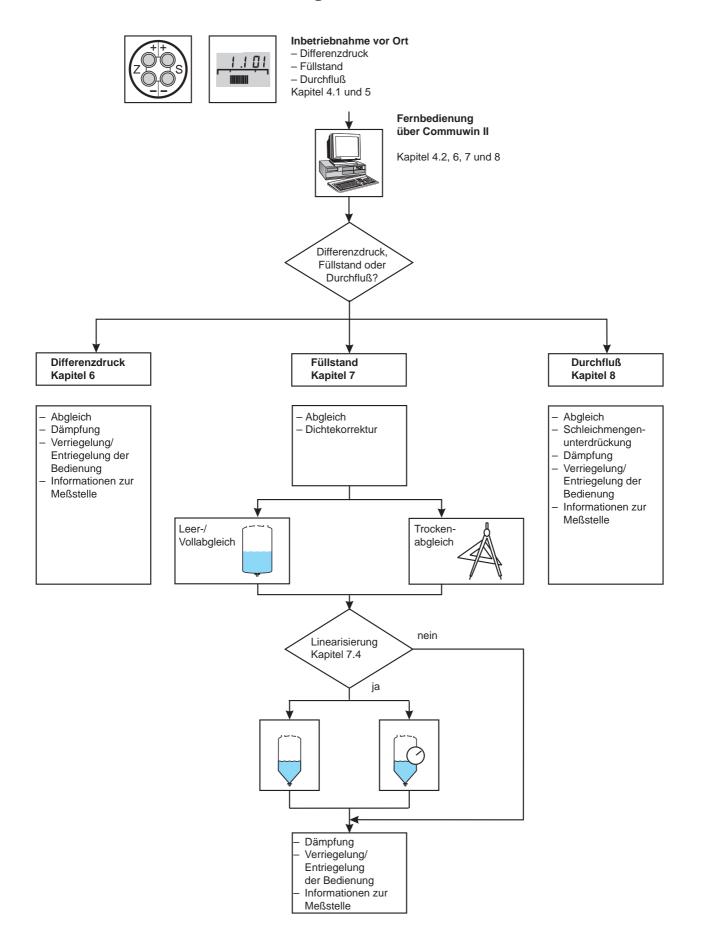

deltabar S PROFIBUS-PA Differenzdruckmessung

Betriebsanleitung



Kurzanleitung Deltabar S PROFIBUS-PA

Kurzanleitung

Inhaltsverzeichnis

	Softv	warehistorie	4
	Siche	erheitshinweise	5
1	Einle	eitung	7
	1.1	Meßeinrichtung	9
2	Insta	allation	10
	2.1 2.2 2.3 2.4 2.5	Meßanordnung für Differenzdruckmessung	10 11 12 14 16
3	PRO	FIBUS-PA-Schnittstelle	18
	3.1 3.2 3.3 3.4	Übersicht	18 19 20
	3.5 3.6 3.7	(Data_Exchange)	24 29
4	Bedi	enung	32
	4.1 4.2	Bedienung Vor-Ort	32 33
5	Inbe	triebnahme der Meßstelle	34
	5.1 5.2 5.3 5.4	Funktion der Ventilblöcke Differenzdruckmessung Füllstandmessung	34 35 37 41
6	Diffe	erenzdruckmessung	44
	6.1 6.2 6.3	Abgleich über Commuwin II Dämpfung	44 49
	6.4	Bedienung	49 50
7	Fülls	standmessung	51
	7.1 7.2 7.3 7.4 7.5 7.6	Abgleich über Commuwin II Abgleich mit Referenzdruck	51 54 55 56 59
	7.7	Bedienung	59 60

Durc	hflußmessung	61
8.1 8.2 8.3	Abgleich über Commuwin II Dämpfung	
	Bedienung	66
8.4	Summenzähler	67
8.5	Informationen zur Meßstelle	71
Diag	nose und Störungsbeseitigung	72
9.1	Diagnose von Störung und Warnung.	72
9.2	Simulation	75
9.3	Reset	75
9.4	Editiergrenzen	77
Wart	ung und Reparatur	80
10.1	Reparatur	80
10.2	Montage der Anzeige	81
10.3	Sensormodul und Elektronikeinsatz	
		82
		83
		84
10.6	Ersatztelle	85
Tech	nische Daten	86
Bedi	enmatrix	90
12.1	Matrix Commuwin II	90
12.2		
12.3	Parameterbeschreibung	92
Stich	wortverzeichnis	98
	8.1 8.2 8.3 8.4 8.5 Diag 9.1 9.2 9.3 9.4 Wart 10.1 10.2 10.3 10.4 10.5 10.6 Tech 12.1 12.2	8.2 Dämpfung 8.3 Verriegelung/Entriegelung der Bedienung 8.4 Summenzähler 8.5 Informationen zur Meßstelle Diagnose und Störungsbeseitigung 9.1 Diagnose von Störung und Warnung 9.2 Simulation 9.3 Reset 9.4 Editiergrenzen Wartung und Reparatur 10.1 Reparatur 10.2 Montage der Anzeige 10.3 Sensormodul und Elektronikeinsatz wechseln 10.4 Meßumformer auswechseln 10.5 Sensorkalibration 10.6 Ersatzteile Technische Daten Bedienmatrix 12.1 Matrix Commuwin II

Softwarehistorie Deltabar S PROFIBUS-PA

Softwarehistorie

Software	Änderungen	Bedeutung
1.0	Original Software DPV1 (Profile 2.0)	
1.1	OUT Statuscodes geändertSlot/Index Tabelle geändert	
2.0	PROFIBUS-PA Version 3.0 (Profile 3.0)	PROFIBUS-PA Parameter, neue Matrixfelder für Commuwin II V6H0 Ident. number V6H1 Setze Einheit Out V6H2 Out Value (Analog Input Block) V6H3 Out Status (Analog Input Block) V6H4 Auswahl des 2. zyklischen Wertes V6H5 Zuordnung Anzeige V6H6 Anzeige zyklischer Wert SPS V6H7 Profile Version Zwei weitere Werte sind zyklisch lesbar.
		Daten können an das Gerät zyklisch gesendet werden.
		V9H5 Korrektur Nullpunkt V9H6 Wert Nullpunkt Korrektur (Anzeige)
2.1	Korrekturen im Kommunikations- stack Korrektur von Parameterattributen	
2.2	Korrekturen im Kommunikations- stack Korrektur eines Parameterattributes	

Hinweis!

Hinweis!

Deltabar S PROFIBUS-PA Geräte der zweiten Generation mit Profilen 3.0 sind zu den Deltabar S PROFIBUS-PA Geräten der ersten Generation mit Profilen 2.0 zyklisch abwärtskompatibel, d.h. Geräte der ersten Generation sind durch Geräte der zweiten Generation austauschbar.

Um allerdings die zusätzlichen Funktionen der zweiten Generation mit Profilen 3.0 wie z.B. zyklisches Lesen von zwei weiteren Werten zu nutzen, muß die SPS mit der GSD (EH3x1504.gsd bzw. EH3_1504.gsd) konfiguriert werden.

Wenn die zusätzlichen Funktionen der Profile 3.0 nicht benötigt werden, kann die SPS Konfiguration mit der GSD der ersten Generation (EH__1504.gsd) beibehalten werden.

Sicherheitshinweise

Der Drucktransmitter Deltabar S mit PROFIBUS-PA-Elektronik ist ein Feldgerät, das zur Differenzdruck-, Durchfluß- oder Füllstandmessung verwendet wird.

Bestimmungsgemäße Verwendung

Der Deltabar S ist nach dem Stand der Technik betriebssicher gebaut und berücksichtigt die einschlägigen Vorschriften und EG-Richtlinien. Wenn er jedoch unsachgemäß oder nicht bestimmungsgemäß eingesetzt wird, können von ihm applikationsbedingte Gefahren ausgehen, z.B. Produktüberlauf durch falsche Montage bzw. Einstellung. Deshalb darf Montage, elektrischer Anschluß, Inbetriebnahme, Bedienung und Wartung der Meßeinrichtung nur durch ausgebildetes Fachpersonal erfolgen, das vom Anlagenbetreiber dazu autorisiert wurde. Das Fachpersonal muß diese Betriebsanleitung gelesen und verstanden haben und die Anweisungen befolgen. Veränderungen und Reparaturen am Gerät dürfen nur vorgenommen werden, wenn dies die Betriebsanleitung ausdrücklich zuläßt.

Montage, Inbetriebnahme, Bedienung

Beachten Sie die technischen Daten auf dem Typenschild.

Bei Einsatz des Meßsystems in explosionsgefährdeten Bereichen sind die entsprechenden nationalen Normen einzuhalten. Das Gerät kann mit den in der Tabelle aufgeführten Zertifikaten ausgeliefert werden. Die Zertifikate werden durch den ersten Buchstaben des Bestellcodes am Typenschild gekennzeichnet (siehe Tabelle unten).

Explosionsgefährdeter Bereich

- Stellen Sie sicher, daß das Fachpersonal ausreichend ausgebildet ist.
- Die meßtechnischen und sicherheitstechnischen Auflagen an die Meßstellen sind einzuhalten.
- Besondere Aufmerksamkeit muß der Erdung der Buskabelabschirmung geschenkt werden, siehe z.B. IEC 60079-14.

