Vortex Flow Measuring System *PROline prowirl* 72

Reliable Flow Measurement of Gas, Steam and Liquids

Application

For measuring the volume flow of steam, gases and liquids.

For utility and process applications in the chemical, petrochemical, power and district heating industries and in many other branches.

Your benefits

- Proven capacitive sensor (installed base > 100,000)
- Immune to:
 - Vibrations (over 1 g in all axes)
 - Temperature shocks (> 150 K/s)
 - Dirty media
 - Water hammer
- Process temp. range -200...+400 °C
- Universal:
 - Compact or remote version
 - Dualsens version, with two sensors and electronics (for redundancy)
 Alloy C-22 version
- Connection to all common systems: - HART
 - PROFIBUS-PA
 - FOUNDATION Fieldbus
- Galvanically isolated pulse output available (for alarm, limit value etc.).
- Permanent self-monitoring and diagnosis of electronics and sensor.
- Correction of diameter mismatch.
- No maintenance, no moving parts, no zero-point drift.

Function and system design

Measuring principle

Vortex shedding flowmeters work on the principle of the Karman vortex street. When a fluid flows past a bluff body, vortices are alternately formed and shed on both sides with opposite senses of rotation. These vortices each generate a local low pressure. The pressure fluctuations are recorded by the sensor and converted to electrical pulses. The vortices develop very regularly within the application limits of the device. Therefore, the frequency of vortex shedding is directly proportional to the volume flow.

F06-7xxxxxx-15-xx-06-xx-000

The K-factor is used as the proportional constant:

F06-7xxxxxxx-19-xx-06-en-000

Within the application limits of the device, the K-factor only depends on the geometry of the device. It is independent of the fluid velocity and its properties viscosity and density. In this way, the K-factor is also independent of the type of fluid to be measured, regardless of whether this is steam, a gas or a liquid.

The primary measuring signal is already digital (frequency signal) and a linear function of the flow. After manufacturing the meter, the K-factor is determined once-off in the factory by means of calibration and is not subjected to any long term drift or zero point shift.

The device does not contain any moving parts and requires no maintenance.

The capacitive sensor

The sensor of a vortex flowmeter has a major influence on the performance, robustness and reliability of the whole measuring system.

Prowirl 72 uses Endress + Hauser's proven and patented capacitive measuring technology, with to date more than 100,000 Vortex measuring points installed world wide.

Due to its internal mechanical balance, the DSC sensor (Differential Switched Capacitance), reads only the pressure pulses caused by the vortices and stays immune to any influence from mechanical pipe line vibrations.

The DSC sensor measures low flow rates at low fluid density even when pipe line vibrations are present. Therefore, Prowirl 72 keeps its wide turndown ratio even under rough operating conditions.

Vibrations of at least 1g at frequencies up to 500 Hz in all axes do not affect the flow measurement.

Thanks to its mechanical design, the capacitive sensor is also especially resistant to temperature shocks and water hammer in steam lines.

F06-7xxxxxx-14-05-06-en-000

Measuring system	The measuring system consist of a sensor and a transmitter. Two versions are available:								
	 Compact version: sensor and transmitter form a mechanical unit. Remote version: sensor is mounted separate from the transmitter. 								
	Sensor	Sensor							
	 Prowin F (DN 15300) Flanged version (also available as version with two ser DN 40150) 	nsors and electronics for redundancy,							
	 Prowirl W (DN 15150) Wafer version 								
	Transmitter Prowirl 72 								
	Input								
Measured variable	Volumetric flow (volume flow), is proportional to the frequency of vortex shedding after the bluff body.								
	The output variables are volume flow or, if the process c mass flow or corrected volume flow.	onditions are non-varying, calculated							
Measuring range	The measuring range depends on the fluid and the nominal diameter.								
	Start of measuring range	Start of measuring range							
	Depends on the density and the Reynolds number ($Re_{min} = 4'000$, $Re_{linear} = 20'000$). The Reynolds number is dimensionless and indicates the ratio of a fluid's inertial forces to its viscous forces. It is used to characterise the flow. The Reynolds number is calculated as follows:								
	$Re = \frac{4 \cdot Q [m^{3}/s] \cdot \rho [kg/m^{3}]}{\pi \cdot di [m] \cdot \mu [Pa \cdot s]}$								
	Re = Reynolds number; Q = Flow; di = Internal diameter; μ = L	FOR-Transmit viscosity; $ ho$ = Density							
	DN 1525 \rightarrow v _{min.} = $\frac{6}{\sqrt{\rho [kg/m^3]}}$ [m/s] DN 40	$0300 \rightarrow v_{min.} = \frac{7}{\sqrt{\rho [kg/m^3]}} [m/s]$							
	Full scale value								
	 Gas/steam: v_{max} = 75 m/s (DN 15: v_{max} = 46 m/s) Liquids: v_{max} = 9 m/s 								
	Note! By using the selection and sizing software "Applicator", y the fluid you use. You can obtain Applicator from your E Internet at www.endress.com.	you can determine the exact values for ndress+Hauser sales centre or on the							
	Measuring range for gases [m³/h or Nm³/h]								
	In the case of gases, the start of the measuring range detection the density $[\rho]$ or corrected density $[\rho_N]$ can be calculated	epends on the density. With ideal gases, ed using the following formulae:							
	a [kg/Nm ³] · P [bar abs] · 273 15 [K]	$a [ka/m^3] \cdot T [K] \cdot 1.013 [bar aba]$							

