	540	300	43	64
	ANSI SCHED 40	Cl. 300	2027	381				76
	IIS SCHED 40	Cl. 10K	202.1	330				58
		CI. 20K		350				64
		PN 10	260.4	395				88
	DIN	PN 16		405	-			92
		PN 25	258.8	425				100
250 / 10"		PN 40		450	375	380	49	111
	ANSI SCHED 40	CI. 150		406.4				92
		CI. 300	254.5	444.5	-			109
	JIS SCHED 40			400				90 104
		PN 10		430				104
		PN 16	309.7	460				129
		PN 25		485	1			140
300 / 12"		PN 40	307.9	515	305	150	52	158
000/12		Cl. 150		482.6	090	400	33	143
	ANDI SUHED 40	Cl. 300	304.8	520.7				162
	UIS SCHED 40	Cl. 10K	004.0	445				119
		CI. 20K		480				139

Fig. 15 Dimensions of Prowirl 77 H

DN	Standard	Pressure	d	D	Н	L	X	Weight
		rating	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
	DIN	PN 160	17.3	105				7
15 / 1⁄2"	ANSI SCHED 80	Cl. 600	13.9	95.3	288	200	22.4	6
	JIS SCHED 80	CI. 40K	13.9	115				8
		PN 100	28.5	140				11
25 / 1"	DIN	PN 160	27.9	140	205	200	26.4	11
23/1	ANSI SCHED 80	Cl. 600	24.3	124	295	200	20.4	9
	JIS SCHED 80	CI. 40K	24.3	130				10
		PN 100	42.5	170				15
10 / 11/6"		PN 160	41.1	170	303	200	30.0	15
40 / 172	ANSI SCHED 80	Cl. 600	38.1	155.4	505	200	50.5	13
	JIS SCHED 80	CI. 40K	38.1	160				14
		PN 64	54.5	180				17
	DIN	PN 100	53.9	195				19
50 / 2"		PN 160	52.3	195	310	200	32.4	19
	ANSI SCHED 80	CI. 600	49.2	165.1				14
	JIS SCHED 80	Cl. 40K	49.2	165				15
		PN 64	81.7	215				24
	DIN	PN 100	80.9	230				27
80 / 3"		PN 160	76.3	230	323	200	38.2	27
	ANSI SCHED 80	Cl. 600	73.7	209.6				22
	JIS SCHED 80	CI. 40K	73.7	210				24
		PN 64	106.3	250				39
	DIN	PN 100	104.3	265				42
100 / 4"		PN 160	98.3	265	335	250	48.9	42
	ANSI SCHED 80	CI. 600	97	273.1				43
	JIS SCHED 80	CI. 40K	97	240				36
		PN 64	157.1	345				86
	DIN	PN 100	154.1	355				88
150 / 6"		PN 160	146.3	355	359	300	63.4	88
	ANSI SCHED 80	Cl. 600	146.3	355.6				87
	JIS SCHED 80	CI.40K	146.6	325				77

7.4 Dimensions flow conditioner (DIN)

Fig. 16 Dimensions flow conditioner

Explanation of entries in column D1 / D2:

D1:	The flow conditioner	is clamped	between	bolts a	at its	outer	diameter.
D2:	The flow conditioner	is clamped	between	bolts a	at the	e inde	ntures.