ENDRESS+HAUSER DELTABAR S F/PMD xxx
Order No. F/PMD xxx

Code	Zertifikat	Zündschutzart				
A, F, K, S, 3, 5	Standard	keine				
B, N	ATEX	ATEX II 3 G EEx nA II T6				
C, I, L, 6	PTB	ATEX II 1/2 G EEx ia IIC T4/T6				
D	РТВ	PMD 235: ATEX II 1/2 G EEx ia IIC T4/T6, Zone 0				
Т	PTB	ATEX II 2 G EEx d IIC T4/T6				
W	FM	IS Class I, II, III, Div. 1, Groups AG				
2	CSA	IS Class I, II, III, Div. 1, Groups AG				

Zertifikate für Anwendungen im explosionsgefährdeten Bereich

Sicherheitsrelevante Hinweise

Um sicherheitsrelevante oder alternative Vorgänge hervorzuheben, hat Endress+Hauser die folgenden Sicherheitshinweise festgelegt, wobei jeder Hinweis durch ein entsprechendes Piktogramm gekennzeichnet wird.

Sicherheitshinweise

Symbol	Bedeutung
Hinweis!	Hinweis! Hinweis deutet auf Aktivitäten oder Vorgänge hin, die - wenn sie nicht ordnungsgemäß durchgeführt werden - einen indirekten Einfluß auf den Betrieb haben oder eine unvorhergesehene Gerätereaktion auslösen können.
Achtung!	Achtung! Achtung deutet auf Aktivitäten oder Vorgänge hin, die - wenn sie nicht ordnungsgemäß durchgeführt werden - zu Verletzungen von Personen oder zu fehlerhaftem Betrieb des Gerätes führen können.
Warnung!	Warnung! Warnung deutet auf Aktivitäten oder Vorgänge hin, die - wenn sie nicht ordnungsgemäß durchgeführt - zu ernsthaften Verletzungen von Personen, zu einem Sicherheitsrisiko oder zur Zerstörung des Gerätes führen.

Zündschutzart

Explosionsgeschützte, baumustergeprüfte Betriebsmittel

Befindet sich dieses Zeichen auf dem Typenschild des Gerätes, kann das Gerät im explosionsgefährdeten Bereich eingesetzt werden.

Explosionsgefährdeter Bereich

Dieses Symbol kennzeichnet in den Zeichnungen dieser Bedienungsanleitung den explosionsgefährdeten Bereich.

 Geräte, die sich im explosionsgefährdeten Bereich befinden oder Leitungen für solche Geräte müssen eine entsprechende Zündschutzart haben.

Sicherer Bereich (nicht explosionsgefährdeter Bereich)

Dieses Symbol kennzeichnet in den Zeichnungen dieser Bedienungsanleitung den nicht explosionsgefährdeten Bereich.

— Geräte im nicht explosionsgefährdeten Bereich müssen auch zertifiziert sein, wenn Anschlußleitungen in den explosionsgefährdeten Bereich führen.

Elektrische Symbole

	Gleichstrom Eine Klemme, an der Gleichspannung anliegt oder durch die Gleichstrom fließt
\sim	Wechselstrom Eine Klemme, an der (sinusförmige) Wechselspannung anliegt oder durch die Wechselstrom fließt
	Erdanschluß Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers schon über ein Erdungssystem geerdet ist
	Schutzleiteranschluß Eine Klemme, die geerdet werden muß, bevor andere Anschlüsse hergestellt werden dürfen
\downarrow	Äquipotentialanschluß Ein Anschluß, der mit dem Erdungssystem der Anlage verbunden werden muß: dies kann z.B. eine Potentialausgleichsleitung oder ein sternförmiges Erdungssystem sein, je nach nationaler Vorschrift bzw. Firmenpraxis

Deltabar S PROFIBUS-PA 1 Einleitung

1 Einleitung

Die Geräte der Deltabar S-Familie dienen der Differenzdruck-, Durchfluß- und Füllstandmessung von Gasen und Flüssigkeiten. Sie finden Einsatz in allen Branchen der Industrie. Die zusätzlichen Funktionen zur Durchfluß- und Füllstandmessung sind über Commuwin II bedienbar.

Einsatzbereich

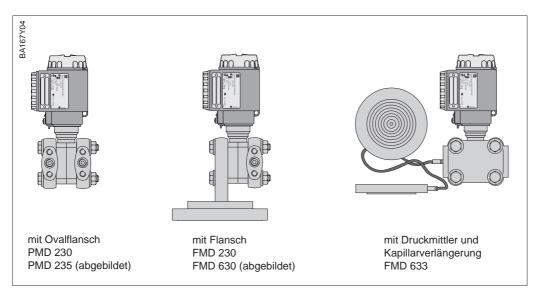
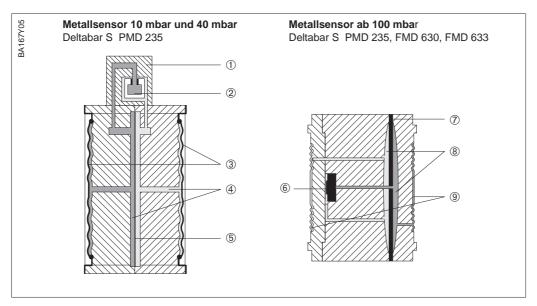



Abbildung 1.1 Ausführungen des Differenz-Drucktransmitters Deltabar S

Metallsensor

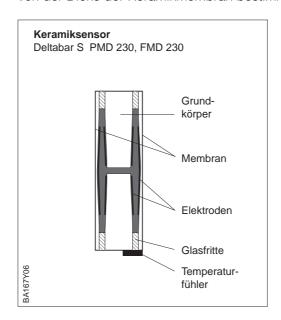
Der Systemdruck lenkt die Trennmembran aus, und eine Füllflüssigkeit überträgt den Druck auf eine Widerstandsmeßbrücke. Die druckabhängige Änderung der Brücken-Ausgangsspannung wird gemessen und weiterverarbeitet.

Funktionsprinzip

Abbildung 1.2

Metallsensor 10 mbar, 40 mbar

- ① Meßelement
- ② Siliziummembran
- ③ Trennmembran und Membranbett
- ④ Füllflüssigkeit
- ⑤ integrierter Überlastschutz


Metallsensor ab 100 mbar

- 6 Meßelement
- ¬ Überlastmembran
- ® Füllflüssigkeit
 - Trennmembran und
 Membranbett

1 Einleitung Deltabar S PROFIBUS-PA

Keramiksensor

Der Systemdruck wirkt direkt auf die robuste Keramikmembran des Drucksensors und lenkt sie um maximal 0,025 mm aus. Eine druckabhängige Kapazitätsänderung wird an den Elektroden des Keramikträgers und der Membran gemessen. Der Meßbereich wird von der Dicke der Keramikmembran bestimmt.

Deltabar S PROFIBUS-PA 1 Einleitung

1.1 Meßeinrichtung

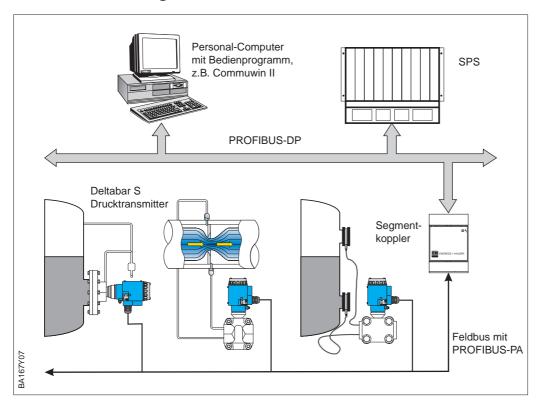


Abbildung 1.3 Meßeinrichtung Deltabar S mit Protokoll PROFIBUS-PA

Die komplette Meßstelle besteht im einfachsten Fall aus:

- Deltabar S mit PROFIBUS-PA-Protokoll
- SPS bzw. Personal-Computer mit einem Bedienprogramm, z.B. Commuwin II
- Segmentkoppler
- PROFIBUS-PA-Terminierungswiderstand

Die maximale Anzahl der Meßumformer an einem Bussegment ist durch deren Stromaufnahme, die Leistung des Buskopplers und die erforderliche Buslänge bestimmt, siehe hierzu auch Betriebsanleitung BA 198F/00/de. In der Regel können jedoch:

- max. 10 Deltabar S bei Ex-Anwendungen
- max. 32 Deltabar S bei Nicht-Ex-Anwendungen

an einem Bussegment betrieben werden. Der Deltabar S hat eine max. Stromaufnahme von 11 mA pro Gerät.

Für weitere Informationen sehen Sie die Betriebsanleitung BA 198F "PROFIBUS-DP/-PA: Leitfaden zur Projektierung und Inbetriebnahme", die PNO-Richtlinie oder unter der Internetadresse http://www.PROFIBUS.com sowie bei Einsatz im Ex ia-Bereich: EN 50020 (FISCO-Model).

Bitte beachten Sie die maximale Überlast der Sensoren. Siehe Kapitel 11 "Technische Daten".

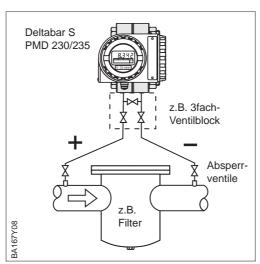
Meßeinrichtung

Geräteanzahl

Maximale Überlast der Sensoren

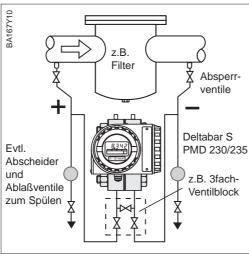
2 Installation

Dieses Kapitel beschreibt:

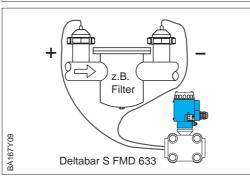

- die Meßanordung des Deltabar S für die am häufigsten auftretenden Installationen
- und den elektrischen Anschluß.

2.1 Meßanordnung für Differenzdruckmessung

Hinweis!