Endress + Hauser

Output signal

The following formulae can be used to calculate the volume [Q] or corrected volume $[Q_N]$ in the case of ideal gases:

 $Q[m^{3}/h] = \frac{Q_{N}[Nm^{3}/h] \cdot T[K] \cdot 1.013 [bar abs]}{P [bar abs] \cdot 273.15 [K]} \qquad Q_{N}[Nm^{3}/h] = \frac{Q[m^{3}/h] \cdot P [bar abs] \cdot 273.15 [K]}{T[K] \cdot 1.013 [bar abs]}$

4...20 mA with HART, Full scale value and time constant (0...100 s) can be set

T = Operating temperature;P = Operating pressure

Output

• Current output:

Temperature coefficient: typically 0.005% o.r. / °C (o.r. = of reading) • Pulse/status output: Open collector, passive, Galvanically isolated, Non-Ex, Ex d: U_{max} = 36 V, with 15 mA current limit, R_i = 500 Ω Ex i: $U_{max} = 30$ V, with 15 mA current limit, $R_i = 500 \Omega$ Can be configured as: - Pulse output: Pulse value and polarity can be selected (5...2000 ms), Pulse frequency max. 100 Hz - Status output: Can be configured for error messages or flow limit values - Vortex frequency: Direct output of unscaled vortex pulses 0.5...2850 Hz (pulse ratio 1:1). - PFM signal (pulse-frequency modulation): By connecting the pulse and current output. **PROFIBUS-PA** interface: - PROFIBUS-PA in accordance with EN 50170 Volume 2, IEC 61158-2 (MBP), galvanically isolated - Current consumption = 16 mA - FDE (Fault Disconnection Electronic) = 0 mA - Data transmission rate: Supported baudrate = 31.25 kBit/s - Signal encoding = Manchester II - Function blocks: 1 x Analog Input, 1 x Totalizer - Output data: Volume flow, Calculated mass flow, Corrected volume flow, Totalizer - Input data: Empty pipe detection (ON/OFF), Control totalizer - Bus address adjustable via DIP-switches at the measuring device **FOUNDATION Fieldbus interface:** - FOUNDATION Fieldbus H1, IEC 61158-2, galvanically isolated - Current consumption = 16 mA - Signal encoding = Manchester II - FDE (Fault Disconnection Electronic) = 0 mA - Data transmission rate: Supported baudrate = 31.25 kBit/s - Function blocks: 2 x Analog Input, 1 x Discrete Output - Output data: Volume flow, calculated Mass flow, corrected Volume flow, Totalizer - Input data: Empty pipe detection (ON/OFF), Reset totalizer - Link Master (LM) functionality is supported Signal on alarm • Current output: error response can be selected (e.g. in accordance with NAMUR Recommendation NE 43) • Pulse output: error response can be selected • Status output: "not conducting" in event of fault

Load

Power supply

Electrical connection В D Δ 3 3 2 С F06-72xxxxxx-11-00-00-xx-000.ep Electrical connection Prowirl 72 - HART: Power supply, current output Α - PROFIBUS-PA: 1 = PA+, 2 = PA-- FOUNDATION Fieldbus: 1 = FF+, 2 = FF-В Optional pulse output,

can also be operated as status output (except PROFIBUS-PA and FOUNDATION Fieldbus)

С Ground terminal (relevant for remote version)

D PFM wiring (pulse-frequency modulation)

Supply voltage	Non-Ex: 1236 V DC (with HART 1836 V DC) Ex i: 1230 V DC (with HART 1830 V DC) Ex d: 1536 V DC (with HART 2136 V DC)					
	PROFIBUS-PA and FOUNDATION Fieldbus Non-Ex: 932 V DC Ex i: 924 V DC Ex d: 932 V DC Current consumption → PROFIBUS-PA: 16 mA, FOUNDATION Fieldbus: 16 mA					
Cable entry	 Power supply and signal cables (outputs): Cable entry M20 x 1.5 (811.5 mm) Thread for cable entry: ½" NPT, G ½" (not for remote version) Fieldbus connector 					
Power supply failure	 Totalizer stops at the last value determined (can be configured) All settings are kept in the EEPROM Error messages (incl. value of operated hours counter) are stored 					

Performance characteristics

Reference operating conditions	Error limits following ISO/DIN 11631: 2030 °C, 24 bar, Calibration rig traccable to national standards Calibration with the corresponding process connection of the respective norms
Maximum measured error	 Liquid: < 0.75% o.r. for Re > 20000 < 0.75% o.f.s for Re between 400020000 Gas/steam: < 1% o.r. for Re > 20000 < 1% o.f.s for Re between 400020000
	o.r. = Of reading, o.f.s = Of full scale, Re = Reynolds number
Repeatability	±0.25% o.r. (of reading)

Operating conditions: installation

Installation instructions Vortex meters require a fully developed flow profile as a prerequisite for correct volume flow measurement. For this reason, please note the following points when installing the device:

Orientation

The device can generally be installed in any position in the piping.

In the case of liquids, upward flow is prefered in vertical pipes to avoid partial pipe filling (see orientation A).