	DIN										
DN	Pressure rating	Centering diameter	D1 / D2	S	Weight						
		[mm]			[kg]						
15	PN 1040 PN 64	54.3 64.3	D2 D1	2.0	0.04 0.05						
25	PN 1040 PN 64	74.3 85.3	D1 D1	3.5	0.12 0.15						
40	PN 1040 PN 64	95.3 106.3	D1 D1	5.3	0.3 0.4						
50	PN 1040 PN 64	110.0 116.3	D2 D1	6.8	0.5 0.6						
80	PN 1040 PN 64	145.3 151.3	D2 D1	10.1	1.4 1.4						
100	PN 10/16 PN 25/40 PN 64	165.3 171.3 252.0	D2 D1 D1	13.3	2.4 2.4 2.4						
150	PN 10/16 PN 25/40 PN 64	221.0 227.0 252.0	D2 D2 D1	20.0	6.3 7.8 7.8						
200	PN 10 PN 16 PN 25 PN 40 PN 64	274.0 274.0 280.0 294.0 309.0	D1 D2 D1 D2 D1	26.3	11.5 12.3 12.3 15.9 15.9						
250	PN 10/16 PN 25 PN 40 PN 64	330.0 340.0 355.0 363.0	D2 D1 D2 D1	33.0	25.7 25.7 27.5 27.5						
300	PN 10/16 PN 25 PN 40/64	380.0 404.0 420.0	D2 D1 D1	39.6	36.4 36.4 44.7						

7.5 Dimensions flow conditioner (ANSI)

Explanation of entries in column D1 / D2:

D1: The flow conditioner is clamped between bolts at its outer diameter.D2: The flow conditioner is clamped between bolts at the indentures.

ANSI										
DN	Pressure rating	Centering diameter	D1 / D2	S	Weight					
		[mm]			[kg]					
1⁄2"	Cl. 150 Cl. 300	51.1 56.5	D1 D1	2.0	0.03 0.04					
1"	Cl. 150 Cl. 300	69.2 74.3	D2 D1	3.5	0.12 0.12					
1½"	Cl. 150 Cl. 300	88.2 97.7	D2 D2	5.3	0.3 0.3					
2"	Cl. 150 Cl. 300	106.6 113.0	D2 D1	6.8	0.5 0.5					
3"	Cl. 150 Cl. 300	138.4 151.3	D1 D1	10.1	1.2 1.4					
4"	Cl. 150 Cl. 300	176.5 182.6	D2 D1	13.3	2.7 2.7					
6"	Cl. 150 Cl. 300	223.9 252.0	D1 D1	20.0	6.3 7.8					
8"	Cl. 150 Cl. 300	274.0 309.0	D2 D1	26.3	12.3 15.8					
10"	Cl. 150 Cl. 300	340.0 363.0	D1 D1	33.0	25.7 27.5					
12"	Cl. 150 Cl. 300	404.0 420.0	D1 D1	39.6	36.4 44.6					

8 Technical Data

Application ranges				
Designation	Flow measuring system Prowirl 77, "PFM" version			
Function	Measurement of volumetric flow rate of saturated steam, superheated steam, gases and liquids.			
	Operation a	and system design		
Measurement principle	The Prowirl 77 voi Karman vortex sh	rtex flowmeter operates on the physical principle of edding.		
Measurement system	The "Prowirl 77" instrument family consists of:			
	Transmitter:	Prowirl 77 "PFM" Prowirl 77 "420 mA/HART" Prowirl 77 "PROFIBUS-PA"		
	Sensor:	Prowirl 77 W wafer version, DN 15150		
		Prowirl 77 F flanged version, DN 15300, bigger nominal diameters on request		
		Prowirl 77 H high pressure version, DN 15150		
	Inpu	ut variables		
Measured variables	The average flow frequency of vorte	velocity and volumetric flow rate are proportional to the ex shedding behind the bluff body.		
Measuring ranges	The measuring range is dependent on the fluid and the pipe diameter (see page 32).			
	Full scale value	e – Liquids: v _{max} = 9 m/s – Gas / steam: v _{max} = 75 m/s (DN 15 v _{max} = 46 m/s)		
	Lower range va	alue – depends on the fluid density and the Reynolds number, Re _{min} = 4000, Re _{linear} = 20000		
		DN 15 / 25: $v_{min} = \frac{6}{\sqrt{\rho}}$ m/s, with ρ in $\frac{kg}{m^3}$		
		DN 40300: $v_{min} = \frac{7}{\sqrt{\rho}}$ m/s, with ρ in $\frac{kg}{m^3}$		
	Outp	out variables		
Output signal	PFM; two-wire cur unscaled vortex f	rrent pulse output requency: 0.52850 Hz, pulse width: 0.18 ms		
Galvanic isolation	The electrical cor	nections are galvanicaly isolated from the sensor.		
Measuring accuracy				
Reference conditions	Error limits based	on ISO/DIN 11631:		
	 2030 °C, 22 Calibration rig f 	4 bar traceable to national standards		

