Operating manual
Thermophant T TTR 31, TTR 35
Temperature switch
Table of contents

1 Safety instructions 3
1.1 Designated use 3
1.2 Installation, commissioning and operation 3
1.3 Operational safety 3
1.4 Return 3

2 Device identification 4
2.1 Nameplate 4

3 Installation 5
3.1 Incoming acceptance, storage 5
3.2 Dimensions 5
3.3 Process connection 6
3.4 Installation instructions 7

4 Wiring 8
4.1 DC voltage version with M12 connector 8
4.2 DC voltage version with valve connector 8

5 Operation 9
5.1 On-site operation 9
5.2 Operation with PC and Readwin® 2000 16

6 Accessories 18
6.1 Adapter concept for TTR 35 18
6.2 Welding bosses and coupling 20
6.3 Electrical connection 21
6.4 Configuration kit 22

7 Trouble-shooting 23
7.1 Errors and warnings 23
7.2 Spare parts 24
7.3 Repair 24
7.4 Disposal 24
7.5 Change status (release) 24
7.6 Release history 24

8 The most important technical data 25
8.1 Power supply 25
8.2 Output 25

9 Dangerous good sheet 27
8.3 Operating conditions 25

1 Safety instructions

1.1 Designated use
The Thermophant T is a temperature switch for monitoring, displaying and regulating process temperatures. The device has been safely built with state-of-the-art technology and meets the applicable requirements and EC Directives. It can, however, be a source of danger if used incorrectly or for anything other than the designated use.

1.2 Installation, commissioning and operation
Installation, electrical connection, commissioning, operation and maintenance of the measuring system must be carried out by trained, qualified specialists authorised to perform such work by the facility's owner-operator. The specialist must have read and understood these Operating Instructions and must follow the instructions they contain. The device may only be modified and repair work carried out if this is explicitly permitted in the Operating Instructions. Damaged devices which could be a source of danger may not be commissioned and must be labelled and identified as defective.

1.3 Operational safety
- Functional safety
 The Thermophant T temperature switches were developed according to the standards IEC 61508 and IEC 61511-1 (FDIS). The device version with PNP switch output and additional analog output is equipped with fault detection and fault prevention facilities within the electronics and software. This device version can therefore be used to monitor temperature up to SIL 2 (Safety Integrity Level).
- Ex-area
 The Thermophant T is not approved for use in Ex-areas.

1.4 Return
The following procedures must be carried out before a device is returned to Endress+Hauser:
- Always enclose a fully completed “Declaration of Contamination” form with the device. Only then can Endress+Hauser transport and examine a returned device. A copy of the “Declaration of Contamination” can be found on the second last page of these Operating Instructions.
- Remove all fluid residues. This is particularly important if the fluid is hazardous to health, e.g. flammable, toxic, caustic, carcinogenic, etc.

⚠️ Warning!
Do not return a measuring device if you are not absolutely certain that all traces of hazardous substances have been removed, e.g. substances which have penetrated crevices or diffused through plastic.
2 Device identification

2.1 Nameplate

To identify your device, compare the complete order code and the version information on the delivery papers with the data on the nameplate.

![Nameplate for device identification (as example)](image)

Note!
- The release number indicates the change status of the device. A change in the last two figures does not have any affect on the compatibility – see also → Chap. 7.
3 Installation

3.1 Incoming acceptance, storage
- Incoming acceptance:
 Check the packaging and the device for damage. Check that the goods delivered are complete and nothing is missing.
- Storage:
 Storage temperature –40 °C to +85 °C.

3.2 Dimensions

![Dimensions diagram]

Fig. 2: Dimensions in mm
Version L in 100 and 200 mm, version L* = 50 mm with reduced sensor tip
M 12x1.5 connector as per IEC 60947-5-2
M 16x1.5 or ½ NPT valve plug as per DIN 43650A/ISO 4400
3.3 Process connection

The following table illustrates the versions of Thermophant T.