- Generelle Empfehlungen für die Verlegung von Wirkdruckleitungen können aus DIN 19 210 "Wirkdruckleitungen für Durchflußmeßeinrichtungen" oder entsprechenden nationalen oder internationalen Normen entnommen werden.
- Bei Verlegung von Wirkdruckleitungen im Freien ist auf geeigneten Frostschutz zu achten.

Gase und Dämpfe


- Deltabar S oberhalb der Meßstelle montieren, so daß Kondensat in die Prozeßleitung ablaufen kann.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

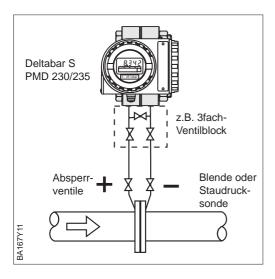
Flüssigkeiten

- Deltabar S unterhalb der Meßstelle montieren, so daß die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind und Gasblasen zurück zur Prozeßleitung steigen können.
- Für einfache Montage ohne Prozeßunterbrechung Dreifach-Ventilblock verwenden.
- Abscheider beugen der Ablagerung von Schmutz in den Wirkdruckleitungen vor.
- Wirkdruckleitung mit einem monotonen Gefälle von mindestens 10 % verlegen.

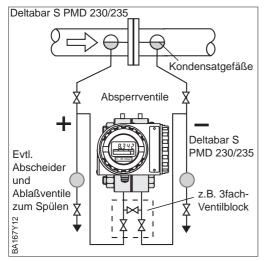
Gase, Dämpfe und Flüssigkeiten mit Druckmittlern und Kapillaren

- Beim Deltabar S FMD 633: Druckmittler mit Kapillaren über Flanschanschluß oben oder seitlich auf der Rohrleitung montieren.
- Bei Vakuum: Meßumformer unterhalb der Meßstelle montieren.
- Temperatur und Länge sollten bei beiden Kapillaren gleich sein.
- Es sollten immer zwei gleiche Druckmittler (z.B. Durchmesser, Material usw.) für die Minus- und Plusseite verwendet werden.

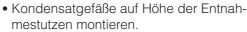
2.2 Meßanordnung für Durchflußmessung


Hinweis!

Generelle Empfehlungen für die Verlegung von Wirkdruckleitungen können aus DIN 19 210 "Wirkdruckleitungen für Durchflußmeßeinrichtungen" oder entsprechenden nationalen oder internationalen Normen entnommen werden.

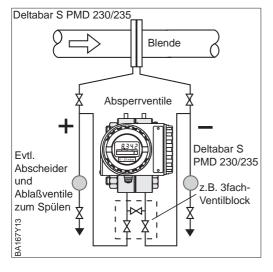

Hinweis!

Gase



Messung mit Blende oder Staudrucksonde

- Deltabar S oberhalb der Meßstelle montieren, so daß Kondensat in die Prozeßleitung ablaufen kann.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

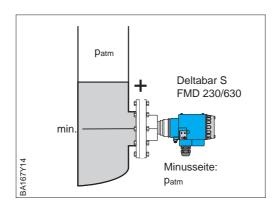


• Deltabar S unterhalb der Meßstelle montieren.

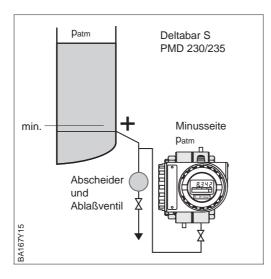
- Wirkdruckleitungen vor Inbetriebnahme auf Höhe der Kondensatgefäße befüllen.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

- Deltabar S unterhalb der Meßstelle montieren, so daß die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind und Gasblasen zurück zur Prozeßleitung steigen können.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Abscheider beugen der Ablagerung von Schmutz in den Wirkdruckleitungen vor.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

Flüssigkeiten

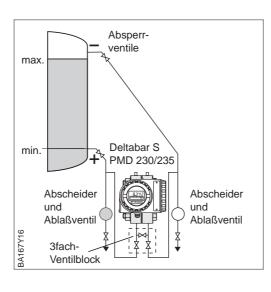

2.3 Meßanordnung für Füllstandmessung

Hinweis!


Generelle Empfehlungen für die Verlegung von Wirkdruckleitungen können aus DIN 19 210 "Wirkdruckleitungen für Durchflußmeßeinrichtungen" oder entsprechenden nationalen und internationalen Normen entnommen werden.

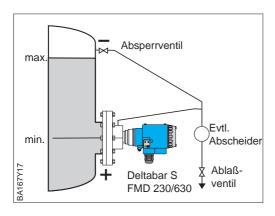
Offener Behälter

FMD 230, FMD 630

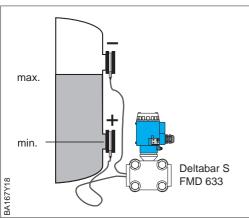

- Deltabar S direkt am Behälter montieren.
- Die Minusseite ist offen zum atmosphärischen Druck.

PMD 230, PMD 235

- Deltabar S unterhalb des unteren Meßanschlusses montieren, so daß die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind.
- Die Minusseite ist offen zum atmosphärischen Druck.
- Ein Abscheider beugt der Ablagerung von Schmutz in den Wirkdruckleitungen vor.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.


Geschlossener Behälter

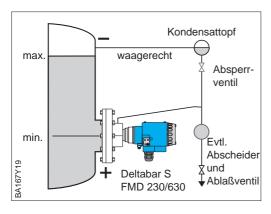
PMD 230. PMD 235


- Deltabar S unterhalb des unteren Meßanschlusses montieren, so daß die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind.
- Die Minusseite muß oberhalb des maximalen Füllstands angeschlossen werden.
- Abscheider beugen der Ablagerung von Schmutz in den Wirkdruckleitungen vor.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

Deltabar S PROFIBUS-PA 2 Installation

FMD 230, FMD 630

- Deltabar S direkt am Behälter montieren.
- Die Minusseite muß oberhalb des maximalen Füllstands angeschlossen werden.
- Ein Abscheider beugt der Ablagerung von Schmutz in den Wirkdruckleitungen vor
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

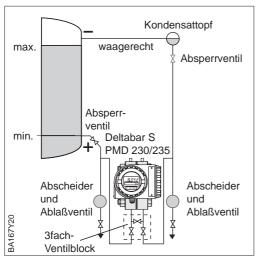

FMD 633

- Deltabar S unterhalb der Meßstelle montieren.
- Druckmittler mit Kapillaren am Behälter montieren.
- Temperatur und Länge sollten bei beiden Kapillaren gleich sein.

Hinweis!

Die Füllstandmessung ist nur zwischen der Oberkante des unteren und der Unterkante des oberen Druckmittlers gewährleitstet.

FMD 230, FMD 630


- Deltabar S direkt am Behälter montieren.
- Die Minusseite muß oberhalb des maximalen Füllstands angeschlossen werden.
- Der Kondensattopf gewährleistet einen konstant bleibenden Druck auf der Minusseite.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

Geschlossener Behälter mit Dampfüberlagerung

Geschlossener Behälter

- Deltabar S unterhalb des unteren Meßanschlusses montieren, so daß die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind.
- Die Minusseite muß oberhalb des maximalen Füllstands angeschlossen werden. Der Kondensattopf gewährleistet einen konstant bleibenden Druck.
- Abscheider beugen der Ablagerung von Schmutz in den Wirkdruckleitungen vor.
- Für einfache Montage ohne Prozeßunterbrechung evtl. Dreifach-Ventilblock verwenden.
- Wirkdruckleitungen mit einem monotonen Gefälle von mindestens 10 % verlegen.

2.4 Montage

Druckmittler

- Druckmittler nicht mit harten oder spitzen Gegenständen reinigen oder berühren
- Membranschutz erst kurz vor Einbau entfernen.

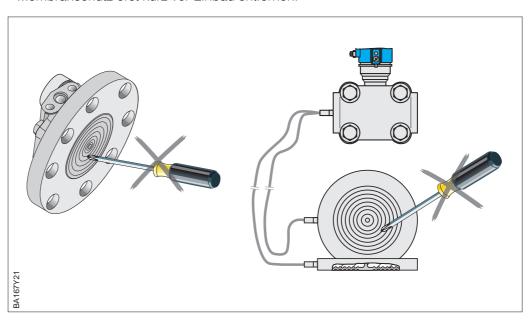


Abbildung 2.1 Druckmittler sorgfältig behandeln

Dichtung bei Flanschmontage

Empfohlene Dichtung je nach Flansch: DIN 2690 oder ANSI B 16.5.

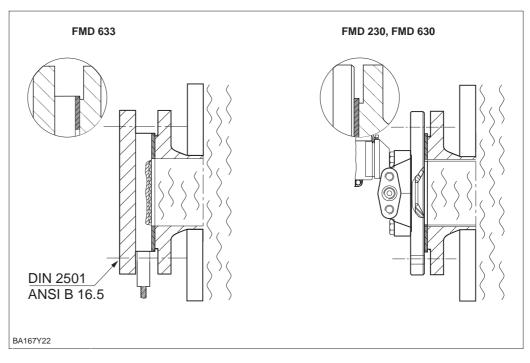


Abbildung 2.2
Montage der Versionen mit
Flansch bzw. Druckmittler
links:
FMD 633 mit Zellendruckmittler
und Kapillarleitung
rechts:
FMD 230, FMD 630 mit
Flanschanschluß

Deltabar S PROFIBUS-PA 2 Installation

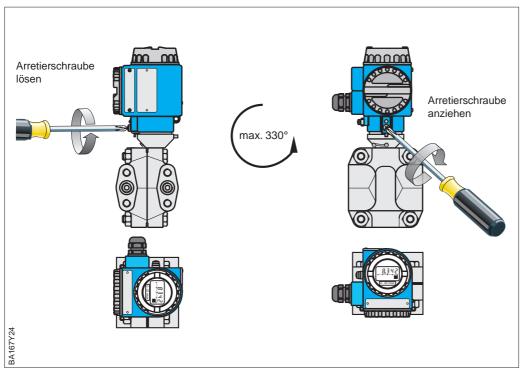
Meßumformer mit Kapillarleitungen:

Um das Abknicken der Kapillare zu verhindern, muß bei Montage an waagerechten Rohren für ausreichende Entlastung gesorgt werden.