Measuring accuracy (continued)					
Measured error	Liquids < 0.75% o.r. for Re >20000 < 0.75% o.f.s. for Re 400020000				
	Gas / steam < 1% o.r. for Re >20000 < 1% o.f.s. for Re 400020000				
	Current output temperature coefficient < 0.03% o.f.s./Kelvin				
Repeatability	≤ ±0.25% 0.r.				
	Operating conditions				
Installation instruction	Any position (vertical, horizontal) For limitations and other recommendations \rightarrow see page 11				
Inlet / outlet sections	Inlet section:minimum 10 x DNOutlet section:minimum 5 x DN				
	For detailed information on the effect of pipe installation and flow disturbances \rightarrow see page 10				
Ambient temperature	-40+60 °C				
	When mounted outside, it is recommended that it is protected from direct sunlight by a sun shade, especially in warm climates with high process temperatures.				
Ingress protection	IP 67 (NEMA 4X)				
Shock and vibration resistance	At least 1 g in every axis over the whole frequency range up to 500 Hz				
Electromagnetic compatibility (EMC)	To EN 50081 Part 1 and 2 / EN 50082 Part 1 and 2 and NAMUR industrial standard				
	Process conditions				
Process temperature	 Fluid: Standard sensor -40+260 °C High/low temperature sensor -200+400 °C Wafer type instruments of sizes DN 100 (4") and DN 150 (6") may not be mounted in orientation according to position B (see page 11) for fluid temperatures above 200 °C. 				
	• Seal: Graphite -200+400 °C Viton - 15+175 °C Kalrez - 20+220 °C Gylon (PTFE) -200+260 °C				
Process pressure	DIN: PN 1040 ANSI: CI 150 / 300 JIS: 10K/20K				
	Pressure-temperature curve of Prowirl 77 W and 77 F:				
	Pressure [bar]				
	50 +				
	40				
	10				
	0 -200 -100 0 100 200 300 400 • C				

Process conditions (continued)				
Process pressure (continued)	Pressure-temperature curve of Prowirl 77 H:			
	Pressure [bar]			
	180 160 140 120 100 100 100 100 100 100 10			
Pressure loss	Dependent on nominal diameter and fluid: Δp [mbar] = coefficient C · density ρ [k α /m ³]			
	Popp In m ³ /h			
	Mechanical construction			
Construction / dimensions	See pages 21 ff.			
Weight	See pages 21 ff.			
Materials:				
Transmitter housing	Powder-coated die-cast aluminium			
Sensor – Wafer / flange	Stainless steel, A351-CF3M (1.4404), complying to NACE MR0175			
– Sensor	 Stainless steel wetted parts: standard and high/low temperature sensor: 316L (1.4435), complying to NACE MR0175 high pressure sensor: A637 (2.4668) (Inconel 718), complying to NACE MR0175 non-wetted parts: CF3 (1.4306) 			
– Pipe stand	Stainless steel, 304L (1.4308)			
Gaskets	Graphite Viton Kalrez Gylon (PTFE)			