<table>
<thead>
<tr>
<th>Field of application</th>
<th>Monitoring, display and control of process temperatures</th>
<th>Monitoring, display and control of process temperatures in hygienic processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process connection</td>
<td>Item A Version without process connection ("w"). Suitable welding bosses and coupling (see Section 6)</td>
<td>Item B Version with thread process connection ANSI ½" NPT ((m = AF14)) and ¾" NPT ((m = AF27))</td>
</tr>
<tr>
<td></td>
<td>Item C Version with thread process connection G ½A ((m = AF14)) and G ¾A ((m = AF27)) as per ISO 228</td>
<td>Item D Adapter concept - version with M24x1.5 thread for adapters with process connection for hygienic processes (see Section 6.1.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor length L</th>
<th>Version L in 100 and 200 mm, version L = 50 mm only with reduced sensor tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td>-50 °C to +150 °C</td>
</tr>
</tbody>
</table>
3.4 Installation instructions

Fig. 3: Possible installation options for temperature monitoring in pipes

1. TTR 31
2. TTR 35 for use in hygienic processes

Mounting instructions:
- Installation at angle pieces, against the direction of flow (Fig. 3, Item A)
- Installation in smaller pipes, inclined against the direction of flow (Fig. 3, Item B)
- Installation vertical to the direction of flow (Fig. 3, Item C)
- The on-site display can be rotated electronically 180° — see Section 5.1 "On-site operation"
- The housing can be rotated up to 310°.
4 Wiring

4.1 DC voltage version with M12 connector

![Diagram of Thermophant T with M12x1.5 connector](image)

Fig. 4: Thermophant T with M12x1.5 connector
A1: 1x PNP switch output
A2: 2x PNP switch output
A3: PNP switch output with additional analog output
A3': PNP switch output with additional analog output (PIN assignment with "DESINA" setting)

>Note!
DESINA (→ Chap. 5.1.3 Basic settings):
R2 = Diagnosis/break contact (more informations about DESINA see www.desina.de)

4.2 DC voltage version with valve connector

![Diagram of Thermophant T with M 16x1.5 or ½ NPT valve plug](image)

Fig. 5: Thermophant T with M 16x1.5 or ½ NPT valve plug
B: 1x PNP switch output
5 Operation

5.1 On-site operation

The Thermophant T is operated by means of three keys. The digital display and the light emitting diodes (LED) support navigation in the operating menu.

![Diagram of operating elements and possibilities for display]

Fig. 6: Position of operating elements and possibilities for display

- Background illumination of the digital display:
 - White = OK status
 - Red = error status
5.1.1 Navigating in the operating menu

A Function group selection

1. Enter the operating menu
 - Press the E key for longer than 3 s
2. Select the "Function group" with the + or – key
3. Select the "Function" with the E key
4. Enter or change parameters with the + or – key
 - Then return to "Function" with the E key Note: If software locking is enabled, it must be disabled before making entries or changes
5. Press the E key several times to return to the "Function group"

B Function selection

- Jump back to the measuring position (Home position)
 - Press the E key for longer than 3 s

- Query to save data (select "YES" or "NO" with the + or – key)
 - Confirm with the E key

Note!
Changes to the parameter settings only become effective if you choose ‘YES’ when asked to save data.
5.1.2 Structure of the operating menu

The structure below shows all the possible fields of the operating menu.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T09-TTR31xxx-19-xx-xx-xx-003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8: Operating menu: A function groups, B functions, C settings
5.1.3 Basic settings

<table>
<thead>
<tr>
<th>Base</th>
<th>Basic settings</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>UNIT</td>
<td>Technical unit</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select technical unit: °C °F K</td>
<td></td>
</tr>
<tr>
<td>ZERO</td>
<td>Configure zero point</td>
<td>0:0</td>
<td>Position adjustment: within ±10% of the upper range limit</td>
</tr>
<tr>
<td>GET</td>
<td>Accept zero point</td>
<td>0:0</td>
<td>No settings possible</td>
</tr>
<tr>
<td>TARD</td>
<td>Damping: display value, output signal</td>
<td>0:0</td>
<td>0...40 s</td>
</tr>
<tr>
<td>DISP</td>
<td>Display</td>
<td>PV</td>
<td>PVRO</td>
</tr>
<tr>
<td></td>
<td>PV: measured value display</td>
<td>PVRO: measured value display rotated 180°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP: set switch point display</td>
<td>SPRO: set switch point display rotated 180°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF: display off</td>
<td>OFFR: display off rotated 180°</td>
<td></td>
</tr>
<tr>
<td>DESI</td>
<td>DESINA</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
5.1.4 Output setting

- Hysteresis function
 The hysteresis function enables two-point control via a hysteresis. Depending on the temperature T, the hysteresis can be set via the switch point SP and the switch-back point RSP.

- Window function
 The window function enables the monitoring of a process temperature range.

- NO contact or NC contact
 This switch function is freely selectable.