In the case of hot fluids (e.g. steam or fluid temperature \geq 200 °C), select orientation C or D so that the permitted ambient temperature of the electronics is not exceeded. Orientations B and D are recommended for very cold fluid (e.g. liquid nitrogen).

Orientations B, C and D are possible with horizontal installation.

The arrow indicated on the device must always point in the direction of flow in all mounting orientations.

Caution!

- If fluid temperature is ≥ 200 °C, orientation B is not permitted for the wafer version (Prowirl 72 W) with a nominal diameter of DN 100 and DN 150.
- In case of vertical orientation and downward flowing liquid, the piping has always to be completely filled.

Possible orientations of the device

Minimum spacing and cable length

We recommend you observe the following dimensions to guarantee problem-free access to the device for service purposes:

- Min. spacing in all directions = 100 mm (A)
- Necessary cable length L + 150 mm

Rotating the electronics housing and the display

The electronics housing can be rotated continuously 360 $^{\circ}$ on the housing support. The display unit can be rotated in 45 $^{\circ}$ steps. This means you can read off the display comfortably in all orientations.

Piping insulation

When insulating, please ensure that a sufficiently large area of the housing support is exposed. The uncovered part serves as a radiator and protects the electronics from overheating (or undercooling).

The maximum insulation height permitted is illustrated in the diagrams. These apply equally to both the compact version and the sensor in the remote version.

1 = Flanged version

Wafer version mounting set

The centering rings supplied with the wafer style meters are used to mount and center the instrument.

A mounting set consisting of tie rods, seals, nuts and washers can be ordered separately.

F06-7xxxxxx-09-00-06-xx-000

Mounting wafer version

- 1 = Nut
- 2 = Washer
- 3 = Tie rod
- 4 = Centering ring (is supplied with the device)
- 5 = Seal

^{2 =} Wafer version

Inlet and outlet run

As a minimum, the inlet and outlet runs shown below must be observed to achieve the specified accuracy of the device. The longest inlet run shown must be observed if two or more flow disturbances are present.

Minimum inlet and outlet runs with various flow obstructions

F06-7xxxxxx-04-xx-xx-000

- A = Inlet run
- B = Outlet run
- 1 = Reduction
- 2 = Extension
- $3 = 90^{\circ}$ elbow or T-piece
- 4 = 2 x 90° elbow, 3-dimensional
- $5 = 2 \times 90^\circ \text{ elbow}$
- 6 = Control valve

Note!

A specially designed perforated plate flow conditioner can be installed if it is not possible to observe the inlet runs required (see Page 10).

Outlet runs with pressure and temperature measuring points

If pressure and temperature measuring points are installed after the device, please ensure there is a large enough distance between the device and the measuring point so there are no negative effects on the vortex shedding.

PT = Pressure measuring point

TT = Temperature measuring point

F06-7xxxxxx-04-xx-xx-003

Perforated plate flow conditioner

A specially designed perforated plate flow conditioner, available from Endress+Hauser, can be installed if it is not possible to observe the inlet runs required. The flow conditioner is fitted between two piping flanges and centered with mounting bolts. Generally, this reduces the inlet run required to 10 x DN with complete accuracy.

F06-7xxxxxx-04-xx-xx-001

Flow conditioner

The pressure loss for flow conditioners is calculated as follows: $\Delta p \text{ [mbar]} = 0.0085 \cdot \rho \text{ [kg/m³]} \cdot v^2 \text{ [m/s]}$

Examples of pressure loss for flow conditioner

• Example with steam p = 10 bar abs $t = 240 \text{ °C} \rightarrow \rho = 4.39 \text{ kg/m}^3$ v = 40 m/s $\Delta p = 0.0085 \cdot 4.39 \cdot 40^2 = 59.7 \text{ mbar}$ • Example with H₂O condensate (80°C) $\rho = 965 \text{ kg/m}^3$ v = 2.5 m/s $\Delta p = 0.0085 \cdot 965 \cdot 2.5^2 = 51.3 \text{ mbar}$

Operating conditions: environment

Ambient temperature range	 Compact version: -40+70 °C (EEx-d version: -40+60°C; ATEX II 1/2 GD-version/dust ignition-proof: -20+55°C) Display can be read between -20 °C+70 °C Remote version: Sensor -40+85 °C (ATEX II 1/2 GD-version/dust ignition-proof: -20+55°C) Transmitter -40+80 °C (EEx-d version: -40+60°C; ATEX II 1/2 GD-version/dust ignition-proof: -20+55°C) Display can be read between -20 °C+70 °C 				
	When mounting outside, protect from direct sunlight with a protective cover (order number 543199), especially in warmer climates with high ambient temperatures.				
Storage temperature	–40+80 °C (ATEX II 1/2 GD-version/dust ignition-proof: –20+55°C)				
Degree of protection	IP 67 (NEMA 4X) according to EN 60529				
Vibration resistance	Acceleration up to 1 g, 10500 Hz, following IEC 60068-2-6				
Electromagnetic compatibility (EMC)	According to EN 61326/A1 and NAMUR Recommendation NE 21.				

