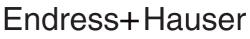
Information technique TI 013A.00/14/fr/12.96

Débitmètre massique thermique t-mass S

Mesure directe du débit massique de gaz

Caractéristiques

- La technologie SMART permet une communication digitale bidirectionnelle par le biais du protocole HART
- Une seule construction de capteur standard pour tous les gaz avec une gamme de température de process de -10...+100°C
- Pertes de charge négligeables
- Mesure directe de la masse avec un seul capteur
- Dynamique de mesure jusqu'à 100:1
- Chaque capteur est livré avec son certificat d'étalonnage


Souplesse d'utilisation

- Le t-mass mesure le débit massique dans le process. De nombreuses unités techniques y compris le volume normé sont disponibles pour l'affichage de la valeur mesurée.
- La configuration manuelle est possible boîtier fermé, même en zone explosible
- Mode de simulation de courant et d'impulsion pour la mise en service et le diagnostic

- Les versions (AT 70) insertion, à brides (AT 70F) ou entre-brides (AT 70W) permettent une adaptation parfaite de l'instrument à n'importe quelle conduite ou tuyauterie.
- Le t-mass peut être fourni avec une large gamme de raccords process et de DN pour répondre à tous les domaines d'applications.
- L'affichage et le boîtier de l'électronique peuvent être tournés de façon à offrir une lecture optimale de l'affichage.

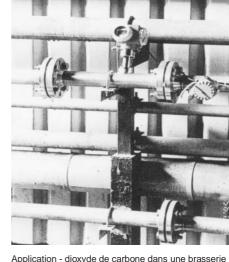
Sécurité

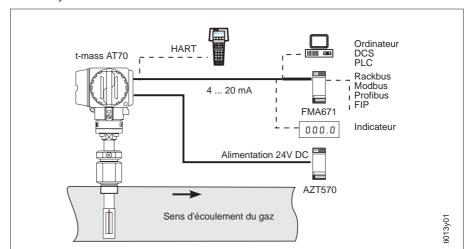
- Sigle CE de compatibilité électromagnétique selon la norme EN 50081-1 : 1992 et EN 50082-1:1992
- Agréé pour utilisation en zone explosible
- Tous les capteurs ont subi des tests de pression hydrostatique
- Electronique avec autosurveillance et fonctions alarme

Le savoir-faire et l'expérience

Applications

Système de mesure


t-mass


Le débitmètre massique t-mass mesure le débit massique d'une large gamme de

- gaz naturel pour l'alimentation des chaudières et des sécheurs
- biogaz provenant de digesteurs de station d'épuration
- surveillance du gaz de décharge
- · dioxyde de carbone dans les brasseries et l'industrie des boissons
- · air instrument dans les usines de pro-
- débit d'azote, d'oxygène et d'argon dans les aciéries
- débit argon/hélium dans la production
- débit d'hydrogène dans l'industrie chi-
- détection de fuite

Un ensemble de mesure comprend :

- un capteur t-mass
- une alimentation 20...30 V DC 150 mA
- un signal sortie courant ou impulsion pour le raccordement à un indicateur externe ou un système de contrôle

Capteur t-mass AT 70 comme point de mesure individuel

Capteur de débit t-mass

Le nouveau capteur t-mass a les caractéristiques suivantes :

- · micro-processeur
- · autosurveillance et diagnostic de l'électronique et du capteur
- · compartiment séparé pour le raccordement sur le terrain
- protection IP 65
- immunité contre les interférences électromagnétiques (CEM)
- sortie collecteur ouvert
- affichage numérique avec bargraph pour débit instantané et débit totalisé (en option)
- toutes les versions du capteur sont disponibles sous forme compacte - transmetteur et capteur sont solidaires - ou séparée - distance maximale de 100 m entre capteur et transmetteur.

Programmation sur le terrain

• Le réglage des fonctions et la lecture des valeurs sont effectués avec quatre touches, également en zone explosible, sans ouverture de boîtier.

• Il est également possible d'utiliser un terminal portable HART pour la configuration du débitmètre par le biais de la sortie 4...20 mA. Le débitmètre est livré avec un réglage usine. Celui-ci peut aisément être modifié en utilisant les fonctions de menu et l'afficheur, par ex. unités techniques, fonctions sortie courant, collecteur ouvert, paramètres de système

Communication digitale

Grâce à la technologie SMART, le débitmètre peut communiquer de différentes facons

• Le t-mass S peut être programmé à distance à l'aide du terminal portable HART, et peut être raccordé par le biais de Rackbus à des systèmes de bus supérieurs comme FIP, Modbus ou Profibus.

Construction

La famille des capteurs t-mass est disponible dans une large gamme de constructions

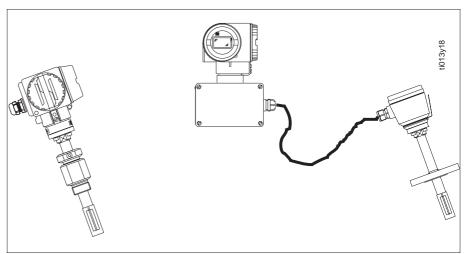
AT 70 F (manchette de mesure à brides, DN 15...150)

- les longueurs droites intégrées facilitent l'installation et améliorent la qualité de la mesure.
- construction standard avec brides, large gamme de raccords en option.
- dégraissage en option pour applications sur oxygène

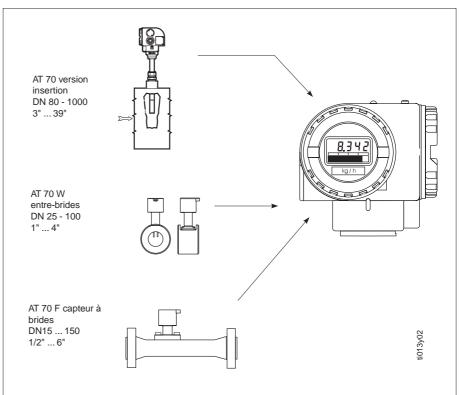
AT 70 W (entre-brides, DN 25...100)

- cette version de faible encombrement se monte entre deux brides avec une cote entre-brides de 65 mm pour tous les diamètres nominaux.
- un set de montage permet un centrage rapide et précis sur la conduite (p. 6).
- dégraissage en option pour applications sur oxygène

AT 70 (insertion, DN 80...1000)


 installé directement sur la conduite à l'aide d'une grande variété de raccords, par ex. brides, raccords filetés, clamps.

Toutes les versions


- certificat de matière 3.1B fourni en option
- sur demande contrôle des soudures par ressuage

Construction de boîtier - toutes les versions

- construction compacte comprenant l'électronique, l'afficheur et les touches de programmation
- construction séparée, capteur et transmetteur pouvant être montés avec un écart de 100 m

Construction séparée ou compacte

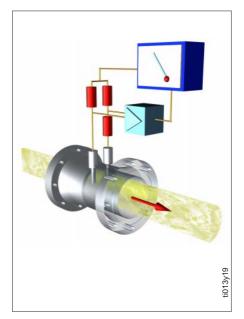
Système de mesure t-mass

Principe de fonctionnement

Principe de mesure

La mesure selon le principe thermique est aujourd'hui une méthode largement répandue en débitmétrie massique. Ce principe repose sur le contrôle des effets de refroidissement du gaz lorsque celuici passe sur un élément chauffant.

Le gaz circule dans un tube de mesure comprenant deux thermorésistances Pt 100. L'une est utilisée pour la mesure de température du gaz tandis que l'autre sert d'élément chauffant. Le courant de chauffage est régulé pour maintenir un écart de température constant entre l'élément de mesure et l'élément chauffant. Cette régulation est proportionnelle au débit massique.