Mechanical construction (continued)				
Cable entries	Power supply and signal cable (outputs): Cable entry PG 13.5 (for 511.5 mm cable) or Thread for cable entries: M20 x 1.5 (811.5 mm) $\frac{1}{2}$ " NPT G $\frac{1}{2}$ "			
Process connections	Wafer: Mounting set (see page 13) for flanges: – DIN 2501, PN 1040 – ANSI B16.5, Class 150/300, Sch40 – JIS B2238, 10K/20K, Sch40			
	Flange: - DIN 2501, PN 1040, raised face acc. to DIN 2526 form C - ANSI B16.5, Class 150/300, Sch40/80 (Sch80 DN 15150) - JIS B2238, 10K/20K, Sch40/80 (Sch80 DN 15150)			
	High pressure: - DIN 2501, PN 64160, raised face acc. to DIN 2526 form E - ANSI B16.5, Class 600, Sch80 - JIS B2238, 40K, Sch80			
	User interface			
Operation procedure / Display	8 DIP switches: for setting the nominal diameter and the application LED: for indicating power supply			
	Power supply			
Power supply	1230 V DC (1536 V DC for Ex d/XP version)			
Power consumption	<1 W DC (incl. Sensor)			
Power failure	$LED \rightarrow off$			
	Certificates and approvals			
Ex-approval	Ex i: ATEX/CENELEC II2G, EEx ib IIC T1T6 ATEX II3G, EEx nA IIC T1T6 X FM CI I/II/III Div 1, Groups AG CSA Class I Div 1, Groups AD Class II Div 1, Groups EG Class III Div 1			
	ATEX/CENELEC II2G, EEx d [ib] IIC T1T6 FM CI I/II/III Div 1, Groups AG CSA Class I Div 1, Groups AD Class II Div 1, Groups EG Class III Div 1			
CE mark	By attaching the CE mark, Endress+Hauser confirms that the Prowirl 77 has been successfully tested and fulfills all legal requirements of the relevant EC directives.			
	Order information			
Accessories	 Mounting set for wafer Replacement parts according to separate price list Compart DXF 351 flow computer Flow conditioner 			

Order information (continued)						
Supplementary documentation		 Technical Information Prowirl 77 Operating Manual Prowirl 77 "420 mA/HART" Operating Manual Prowirl 77 "PROFIBUS-PA" System Information Prowirl System Information Prowirl 77 	TI 040D/06/en BA 032D/06/en BA 037D/06/en SI 015D/06/en SI 021D/06/en			
		Additional Ex documentation: ATEX II2G/CENELEC Zone 1 ATEX II3G/CENELEC Zone 2 FM CSA	XA 017D/06/a3 XA 018D/06/a3 EX 016D/06/a2 EX 017D/06/D2			
		External standards and guidelines				
		External Stanuarus anu guiuennes				
EN 60529 EN 61010 EN 50081 EN 50082 NAMUR NACE	Degree of protection (IP ingress protection) Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory Procedures Part 1 and 2 (interference emission) Part 1 and 2 (interference immunity) Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der Chemischen Industrie National Association of Corrosion Engineers					

8.1 Measuring ranges (sensor)

The tables below show the relationship between measuring ranges and frequency ranges for a typical gas (air, at 0 °C and 1.013 bar) and a typical liquid (water, at 20 °C). The column "K-factor" shows a range of typical values for the K-factor of an instrument of the corresponding size and type (wafer or flange). Your E+H Sales Office will be pleased to provide information on flowmeters for your specific application with regard to the process characteristics of the fluid and operating conditions.

Prowirl 77 W (Wafer)							
DN DIN / ANSI	Air (at 0 ℃, 1.013 bar) [m ³ /h]			Water (a [m ³	K-factor [pulses/dm ³]		
	V _{min}	V _{max}	Frequency range (Hz)	V _{min}	V _{max}	Frequency range (Hz)	min./max.
DN 15/½"	4	35	3302600	0.19	7	10.0520	245280
DN 25/1"	11	160	1802300	0.41	19	5.7300	4855
DN 40/11/2"	31	375	1401650	1.1	45	4.6200	1417
DN 50/2"	50	610	1001200	1.8	73	3.3150	68
DN 80/3"	112	1370	75 850	4.0	164	2.2110	1.92.4
DN 100 / 4"	191	2330	70 800	6.9	279	2.0100	1.11.4
DN 150 / 6"	428	5210	38 450	15.4	625	1.2 55	0.270.32