- Range of adjustment
 LRL = Lower Range Limit
 URL = Upper Range Limit
 LRV = Lower Range Value
 URV = Upper Range Value

![Diagram](image-url)

Fig. 9:
- Hysteresis function
- Window function
- NO contact switch status
- NC contact switch status
- SP Switch point
- RSP Switch-back point
<table>
<thead>
<tr>
<th>OUT/OUT2 (optional)</th>
<th>Output/output 2 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>FUNC</td>
</tr>
<tr>
<td></td>
<td>Switching characteristic</td>
</tr>
<tr>
<td>SP</td>
<td>Switch point value</td>
</tr>
<tr>
<td>SP2</td>
<td></td>
</tr>
<tr>
<td>RSP</td>
<td>Switch-back point value</td>
</tr>
<tr>
<td>RSP2</td>
<td></td>
</tr>
<tr>
<td>TSP</td>
<td>Switch point delay</td>
</tr>
<tr>
<td>TSP2</td>
<td></td>
</tr>
<tr>
<td>TRSP</td>
<td>Switch-back point delay</td>
</tr>
<tr>
<td>TRSP2</td>
<td></td>
</tr>
<tr>
<td>4-20 (optional)</td>
<td>SETL</td>
</tr>
<tr>
<td></td>
<td>SETU</td>
</tr>
<tr>
<td></td>
<td>GETL</td>
</tr>
<tr>
<td></td>
<td>GETU</td>
</tr>
<tr>
<td></td>
<td>FCUR</td>
</tr>
</tbody>
</table>
5.1.5 Service function setting

<table>
<thead>
<tr>
<th>SERV</th>
<th>Service functions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCK</td>
<td>Locking code</td>
<td>0</td>
<td>Enter the locking code for enabling the device.</td>
</tr>
<tr>
<td>CODE</td>
<td>Change locking code</td>
<td>0</td>
<td>Freely selectable code 1..9999. 0 = no locking. A locking code already assigned can only be changed by first entering the old code for enabling the device.</td>
</tr>
<tr>
<td>PRES</td>
<td>Reset</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>REV</td>
<td>Revision counter</td>
<td>0</td>
<td>Increases by 1 with each configuration</td>
</tr>
<tr>
<td>STA</td>
<td>Last device status</td>
<td>0</td>
<td>Displays the last device status to occur ≠ 0</td>
</tr>
<tr>
<td>SIM</td>
<td>Simulation output 1 or 2</td>
<td>OFF</td>
<td>OPEN</td>
</tr>
<tr>
<td>MAX</td>
<td>Max. indicator</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MIN</td>
<td>Min. indicator</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
5.2 Operation with PC and Readwin® 2000

Fig. 10: Operation with PC

Fig. 11: Device configuration with Readwin® 2000
5.2.1 Additional operating options

In addition to the operating options listed in the previous "On-site operation" section, the ReadWin® 2000 configuration software provides further information on the Thermophant T:

<table>
<thead>
<tr>
<th>Function group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERV</td>
<td>Number of switch changes for output 1</td>
</tr>
<tr>
<td></td>
<td>Number of switch changes for output 2</td>
</tr>
<tr>
<td></td>
<td>Device status</td>
</tr>
<tr>
<td></td>
<td>Last error to occur</td>
</tr>
<tr>
<td>INFO</td>
<td>Tag number</td>
</tr>
<tr>
<td></td>
<td>Order code</td>
</tr>
<tr>
<td></td>
<td>Limit switch serial number</td>
</tr>
<tr>
<td></td>
<td>Sensor serial number</td>
</tr>
<tr>
<td></td>
<td>Electronics serial number</td>
</tr>
<tr>
<td></td>
<td>Device release (change status)</td>
</tr>
<tr>
<td></td>
<td>Hardware version</td>
</tr>
<tr>
<td></td>
<td>Software version</td>
</tr>
</tbody>
</table>

5.2.2 Operating Instructions for Readwin® 2000

Comprehensive information on the ReadWin® 2000 configuration software may be found in the Operating Instructions BA 137R/09/en.
6 Accessories

All dimensions in the drawings are given in mm.

6.1 Adapter concept for TTR 35

The process connection is an adapter and the sensor module has an adapter thread (see Section 3.3, process connection). As a result, the process connection can easily be changed at a later stage.

6.1.1 Adapter change

The adapter can be changed on TTR 35.