Capteur de mesure

Le capteur de débit AT 70 est relié par un câble de raccordement 4 fils, soit 2 fils pour l'alimentation, 2 fils pour la transmission du signal vers la salle de contrôle sous forme de courant 4-20 mA ou d'impulsion (transistor à collecteur ouvert).

La sortie courant sert également à l'exploitation du protocole HART, ce qui permet l'interrogation à distance du débit, du débit totalisé, de la température du gaz de process et de la configuration du capteur.

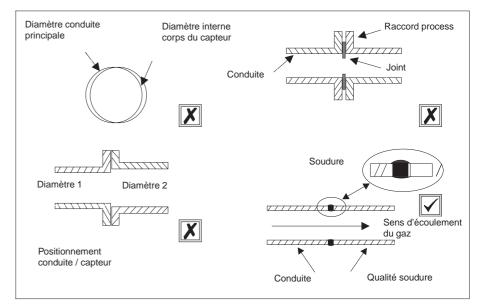
Etalonnage

Chaque capteur est étalonné et certifié conformément aux normes en vigueur.

Principe de mesure thermique

Capteur à bride AT 70 W

Projet et installation


Spécifications des conduites

La mesure selon le principe thermique est extrêmement sensible aux faibles débits. Ceci signifie par ailleurs que le débitmètre est sensible aux pertubations dans le flux de gaz (par ex. tourbillons), notamment dans les conduites à faible diamètre nominal (≤ DN 150). Par conséquent, il faut installer le capteur le plus loin possible en amont de n'importe quelle perturbation, en tenant compte des points suivants :

Construction et/ou qualité de l'assemblage

Veiller à la qualité de la construction :

- conduite et soudures de brides propres
- joint d'étanchéité aux dimensions adaptées
- brides et joints correctement positionnés
- utiliser des conduites sans soudure immédiatement en amont du capteur
- utiliser une conduite dont le diamètre intérieur correspond à celui du capteur afin que la différence ne dépasse pas 1 mm à l'entrée et à la sortie du capteur (3 mm pour les DN > 200)
- de manière générale tout élément qui altère la paroi lisse interne de la conduite doit être éliminé, voir les indications p. 6

Construction des conduites et assemblage

Eléments de process ou configuration de la tuyauterie

Dans le cas d'obstacles (par ex. coudes de conduite, vannes, T, etc.) situés en amont du capteur, il faut prendre un certain nombre de précautions pour éviter une altération de la mesure.

Les figures de la page 6 indiquent la section amont minimale recommandée en multiple du DN de la conduite (x DN). Si l'installation le permet, il est conseillé d'augmenter ces longueurs.

Voici les sections d'entrée et de sortie minimales conseillées :

• sections d'entrée

minimum 15 x DN pour la version de capteur à bride (AT 70 F)

minimum 20 x DN pour la version à insertion (AT 70) ou entre-brides (AT 70 W)

• sections de sortie

minimum 2 x DN pour la version à bride (AT 70 F)

minimum 5 x DN pour la version à insertion (AT 70) ou entre-brides (AT 70 W

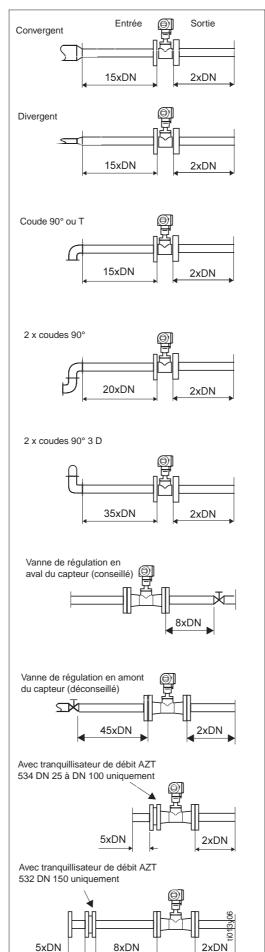
Remarques:

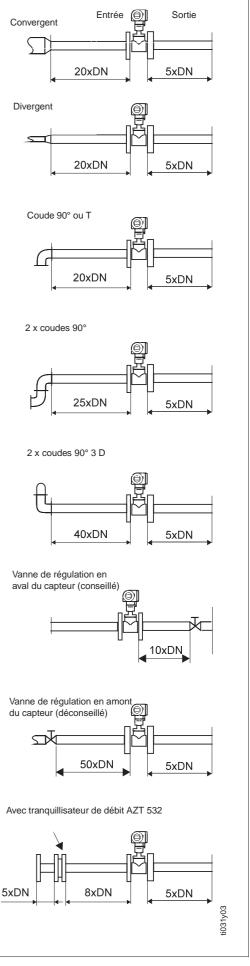
- Lorsque deux obstacles ou plus sont situés en amont du capteur, la section la plus longue conseillée constitue la longueur minimale.
- Il est conseillé d'installer des vannes de régulation en aval du capteur.
- Dans le cas d'un obstacle en amont dont l'effet ne peut pas être facilement évalué (par ex. un sécheur ou un appareil de mesure comme un débitmètre à turbine ou un débitmètre Vortex), il faut considérer l'obstacle comme une vanne (voir p. 6).
- Pour les gaz très légers comme l'hélium ou l'hydrogène, il faut multiplier les valeurs de sections d'entrée par deux.
- Les conduites libres soumises à de fortes vibrations doivent être correctement arrimées en aval et en amont du capteur.

Tranquillisateur de débit

Lorsqu'on ne dispose pas de longueur de conduite suffisante, notamment lorsque les diamètres de conduite sont importants, il est conseillé d'utiliser un tranquillisateur de débit. Le tranquillisateur de débit AZT 532 ou AZT 534 est une plaque perforée, qui même dans les cas de profils d'écoulement très perturbés permet de diminuer la section en amont du capteur.

Pics de pression / précision de mesure


Les pompes et certains systèmes de compression peuvent être à l'origine de fortes variations de pression dans la conduite qui peuvent générer des erreurs de mesure. Par conséquent, il faut réduire les pics de pression avec des mesures appropriées :


- des volumes d'amortissement
- des divergents
- lieu de montage plus adapté

Projets et installation

Pour toutes les versions

Sections d'entrée et de sortie minimales

Remarques:

- Pour les gaz très légers comme l'hélium ou l'hydrogène, il convient de doubler les distances en amont.
- Le capteur à bride DN 150 AT 70 F doit être combiné avec un tranquillisateur de débit AZT 532, tandis que le capteur DN 15 à DN 100 doit être combiné avec un tranquillisateur AZT 534
- La version entre-brides (AT 70 W) et la version insertion AT 70 nécessitent un tranquillisateur de débit AZT 532.
- Les tranquillisateurs de débit ne sont pas disponibles pour tous les DN, veuillez vous reporter à la page 11 et contacter votre agence qui vous aidera à spécifier votre matériel.

Sections d'entrée et de sortie pour la version à brides (AT 70 F)

Sections d'entrée et de sortie pour la version à insertion (AT 70) et la version entre-brides (AT 70 W)

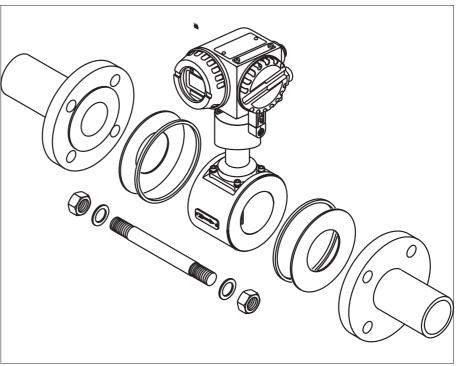
Projets et installation

Avant de monter le capteur AT 70 W, veuillez tenir compte des points suivants :

- Pendant le transport, les capteurs sont protégés par des disques qu'il faut retirer avant l'installation du débitmètre dans la conduite.
- Veillez plus particulièrement au diamètre interne des joints installés directement en amont et en aval du capteur, il doit être identique ou supérieur à celui du capteur et de la conduite de process. Les joints qui font saillie dans le flux génèrent infailliblement des erreurs de mesure.