Prowirl 77 F (Flange) Prowirl 77 H (High pressure to DN 150 / 6")							
DN DIN / ANSI	Air (at 0 ℃, 1.013 bar) [m ³ /h]			Water (a [m ³ ,	K-factor [pulses/dm ³]		
	V _{min}	V _{max}	Frequency range (Hz)	V _{min}	V _{max}	Frequency range (Hz)	min./max.
DN 15/½"	3	25	3802850	0.16	5	14.0600	390450
DN 25/1"	9	125	2002700	0.32	15	6.5340	7085
DN 40/11/2"	25	310	1501750	0.91	37	4.5220	1822
DN 50/2"	42	510	1201350	1.5	62	3.7170	811
DN 80/3"	95	1150	80 900	3.4	140	2.5115	2.53.2
DN 100 / 4"	164	2000	60 700	5.9	240	1.9 86	1.11.4
DN 150 / 6"	373	4540	40 460	13.4	550	1.2 57	0.30.4
DN 200 / 8"	715	8710	27 322	25.7	1050	1.0 39	0.12660.1400
DN 250 / 10"	1127	13740	23 272	40.6	1650	0.8 33	0.06770.0748
DN 300 / 12"	1617	19700	18 209	58.2	2360	0.6 25	0.03640.0402

Index

A Accessories	P Pipeline insulation
Ambient temperature	Power consumption
C	Power supply
Cable entries	Process connections
Connecting the transmitter	Process pressure
D	Provide 77 model and a system
Dangerous chemicals 6	
Dimensions flow conditioner (ANSI)	n
Dimensions flow conditioner (DIN)	R Deference conditions
Dimensions, Prowin 77 F	Remedies
Dimensions, Prowin 77 W 21	Repairs
	Repeatability
E	Rotating the electronics housing
Electrical connection	
Elektromagnetic compatibility (EMC)	S
Ex-approvals	Safety instructions 5, 6
	Shock resistance
F	Switch settings
Flow conditioner 10, 25, 26, 27	
Flow variations	
T	
■ Ingress protection 28	Iechnical Data 27 Traublachasting 10
Inlet and outlet sections	
Inlet section	
Installation	
Installation site	Vibration 28 Vibration 28
K	TAT
K-factor	Wefer mounting
т	Weights
L IED 10	Wiring diagrams
LLD	
M	
Materials	
Measured error	
Measured variables	
Measurement principle	
Measuring ranges	
Minimum spacing (mounting)	
Mounting Prowirl W	
Mounting the meter body	
-	
0	
Operational safety 5	
Outlet section	
Output signal \ldots \ldots \ldots \ldots \ldots 27	I

Europe

Austria

Belorgsintez Minsk Tel. (0172) 508473, Fax (0172) 508583

Tel. (01) 88056-0, Fax (01) 88056-35

□ Endress+Hauser Ges.m.b.H. Wien

Belgium / Luxembourg © Endress+Hauser N.V. Brussels Tel. (02) 2480600, Fax (02) 2480553

Bulgaria INTERTECH-AUTOMATION Sofia

Tel. (02) 664869, Fax (02) 9631389 Croatia

Endress+Hauser GmbH+Co Zagreb Tel. (01) 6637785, Fax (01) 6637823

Cvprus I+G Electrical Services Co. Ltd. Nicosia Tel. (02) 484788, Fax (02) 484690

Czech Republic □ Endress+Hauser GmbH+Co. Praha Tel. (026) 6784200, Fax (026) 6784179

Denmark □ Endress+Hauser A/S Søborg Søborg Tel. (70) 131132, Fax (70) 132133

Estonia ELVI-Aqua

Tartu Tel. (7) 441638, Fax (7) 441582

Finland Endress+Hauser Ov Helsink Tel. (0204) 83160, Fax (0204) 83161

France Endress+Hauser S.A Huningue Tel. (389) 696768, Fax (389) 694802

Germany □ Endress+Hauser Messtechnik GmbH+Co. Weil am Rhein Tel. (07621) 975-01, Fax (07621) 975-555

