Technical Information TI 229C/07/en 51504291

Turbidity and Solids Content Sensor TurbiMax P CUS 62

Turbidity and Solids Content Sensor for High Concentrations in Hazardous Areas Using the Light Absorption Method

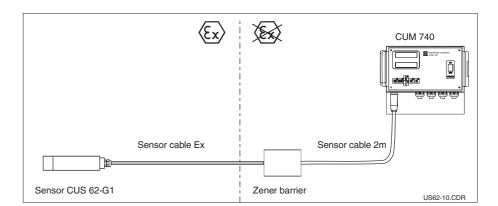
The TurbiMax P CUS 62 sensor is used for optical solid matter content measurement in turbid water for up to 50g solid matter/I for applications in hazardous areas.

Applications

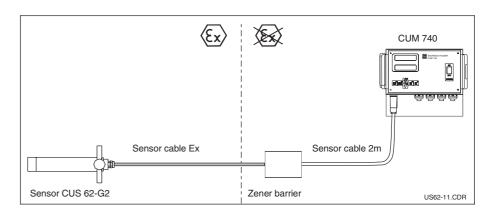
- Solid matter content measurement of suspended matter in sewage treatment plants:
 Primary sludge, digested sludge, thickened sludge, Inflow to centrifuge / press
- Industrial quality control

Features and benefits

- Reliable concentration measurement using optical measuring process
- Four-beam pulsed light method for compensation of sensor soiling and ageing of optical components
- Stainless steel sensor body
- No mechanically moving parts
- Measured value preprocessing in sensor resulting in low signal transmission sensitivity



Measuring system


The complete measuring system for hazardous areas comprises:

- Turbidity measurement transmitter CUM 740
- Turbidity sensor TurbiMax P CUS 62
- Zener barrier 7900 ZB
- Assembly for installation or immersion

Example of a measuring system

CUM 740 with CUS 62-G1

Measuring sytem CUM 740 with CUS 62-G2

Measuring principle

Turbidity measurement

By turbidity we mean the scattered component of a light beam which is diverted away from its original course by optically denser particles in the medium e.g. solid matter particles.

Four-beam pulsed light method

This method is based on two light sources and two photoreceivers. Long-life LEDs (at least 20,000 operating hours) are used as monochromatic light sources.

To eliminate interference from extraneous light sources, the LEDs are pulsed at a rate of several kHz.

Two measuring signals are detected at the two photoreceivers with every light pulse. The four measuring signals are compared with each other logarithmically and converted to a ratio. This compensates for detector soiling and the ageing of optical modules.

Light absorption method

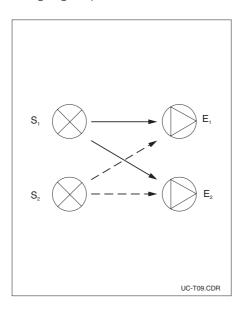
This measuring method is based on the Lambert-Beer law. Turbidity is measured by light attenuation.

The LEDs on the sensor send a directed light beam to the photoreceivers. The intensity of the beam is attenuated by solid matter particles in the medium. The photoreceivers measure the absorption signal and convert it into a frequency signal. The frequency signals are assigned to corresponding turbidity units and solid matter concentrations, and appear in the display.

left:
Principle of measured light radiation
S = Transmitter
E = Receiver

right: Principle of measured light attenuation analogue to Lambert-Beer's law

I₀ = Intensity of transmitted light

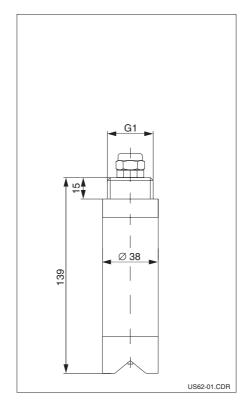

I_A = Intensity of absorbed light

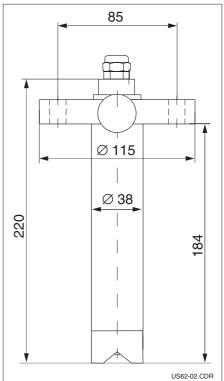
I_T = Intensity of light transmitted I_S = Intensity of

scattered light
E = Extinction coefficient

C = Concentration

D = Optical path length

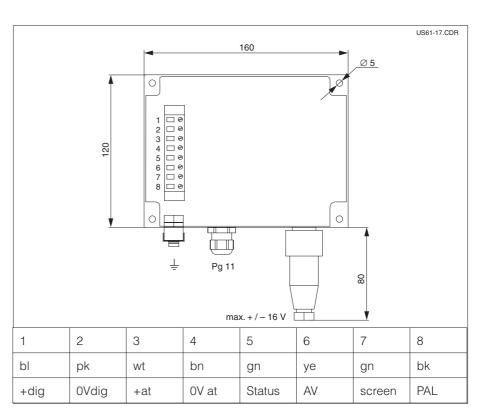

 $I_{\tau} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = ECD$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$ $I_{0} = I_{0} \cdot e^{-\varepsilon CD} \rightarrow Ig \frac{I_{0}}{I_{\tau}} = I_{0} \cdot e^{-\varepsilon CD}$