Uniquement version entre-brides AT 70 W

Set de montage


Pour bien centrer le capteur version entre-brides par rapport à la bride de process, il faut impérativement le set de montage fourni avec le capteur.

Chaque set comprend

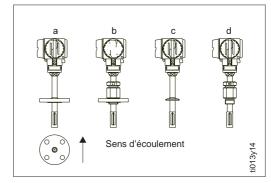
- un ensemble de goujons, d'écrous et de rondelles
- des bagues de centrage correctement dimensionnées

Procédure de montage

- Placer une bague de centrage de part et d'autre du capteur
- Monter deux ou plusieurs goujons selon les besoins avec les rondelles sur les brides de process
- Ajuster le capteur avec les deux bagues de centrage entre les goujons et les brides de process (avec joint d'étanchéité)
- Monter les autres goujons
- Serrer les écrous en alternance

Set de montage pour la version entre-brides (AT 70 W)

Précisions sur le montage du capteur


Capteur à insertion AT 70

Longueur d'insertion

Consulter le tableau à la page 20 pour connaître la longueur d'insertion compatible avec la conduite ou le tuyau. Attention, il part du principe que le capteur est monté avec un manchon de montage standard AZT 70 (voir p. 21).

Remarque

Pour tout autre type de manchon utilisé (par ex. avec une vanne à boisseau), il faut mesurer l'installation pour connaître la longueur d'insertion correcte (voir p. 9 pour les instructions complémentaires).

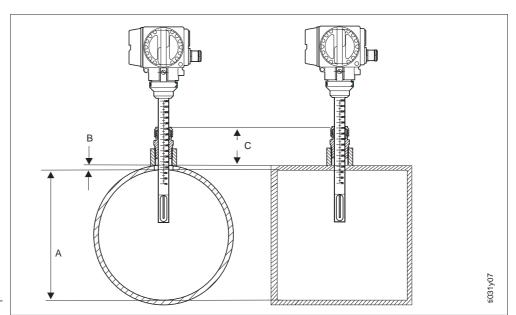
Positions de montage typiques

- a longueur d'insertion fixe + bride
- b longueur d'insertion réglable + bride
- c longueur d'insertion fixe + triclamp
- d longueur d'insertion réglable + raccord fileté

Lors de l'installation du capteur, il faut prendre en compte 3 dimensions pour déterminer la profondeur d'insertion :

- A = diamètre interne de la conduite circulaire ou rectangulaire, la hauteur de conduite pour le montage vertical ou la largeur de conduite pour le montage horizontal.
- B = épaisseur de la paroi de la conduite
- C = profondeur de montage du manchon dans la conduite ou le tuyau, raccord process compris

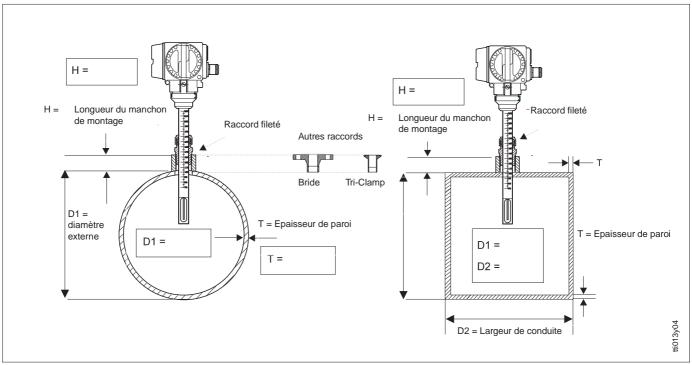
Pour capteur avec hauteur de sonde réglable (par ex. raccord process fileté)


Dans le cas des capteurs à longueur d'insertion réglable (raccord process fileté), la sonde est fournie avec une échelle graduée en mm. Installer le capteur de telle sorte que le sommet du raccord se trouve au niveau de la valeur d'échelle égale à la valeur calculée de la facon suivante :

Pour diamètres de conduites DN 80 et DN 100 : B + C + 56Pour diamètres de conduites \ge DN 150 : $(0,15 \times A) + B + C + 35$

Une fois la sonde correctement positionnée, placer le capteur dans le sens d'écoulement du gaz (voir p. suivante).

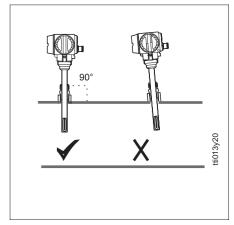
Remarque


Les capteurs à insertion montés sur des conduites DN 80 à DN 150 sont étalonnés en usine sur une canalisation de même diamètre. Les capteurs à insertion destinés à être utilisés sur des conduites de diamètre > 150, sont étalonnés sur une canalisation de diamètre 150 ou 300, puis mis à l'échelle numériquement. La configuration de la conduite et la sélection des unités techniques est programmable sur le terrain à l'aide des touches de commande et de l'afficheur.

Dimensions nécessaires au calcul de la profondeur d'insertion du capteur AT 70

Capteur AT 70 à longueur d'insertion fixe

Les capteurs avec des raccords process fixes (par ex. bride soudée, triclamp), la profondeur d'insertion n'est pas réglable après la fabrication, c'est pourquoi il faut absolument que toutes les dimensions de l'installation soient spécifiées à la commande. Ceci concerne également les capteurs à insertion pour les conduites DN 80-100, quel que soit le type de raccord process. En effet, pour éviter des erreurs dues au rapport de surface capteur / section de conduite, ils doivent être étalonnés avec le même réglage mécanique que l'installation définitive.

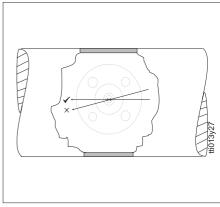


Dimensions à indiquer à la commande si le manchon de montage est fourni par l'utilisateur

Capteur à insertion Montage

Montage vertical

Souder le manchon de montage à la conduite ou au tuyau de telle sorte que le capteur soit monté perpendiculairement au sens d'écoulement. Un angle différent de 90° peut provoquer des erreurs de mesure.



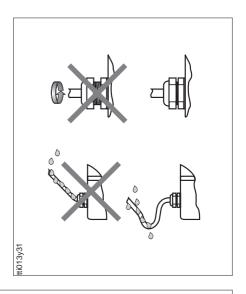
Montage vertical

Montage dans le sens de l'écoulement

Le capteur doit être impérativement monté dans le sens d'écoulement du fluide. Pour ceci,

- les flèches se trouvant dans la partie inférieure sont tournées dans le même sens que l'écoulement du gaz.
- l'échelle graduée de la sonde à immersion doit se trouver directement en amont du sens d'écoulement
- pour permettre une parfaite position de la sonde dans le gaz, ne pas tourner le capteur de plus de 7° par rapport à la direction d'écoulement.

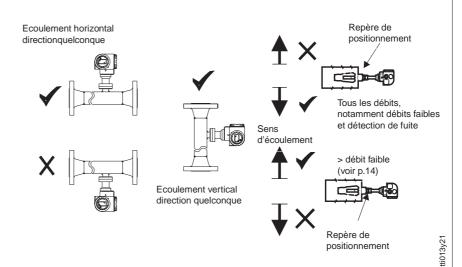
Montage dans le sens d'écoulement


Projet et installation

Toutes les versions

Protection IP65 (DIN 40050)

Le capteur AT 70 bénéficie de la protection IP 65. Pour conserver celle-ci après l'installation sur le terrain ou après une maintenance, tenir compte des points suivants:


- Serrer toutes les vis et fermer le boîtier.
- Les câbles de raccordement doivent avoir le diamètre externe requis
- Serrer les presse-étoupe.
- Pour éviter la pénétration d'humidité dans l'appareil, former avec la partie de câble précédent le presse-étoupe une boucle descendante.
- Serrer l'embase du presse-étoupe.