Great Britain Endress+Hauser Ltd.
 Manchester Tel. (0161) 2865000, Fax (0161) 9981841

Greece I & G Building Services Automation S.A. Athens Tel. (01) 9241500, Fax (01) 9221714

Hungary Mile Ipari-Elektro Budapest Tel. (01) 4319800, Fax (01) 4319817

Iceland BII ehf Reykjavik Tel. (05) 619616, Fax (05) 619617

Ireland Flomeaco Company Ltd Kildare Tel. (045) 868615, Fax (045) 868182

Italy □ Endress+Hauser S.p.A. Cernusco s/N Milano Tel. (02) 921921, Fax (02) 92107153

Latvia Rino TK Riga Tel. (07) 315087, Fax (07) 315084

Lithuania UAB "Agava Kaunas Tel. (07) 202410, Fax (07) 207414

http://www.endress.com

Netherland Endress+Hauser B.V. Naarden

Tel. (035) 6958611, Fax (035) 6958825

Norway □ Endress+Hauser A/S Tranby Tel. (032) 859850, Fax (032) 859851

Poland □ Endress+Hauser Polska Sp. z o.o. Warszawy Tel. (022) 7201090, Fax (022) 7201085

Portugal Tecnisis, Lda

Cacém Tel. (21) 4267290, Fax (21) 4267299

Romania Romconseng S.R.L. Buchares Tel. (01) 4101634, Fax (01) 4112501

Russia

Endress+Hauser Moscow Office Moscow Tel. (095) 1587564, Fax (095) 1589871 Slovakia

Transcom Technik s.r.o. Bratislava Tel. (7) 44888684, Fax (7) 44887112 Slovenia

Endress+Hauser D.O.O. Ljubljana Tel. (061) 5192217, Fax (061) 5192298 Spain

□ Endress+Hauser S.A. Sant Just Desvern Tel. (93) 4803366, Fax (93) 4733839

Sweden © Endress+Hauser AB Sollentuna Tel. (08) 55511600, Fax (08) 55511655

Switzerland □ Endress+Hauser Metso AG Reinach/BL 1 Tel. (061) 7157575, Fax (061) 7111650

Turkey Intek Endüstriyel Ölcü ve Kontrol Sistemleri Istanbul Tel. (0212) 2751355, Fax (0212) 2662775 Ukraine

Photonika GmbH Kiev Tel. (44) 26881, Fax (44) 26908

Yugoslavia Rep. Meris d.o.o Beograd Tel. (11) 4441966, Fax (11) 4441966

Africa

Egypt Anasia Heliopolis/Cairo Tel. (02) 4179007, Fax (02) 4179008

Morocco Oussama S.A Casablanca Tel. (02) 241338, Fax (02) 402657

South Africa □ Endress+Hauser Pty. Ltd. Sandton

Tel. (011) 4441386, Fax (011) 4441977

Tunisia Controle, Maintenance et Regulation Tunis Tel. (01) 793077, Fax (01) 788595

Tel. (01) 145227970, Fax (01) 145227909

America

Argentina Endress+Hauser Argentina S.A.
 Buenos Aires Bolivia Tritec S.R.L

Cochabamba Tel. (042) 56993, Fax (042) 50981

Brazil Samson Endress+Hauser Ltda. Sao Paulo Tel. (011) 50313455, Fax (011) 50313067

Canada D Endress+Hauser Ltd Burlington, Ontario Tel. (905) 6819292, Fax (905) 6819444

Endress+Hauser Chile Ltd. Santiago Tel. (02) 3213009, Fax (02) 3213025

Colombia Colsein Ltda. Bogota D.C. Tel. (01) 2367659, Fax (01) 6104186

Costa Rica EURO-TEC S.A. San Jose Tel. (02) 961542, Fax (02) 961542

Ecuador Insetec Cia. Ltda. Quito Tel. (02) 269148, Fax (02) 461833

Guatemala ACISA Automatizacion Y Control Industrial S.A. Ciudad de Guatemala, C.A. Tel. (03) 345985, Fax (03) 327431