![Diagram of Adapter Change]

Please note the following when changing the adapter:

- Use a new O-ring. Diameter 15.54 x 2.62 mm.
 - With either EPDM 70 Shore FDA or FKM 70 Shore FDA material
- The device (sensor module) can be fixed in place with an open-ended wrench AF 27.
- The adapter can be screwed on with an open-ended wrench AF 28 or AF 32 (depending on the process connection, see Section 6.1.2 adapter versions).
- The maximum torque is 80 Nm. The thread can become loose if exposed to severe strain through pressure and temperature. For this reason, the air-tightness must be checked regularly and the thread tightened if necessary. We recommend using Teflon tape as an additional thread seal.
- When changing the adapter, make sure that the sensor tube of the sensor is not damaged.
6.1.2 Adapter versions

TTR 35: order numbers for clamp adapter versions.
Version DB: order no. 52023994
Version DL: order no. 52023995

TTR 35: order numbers for hygiene adapter versions.
Version LB: order no. 52023996
Version LL: order no. 52023997
Version PH: order no. 52023999
Version PL: order no. 52023998
Version HL: order no. 52024000
6. 2 Welding bosses and coupling

6.2.1 Welding boss with sealing taper
Collar welding boss
Seal, moveable coupling, material of parts in contact with process: 316L, PEEK
Order number: 51004751

6.2.2 Collar welding boss
Material of parts in contact with process: 316L
Order no. 51004752

6.2.3 Coupling with sealing taper
G $\frac{1}{4}''$ process connection
Seal, moveable coupling, material of parts in contact with process: 316L
Order no. 51004753
6.3 Electrical connection

6.3.1 Plug-in jack
M 12x1.5 plug-in jack
Self-made connection to
M 12x1.5 housing connector
Order number: 52006263

6.3.2 Elbow plug
Elbow plug
4-pole M12 connector for customised cable
construction, elbowed, IP67, PG7
Order number: 51006327
6.3.3 Connecting cable

- Cable, 4 x 0.34 mm² with M12 socket, elbowed, screw plug, length 5 m, sprayed PVC cable
 Order number: 52010285

- Cable, 4 x 0.34 mm² with M12 socket, with LED, elbowed, 316 L screw plug, length 5 m, sprayed PVC cable, special for hygiene applications, order number: 52018763

Display:
- gn: device operational
- ye1: switch status 1
- ye2: switch status 2

Core colours:
- 1 = BN brown
- 2 = WH white
- 3 = BU blue
- 4 = BK black

6.4 Configuration kit

- Configuration kit for PC-programmable transmitters - ReadWin® 2000 setup program and interface cable for PCs with USB port; Adapter for transmitters with 4-pole post connector
 Order code: TXU10-AA

- ReadWin® 2000 can be downloaded free of charge directly from the internet at the following address:
 www.endress.com/readwin
7 Trouble-shooting

7.1 Errors and warnings

If an error in the device occurs, the colour of the status LED changes from green to red and the background illumination of the digital display changes from white to red. The display shows:

- **E-code for errors**
 In the event of an error message, the measured value is uncertain.

- **W-code for warnings**
 In the event of a warning, the measured value is reliable.

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E011</td>
<td>Device configuration faulty</td>
</tr>
<tr>
<td>E012</td>
<td>Error in measurement or underreach/overreach in SIL mode</td>
</tr>
<tr>
<td>E015</td>
<td>Error in EEPROM</td>
</tr>
<tr>
<td>E019</td>
<td>Power supply has undervoltage/overvoltage</td>
</tr>
<tr>
<td>E020</td>
<td>Error in Flash</td>
</tr>
<tr>
<td>E021</td>
<td>Error in RAM</td>
</tr>
<tr>
<td>E025</td>
<td>Switching contact 1 is not open although it should be</td>
</tr>
<tr>
<td>E026</td>
<td>Switching contact 2 is not open although it should be</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>W107</td>
<td>Simulation active</td>
</tr>
<tr>
<td>W202</td>
<td>Temperature outside the sensor range (not SIL mode)</td>
</tr>
<tr>
<td>W209</td>
<td>Device starts</td>
</tr>
<tr>
<td>W210</td>
<td>Configuration modified</td>
</tr>
<tr>
<td>W212</td>
<td>Sensor signal outside the permitted range (not SIL mode)</td>
</tr>
</tbody>
</table>
7.2 Spare parts

- O-ring for adapter change
 - O-ring 15.54 x 2.62 mm, EPDM 70 Shore FDA, order number 52024267
 - O-ring 15.54 x 2.62 mm, FKM 70 Shore FDA, order number 52024268

7.3 Repair

A repair is not planned.