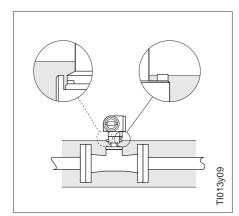
Orientation du capteur

De manière générale, le capteur entre-brides AT 70 W et le capteur à bride AT 70F peuvent être montés dans n'importe quel sens, sachant toutefois que lorsqu'une formation de condensation est possible (par ex. biogaz), il faut orienter le capteur de manière à ce que l'eau ne ruisselle pas sur les éléments sensibles.

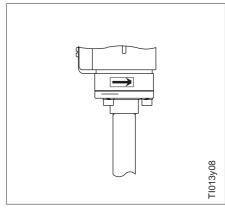
Si le capteur à insertion AT 70 doit être monté sur une conduite verticale pour la détection de fuite ou pour la mesure sur des débits faibles, il est recommandé de l'installer dans le sens d'écoulement descendant.

Isolation des conduites

Lorsque le gaz est très humide ou saturé en eau (par ex. biogaz), il faut isoler la conduite et le corps du capteur afin d'éviter la condensation de gouttelettes d'eau sur la paroi de la conduite et/ou sur les éléments de mesure.


Dans les cas d'un taux d'humidité élevé et de variation de température, il peut être utile d'installer un chauffage pour la conduite et/ou le capteur.

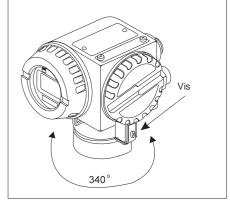
Températures ambiantes


Nous rappelons ici que le principe de fonctionnement du capteur repose sur le principe de refroidissement. Autrement dit, les performances du capteur sont optimisées lorsque la température ambiante et celle du gaz sont relativement stables. Le capteur doit être protégé contre le rayonnement solaire direct et les sources de température extrêmes.

Sens d'écoulement

Il faut que les flèches du capteur soient pointées vers le sens d'écoulement (voir figure ci-contre).

Isolation de la conduite



Montage dans le sens d'écoulement

Afficheur - angle de vision

Il est possible de modifier l'angle de vision de l'afficheur LCD en desserrant la vis qui se trouve à la base du boîtier et en tournant ce dernier de 340°. Resserrer la vis lorsque le boîtier est dans la position requise.

Il est également possible de tourner l'afficheur par pas de 90° (voir les instructions et la figure de la page 13).

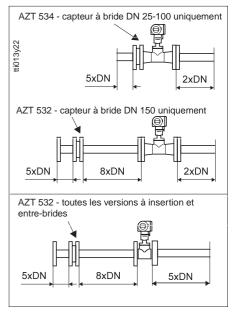
Rotation du boîtier de l'électronique

Tranquillisateur de débit

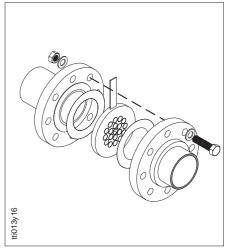
AZT532 et AZT534

Lorsqu'on ne dispose pas de longueur de conduite suffisante, notamment lorsque les diamètres de conduite sont importants, il est conseillé d'utiliser un tranquillisateur de débit. Il s'agit d'une plaque perforée, qui même dans les cas de profil d'écoulement extrêmement perturbé, permet de diminuer la section en amont du capteur. Il existe deux versions de tranquillisateur :

AZT532


Pour l'utilisation avec la version à insertion (AT 70), la version entre-brides (AT 70 W) et la version à brides DN 150. Cette plaque est basée sur la construction" Mitsubishi". Prévue pour la plupart des gaz, elle doit être installée à 8 x DN en amont du capteur et à une distance égale à 5 x le DN en aval (voir schéma p. 6).

AZT534


Il s'agit d'une version spéciale pour la version à brides (AT 70 F) sauf DN 150. Il est conseillé de monter la plaque directement en amont du capteur, en tenant compte d'une section égale à 5 x le DN de la conduite (voir schéma p. 5) à partir du tranquillisateur de débit.

Remarque

- Pour les gaz très légers comme l'hélium et l'hydrogène, multiplier la valeur de section d'entrée par deux.
- Les tranquillisateurs de débit AZT 532/AZT 534 ne sont pas disponibles pour les diamètres de conduite DN 15 et > DN 200.

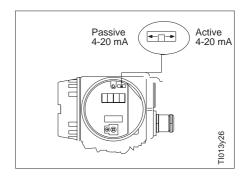
Tranquillisateur de débit

Montage du tranquillisateur de débit AZT 532 et AZT 534

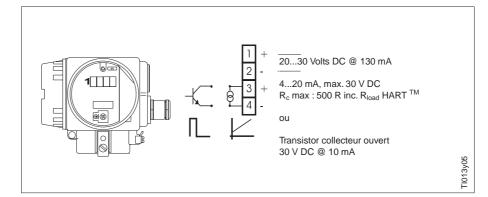
Calcul de la perte de charge :

Dp [mbar] = $A \cdot \rho$ [kg/m³] $\cdot v^2$ [m/s] où A=0.005 [AZT532] ou 0.0085 [AZT534]

Exemple d'un AZT534 avec capteur DN 25, débit d'air de 148 kg/hr @ 20° C, 5 bar (v = 12 m/s)


 ρ à 5 bar et 20°C = 7.2 kg/m³; $\Delta p = 0.0085 \times 7.2 \times 12^2 = 8.8$ mbar

Raccordement électrique


La sortie isolée galvaniquement du capteur peut être configurée au choix :

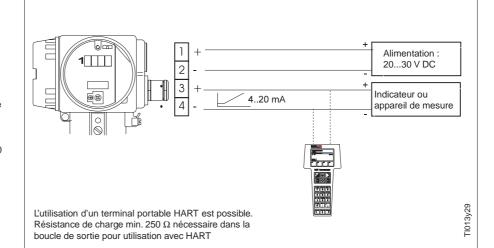
- sortie impulsion avec collecteur ouvert (0-100 imp./s)
- sortie courant passive 4-20 mA
- sortie courant active 4-20 mA

La configuration de la sortie courant (active/passive) est sélectionnée à l'aide du micro-commutateur situé sur la platine dans le compartiment de raccordement.

Emplacement du micro-commutateur sur la platine pour le choix de la sortie

Compartiment de raccordement du t-mass

Module d'alimentation AZT 570


Raccordement du module d'alimentation AZT 570 (vue arrière du bornier de raccordement dans le cas d'une utilisation avec un capteur AT 70

Endress+Hauser recommande cette alimentation pour le capteur t-mass S

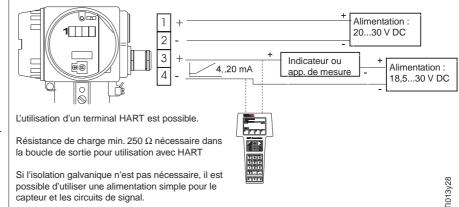
Alimentation AZT 570 2 24 V. DC 4 -1 6 4...20 mA, max. 30 V DC 8 SIG R_c max: 500 R 10 12 14 Transistor collecteur ouvert 16 30 V DC @ 10 mA 18 Boîtier de capteur à insertion AT 70 20 Boîtier du capteur entre-brides AT 70 W 22 24 Ν Boîtier du capteur à bride AT 70 F 26 Alim. AC 28 L Version compacte ou séparée 30 PΕ 32

Sortie courant active

La sortie courant est active lorsque l'indicateur de débit a une entrée passive (par ex. indicateur passif, entrée passive D.S.C. (système de régulation numérique)). Il s'agit là d'un réglage usine.