Calibration

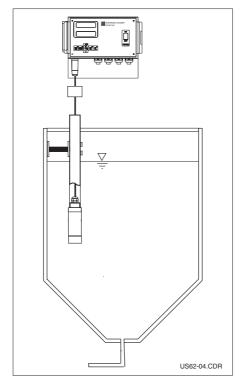
Each sensor is subjected to a careful calibration at the factory. One customer-defined calibration can also be saved.

For the calibration of solids content measurement, such as sludge, refer to the concentration determined by a reference method (dry substance).

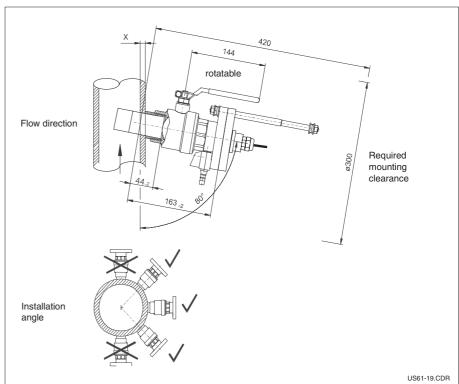
Dimensions



Dimensions CUS 62


left:
CUS 62 Immersion type

right: CUS 62 Installation type


Dimensions Zener barrier 7900 ZB

Installation

Installation example of CUS 62 Immersion type

Tank installation

Installation example of CUS 62 Installation type

Tube installation with ball valve built-in assembly (accessories)

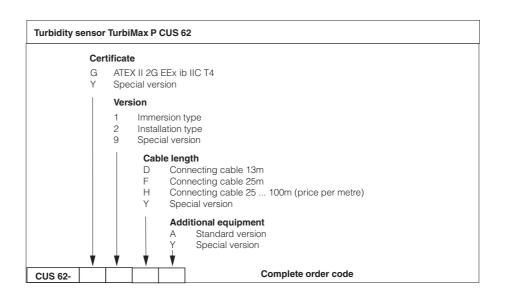
Note:

- We recommend the use of an immersion tube for the CUS 62 immersion type.
- Installing the sensor in pipelines or close to a wall can lead to backscattering and therefore to signal increase.

Accessories

- □ Ball valve built-in assembly for sensor extension under process conditions, DN 40 with safety lock Material: stainless steel SS 316 Ti, O-rings made of Viton® Order No.: 51503588
- Sensor fixing bracket for basin mounting
 Material: stainless steel SS 316 Ti,

Order No.: 51503626


- ☐ Immersion tube 1m Material: stainless steel SS 316 Ti Order No. 51506000
- ☐ Immersion tube 2m Material: stainless steel SS 316 Ti Order No. 51505994

Technical data

General data	Manufacturer	Endress+Hauser
	Product designation	TurbiMax P CUS 62
	Troduct designation	TUIDIIVIAX F COS 02
Mechanical data	Dimensions (L x Ø) Immersion type Installation type	139 × 38 Ø mm 220 × 38 Ø mm
	Weight Immersion type Installation type	approx. 1kg approx. 3kg
Material	Sensor body	Stainless steel SS 316 Ti
	Sight glass	Epoxy resin
	O-rings	Viton®
Turbidity measurement	Measuring principle	Light absorption method
	Optical components	Light source: 2 LEDs, Detector: 2 photodiodes
	Measuring light	Infrared light at 880nm (absorption maximum)
	Measuring range	0 50g solid matter/l, dependent on sludge type
	Accuracy	< 1% of measuring range end value
	Reference	Using four-beam pulsed light method
	Factory calibration	SiO ₂
	Cable lengths	13m, 25m, 25 100m
	Connecting cable length of Zener barrier to transmitter	2m
Operating conditions	Operating temperature	0+50°C
	Operating pressure	max. 6 bar
	Ingress protection	IP 68
		EEx ib IIC T4
	Explosion protection	EEX ID IIO 14
Supplementary documentation	Technical Information CUM 740	Order No.: 51504296

Subject to modifications.

Product structure

Endress+Hauser GmbH+Co. Instruments International P.O. Box 2222 D-79574 Weil am Rhein Germany

Tel. (07621) 975-02 Fax (07621) 975-345 http://www.endress.com info@ii.endress.com