Operating conditions: process

Medium temperature	DSC sensor (differential switched capacitor)	capacitive sensor:
range	DSC standard sensor	–40+260 °C
	DSC high/low temperature sensor	–200+400 °C
	DSC sensor Inconel (PN 64160, Class 600, JIS 40K and Dualsens version)	–200+400 °C
	DSC sensor Alloy C-22	–200+400 °C
	• Seal:	
	Graphite	–200+400 °C
	Viton	−15+175 °C
	Kalrez	–20+275 °C
	Gylon (PTFE)	–200+260 °C

Medium pressure

Pressure-temperature curve according to EN (DIN), stainless steel

PN 10...40 \rightarrow Prowirl 72 W and 72 F PN 64...160 \rightarrow Prowirl 72 F

Pressure-temperature curve according to ANSI B16.5 and JIS B2238, stainless steel

ANSI B16.5: Class 150...300 \rightarrow Prowirl 72 W and 72 F Class 600 \rightarrow Prowirl 72 F JIS B2238:

10...20K \rightarrow Prowirl 72 W and 72 F 40K \rightarrow Prowirl 72 F

Continued on next page.

Pressure-temperature curve according to DIN, ANSI B16.5 and JIS B2238, Alloy C-22

PN 16...40, Class 150...300, 10...20K \rightarrow Prowirl 72 F

F06-7xxxxxx-05-xx-xx-002

Pressure loss

The pressure loss can be determined with the aid of the Applicator, a software for selection and sizing of flowmeters. The software is available both via Internet (www.applicator.com) and on a CD-ROM for local PC installation.

Mechanical construction

Design, dimensions

Dimensions of transmitter, remote version

* The following dimensions differ depending on the version:

- The dimension 232 mm changes to 226 mm in the blind version (without local operation).
- The dimension 150 mm changes to 163 mm in the Ex d version.
- The dimension 345 mm changes to 368 mm in the Ex d version.

F06-72xxxxx-06-03-00-xx-000.eps

Dimensions of Prowirl 72 W

Wafer version according to:

- EN 1092-1 (DIN 2501), PN 10...40
- ANSI B16.5, Class 150...300, Sch40
- JIS B2238, 10...20K, Sch40

С

Dimensions:

A = Standard and Ex i version

B = Remote version

- *C* = *Ex d* version (transmitter)
- * The following dimensions change as follows in the blind version (without local operation):
- Standard and Ex i version: the dimension 149 mm changes to 142 mm in the blind version.
- Ex d version: the dimension 151 mm changes to 144 mm in the blind version.
- ** The dimension depends on the cable gland used.

Note!

- In the following tables, dimension H increases by 29 mm in the version with extended temperature range (high temperature version) and in the version with a DSC sensor made of Alloy C-22.
- The weight data refer to the compact version.
- The weight increases by 0.5 kg for the version with extended temperature range.

DN		d D		Н	Weight
DIN/JIS	ANSI	[mm]	[mm]	[mm]	[kg]
15	1/2"	16.50	45.0	247	3.0
25	1"	27.60	64.0	257	3.2
40	11⁄2"	42.00	82.0	265	3.8
50	2"	53.50	92.0	272	4.1
80	3"	80.25	127.0	286	5.5
100	4"	104.75	157.2	299	6.5
150	6"	156.75	215.9	325	9.0

Dimensions of Prowirl 72 F

Flanged version according to:

- EN 1092-1 (DIN 2501), $R_a = 6,3...12,5 \,\mu m$ raised face according to EN 1092-1 form B1 (DIN 2526 form C), PN 10...40, $R_a = 6,3...12,5 \,\mu m$ raised face according to EN 1092-1 form B2 (DIN 2526 form E), PN 64...100, $R_a = 1,6...3,2 \,\mu m$ raised face according to DIN 2526 form B2, PN 160, $R_a = 1,6...3,2 \,\mu m$
- ANSI B16.5, Class 150...600, R_a = 125...250 μin
- JIS B2238, 10...40K, $R_a = 125...250 \mu in$

F06-72xxxxx-06-00-00-xx-001

- A = Standard and Ex i version
- B = Remote version

C = *Ex d version* (*transmitter*)

* The following dimensions change as follows in the blind version (without local operation):

- Standard and Ex i version: the dimension 149 mm changes to 142 mm in the blind version.
- Ex d version: the dimension 151 mm changes to 144 mm in the blind version.
- ** The dimension depends on the cable gland used.

Note!

- In the following tables, dimension H increases by 29 mm in the version with extended temperature range (high temperature version) and in the version with a DSC sensor made of Alloy C-22.
- The weight data refer to the compact version. The weight increases by 0.5 kg for the version with extended temperature range.