Veuillez contacter votre agence pour connaître les indicateurs compatibles, par ex.:

Indicateurs: VU 2520, VU 2550


Interfaces: FXA 191, FMA 671

Enregistreurs : Chroma-log, Mega-Log, Memo-Log

Raccordement de la sortie courant active

Sortie courant passive

Lorsque l'indicateur de débit a une entrée active (par ex. indicateur actif avec alimentation externe, entrée courant D.C.S active)

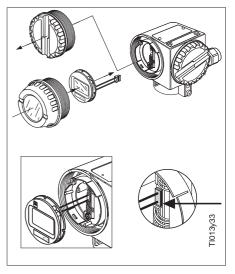
Veuillez contacter votre agence pour connaître les indicateurs compatibles, par ex.:

Indicateurs: VU 2520, VU 2550
Interfaces: FXA 191, FMA 671

Enregistreurs : Chroma-log,

Sortie impulsion

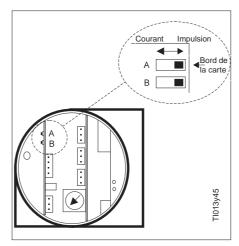
Il est également possible d'avoir une sortie impulsion avec transistor passif à collecteur ouvert pour l'utilisation avec un compteur externe ou une entrée impulsion DCS. Elle est réglée en usine si elle est spécifiée à la commande, sinon, il suffit de régler les commutateurs et des valeurs dans la matrice de programmation pour la configuration sur le terrain.

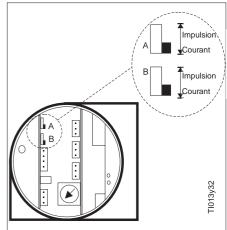

Remarque:

Le t-mass S ne peut pas être utilisé avec HART dans le cas d'une sortie transistor à collecteur ouvert.

Configuration

La sortie est configurée par deux commutateurs internes qui figurent sur l'électronique.

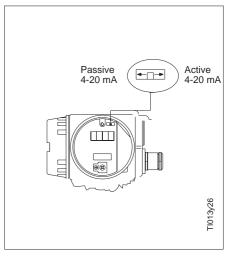

- Retirer le module d'affichage en dévissant le capot avec fenêtre en verre
- Retirer délicatement le module LCD de son logement avec un petit tournevis et retirer le connecteur de la carte principale
- Retirer le logement en desserrant les deux vis de fixation
- Positionner les deux commutateurs sur la carte principale (voir figure) sur "Pulse" (impulsion)


Montage / démontage du module d'affichage Emplacement des commutateurs de configuration de la sortie impulsion / courant

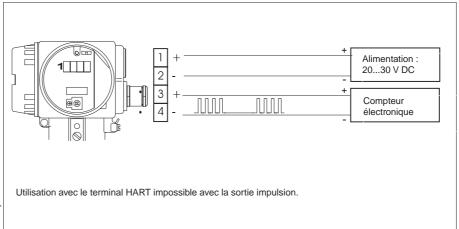
Remarque

Les paramètres de programmation "FS", "OcFu" et "P.SCA" doivent être configurés avant que soit activée la sortie impulsion. Ceci est possible pendant la mise en service du système (voir le manuel de mise en service BA 004 pour plus d'informations).

Emplacement des commutateurs de sélection de la sortie impulsion/courant sur la version séparée

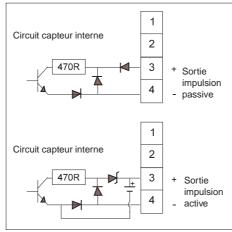


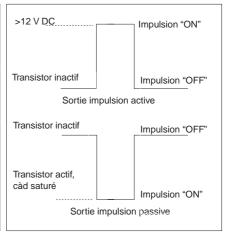
Emplacement des commutateurs de sélection impulsion / courant sur la version compacte


Type de sortie impulsion

Après le réglage des commutateurs de la sortie, le commutateur actif / passif offre les possibilités suivantes :

- sortie active : la tension de la borne 3 qui passe d'un circuit ouvert lorsque l'impulsion est sur "off" à 12 V lorsque l'impulsion est "on" (par rapport à la borne 4). Ce réglage est standard pour la plupart des compteurs électroniques.
- sortie passive : transistor à collecteur ouvert avec une résistance interne de 470Ω dans son collecteur (voir figure ci-dessous). Le transistor fonctionne comme un "commutateur" résistif entre les bornes 3 et 4.

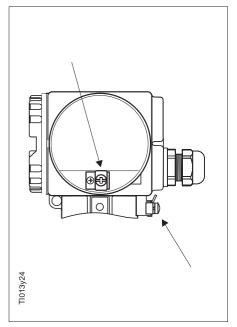

Emplacement du commutateur sortie passive / active sur la carte de raccordement des bornes



Configuration de raccordement typique de la sortie impulsion active avec un compteur électronique à alimentation

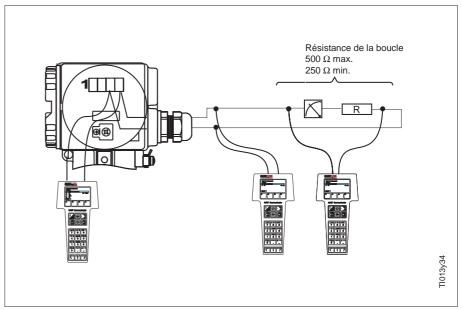
> La sortie impulsion active n'est peut-être pas compatible avec certains compteurs pour diverses raisons comme par ex. seuils de tension on/off, entrée compteur à basse impédance, entrée compteur très exigeante en courant.

La sortie impulsion "passive" permet d'adapter la sortie collecteur ouvert au compteur.



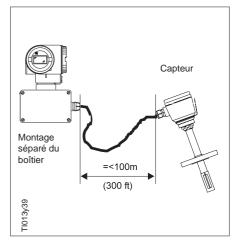
Circuit de sortie à collecteur ouvert du capteur AT 70 S Ondes de sortie des impulsions actives et passives

Recommandations CEM/RFI


Pour se conformer aux recommandations CEM/RFI, tenir compte des points suivants : ·

- l'alimentation du capteur et la sortie signal doivent être raccordées au système de mesure soit avec un câble 4 fils blindé, soit avec deux câbles 2 fils blindés, le blindage devant être mis à la terre à l'extrémité du câble du capteur seulement. Les bornes de terre se trouvent à l'extérieur sur le boîtier de l'électronique et à l'intérieur du compartiment de raccordement (voir figure).·
- Ne pas poser les câbles avec des câbles porteurs de courants et/ou tensions élevés, notamment si le capteur est exploité avec le protocole HART.
- Le capteur doit toujours être exploité avec les capots du boîtier montés.

Raccordements de terre à l'intérieur et à l'extérieur du boîtier


Charge de la sortie courant HART TM

• Si le transfert de données est effectué sur une ligne 4...20 mA avec le protocole HART TM (terminal portable), la résistance de charge min. est de 250 Ω (Uc min. = 18,5 V DC).

Configuration à distance et câblage

La famille des capteur AT 70 peut être fournie en version séparée, c'est à dire le boîtier contenant l'affichage et les éléments de commande peut être installé à une distance maximale de 100 m du capteur.