Wandmontage Rohrmontage 294 86.5 Rohrmontage 294 80.5 Pg zeigt nach unten

Wand und Rohrmontage

Abbildung 2.3 Wand- und Rohrmontage


Achtung!

Gehäuse bitte so montieren, daß

- Die Kabeleinführung immer nach unten zeigt, so daß Feuchigkeit am Anschlußkabel ablaufen kann und nicht ins Gehäuse eindringt.
- Die Abdeckung der Z/S-Tasten sich seitlich am Gehäuse befindet, so daß Kondensat und Feuchtigkeit abläuft und nicht ins Gehäuse eindringt.

Nach der Montage des Deltabar S kann das Gehäuse so ausgerichtet werden, daß:

- der Klemmenanschlußraum gut zugänglich ist,
- die Anzeige optimal abgelesen werden kann,
- die Kabeleinführung vor Wasser geschützt ist (möglichst nach unten ausrichten!)

Gehäuse ausrichten

Abbildung 2.4 Gehäuse ausrichten

2.5 Elektrischer Anschluß

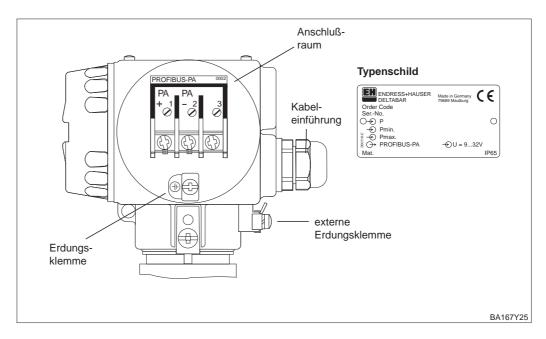


Abbildung 2.5 Deltabar S Anschlußraum und Typenschild

Allgemeine Hinweise

Der Deltabar S mit PROFIBUS-PA Ausgang ist ein Zweidraht-Transmitter. Bevor Sie das Gerät anschließen, bitte folgende Punkte beachten:

- Spannungsversorgung abschalten.
- Nur für Geräte im Ex-Bereich: Gerät über die externe Erdungsklemme erden.

Hilfsenergie

Der Deltabar S hat folgende Anschlußwerte:

 $I = 10 \text{ mA} \pm 1 \text{ mA}$

Nicht-Ex-Bereich: U = 9...32 V DC Ex-Bereich: U = 9...24 V DC

Buskabel

Verwenden Sie immer verdrilltes abgeschirmtes Zweiaderkabel. Bei Installationen im Ex-Bereich sind folgende Kennwerte einzuhalten (EN 50020, FISCO Model):

- Schleifenwiderstand (DC): 15...150 Ω /km,
- Induktivitätsbelag: 0.4...1 mH/km,
- Kapazitätsbelag: 80...200 nF/km

Folgende Kabeltypen sind zum Beispiel geeignet:

Nicht-Ex-Bereich:

- Siemens 6XV1 830-5BH10 (grau)
- Kerpen CEL-PE/OSCR/PVC/FRLA FB-02YS(ST)YFL (grau)
- Belden 3076F (orange)

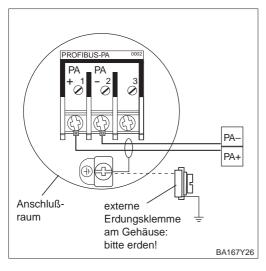
Ex-Bereich:

- Siemens 6XV1 830-5AH10 (blau)
- Kerpen CEL-PE/OSCR/PVC/FRLA FB-02YS(ST+C)YFL (blau)

Abschirmung

Für maximalen EMV-Schutz, z.B. in der Nähe von Frequenzumrichtern, wird empfohlen Gehäuse und Kabelschirm über eine Potentialausgleichsleitung (PAL) zu verbinden (max. Aderguerschnitt: 2,5 mm², fester Leiter).

Bitte beachten Sie folgende Punkte:


- Gerät über die externe Erdungsklemme erden.
- Die Abschirmung des Buskabels darf nicht unterbrochen sein.
- An jedem Kabelende die Abschirmung erden, dabei Verbindungskabel zwischen Abschirmung und Erde immer so kurz wie möglich ausführen.
- Bei großen Potentialunterschieden zwischen den einzelnen Erdungspunkten wird nur ein Punkt mit der Bezugserde verbunden. Alle anderen Schirmenden werden über einen HF-tauglichen Kondensator mit Bezugspotential verbunden.
 (z.B. Keramikkondensator 10 nF/250 V~).

Achtung!

Anwendungen, die dem Explosionsschutz unterliegen, lassen nur unter besonderen Bedingungen die mehrfache Erdung des Schutzschirms zu, IEC 60079-14.

Weitere Hinweise zum Aufbau und zur Erdung des Netzwerks sind in der der Betriebsanleitung BA 198F "PROFIBUS-DP/-PA: Leitfaden zur Projektierung und Inbetriebnahme" und der PNO-Richtlinie zu entnehmen.

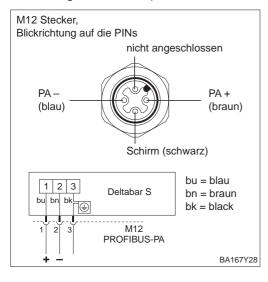
Die Busleitung wie folgt anschließen:

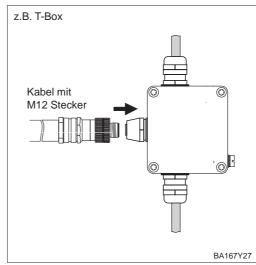
- Spannungsversorgung abschalten.
- Externe Erdungsklemme ggf. an Potentialausgleichsleitung anschließen.
- Deckel des Anschlußraums abschrauben.
- Kabel durch Kabeleinführung einführen.
- Kabeladern an Klemmen PA+ und PAanschließen. Ein Vertauschen der Polarität hat keinen Einfluß auf den Betrieb.
- Abschirmung an interne Erdungsklemme anschließen.
- Deckel zuschrauben.

Gerät anschließen

M12 Stecker

Die Deltabar S PROFIBUS-PA Version mit M12 Stecker wird fertig verdrahtet ausgeliefert und braucht nur noch über ein vorkonfektioniertes Kabel an den PROFIBUS-PA angeschlossen werden.


Hinweis!


Um Vibrationseinflüsse zu vermeiden, den Deltabar Simmer über ein Kabel anschließen.

Hinweis!

- Stecker in Buchse stecken.
- Rändelschraube fest anziehen.
- Gerät und T-Box gemäß ausgewähltem Erdungskonzept erden, siehe Betriebsanleitung BA 198F. Kapitel 5.

3 PROFIBUS-PA-Schnittstelle

3.1 Übersicht

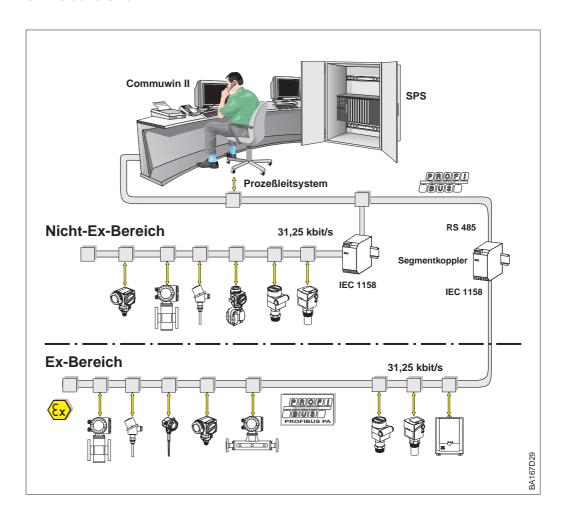


Abbildung 3.1 Prinzipbild PROFIBUS-DP/-PA

Hinweis!

Zusätzliche Projektierungshinweise für PROFIBUS-PA finden Sie in der Betriebsanleitung BA 198F "PROFIBUS-DP/-PA: Leitfaden zur Projektierung und Inbetriebnahme".

3.2 Einstellen der Geräteadresse

Jedem PROFIBUS-PA-Gerät muß eine Adresse zugewiesen werden. Nur bei korrekt eingestellter Adresse wird das Meßgerät vom Leitsystem erkannt.

- Gültige Geräteadressen liegen im Bereich von 0 bis 126. Alle Geräte werden ab Werk mit der Software-Adresse 126 ausgeliefert.
- In einem PROFIBUS-PA-Netz darf jede Adresse nur einmal vergeben werden. Für weitere Informationen sehen Sie bitte auch Betriebsanleitung BA 198F.

Die im Werk eingestellte Adresse 126 kann zur Funktionsprüfung des Gerätes und zum Anschluß in einem in Betrieb stehenden PROFIBUS-PA-Netzwerk genutzt werden. Anschließend muß diese Adresse geändert werden, um weitere Geräte einbinden zu können.

Es gibt zwei Möglichkeiten einem Deltabar S die Geräteadresse zu zuweisen:

- über Software mit Hilfe eines Bedienprogrammes (DP-Master Klasse 2, z.B. Commuwin II) oder
- Vor-Ort über DIP-Schalter. Die DIP-Schalter befinden sich auf dem Elektronikeinsatz hinter der Anzeige.