7.4 Disposal

When disposing, ensure that the materials of the device components are separated and processed accordingly.

7.5 Change status (release)

The release number on the nameplate and in the Operating Instructions indicates the change status of the device: XX.YY.ZZ (example 01.02.01).

<table>
<thead>
<tr>
<th>XX</th>
<th>Change in the main version.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compatibility no longer provided. Device and Operating Instructions change.</td>
</tr>
<tr>
<td>YY</td>
<td>Change in functionality and operation.</td>
</tr>
<tr>
<td></td>
<td>Compatibility provided. Operating Instructions change.</td>
</tr>
<tr>
<td>ZZ</td>
<td>Trouble-shooting and internal modifications.</td>
</tr>
<tr>
<td></td>
<td>Operating Instructions do not change.</td>
</tr>
</tbody>
</table>

7.6 Release history

<table>
<thead>
<tr>
<th>Release no.</th>
<th>Device and software no.</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.00.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 The most important technical data

8.1 Power supply
Supply voltage
- DC voltage version
 12...30 V DC

Current consumption
- Without load < 60 mA, with reverse polarity protection

Power supply failure
- Behaviour in case of overvoltage (> 30 V)
 The device works continuously up to 34 V DC without any damage. No damage is caused to
 the device in case of a short-term overvoltage up to 1 kV (as per EN 61000-4-5). If the supply
 voltage is exceeded, the properties specified are no longer guaranteed.
- Behaviour in case of undervoltage
 If the supply voltage drops below the minimum value, the device switches off (status as if not
 supplied with power = switch open).

8.2 Output
Switching capacity
- Switch status ON: $I_a \leq 250$ mA
- Switch status OFF: $I_a \leq 1$ mA
- Switching cycles: > 10,000,000
- Voltage drop PNP: ≤ 2 V
- Overload protection
 Automatic load testing of switching current; output is switched off in case of overcurrent, the
 switching current is tested again every 0.4 s; max. capacitance load: 14 μF for max. supply
 voltage (without resistive load).

8.3 Operating conditions
- Any orientation

Operating conditions: Environment
- Ambient temperature range
 -40...+85 °C
- Storage temperature
 -40...+85 °C

Operating conditions: Process
- Process temperature limits
 -50 to 150 °C
Caution!

Restrictions depending on process connection and ambient temperature:
– No restriction with coupling (see Accessories, Chap. 6.2.1, Chap. 6.2.3, order no. 51004751, 51004753) and neck tube length min. 20 mm.
– with process connection:

<table>
<thead>
<tr>
<th>max. ambient temperature</th>
<th>max. process temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 25 °C</td>
<td>no restriction</td>
</tr>
<tr>
<td>up to 40 °C</td>
<td>135 °C</td>
</tr>
<tr>
<td>up to 60 °C</td>
<td>120 °C</td>
</tr>
<tr>
<td>up to 85 °C</td>
<td>100 °C</td>
</tr>
</tbody>
</table>

Process pressure limits
p/T load diagram as per DIN 43763 or Dittrich

Fig. 13: p/T load diagram

$L = $ insertion length
$v_i = $ medium velocity air
$v_w = $ medium velocity water
Declaration of contamination

Dear customer,

Because of legal determinations and for the safety of our employees and operating equipment, we need this "Declaration of contamination" with your signature before your order can be handled. Please, include the completely filled in declaration with the device and the shipping documents in any case. Add also safety sheets and / or specific handling instructions if necessary.

<table>
<thead>
<tr>
<th>Type of device / sensor:</th>
<th>Serial no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium / concentration:</td>
<td>Temperature:</td>
</tr>
<tr>
<td>Cleaned with:</td>
<td>Pressure:</td>
</tr>
<tr>
<td></td>
<td>Conductivity:</td>
</tr>
<tr>
<td></td>
<td>Viscosity:</td>
</tr>
</tbody>
</table>

Warning hints for medium used (mark the appropriate hints)

- ☐ radioactive
- ☐ explosive
- ☐ caustic
- ☐ poisonous
- ☐ harmful to health
- ☐ biologically hazardous
- ☐ inflammable
- ☐ safe

Reason for return

Company data

<table>
<thead>
<tr>
<th>Company:</th>
<th>Contact person:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phone:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fax / e-mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your order no.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

I hereby certify that the returned equipment has been cleaned and decontaminated acc. to good industrial practices and is in compliance with all regulations. This equipment poses no health or safety risks due to contamination.

(Place, date) (Company stamp and legally binding signature)