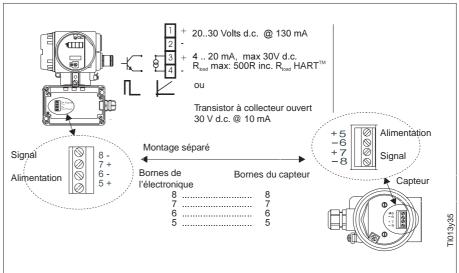
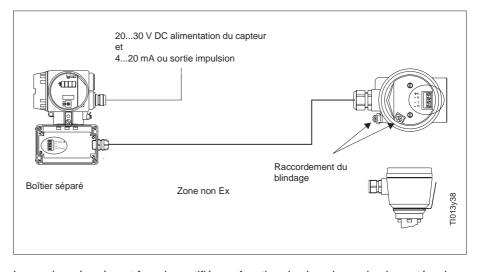
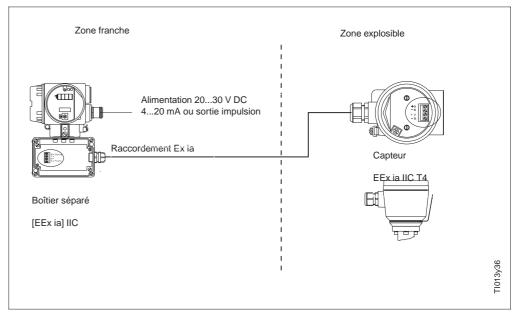



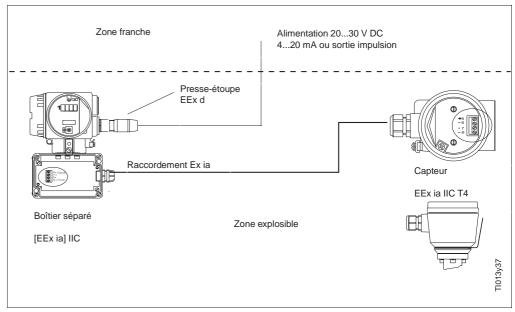
Schéma de raccordement général de la version séparée

Fonctionnement en zone Ex

La version séparée est fournie certifiée en fonction des besoins, selon les catégories de zones dangereuses :


Version séparée-

- Eex d [ia] ia IIC T4 version séparée Ex d avec capteur Ex ia en zone Ex-
- [Eex ia] II C -version séparée en zone franche avec capteur en zone Ex
- IEC 79-15 type n pour utilisation en zone 2-
- FM Class 1 Div. 1 et 2 Groups A, B, C, D


Version compacte

Le capteur compact peut être fourni pour les utilisations en zone Ex

- IEC 79-15 -type n) pour utilisation en zone 2-
- FM Class 1 Div. 2 Groups A, B, C, D

Raccordement de la version séparée, électronique en zone franche, capteur en zone explosible

Raccordement de l'électronique et du capteur en zone explosible

Raccordement de l'électronique et du capteur en zone explosible

Circuit capteur	Groupe de gaz Ex	Capacité max. du câble (nF)	Inductance de câble max. (mH)	Rapport max. L/R
Raccordement alimentation	IIA	3416	4.98	0.576
	IIB	1281	1.87	0.216
	IIC	427	0.622	0.072
Raccordement signal	IIA	6320	1760	43.2
	IIB	2370	660	16.2
o.g. iai	IIC	790	220	5.4

Spécifications de câble

(uniquement pour le raccordement électronique séparée- capteur)

Circuits d'alimentation et de signalisation-

- 4 fils, blindage sur toute la longueur 4 x 0,5 mm²-
- Résistance/conducteur 40 Ohms /km-
- Capacité -conducteur/blindage ← 200 pF/mètre

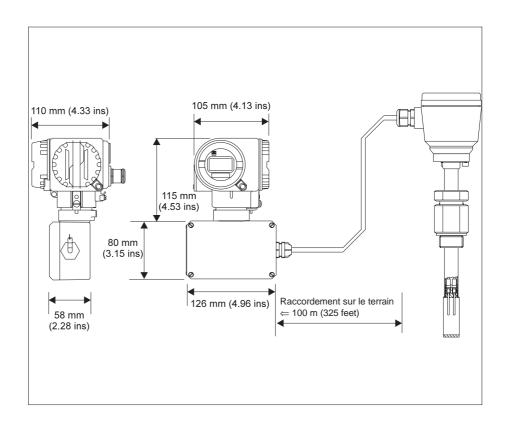
Remarque:

La distance maximale entre le capteur et l'électronique est de 100 m.

Etalonnage

Un capteur massique doit être étalonné individuellement en fonction du gaz de process. Chaque capteur est fourni avec deux certificats d'étalonnage :

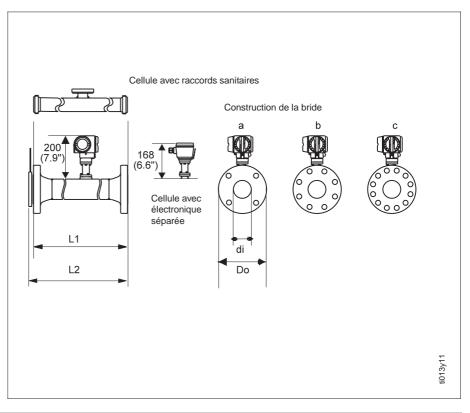
- le premier indique le gaz de référence et les conditions d'étalonnage (en principe pression et air ambiants)
- le deuxième indique le gaz de process pour lequel a été programmé le capteur


Remarques.

- Il est possible de faire des étalonnages spéciaux en fonction du gaz et des conditions de process requises
- Les limites d'étalonnage de l'air et des gaz couramment mesurés par le t-mass figurent dans le document TI 013.
- Il est préférable que le capteur soit programmé en usine en fonction du gaz et des conditions de process. C'est pourquoi, il est conseillé de spécifier les données au moment de la commande. Si ces informations ne sont pas connues, il est possible de les programmer dans le capteur sur le terrain à l'aide du terminal HART.
- Il est possible de modifier les données programmées à l'aide du terminal HART ou du logiciel WINSOFT.
- Pour plus d'informations sur l'étalonnage, les modifications de données ou des applications spécifiques, contactez votre agence.