Mexico

□ Endress+Hauser S.A. de C.V. Mexico City Tel. (5) 5682405, Fax (5) 5687459 Paraguay Incoel S.R.L

Asuncion Tel. (021) 213989, Fax (021) 226583

Uruguay Circular S.A. Montevideo Tel. (02) 925785, Fax (02) 929151

USA Endress+Hauser Inc. Greenwood, Indiana Tel. (317) 535-7138, Fax (317) 535-8498

Venezuela Controval C.A. Caracas Tel. (02) 9440966, Fax (02) 9444554

Asia

China Endress+Hauser Shanghai Instrumentation Co. Ltd.

Shanghai Tel. (021) 54902300, Fax (021) 54902303 □ Endress+Hauser Beijing Office Beijing Tel. (010) 68344058, Fax (010) 68344068

Hong Kong □ Endress+Hauser HK Ltd. Hong Kong Tel. 25283120, Fax 28654171

India Endress+Hauser (India) Pvt Ltd. Mumbai Tel. (022) 8521458, Fax (022) 8521927

Indonesia PT Grama Bazita Jakarta Tel. (21) 7975083, Fax (21) 7975089

Japan □ Sakura Endress Co. Ltd. Tokyo Tel. (0422) 540613, Fax (0422) 550275

Malaysia □ Endress+Hauser (M) Sdn. Bhd. Petaling Jaya, Selangor Darul Ehsan Tel. (03) 7334848, Fax (03) 7338800

Pakistan Speedy Automation

Karach Tel. (021) 7722953, Fax (021) 7736884

Papua-Neuguinea SBS Electrical Pty Limited Port Moresby Tel. 3251188, Fax 3259556

Philippines □ Endress+Hauser Philippines Inc. Metro Manila Tel. (2) 3723601-05, Fax (2) 4121944

Singapore Endress+Hauser (S.E.A.) Pte., Ltd. Singapore Tel. 5668222, Fax 5666848

South Korea Endress+Hauser (Korea) Co., Ltd. Seoul Tel. (02) 6587200, Fax (02) 6592838

Taiwan Kingjarl Corporation Taipei R.O.C. Tel. (02) 27183938, Fax (02) 27134190

Thailand Endress+Hauser Ltd. Bangkok Tel. (2) 9967811-20, Fax (2) 9967810

Vietnam Tan Viet Bao Co. Ltd. Ho Chi Minh City Tel. (08) 8335225, Fax (08) 8335227

Iran PATSA Co. Tehran Tel. (021) 8754748, Fax (021) 8747761

Israel Instrumetrics Industrial Control Ltd. Netanya Tel. (09) 8357090, Fax (09) 8350619

Jordan A.P. Parpas Engineering S.A. Amman Tel. (06) 4643246, Fax (06) 4645707

Kingdom of Saudi Arabia Anasia Ind. Agencies Jeddah Tel. (02) 6710014, Fax (02) 6725929

Lebanon Network Engineering Jbeil Tel. (3) 944080, Fax (9) 548038

Sultanate of Oman Mustafa Sultan Science & Industry Co. LLC. Ruwi Tel. 602009, Fax 607066

United Arab Emirates Descon Trading EST. Dubai Tel. (04) 2653651, Fax (04) 2653264

Yemen Yemen Company for Ghee and Soap Industry Taiz Tel. (04) 230664, Fax (04) 212338

Australia + New Zealand

Australia ALSTOM Australia Limited Milperra Tel. (02) 97747444, Fax (02) 97744667

New Zealand EMC Industrial Group Limited Auckland Tel. (09) 4155110, Fax (09) 4155115

All other countries

Endress+Hauser GmbH+Co. Instruments International D-Weil am Rhein Germany Tel. (07621) 975-02, Fax (07621) 975345