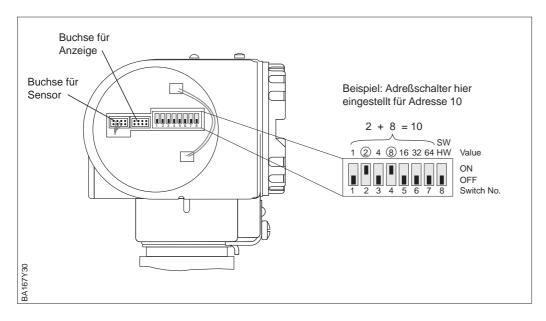


Abbildung 3.2 Geräteadresse über Adreßschalter einstellen.

Adreßmodus über Schalter Nr. 8 einstellen:

Adreßmodus einstellen

- ON = Software-Adressierung erfolgt über das Bussystem (werksmäßige Einstellung) (SW)
- OFF= Hardware-Adressierung erfolgt am Gerät über die DIP-Schalter Nr. 1...7 (HW)

Eine Hardware-Adresse ist wie folgt einzustellen:

Hardware-Adressierung

- 1) DIP-Schalter Nr. 8 auf OFF setzen.
- 2) Adresse gemäß Tabelle mit DIP-Schalter Nr. 1 bis 7 einstellen.
- 3) Die Änderung einer Adresse wird nach 10 s wirksam.

Schalter-Nr. 1		2	3	4	5	6	7
Wertigkeit in Position "ON"	1	2	4	8	16	32	64
Wertigkeit in Position "OFF"	0	0	0	0	0	0	0

Für eine Adressierung der Geräte über Software, sehen Sie bitte Betriebsanleitung BA 198F.

Software-Adressierung

3.3 Gerätestamm- und Typ-Dateien (GSD)

Eine Gerätestammdatei (GSD) enthält eine Beschreibung der Eigenschaften eines PROFIBUS-PA-Geräts, z.B. welche Datenübertragungsgeschwindigkeit das Gerät unterstützt oder welche digitalen Informationen in welchem Format die SPS vom Gerät bekommt. Zu den GSD-Dateien gehören auch Bitmap-Dateien. Mit Hilfe dieser Dateien werden die Meßstellen bildlich dargestellt. Die Gerätestammdatei sowie die entsprechenden Bitmaps werden zur Projektierung eines PROFIBUS-Netzwerkes benötigt.

Jedes Gerät erhält von der PROFIBUS-Nutzerorganisation (PNO) eine ID-Nummer. Aus dieser leitet sich der Name der Gerätestammdatei (GSD) ab. Für Endress+Hauser beginnt diese ID-Nummer immer mit "15XX", wobei "XX" für den Gerätenamen steht.

Name des Gerätes	ID-Nr.:	GSD	Typ-Datei	Bitmaps
Deltabar S	1504 (hex)	EH3x1504.gsd	EH31504x.200	EH1504_d.bmp EH1504_n.bmp EH1504_s.bmp

Die GSD-Dateien aller Endress+Hauser-Geräte können Sie folgendermaßen beziehen:

• INTERNET:

Endress+Hauser → http://www.de.endress.com

 $\mathsf{dann} \to \mathsf{Produkte} \to \mathsf{Process} \; \mathsf{Solutions}$

 \rightarrow PROFIBUS \rightarrow GSD Dateien

 $PNO \rightarrow http://www.PROFIBUS.com (GSD library)$

• Als CD-ROM direkt von Endress+Hauser: Bestell-Nr.: 56003894

Hinweis!

Die PNO stellt eine allgemeine Datenbankdatei mit der Bezeichnung PA_x9700.gsd für Geräte mit einem Analog-Output-Block zur Verfügung. Diese Datei unterstützt die Übertragung des Hauptmeßwertes. Die Übertragung eines zweiten Meßwertes (2nd Cyclic Value) oder eines Anzeigewertes (Display Value) wird nicht unterstützt. Das Universalprofil muß in Commuwin II über das Matrixfeld V6H0 ausgewählt werden.

Arbeiten mit den GSD-Dateien

Die GSD-Dateien müssen in ein spezifisches Unterverzeichnis der PROFIBUS-DP-Konfigurationssoftware Ihrer SPS geladen werden.

- GSD-Dateien und Bitmaps, die sich im Verzeichnis "Extended" befinden, werden z.B. für die Projektierungssoftware STEP7 der Siemens S7-300/400 SPS-Familie verwendet.
- x.200-Dateien und Bitmaps, die sich im Verzeichnis "Typdat5x" befinden, werden für die Projektierungssoftware COM ET200 mit Siemens S5 verwendet.
- GSD-Dateien, die sich im Verzeichnis "Standard" befinden, sind für SPS bereitgestellt, die kein "Indentifier Format" sondern nur den "Identifier Byte" (0x94) unterstützen. Sie sind z.B. bei einer PLC5 von Allen-Bradley zu verwenden.

Genaue Anweisungen über die Verzeichnisse, in denen die GSD-Dateien zu speichern sind, können Sie der Betriebsanleitung BA 198F, Kapitel 6.4 entnehmen.

3.4 Zyklischer Datenaustausch (Data_Exchange)

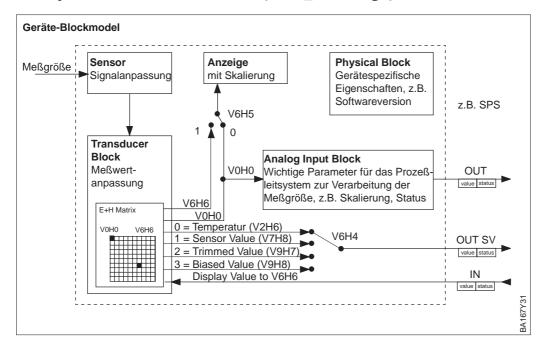


Abbildung 3.3 Blockmodel für Deltabar S mit PROFIBUS-PA Profile 3.0

Die Bezeichnungen in Klammern geben die Matrixposition in Commuwin II an.

Abbildung 3.3 zeigt das Blockmodel von einem Deltabar S. Der Hauptmeßwert V0H0 wird von dem Transducer Block an den Analog Input Block übergeben. Hier wird der Meßwert skaliert, Grenzwerte zugefügt, bevor er als Variable OUT im zyklischen Datenverkehr der SPS zur Verfügung gestellt wird. Mit der Variablen OUT wird ein Wert und der dazugehörige Status übertragen.

Standardmäßig zeigt die Vor-Ort-Anzeige und das Matrixfeld V0H0 den gleichen Wert an. Der Vor-Ort-Anzeige kann aber auch ein zyklischer Ausgangswert (Display Value) durch eine SPS zur Verfügung gestellt werden. Hierfür ist das Matrixfeld V6H5 in Commuwin II auf "eingelesener Wert" (bzw. 1) zu setzen. Beispiel: Ein Deltabar S mißt den Volumenstrom (siehe auch Kapitel 8). Gleichzeitig werden an der Meßstelle auch die Temperatur und der Druck gemessen. Alle Meßwerte werden einer SPS zugeführt. Die SPS berechnet aus Volumenstrom, Temperatur- und Druckmeßwert die Dampfmasse. Der berechnete Wert wird dem Matrixfeld V6H6 und der Vor-Ort-Anzeige zugewiesen.

Ein Deltabar S kann noch zwei weitere Werte an die SPS ausgeben. Über das Feld V6H4 in Commuwin II ist es möglich einen von vier Werten auszuwählen (siehe folgenden Abschnitt, Schritt 7).

Blockmodel

Konfiguration

Der Datenaustausch ist über ein Netzwerk-Design-Tool und Commuwin II zu konfigurieren.

- 1) Verwenden Sie das Netzwerk-Design-Tool für Ihre SPS und fügen Sie den Deltabar S zum Netzwerk hinzu. Beachten Sie, daß die zugewiesene Adresse mit der eingestellten Geräteadresse übereinstimmt.
- 2) Deltabar S auswählen und das Konfigurationsprogramm starten: Es erscheinen fünf Optionen: – "Main Process Value", "2nd Cyclic Value", "3rd Cyclic Value", "Display Value", "FREE PLACE"
- 3) "Main Process Value" auswählen. Wenn kein weiterer Wert als der Hauptmeßwert "Main Process Value" erforderlich ist, das Konfigurations-Fenster schließen, sonst
- 4) "2nd Cyclic Value" oder "FREE PLACE" (= Funktion deaktiviert) wählen, "3rd Cyclic Value" oder "FREE PLACE" (= Funktion deaktiviert) wählen und "Display Value" oder "FREE PLACE" (= Funktion deaktiviert) wählen. Danach das Konfigurations-Fenster schließen.
- 5) Commuwin II starten und die Verbindung zum Bus über den Server PA-DPV1 herstellen. Danach die Geräteliste erstellen, die Geräteadresse bestimmen und "Deltabar S" durch Anklicken auswählen.
- 6) Das Gerätemenü öffnen und die Bedienmatrix auswählen.
- 7) Bei Bedarf, einen zweiten Meßwert über das Matrixfeld V6H4 auswählen: 0 = Temperatur, 1 = Sensor Value, 2 = Trimmed Value, 3 = Biased Value
- 8) Um einen zyklischen Ausgangswert (Display Value) auf der Vor-Ort-Anzeige darzustellen, V6H5 = "eingelesener Wert" (bzw. 1) setzen.
- 9) Der Datenaustausch ist nun für dieses Deltabar S Gerät konfiguriert.