Dimensions

Version séparée


Toutes les versions

Dimensions

AT 70F

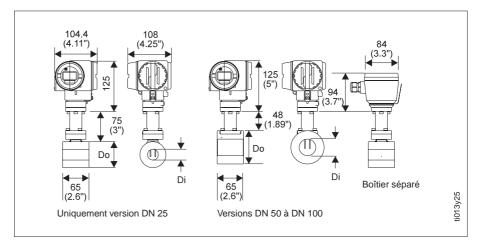
Version à bride

Dimensions

Dimen- sions conduite	Pression nominale (DIN/ANSI	L1 mm (inch)	L2 mm (inch)	di mm (inch)	Do mm (inch)	Type bride	Poids kg (lbs)
15 (1/2")	PN40 CI 150	220 (8.66)		17.08 (0.672) 15.5 (0.622)	95 88.9	a a	3.8 (1.73)
25 (1")	PN40 CI 150 CI 300	245 (9.65)	249.3 (9.81)	28.5 (1.12) 26.64 (1.05) 26.64 (1.05)	115 (4.53) 108 (4.25) 123.8 (4.87)	a a a	5 (2.27)
40 (1.5")	PN40 CI 150 CI 300	320 (12.6)	326.5 (12.85)	42.72 (1.68) 40.9 (1.61) 40.9 (1.61)	150 (5.91) 127 (5) 155.6 (6.13)	a a a	8 (3.64) 6 (2.73) 9 (4.09)
50 (2")	PN40 CI 150 CI 300	400 (15.75)	408.4 (16.08)	54.79 (2.16) 52.51 (2.07) 52,51 (2.07)	165 ((6.5) 152.4 (6) 165.1 (6.5)	a a b	9 (4.09) 8 (3.64) 8.5 (3.86)
80 (3")	PN40 CI 150 CI 300	640 (25.2)	652.4 (25.69)	82.8 (3.26) 77.92 (3.07) 77.92 (3.07)	200 (7.87) 190.5 (7.5) 209.5 (8.25)	b a b	18.8 (8.55) 18 (8.18) 21 (9.55)
100 (4")	PN16 PN40 CI 150 CI 300	800 (31.5)	816.4 (32.14)	108.2 (4.26) 108.2 (4.26) 102.26 (4.03) 102.26 (4.03)	220 (8.66) 235 (9.25) 228.6 (9) 254 (10)	b b b	24 (10.91) 27 (12.27) 26 (11.82) 35 (15.91)
150 (6") (voir re- marque 4)	PN16 PN40 CI 150 CI 300	360 (14.17)	384.6 (15.1)	159.3 (6.27) 159.3 (6.27) 154.06 (6.07) 154.06 (6.07)	285 (11.22) 300 (11.81) 279.4 (11) 317.5 (12.5)	b b c	27 (12.27) 33 (15) 27 (12.27) 43 (19.55)

Dimensions version à bride

Remarques


- 1) Raccordement par brides selon ANSI B 16.5 (RF) ou BS 4504 type B (RD)
- 2) Brides standard "plates à souder" ou à collerette en option
- 3) Autres types de brides ou raccords peuvent être fournis
- 4) Nécessite un cylindre supplémentaire entre la cellule et le tranquillisateur de débit

Dimensions conduite	PN (DIN/ANSI	L1 mm	di mm	Do mm	Poids (kg)
40 (11/2")	IDF DIN11851 Tri-clamp	320 (12.6)	34.9 (1.37) 38 (1.5) 34.9 (1.37)	50.7 (2) 65 (2.56) 50.4 (1.98)	2.2 (1) 2.5 (1.14) 2.2 (1)
50 (2")	IDF DIN11851 Tri-clamp	400 (15.75)	47.6 (1.87) 50 (1.97) 47.6 (1.87)	64.2 (2.53) 65 (2.56) 63.9 (2.52)	2.6 (1.18) 2.6 (1.18) 2.6 (1.18)
80 (3")	IDF DIN11851 Tri-clamp	640 (25.19)	73 (2.87) 81 (3.19) 73 (2.87)	91.2 (3.59) 110 (4.33) 90.9 (3.58)	3.8 (1.73) 4.5 (2.05) 3.8 (1.73)
100 (4")	IDF DIN11851 Tri-clamp	800 (31.5)	97.6 (3.84) 100 (3.94) 97.6 (3.84)	125.9 (4.96) 130 (5.12) 118.9 (4.68)	6.5 (2.95) 6.5 (2.95) 6.5 (2.95)

Dimensions version sanitaire

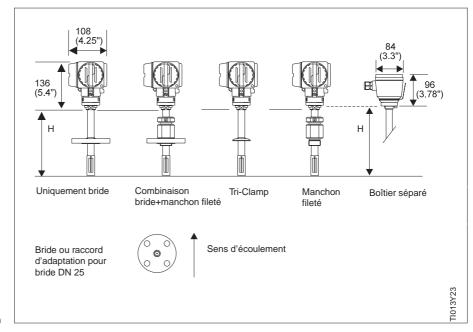
Dimensions

AT 70W Version entre-brides

	I		I	
Dimensions conduites	di mm (inches)	Do mm (inches)	Poids - kg (lbs)	
DN25	28.5 (1.12)	63.5 (2.5")	2.8 (1.27 lbs)	
1"	26.64 (1.05")	63.5 (2.5")		
DN40	43.1 (1.7)	82 (3.23")	3.2 (1.45 lbs)	
1 1/2"	40.9 (1.61")	82 (3.23")		
DN50	54.5 (2.15)	92 (3.62")	3.5 (1.59 lbs)	
2"	52.5 (2.07")	92 (3.62")		
DN80	82.5 (3.25)	127 (5")	5.3 (2.41 lbs)	
3"	77.9 (3.07")	127 (5")		
DN100	107.1 (4.22)	157.2 (6.19")	6.6 (3 lbs)	
4"	102.3 (4.03)	157.2 (6.19")	` '	

Dimensions

AT 70 Version à insertion


H = longueur totale d'insertion du capteur

Longueurs standard :

235 mm (9.25") 335mm (13.2") 435 mm (17.13")

Autres longueurs fournies sur demande

Dimensions - version à insertion

Le tableau indique la longueur d'insertion standard (H) adaptée au diamètre de la conduite et au raccord process dans le cas d'un montage avec un manchon fileté standard AZT 70 (voir page suivante)

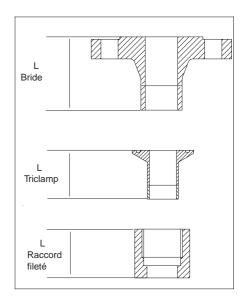
	Diamètre de la conduite	Voir page suivante pour infos détaillées sur le manchon AZT 70					
	de process ou hauteur de la gaine	Bride (AZT70 = 60mm [2.36"])	Combination (AZT70 = 60 mm [2.36"])	Triclamp (AZT70 = 40 mm [1.57"])	Manchon fileté (AZT70 = 40 mm [1.57"])	Manchon fileté avec vanne à boisseau (AZT70 = 153 mm (6")	
	3-8"/DN80-DN200	235	335	235	235	335	
	10-16"/DN250-DN400	235	335	235	235	435	
	18-22"/DN450-DN550	235	335	235	335	435	
è-	24"-28"/DN600-DN700	335	335	235	335	435	
	30"/DN750	335	435	235	335	435	
	32"-36"/DN800-DN900	335	435	335	335	435	

Pour le diamètre de conduite ou de canalisation non spécifié dans le tableau, sélectionner le diamètre immédiatement supérieur à la valeur réelle.

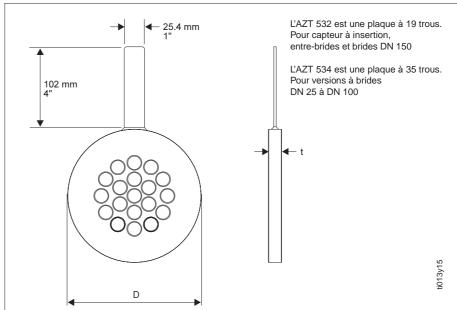
Remarques importantes concernant les spécifications des longueurs d'insertion

- Tout autre type ou dimension de montage peut avoir des répercussions sur la longueur d'insertion. En cas de doute, veuillez contacter votre agence.
- La version à bride fixe doit être commandée avec les dimensions d'installation spécifiées

Accessoires


Manchon de montage AZT70

Il existe de nombreux raccords pour monter le capteur à insertion sur la conduite


Le manchon de montage AZT 70 permet de fermer le capteur à la conduite.