DN	Pressure rating	d [mm]	D [mm]	H [mm]	L [mm]	x [mm]	Weight [kg]
15	PN 40	17.3	95.0	248	200	16	5
	PN 160	17.3	105.0	288	200	23	7
25	PN 40	28.5	115.0	255	200	18	7
	PN 100	28.5	28.5		200	07	11
	PN 160	27.9	140.0	295	200	21	11
40	PN 40	43.1	150.0	263	200	21	10
	PN 100	42.5	170.0	303	200	31	15
	PN 160	41.1	170.0				15

Table: dimensions of Prowirl 72 F according to EN 1092-1 (DIN 2501)

DN	Pressure rating	d [mm]	D [mm]	H [mm]	L [mm]	x [mm]	Weight [kg]
	PN 40	54.5	165.0	270	200	23	12
50	PN 64	54.5	180.0				17
50	PN 100	53.9	105.0	310	200	33	10
	PN 160	52.3	.3				19
	PN 40	82.5	200.0	283	200	29	20
80	PN 64	81.7	215.0				24
80	PN 100	80.9	220.0	323	200	39	27
	PN 160	76.3	230.0				
	PN 16	107.1	220.0	205	250	22	27
	PN 40	107.1	235.0	295	230	52	21
100	PN 64	106.3	250.0				39
	PN 100	104.3	265.0	335	250	49	12
	PN 160	98.3					42
	PN 16	159.3	285.0	310	300	37	51
	PN 40	159.3	300.0	013	500	57	51
150	PN 64	157.1	345.0	359	300	64	86
	PN 100	154.1	355.0				88
	PN 160	146.3	000.0				
	PN 10	207.3	340.0		200		63
200	PN 16	207.3	340.0	0.40		10	62
200	PN 25	206.5	360.0	040	500	42	68
	PN 40	206.5	375.0				72
	PN 10	260.4	395.0				88
250	PN 16	260.4	405.0	275	290	19	92
230	PN 25	258.8	425.0	575	300	40	100
	PN 40	258.8	450.0				111
	PN 10	309.7	445.0				121
200	PN 16	309.7	460.0	208	450	51	129
300	PN 25	307.9	485.0	290	400	51	140
	PN 40	307.9	515.0				158

Table: dimensions of Prowirl 72 F a	according to ANSI B16.5
-------------------------------------	-------------------------

DN	Pressure	rating	d [mm]	D [mm]	H [mm]	L [mm]	x [mm]	Weight [kg]
	Sabadula 40	Cl. 150	15.7	88.9			10	
	Schedule 40	Cl. 300	15.7	95.0	040	200		F
1/2"		Cl. 150	13.9	88.9	240	200	10	5
	Schedule 80	Cl. 300	13.9	95.0				
		Cl. 600	13.9	95.3	288	200	23	6
	Sebedule 40	Cl. 150	26.7	107.9				
	Schedule 40	Cl. 300	26.7	123.8	255	200	10	7
1"		Cl. 150	24.3	107.9	200	200	10	/
	Schedule 80	Cl. 300	24.3	123.8				
		Cl. 600	24.3	124.0	295	200	27	9
	Schedule 40	Cl. 150	40.9	127.0	263			
		Cl. 300	40.9	155.6		200	01	10
11⁄2"	Schedule 80	Cl. 150	38.1	127.0		200	21	10
		Cl. 300	38.1	155.6				
		Cl. 600	38.1	155.4	303	200	31	13
	Schedule 40	Cl. 150	52.6	152.4				
	Schedule 40	Cl. 300	52.6	165.0	270	200	23	12
2"		Cl. 150	49.2	152.4	210	200	20	12
	Schedule 80	Cl. 300	49.2	165.0				
		Cl. 600	49.2	165.1	310	200	33	14
	Schedule 40	Cl. 150	78.0	190.5				
	Schedule 40	Cl. 300	78.0	210.0	202	200	20	20
3"		Cl. 150	73.7	190.5	200	200	29	20
	Schedule 80	Cl. 300	73.7	210.0				
		Cl. 600	73.7	209.6	323	200	39	22

DN	Pressure	rating	d [mm]	D [mm]	H [mm]	L [mm]	x [mm]	Weight [kg]
	Sebedule 40	Cl. 150	102.4	228.6				
	Schedule 40	Cl. 300	102.4	254.0	205	250	20	27
4"		Cl. 150	97.0	228.6	295	230	52	21
	Schedule 80	Cl. 300	97.0	254.0				
		Cl. 600	97.0	273.1	335	250	49	43
	Cabadula 40	Cl. 150	154.2	279.4				
6"	Schedule 40	Cl. 300	154.2	317.5	210	300	37	51
		Cl. 150	146.3	279.4	519			51
	Schedule 80	Cl. 300	146.3	317.5				
		Cl. 600	146.3	355.6	359	300	64	87
0"	Sebedule 40	Cl. 150	202.7	342.9	249	200	10	64
0	Schedule 40	Cl. 300	202.7	381.0	540	300	42	76
10"	Sebedule 40	Cl. 150	254.5	406.4	275	290	19	92
10	Schedule 40	Cl. 300	254.5	444.5	575	300	40	109
10"	Schedule 40	Cl. 150	304.8	482.6	308	450	60	143
12 3	Schedule 40	Cl. 300	304.8	520.7	530			162