22

Mit dem Data_Exchange Dienst kann eine SPS im Antworttelegramm Input-Daten vom Deltabar S lesen. Das zyklische Datentelegramm hat folgende Struktur:

 $\textbf{Deltabar S} \rightarrow \textbf{SPS}$ (Input-Daten)

Index Input-Daten	Daten	Zugriff	Datenformat/Bemerkungen
0, 1, 2, 3	Hauptmeßwert Druck, Füllstand, Durchfluß	lesen	32 bit Fließkommazahl (IEEE-754)
4	Statuscode für Hauptmeßwert	lesen	Siehe Statuscodes
5, 6, 7, 8	Zweiter Wert: Temperatur, Sensor Value, Trimmed Value oder Biased Value	lesen	32 bit Fließkommazahl (IEEE-754)
9	Statuscode für zweiten Wert	lesen	Siehe Statuscodes
10, 11, 12, 13	Dritter Wert: Totalizer	lesen	32 bit Fließkommazahl (IEEE-754)
14	Statuscode für dritten Wert	lesen	Siehe Statuscodes

Die Output-Daten von der SPS an das lokale Display haben folgende Struktur:

Index Output- Daten	Daten	Zugriff	Datenformat/Bemerkungen
0, 1, 2, 3	Anzeigewert	schreiben	32 bit Fließkommazahl (IEEE-754)
4	Statuscode	schreiben	Siehe Statuscodes für zweiten Wert

 $\textbf{SPS} \to \textbf{Deltabar S}$ (Output-Daten)

Der Deltabar S unterstützt für den Hauptmeßwert und den zweiten Meßwert folgende Statuscodes Statuscodes:

Status- Geräte- Code zustand		Bedeutung	Haupt- meßwert	zweiter Meßwert	
0F Hex	BAD	Nicht spezifisch	X	х	
1F Hex	BAD	Out of Service (Target-Mode)	х		
40 Hex	UNCERTAIN	Nicht spezifisch (Simulation)	х	х	
47 Hex	UNCERTAIN	Letzter gültiger Wert (Fail-Safe-Mode aktiv)	x		
4B Hex	UNCERTAIN	Ersatzmenge (Fail-Safe-Mode aktiv)	x		
4F Hex	UNCERTAIN	Initialwert (Fail-Safe-Mode aktiv)	x		
5C Hex	UNCERTAIN	Konfigurationsfehler (Grenzen nicht richtig gesetzt)	X		
80 Hex	GOOD	ОК	Х	х	
84 Hex	GOOD	Aktiver Blockalarm (Static Revision wurde erhöht)	x		
89 Hex	GOOD	LOW_LIM (Alarm aktiv)	х		
8A Hex	GOOD	HI_LIM (Alarm aktiv)	х		
8D Hex	GOOD	LOW_LOW_LIM (Alarm aktiv)	х		
8E Hex	GOOD	HI_HI_LIM (Alarm aktiv)	х		

3.5 Azyklischer Datenaustausch

Mit dem azyklischen Dienst kann auf die Geräteparameter im Physical-, Transducer- und Analog Input Block, siehe Abbildung 3.3, sowie im Gerätemanagement (PROFIBUS-)DP-Master Klasse 2 zugegriffen werden. Abbildung 3.4 und 3.5 zeigen je ein Blockmodel vom Transducer Block und Analog Input Block. Für weitere Informationen über Gerätemanagement, Standardparameter und Physical Block sehen Sie bitte Betriebsanleitung BA 198F, Kapitel 7.

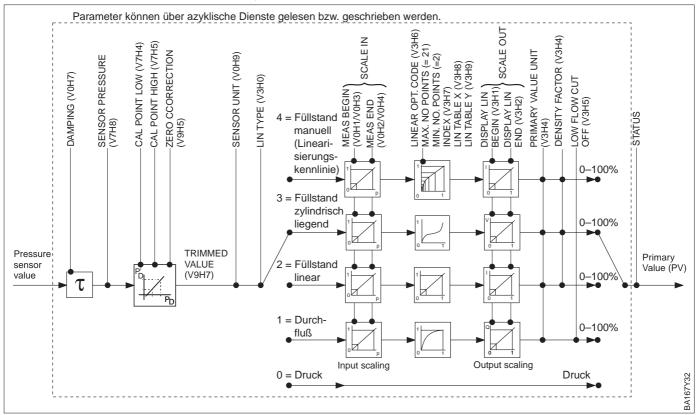


Abbildung 3.4
Schema für den Transducer Block Deltabar S.
Die Parameterbezeichnungen entsprechen den Bezeichnungen in der Slot-/Index-Liste. Parameter mit Angabe einer Matrixposition (in Klammern) sind auch über Commuwin II zugänglich.

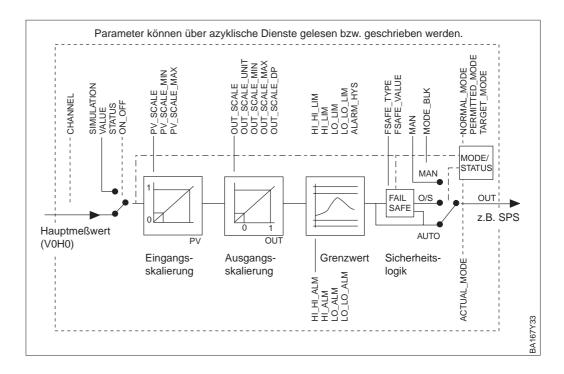


Abbildung 3.5 Schema für den Analog Input Block Deltabar S

Die Geräteparameter sind in der nachfolgenden Tabelle aufgeführt. Auf die Parameter können Sie über die Slot- und Index-Nummer zugreifen. Analog-Input-, Transducer und Physical Block beinhalten Standardparameter, Blockparameter und herstellerspezifische Parameter.

Slot/Index Tabelle

Wenn Sie Commuwin II als Bedienprogramm benutzen, stehen Ihnen die Matrix und die grafische Bedienung als Benutzerschnittstelle zur Verfügung. Sobald die Standardbedienparameter einem Geräteblock zur Verfügung stehen, wird jede Parameteränderung automatisch in den Blockparametern dargestellt. Die Abhängigkeiten sind in der Spalte "E+H Matrix" aufgeführt. Siehe auch Abbildung 3.4 und 3.5.

Parameter	E+H Matrix	Slot	Index	Größe (Bytes)	Тур	Read	Write	Storage Class
Directory object header		1	0	12	Array of UNSIGNED16	X		С
Composite list directory entries		1	1	24	Array of UNSIGNED16	X		С
GAP directory continuous		1	2-8					
GAP reserved		1	9-15					

Gerätemanagement

Parameter	E+H Matrix	Slot	Index	Größe (Bytes)	Тур	Read	Write	Storage Class
Standardparameter	'			,,,,				
Al Block data		1	16	20	DS-32*	X		С
Static revision		1	17	2	UNSIGNED16	Х		N
Device tag	VAH0	1	18	32	OSTRING	Х	Х	S
Strategy		1	19	2	UNSIGNED16	X	Х	S
Alert key		1	20	1	UNSIGNED8	X	X	S
Al Target mode		1	21	1	UNSIGNED8	X	X	S
Al Mode block		1	22	3	DS-37*	Х		D/N/C
Al Alarm summary		1	23	8	DS-42*	Х		D
Batch		1	24	10	DS-67*	Х	Х	S
Gap		1	25					
Blockparameter					-			
OUT	V6H2/3	1	26	5	DS-33*	X		D
PV scale		1	27	8	Array of FLOAT	X	X	S
OUT scale		1	28	11	DS-36*	X	Х	S
Linearisation type		1	29	1	UNSIGNED8	Х	Х	S
Channel		1	30	2	UNSIGNED16	X	Х	S
Gap		1	31					
PV FTIME		1	32	4	FLOAT	X	X	S
Fail safe type		1	33	1	UNSIGNED8	X	X	S
Fail safe value		1	34	4	FLOAT	Х	Х	S
Alarm Hysteresis		1	35	4	FLOAT	X	X	S
Gap		1	36					
HI HI Limit		1	37	4	FLOAT	X	X	S
Gap		1	38		-			
HI Limit		1	39	4	FLOAT	Х	Х	S
Gap		1	40					
LO Limit		1	41	4	FLOAT	Х	Х	S
Gap		1	42					
LO LO Limit		1	43	4	FLOAT	X	X	S
Gap		1	44-45					
HI HI Alarm		1	46	16	DS-39*	X		D
HI Alarm		1	47	16	DS-39*	Х		D
LO Alarm		1	48	16	DS-39*	X		D
LO LO Alarm		1	49	16	DS-39*	X		D
Simulate		1	50	6	DS-50*	X	X	S
OUT unit text		1	51		OSTRING	X	Х	S
Gap reserved		1	52-60					
Gap		1	61-65					

Analog Input Block

^{*} Siehe Kapitel 3.6, Abschnitt "Datenstrings" bzw. PROFIBUS-PA Spezifikation Teil 1.