La longueur standard L est : version à bride L = 60 mm Version à Triclamp L = 40 mm Version à raccord fileté L = 40 mm

L'AZT peut être fourni dans des longueurs qui permettent l'installation d'une vanne à boisseau. (Dans ce cas, $L=153\ mm$)

Tranquillisateur de débit

Tranquillisateur de débit AZT 532 / AZT 534

DN	Raccord process	D mm	AZT534	AZT532
		(inches)	t mm (inches)	
DN25	PN16/25/40	74 (2.91")	4.6 (0.18")	3.7 (0.15")
1"	CI 150	68.5 (2.7")	4.3 (0.17")	3.5 (0.14")
	CI 300	75 (2.95")	4.3 (0.17")	3.5 (0.14")
DN40	PN16/25/40	95 (3.74")	6.8 (0.27")	5.6 (0.22")
1 1/2"	CI 150	88 (3.46")	6.5 (0.26")	5.3 (0.21")
	CI 300	97.5 (3.84")	6.5 (0.26")	5.3 (0.21")
DN50	PN16/25/40	110 (4.33")	8.8 (0.35")	7.1 (0.28")
2"	CI 150	107 (4.21")	8.4 (0.33")	6.8" (0.27")
	CI 300	113 (4.45")	8.4 (0.33")	6.8 (0.27")
DN80	PN16/25/40	145 (5.71")	13.2 (0.52")	10.8 (0.43")
3"	CI 150	138.5 (5.45")	12.5 (0.49")	10.1 (0.4")
	CI 300	151 (5.94)	12.5 (0.49")	10.1 (0.4")
	PN16	165 (6.5")	17.3 (0.68")	14.1 (0.56")
DN100	PN25/40	171 (6.73)	17.3 (0.68")	14.1 (0.56")
4"	CI 150	176.5 (6.95")	16.4 (0.65")	13.3 (0.52")
	CI 300	183 (7.2")	16.4 (0.65")	13.3 (0.52")
DN150	PN16	221 (8.7")	25.5 (1")	20.7 (0.81")
	PN25/40	227 (8.94")	25.5 (1")	20.7 (0.81")
6"	CI 150	224.5 (8.84")	24.6 (0.97")	20 (0.78")
	CI 300	253 (9.96")	24.6 (0.97")	20 (0.78")

Caractéristiques techniques

AT 70W: version entre-brides AT 70F: version à bride AT 70: version à insertion

DN: 70W: DN25 ... 100 DIN

> 1" ... 4" ANSI 70F: DN15 ... 150 DIN 1/2" ... 6" ANSI 70: DN80 ... 1000 DIN 3" ... 39" ANSI

PN: 70W/F: PN40 (DIN2501)

CI.300 (ANSI B16.5) PN16 (DIN2501)

70: CI.150 (ANSI B16.5)

70/W/F: -10 ... +100 °C Température de process

14 ... +212 °F admissible:

Parties en contact avec le produit:

capteur:

en option Hastelloy (en cours)

transmetteur: SS316

joints du transmetteur : viton, en option Kalrez, PTFE, EPDM uniquement pour version AT 70 W Matériaux set de montage :

Bagues de centrage : 2 unités, acier inox 1.4301

Ecrous/ boulons: 1.7258 galvanisé Socles: acier galvanisé

Boîtier:

Matériau du boîtier : fonte d'aluminium, laqué

Protection: IP 65 (DN 40050)

Température ambiante : -30...+80 °C (-22...+176 °F)

Affichage LCD: 4 digits + point décimal et bargraph en % de la fin

Presse-étoupe: PE 13,5 en standard, autres sur demande

Caractéristiques électriques

CEM IEC 801 part 3: E = 10 V/m (30 MHz...1GHz);

Alimentation: 20...30 V DC

Consommation: < 3 W

Isolation galvanique entre le process et les sorties : 500 V

Sortie collecteur ouvert : Imax = 10 mA, Umax = 30 V, P = 300 mW

mise à l'échelle de la sortie impulsion jusqu'à 100

impulsions/s

Sortie courant: 4...20 mA analogique, fin d'échelle et constante

de temps

réglables à l'extérieur

(minimum T = 1.5 secs @ 63%)

mémoire non volatile remarque 4 Sauvegarde des données :

Communication technologie SMART, protocole HART par sortie

courant

Caractéristiques techniques

Agrément zone Ex: voir p. 16 et 17 pour configuration du système

Affichage séparé/boîtier : Cenelec et SEV EEx d [ia] ia IIC T4

Cenelec et SEV [EEX ia] IIC

IEC 79-15 (Type n)

FM Class 1 Div. 1 Groups A,B,C,D FM Class 1 Div. 2 Groups A,B,C,D

Capteur séparé Cenelec et SEV EEx ia IIC T4

FM Class 1 Div. 1 Groups A,B,C,D FM Class 2 Div. 2 Groups A,B,C.D

Version compacte: IEC 79-15 (Type n)

FM Class 2 Div. 2 Groups A,B,C.D

Tolérances

70F: +/- 2% R sur gaz étalon remarque 1

70/70W: étalonnage usine +/- [0.5% FS + 2% R] sur gaz étalon remarque 2

précision théorique :

R = "valeur mesurée" FS = "pleine échelle"

Reproductibilité (dérive standard): 70F: +/- 0.25 %


70/70W: +/- 0.25 %

 1 - En principe air sous conditions ambiantes avec profil d'écoulement complètement développé

- 2 En fonction de l'installation
- 3 Selon le type de gaz
- 4 Le contenu du compteur totalisateur est mémorisé dans une mémoire volatile, il est perdu à la mise hors tension

AZT570

Module d'alimentation

AZT570

Module d'alimentation

Alimentation

±15%, 50/60Hz Fusibles intégrés : 90/110/115/120V AC - 125mA à fusion lente 220/230/240V AC - 63mA à fusion lente

90/110/115/120/220/230/240V AC

Sortie courant :

Alimentation 24 V DC pour capteur AT 70

Température ambiante de stockage :

-10°...+65°C (ne pas exposer directement au rayonnement solaire)

Température de stockage :

-20°C...+85°C

Poids: env. 0.5kg

Construction mécanique

Carte embrochable racksyst conformément à DIN 41494, partie 5, d=160 mm; h=100 mm (carte euro standard)

Connecteur mâle:

connecteur multibroche conformément à DIN 41612, partie 3, type (32 broches)

Largeur:

7 F

Protection:

face avant IP 20

Dolaiaua

Sigle CE:

compatibilité électromagnétique selon EN 50081—1 : 1992 et EN 50082-1:1992

Documentation complémentaire

□ t-mass , Information série SI 002

 $\ \square$ t-mass, Instructions de montage et de mise en service BA 006

Sous réserve de toute modification

France			Canada	Luxembourg	Suisse
Siège et Usine 3 rue du Rhin BP 150 68331 Huningue Cdx Tél. 03 89 69 67 68 Téléfax 03 89 69 48 02	Agence de Paris 8 allée des Coquelicots BP 69 94472 Boissy St Léger Cdx Tél. 01 45 10 33 00 Téléfax 01 45 95 98 83	Agence du Sud-Est 30 rue du 35ème Régiment d'Aviation Case 91 69673 Bron Cdx Tél. 04 72 15 52 15 Téléfax 04 72 37 25 01	Endress+Hauser 6800 Côte de Liesse Suite 100 H4T 2A7 St Laurent, Québec Tél. (514) 733-0254 Téléfax (514) 733-2924	Endress+Hauser SA 13 rue Carli B-1140 Bruxelles Tél. (02) 248 06 00 Téléfax (02) 248 05 53	Endress+Hauser AG Sternenhofstrasse 21 CH-4153 Reinach /BL 1 Tél. (061) 715 62 22 Téléfax (061) 711 16 50
Agence du Sud-Ouest 200 avenue du Médoc 33320 Eysines Tél. 05 56 16 15 35 Téléfax 05 56 28 31 17	Agence du Nord 7 rue Christophe Colomb 59700 Marcq en Baroeul Tél. 03 20 06 71 71 Téléfax 03 20 06 68 88	Agence de l'Est 3 rue du Rhin BP 150 68331 Huningue Cdx Tél. 03 89 69 67 38 Téléfax 03 89 67 90 74	Endress+Hauser 1440 Graham's Lane Unit 1 Burlington, Ontario Tél. (416) 681-9292 Téléfax (416)681-9444	Endress+ F	