Table: dimensions of Prowirl 72 F according to JIS B2238

DN	Pressure	rating	d [mm]	D [mm]	H [mm]	L [mm]	x [mm]	Weight [kg]
	Schedule 40	20K	16.1	95.0	248	200	16	5
15	Sebadula 80	20K	13.9	95.0	240	200	10	5
	Schedule 60	40K	13.9	115.0	288	200	23	8
	Schedule 40	20K	27.2	125.0	255	200	18	7
25	Schedule 80	20K	24.3	125.0	200	200		T
Schedule 60	Schedule 00	40K	24.3	130.0	295	200	27	10
	Schedule 40	20K	41.2	140.0	263	200	21	10
40	Schedule 80	20K	38.1	140.0	200	200	21	10
	Schedule 00	40K	38.1	160.0	303	200	31	14
	Schedule 40	10K	52.7	155.0				
		20K	52.7	155.0	270	200	23	12
50		10K	49.2	155.0	210	200	20	12
	Schedule 80	20K	49.2	155.0				
		40K	49.2	165.0	310	200	33	15
	Schedule 40	10K	78.1	185.0		200	29	20
80	Schedule 40	20K	78.1	200.0	283			
		10K	73.7	185.0	200	200	23	20
	Schedule 80	20K	73.7	200.0				
		40K	73.7	210.0	323	200	39	24
	Schedule 40	10K	102.3	210.0		250	32	27
		20K	102.3	225.0	205			
100		10K	97.0	210.0	200			
	Schedule 80	20K	97.0	225.0				
		40K	97.0	240.0	335	250	49	36
	Schedule 40	10K	151.0	280.0				
		20K	151.0	305.0	310	300	37	51
150		10K	146.3	280.0	010	000	07	01
	Schedule 80	20K	146.3	305.0				
		40K	146.6	325.0	359	300	64	77
200	Schedule 40	10K	202.7	330.0	348	300	12	58
200	Schedule 40	20K	202.7	350.0	040	500	42	64
250	Schedule 40	10K	254.5	400.0	375	380	48	90
200	Schedule 40	20K	254.5	430.0	515	380	40	104
300	Schedule 40	10K	304.8	445.0	308	450	51	119
300 Schedul	Schedule 40	20K	304.8	480.0	030	400	51	134

Dimensions of Prowirl 72 F, Dualsens version

- EN 1092-1 (DIN 2501), $R_a = 6,3...12,5 \,\mu m$ raised face according to EN 1092-1 form B1 (DIN 2526 form C), PN 10...40, $R_a = 6,3...12,5 \,\mu m$ raised face according to EN 1092-1 form B2 (DIN 2526 form E), PN 64...100, $R_a = 1,6...3,2 \,\mu m$ raised face according to DIN 2526 form B2, PN 160, $R_a = 1,6...3,2 \,\mu m$
- ANSI B16.5, Class 150...600, R_a = 125...250 μin
- JIS B2238, 10...40K, R_a = 125...250 μin

A = Standard and Ex i version

B = Remote version

C = Ex d version (transmitter)

* The following dimensions change as follows in the blind version (without local operation):

- Standard and Ex i version: the dimension 149 mm changes to 142 mm in the blind version.
- Ex d version: the dimension 151 mm changes to 144 mm in the blind version.

** The dimension depends on the cable gland used.

Note!

The weight data refer to the compact version.

The weight increases by 0.5 kg for the version with extended temperature range.

DN	Pressure	d	D	Н	L	х	Weight
DIN/JIS	rating	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
	PN 40	43.1	150.0		200	31	16
40	PN 100	42.5	170.0	303			10
	PN 160	41.1	170.0				10
	PN 40	54.5	165.0				18
50	PN 64	54.5	180.0	310	200	33	20
50	PN 100	53.9	195.0	510			22
	PN 160	52.3	195.0				22
80	PN 40	82.5	200.0	323		39	25
	PN 64	81.7	215.0		200		27
	PN 100	80.9	230.0				20
	PN 160	76.3	230.0				30
	PN 16	107.1	220.0	335	250	49	
	PN 40	107.1	235.0				42
100	PN 64	106.3	250.0				
	PN 100	104.3	265.0				45
	PN 160	98.3	265.0				43
150	PN 16	159.3	285.0			64	80
	PN 40	159.3	300.0				00
	PN 64	157.1	345.0	359	300		89
	PN 100	154.1	355.0				01
	PN 160	146.3	355.0				31

Table: dimensions of Prowirl 72 F Dualsens version according to EN 1092-1 (DIN 2501)

Table: dimensions of Prowirl 72 F Dualsens version according to ANSI B16.5

DN	Pressure rating		d	D	Н	L	Х	Weight
ANSI			[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
	Schedule 40	Cl. 150	40.9	127.0				
		Cl. 300	40.9	155.6				
1½"	Schedule 80	Cl. 150	38.1	127.0	303	200	31	16
		Cl. 300	38.1	155.6				
		Cl. 600	38.1	155.4				
	Schedule 40	Cl. 150	52.6	152.4				
0 "		Cl. 300	52.6	165.0	310	200	33	18
2	Schedule 80	Cl. 150	49.2	152.4	310	200		10
		Cl. 300	49.2	165.0				
	Schedule 40	Cl. 150	78.0	190.5				
3"		Cl. 300	78.0	210.0	323	200	39	25
	Schedule 80	Cl. 150	73.7	190.5				
		Cl. 300	73.7	210.0				
		Cl. 600	73.7	209.6				
	Schedule 40	Cl. 150	102.4	228.6				
		Cl. 300	102.4	254.0				
4"	Schedule 80	Cl. 150	97.0	228.6	335	250	49	42
		Cl. 300	97.0	254.0				
		Cl. 600	97.0	273.1				
	Schedule 40	Cl. 150	154.2	279.4				
		Cl. 300	154.2	317.5				
6"	Schedule 80	Cl. 150	146.3	279.4	359	300	64	80
		Cl. 300	146.3	317.5				
		Cl. 600	146.3	355.6				