C = constant, N = non-volatile (bleibt gespeichert), S = static (Revisionszähler wird um 1 erhöht), D = dynamic

Physical Block

Parameter	E+H Matrix	Slot	Index	Größe (Bytes)	Тур	Read	Write	Storage Class
Standardparameter								,
PB Block data		1	66	20	DS-32*	X		С
Static revision		1	67	2	UNSIGNED16	X		N
Device tag	VAH0	1	68	32	OSTRING	Х	Х	S
Strategy		1	69	2	UNSIGNED16	X	Х	S
Alert key		1	70	1	UNSIGNED8	X	Х	S
PB Target mode		1	71	1	UNSIGNED8	X	X	S
PB Mode block		1	72	3	DS-37*	X		D/N/C
PB Alarm summary		1	73	8	DS-42*	Χ		D
Blockparameter	<u> </u>		_	-	•		'	
Software revision		1	74	16	OSTRING	X		С
Hardware revision		1	75	16	OSTRING	Х		С
Device manufacturer identity		1	76	2	UNSIGNED16	Х		С
Device identity		1	77	16	OSTRING	Х		С
Device serial number	VAH2	1	78	16	OSTRING	X		С
Diagnosis		1	79	4	OSTRING	Х		D
Diagnosis extension		1	80	6	OSTRING	Х		D
Diagnosis mask		1	81	4	OSTRING	Х		С
Diagnosis mask extension		1	82	6	OSTRING	X		С
Device certification		1	83	16	OSTRING	Х		N
Security locking	V9H9	1	84	2	UNSIGNED16	X	X	N
Factory reset	V2H9	1	85	2	UNSIGNED16		X	S
Descriptor		1	86	32	OSTRING	Х	Х	S
Device message	VAH1	1	87	32	OSTRING	X	Х	S
Device installation date		1	88	16	OSTRING	X	X	S
reserved		1	89					
Identification number	V6H0	1	90	1	UNSIGNED 8	x	х	S
HW write protection		1	91	1	UNSIGNED 8	x		D
Gap reserved		1	9298					
Gap		1	99103					
Matrix error code	V2H0	1	104	2	UNSIGNED16	X		D
Matrix last error code	V2H1	1	105	2	UNSIGNED16	Х	Х	D
UpDown features supported		1	106	1	OSTRING	Х		С
UpDown control		1	107	1	UNSIGNED8		X	D
UpDown data		1	108	20	OSTRING	X	Х	D
Bus address		1	109	1	UNSIGNED8	X		D
Matrix device software number	V2H2	1	110	2	UNSIGNED16	Х		С
PA set unit to bus	V6H1	1	111	1	UNSIGNED 8	X	х	S
PA input value	V6H6	1	112	6	FLOAT+U8+U8	×		D
PA select V0H0	V6H5	1	113	1	UNSIGNED8	×	x	S
PA profile revision	V6H7	1	114	16	OSTRING	x		С
Gap		1	115-119					
PA select second cyclic value	V6H4	1	120	1	UNSIGNED8	×		S
PA identity number		1	121	2	UNSIGNED16	×	x	D
PA identity string		1	122	32	OSTRING	×	×	С
PA DP status		1	123	1	UNSIGNED8	×		D
Gap		1	124-128					

 $^{^*}$ Siehe Kapitel 3.6, Abschnitt "Datenstrings" bzw. PROFIBUS-PA Spezifikation Teil 1. C = constant, N = non-volatile (bleibt gespeichert), S = static (Revisionszähler wird um 1 erhöht), D = dynamic

View_1 parameters

Parameter	E+H Matrix	Slot	Index	Größe (Bytes)	Туре	Read	Write	Storage Class
View 1 Physical block		1	216	17	OSTRING	X		D/N/C
Gap reserved		1	217-221					
View 1 Transducer block		1	222	22	OSTRING	Х		D/N/C
Gap reserved		1	223-227					
View 1 Analog Input block		1	228	18	OSTRING	Х		D/N/C
Gap reserved		1	229-233					

26

Storage F+H Parameter Slot Index Größe Тур Read Write Matrix (Bytes) Class Standardparameter 129 20 С TB Block data DS-32* 130 Ν Static revision UNSIGNED16 VAH0 131 32 S Device tag **OSTRING** S Strategy 132 2 UNSIGNED16 Χ S Alert key 133 1 **UNSIGNED8** Χ 134 **UNSIGNED8** Χ Χ TB Target mode 1 TB Mode 1 135 3 DS-37* Χ D/N/C Х TB Alarm summary 136 8 DS-42* D Blockparameter Sensor value V7H8 1 137 4 **FLOAT** Χ D FLOAT Ν Sensor high limit V7H7 1 138 4 Χ V7H6 **FLOAT** Ν Sensor low limit 139 4 Χ V7H5 Calibration point high 140 FLOAT S 1 4 Calibration point low V7H4 141 FLOAT S Calibration minimum span 142 FLOAT Ν Sensor unit V0H9 143 UNSIGNED16 Ν Trimmed value V9H7 144 5 DS-33' D 145 2 UNSIGNED16 X Ν Sensor type VAH3 UNSIGNED32 146 4 Х Ν Sensor serial number 1 Primary value V0H0 147 5 DS-33* D 1 Χ UNSIGNED16 Primary value unit V3H3 1 148 2 Χ S 149 UNSIGNED16 S Primary value type 1 2 Χ Χ Sensor diaphragm material VAH7 150 UNSIGNED16 Χ S Sensor fill fluid VAH8 1 151 1 UNSIGNED16 Х Χ S 152 Gap 153 UNSIGNED16 S VAH6 Sensor O-ring material 154 2 UNSIGNED16 Χ S Process connection type Process connection material VAH4 155 UNSIGNED16 S Temperature V2H6 156 5 DS-33* D 2 S Temperature unit V7H9 157 UNSIGNED16 158 5 Χ D Secondary value 1 DS-33 Secondary value 1 unit V0H9 1 159 2 UNSIGNED16 Х Χ S 5 DS-33* D Secondary value 2 160 Χ Secondary value 2 unit V0H9 161 2 UNSIGNED16 Χ D 1 Linearisation type V3H0 162 UNSIGNED8 S Scale in V0H1/2 1 163 2*4 Array of FLOAT Χ S Scale out V3H1/2 1 164 2*4 Array of FLOAT Χ Χ S V3H5 165 FLOAT S Low flow cut off 4 Χ Χ 166 4 **FLOAT** S Flow linear sqrt point Table actual number (linearisation) 167 UNSIGNED8 S Table index (linearisation) V3H7 168 UNSIGNED8 S Table max. no. of points 169 UNSIGNED8 S Table min. no. of points 170 **UNSIGNED8** S S Table option code (linearisation) V3H6 171 UNSIGNED8 Χ 172 Χ Χ S Table status **UNSIGNED8** 173 2*4 Array of Float Χ S Table XY value Χ Max. sensor value V2H4 174 4 **FLOAT** Χ Χ S 1 V2H3 175 FLOAT Χ S Min. sensor value 1 4 Χ Max temperature V2H8 176 4 FLOAT Χ Χ S Min temperature V2H7 177 4 **FLOAT** Χ Χ S 178-187 Gap reserved

Transducer Block

^{*} Siehe Kapitel 3.6, Abschnitt "Datenstrings" bzw. PROFIBUS-PA Spezifikation Teil 1.

C = constant, N = non-volatile (bleibt gespeichert), S = static (Revisionszähler wird um 1 erhöht), D = dynamic

Transducer Block (Fortsetzung)

Parameter	E+H Matrix	Slot	Index	Größe (Bytes)	Туре	Read	Write	Storage Class
Endress+Hauser Parameter								
Measure begin	V0H1	1	188	4	FLOAT	X	Χ	S
Measure end	V0H2	1	189	4	FLOAT	X	Χ	S
Automatically measure begin	V0H3	1	190	1	UNSIGNED8	Χ	Χ	S
Automatically measure end	V0H4	1	191	1	UNSIGNED8	Χ	Χ	S
Bias pressure	V0H5	1	192	4	FLOAT	Χ	Χ	S
Automatically bias pressure	V0H6	1	193	1	UNSIGNED8	Χ	Χ	S
Damping	V0H7	1	194	4	FLOAT	Χ	Χ	S
Max. pressure event counter	V2H5	1	195	1	UNSIGNED8	Χ	Χ	S
Display linearisation begin	V3H1	1	196	4	FLOAT	Χ	Χ	S
Display linearisation end	V3H2	1	197	4	FLOAT	X	Χ	S
Density	V3H4	1	198	4	FLOAT	X	Χ	S
Linearisation table edit mode	V3H6	1	199	1	UNSIGNED8	Χ	Χ	S
Linearisation table x (level)	V3H8	1	200	4	FLOAT	X	Χ	S
Linearisation table y (volume)	V3H9	1	201	4	FLOAT	X	Χ	S
Totalizer value	V5H0	1	202	4	FLOAT	Χ		D
Totalizer display select	V5H1	1	203	1	UNSIGNED8	Χ	Χ	S
Totalizer operation mode	V5H2	1	204	1	UNSIGNED8	Χ	Χ	S
Totalizer convention factor	V5H3	1	205	4	FLOAT	X	Χ	S
Totalizer unit	V5H4	1	206	2	UNSIGNED16	X	Χ	S
Sensor Trim off	V9H5	1	207	4	FLOAT	Χ		S
Sensor Trim off value	V9H6	1	208	4	FLOAT	Χ		S
Biased pressure	V9H8	1	209	4	FLOAT	Χ		D
Process connection material	VAH5	1	210	2	UNSIGNED16	Χ	Χ	S
Gap reserved		1	211-215					

^{*} Siehe Kapitel 3.6, Abschnitt "Datenstrings" bzw. PROFIBUS-PA Spezifikation Teil 1. C = constant, N = non-volatile (bleibt gespeichert), S = static (Revisionszähler wird um 1 erhöht), D = dynamic

3.6 Datenformat

Der Meßwert wird als IEEE-754-Fließkommazahl wie folgt übertragen, wobei

IEEE-754-Format

Meßwert =
$$(-1)^{\text{Sign}} \times 2^{(E-127)} \times (1+F)$$

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Sign Exponent (E)								Bruchteil (F)							
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶	2 ⁻⁷
Bruch	Bruchteil (F)														
2-8	2 ⁻⁹	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	2 ⁻¹⁶	2 ⁻¹⁷	2 ⁻¹⁸	2 ⁻¹⁹	2-20	2 ⁻²¹	2 ⁻²²	2 ⁻²³

Abbildung 3.6 IEEE-754-Fließkommazahl

Wert =
$$(-1)^0 \times 2^{(129 - 127)} \times (1 + 2^{-1} + 2^{-2} + 2^{-3})$$

= $1 \times 2^2 \times (1 + 0.5 + 0.25 + 0.125)$
= $1 \times 4 \times 1.875$
= 7.5

Hinweis!