DN	Pressure rating		d	D	Н	L	х	Weight
DIN/JIS			[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
40	Schedule 40	20K	41.2	140.0				16
	Schedule 80	20K	38.1	140.0	303	200	31	10
		40K	38.1	160.0				17
	Schedule 40	10K	52.7	155.0				
		20K	52.7	155.0				
50	Schedule 80	10K	49.2	155.0	310	200	33	18
		20K	49.2	155.0				
		40K	49.2	165.0				
	Schedule 40	10K	78.1	185.0				
		20K	78.1	200.0				25
80	Schedule 80	10K	73.7	185.0	323	200	39	20
		20K	73.7	200.0				
		40K	73.7	210.0				27
	Schedule 40	10K	102.3	210.0				
		20K	102.3	225.0				12
100	Schedule 80	10K	97.0	210.0	335	250	49	72
		20K	97.0	225.0				
		40K	97.0	240.0				49
150	Schedule 40	10K	151.0	280.0				
		20K	151.0	305.0				
	Schedule 80	10K	146.3	280.0	359	300	64	80
		20K	146.3	305.0				
		40K	146.6	325.0				

Table: dimensions of Prowirl 72 F Dualsens version according to JIS B2238

Dimensions of flow conditioner according to EN (DIN) / ANSI

Flow conditioner according to EN (DIN) / ANSI, material 1.4435 (316L)

Table: dimensions of flow conditioner

DN		15 / ½"	25 / 1"	40 / 1½"	50 / 2"	80 / 3"	100 / 4"	150 / 6"	200 / 8"	250 / 10"	300 / 12"
s [mm]		2.0	3.5	5.3	6.8	10.1	13.3	20.0	26.3	33.0	39.6
EN (DIN)	PN 10	0.04	0.12	0.30	0.50	1.40	2.40	6.30	11.5	25.7	36.4
Weight in [kg]	PN 16	0.04	0.12	0.30	0.50	1.40	2.40	6.30	12.3	25.7	36.4
	PN 25	0.04	0.12	0.30	0.50	1.40	2.40	7.80	12.3	25.7	36.4
	PN 40	0.04	0.12	0.30	0.50	1.40	2.40	7.80	15.9	27.5	44.7
	PN 64	0.05	0.15	0.40	0.60	1.40	2.40	7.80	15.9	27.5	44.7
ANSI	Cl. 150	0.03	0.12	0.30	0.50	1.20	2.70	6.30	12.3	25.7	36.4
Weight in [kg]	Cl. 300	0.04	0.12	0.30	0.50	1.40	2.70	7.80	15.8	27.5	44.6

F06-7xxxxxx-06-00-06-xx-001

Weight	 Weight of Prowirl 72 W → see dimension table on Page 13. Weight of Prowirl 72 F → see dimension tables on Page 14 ff. Weight of Prowirl 72 F, Dualsens version → see dimen. tab. on Page 17 ff. Weight of flow conditioner according to EN (DIN)/ANSI → see dimension table on Page 19.
Material	 Transmitter housing: Powder-coated die-cast aluminium
	 Sensor: Flanged version: Stainless steel, A351-CF3M (1.4404), in conformity with NACE MR 0175; Alloy C-22 version → Alloy C-22 2.4602 (A 494-CX2MW/N 26022) Wafer version: Stainless steel, A351-CF3M (1.4404), in conformity with NACE MR 0175
	 Flanges: EN (DIN) → Stainless steel, A351-CF3M (1.4404), in conformity with NACE MR 0175 (DN 15150 with pressure rating up to PN 40: as of 2004 changeover from fully cast construction to construction with weld-on flanges in 1.4404) ANSI und JIS → Stainless steel, A351-CF3M, in conformity with NACE MR 0175 (½"6" with pressure rating up to CI 300 and DN 15150 with pressure rating up to 20 K: as of 2004 changeover from fully cast construction to construction with NACE MR 0175) Alloy C-22 version (EN/DIN/ANSI/JIS) → Alloy C-22 2.4602 (A 494-CX2MW/N 26022)
	 DSC sensor (differential switched capacitor; capacitive sensor) Wetted parts (marked as "wet" on the DSC sensor flange): Standard for pressure ratings up to PN 40, CI 300, JIS 40 K (apart from Dualsens version): Stainless steel 1.4435 (316L), in conformity with NACE MR 0175 Higher pressure ratings and Dualsens version: Inconel 2.4668/N 07718 (B637) (Inconel 718), in conformity with NACE MR 0175 Alloy C-22 sensor: Alloy C-22, 2.4602/N 06022, in conformity with NACE MR 0175
	 Non-wetted parts: Stainless steel 1.4301 (CF3)
	 Support: Stainless steel, 1.4308 (CF8)
	 Seal: Graphite (Grafoil) Viton Kalrez 6375 Gylon (PTFE) 3504

Human interface

Display elements	Liquid crystal display, double-spaced, plain text display, 16 characters per line Display can be configured individually, e.g. for measured variables and status values, totalizers
Operating elements (HART)	Local operation with three keys (+, -, =) Quick Setup for quick commissioning Operating elements accessible also in Ex-zones
Remote operation	Remote operation possible via: • HART • PROFIBUS-PA • FOUNDATION Fieldbus • Endress+Hauser Service Protocol

Certificates and approvals

CE mark	The device is in conformity with the statutory requirements of the EC Directives. Endress+Hauser confirms successful testing of the device by affixing the CE mark.
Ex-approval	 Ex i: ATEX/CENELEC I1/2G, EEx ia IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II1/2GD, EEx ia IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II1G, EEx ia IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II2G, EEx ia IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II3G, EEx nA IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II3G, EEx nA IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II3G, EEx nA IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II3G, EEx nA IIC T1T6 (T1T4 X for PROFIBUS-PA and FOUNDATION Fieldbus) FM Class I/II/III Div. 1/2, Group AG Class I/II/III Div. 1/2, Group AG Class III Div. 1, Group EG Class III
	 Ex d: ATEX/CENELEC II1/2G, EEx d [ia] IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II1/2GD, EEx ia IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) II2G, EEx d [ia] IIC T1T6 (T1T4 for PROFIBUS-PA and FOUNDATION Fieldbus) FM Class I/II/III Div. 1, Groups AG Class II Div. 1, Groups EG Class II Div. 1, Groups EG
	More information on the Ex-approvals can be found in the separate Ex-documentation.
Pressure measuring device approval	Devices with a nominal diameter smaller than or equal to DN 25 correspond to Article 3 (3) of the EC Directive 97/23/EC (Pressure Equipment Directive). For larger nominal diameters, certified flowmeters to Category III are optionally also available if necessary (depends on fluid and operating pressure). All devices are applicable for all fluids and instable gases on principle and have been designed and manufactured in accordance to sound engineering practice.
Certification FOUNDATION Fieldbus	The flowmeter has successfully passed all test procedures and is certified and registered by the Fieldbus FOUNDATION. The device thus meets all the requirements of the specifications following:
	 Certified according to FOUNDATION Fieldbus Specification The device meets all the specifications of the FOUNDATION Fieldbus-H1 Interoperability Test Kit (ITK), revision status 4.5 (device certification no. available on request): The device can also be operated with certified devices of other manufacturers Physical Layer Conformance Test of the Fieldbus FOUNDATION
Certification PROFIBUS-PA	The flowmeter has successfully passed all test procedures and is certified and registered by the PNO (PROFIBUS User Organisation). The device thus meets all the requirements of the specifications following:
	 Certified according to PROFIBUS-PA profile version 3.0 (device certification number available on request) The device can also be operated with certified devices of other manufacturers (interoperability)

Other standards and guidelines	 EN 60529: Degrees of protection by housing (IP code). EN 61010: Protection measures for electrical equipment for measurement, control, regulation and laboratory procedures. EN 61326/A1: Electromagnetic compatibility (EMC requirements). NAMUR NE 21: Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment. NAMUR NE 43: Standardisation of the signal level for the breakdown information of digital transmitters with analogue output signal. NACE Standard MR0175: Standard Material Requirements - Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment. VDI 2643: Measurement of fluid flow by means of vortex flowmeters.
	 ANSI/ISA-S82.01: Safety Standard for Electrical and Electronic Test, Measuring, Controlling and related Equipment - General Requirements. Pollution degree 2, Installation Category II CAN/CSA-C22.2 No. 1010.1-92: Safety Standard for Electrical Equipment for Measurement and Control and Labatory Use. Pollution degree 2, Installation Category II
	Accessories
	 Wafer version mounting set Spare parts as per separate price list Replacement transmitter Prowirl 72 Universal flow and energy computer RMC 621 Steam computer RMS-621 Compart DXF 351 flow computer Flow conditioner HART Communicator DXR 275 handheld terminal HART Communicator DXR 375 handheld terminal Active barrier preline RN 221 N Pressure transducer Cerabar T resp. Cerabar S (PROFIBUS-PA, FOUNDATION Fieldbus) Thermoresistance Omnigrad TR 10 Process display RIA 250, RIA 251 Field display RIA 261 resp. RID 261 (PROFIBUS-PA)

- Applicator
- ToF Tool FieldTool Package
- Fieldgate FXA 520

Documentation

- Operating Instructions PROline Prowirl 72
- Operating Instructions PROline Prowirl 72 PROFIBUS-PA
- Operating Instructions PROline Prowirl 72 FOUNDATION Fieldbus
- Related Ex-documentation
- System Information PROline Prowirl 72
- System Information PROline Prowirl 72/73
- Related documentation for Pressure Equipment Directive

Additional ordering information for Prowirl 72

You can order Prowirl 72 with pre-programming of the most important parameters. For this purpose the following informations are required when ordering the device:

- 20 mA value = measured value (z.B. 1000 kg/h) that shall result in a current of 20 mA
- Pulse value (if the device is ordered with a pulse output)

If you want to display the flow in mass units, please indicate in addition:

- the mean operation density of your media incl. unit
- If you want to display the flow in corrected volume flow units, please indicate in addition: • the operation and the reference density of your media incl. unit

You can reset the device to this ordered state later on.

Subject to modification

Endress+Hauser GmbH+Co. Instruments International P.O. Box 2222

P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Tx 773926 Fax (07621) 975 345 e-mail: info@ii.endress.com

Internet: http://www.endress.com

11.01