• Nicht alle speicherprogrammierbaren Steuerungen unterstützen das IEEE-754-Format. Dann muß ein Konvertierungsbaustein verwendet oder geschrieben werden.

• Je nach der in der SPS (Master) verwendeten Art der Datenablage (Most-Significant-Byte oder Low-Significant-Byte), kann auch eine Umstellung der Bytereihenfolge nötig werden (Byte-Swapping-Routine).

In der Slot/Index-Tabelle (Seite 25-28) sind einige Datentypen z.B. DS-36 mit einem Stern markiert. Diese Datentypen sind Datenstrings, die nach der PROFIBUS-PA Spezifikation Teil 1, Version 3.0 aufgebaut sind. Sie bestehen aus mehreren Elementen, die über den Slot, Index und Sub-Index adressiert werden, wie die folgenden zwei Beispiele zeigen.

Datenstrings

Parameter type	Slot	Index	Element	Sub- index	Тур	Größe
DS-33	1	26	OUT Value	1	FLOAT	4
			OUT Status	5	UNSIGNED8	1

Parameter type	Slot	Index	Element	Sub- index	Тур	Größe
DS-36		27	OUT Scale Max.	1	FLOAT	4
			OUT Scale Min	5	FLOAT	4
			OUT Scale Unit.	9	UNSIGNED16	2
			OUT Scale DP (decimal point).	11	INTEGER8	1

3.7 Konfiguration der Parameterprofile

Über einen PROFIBUS-DP Master der Klasse 2 wie z.B. Commuwin II können Sie auf die Blockparameter zugreifen. Commuwin II läuft auf einem IBM-kompatiblen PC bzw. Notebook. Der Computer muß mit einer PROFIBUS-Schnittstelle, d.h. PROFIBOARD bei PCs und PROFICARD bei Notebooks ausgestattet sein. Während der Systemintegration wird der Computer als Master der Klasse 2 angemeldet.

Bedienung

Die Bedienung erfordert die Installation des Servers PA-DPV1. Die Verbindung zu Commuwin II stellen Sie dann über den Server PA-DPV1 her.

• Erstellen Sie eine Geräteliste mit "Tags"

Auswahl der
Gerätebedienung

Auswahl der
Profilbedienung

O10 - DELTABAR S
PHY_30: PIC 206
Pressure PIC 206
Al: PIC 206

- Die E+H-Gerätebedienung wird durch Anklicken der Gerätebezeichnung angewählt, wie hier z.B. Deltabar S.
- Die Profilbedienung durch Anklicken des entsprechenden Tags anwählen,
 z.B. Al: PIC 205 = Analog Input Block Deltabar S,
 oder durch Auswahl des zugehörigen Geräteprofil in der grafischen Bedienung.
- Die Geräteparametrierung erfolgt dann im Menü Gerätedaten.

Menü Gerätedaten

Das Menü Gerätedaten in Commuwin II bietet Ihnen die zwei Bedienarten "Matrixbedienung" und "Grafische Bedienung" an.

- Bei der Matrixbedienung werden die Geräte- bzw. Profilparameter in eine Matrix geladen. Ein Parameter kann geändert werden, wenn das entsprechende Matrixfeld angewählt ist.
- Bei der grafischen Bedienung wird der Bedienvorgang in einer Serie von Bildern mit Parametern dargestellt. Für Profilbedienung sind die Bilder *Diagnose, Skalierung, Simulation und Block* von Interesse.

30

Die Deltabar S Vor-Ort Anzeige und der digitale Ausgang arbeiten unabhängig voneinander. In der Betriebsart "Druck" wird der Meßwert in der Einheit übertragen, die auf dem Typenschild angegeben ist. In den Betriebsarten "Füllstand" und "Durchfluß" liefert der digitale Ausgangswert (OUT Value) einen Wert, basierend auf dem Druck zwischen 0 und 100 %. Ausgangsskalierung

Damit die Anzeige und der digitale Ausgang den gleichen Wert ausgeben, gibt es folgende Bedienmöglichkeiten:

Digitaler Ausgangswert (OUT Value) = Anzeigewert der Vor-Ort-Anzeige

- die Werte für die untere und obere Grenze von PV Scale und OUT Scale im Analog Input Block gleichsetzen; PV Scale min. = OUT Scale min. und PV Scale max. = OUT Scale max. Siehe auch dieses Kapitel, Slot/Index Tabelle und Kapitel 12.2 "Matrix Analog Input Block (AI Transmitter)",
- die Grenzen von PV Scale und OUT Scale in Commuwin II im Grafikmodus skalieren, siehe Abbildung unten oder
- Parameter "Setze Einheit OUT" gemäß Kapitel 6.1, Abschnitt "Druckeinheit wählen" bestätigen. Durch Bestätigung dieses Parameters werden die Grenzen von PV Scale und OUT Scale automatisch gleichgesetzt.

Wenn Sie für Ihre SPS einen anders skalierten Ausgangswert benötigen als den Anzeigewert der Vor-Ort-Anzeige, dann gibt es folgende Bedienmöglichkeiten:

- die Werte für die untere und obere Grenze für PV Scale und OUT Scale im Analog Input Block entsprechend den Anforderung setzen, siehe auch diese Kapitel Slot/Index Tabellen und Kapitel 12.2 "Matrix Analog Input Block (AI Transmitter)" oder
- die Grenzen von PV Scale und OUT Scale in Commuwin II im Grafikmodus skalieren, siehe Abbildung unten.

Digitaler Ausgangswert (OUT Value) ≠ Anzeigewert der Vor-Ort-Anzeige

Hinweis!

Wenn Sie für den Anzeigewert der Vor-Ort-Anzeige einen Lageabgleich mittels Biasdruck (siehe Kapitel 6.1, Abschnitt "Lageabgleich – Biasdruck") durchführen möchten, muß dies vor der Änderung der Werte von OUT Scale min. und OUT Scale max. geschehen.

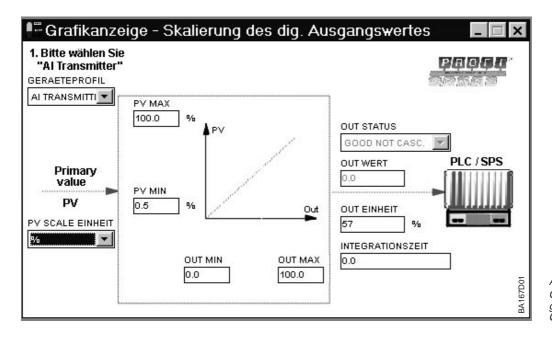


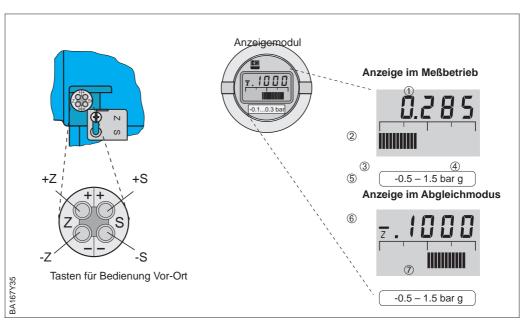
Abbildung 3.7
OUT Value skalieren über die grafische Bedienung in
Commuwin II

4 Bedienung

4.1 Bedienung Vor-Ort

Bedienelemente

Zur Bedienung vor Ort gibt es vier Tasten, mit denen Meßanfang und Meßende eingestellt werden können. Für die Betriebsart "Druck" wirkt sich diese Einstellung nur auf die Balkenanzeige im Anzeigemodul aus. Meßanfang und Meßende haben keinen Einfluß auf den digitalen Ausgangswert oder auf den Anzeigewert im Anzeigemodul. Die Tastenfunktionen sind in der untenstehenden Tabelle erklärt.


Abbildung 4.1 Bedienoberfläche des Deltabar S, wahlweise mit Anzeigemodul

Anzeige im Meßbetrieb

- 4stellige Anzeige von Meßwerten und Eingabeparametern
- ② Balkenanzeige des Meßwertes
- ③ Meßanfang
- 4 Meßende
- 5 Nominaler Meßbereich

zusätzlich bei Anzeige im Abgleichmodus

- ⑥ Anzeige des Abgleichpunktes (Z=Zero, S=Span)
- 7 eingestellter Meßbereich in den Grenzen der Meßzelle

Anzeigemodul

Das lokale Anzeigemodul (optional) erlaubt zwei Anzeigemodi:

- Anzeige im Meßbetrieb: Erscheint standardmäßig
- Anzeige im Abgleichmodus: Erscheint nach einmaligem Drücken einer der Tasten +Z, -Z, +S, -S. Setzt sich nach 2 s automatisch auf Anzeige im Meßbetrieb zurück.

Tastenfunktione	1						
+Z	erhöht den Wert für Meßanfang um +1 Digit*						
–Z	verringert den Wert für Meßanfang um -1 Digit*						
+S	erhöht den Wert für Meßende um +1 Digit*						
-S	verringert den Wert für Meßende um –1 Digit*						
Tastenkombinati	onen (Tasten gleichzeitig drücken)						
Tasten	Funktion						
Abgleich							
2 mal +Z und -Z	Der anliegende Druck wird als Wert für Meßanfang übernommen						
2 mal +S und -S	Der anliegende Druck wird als Wert für Meßende übernommen						
Biasdruck							
2 mal +Z und +S	Ein anliegender Druck wird als Biasdruck** übernommen						
1 mal +Z und +S	Ein übernommener Biasdruck** wird angezeigt						
2 mal –Z und –S	Ein übernommener Biasdruck** wird gelöscht						
Meßstelle sichern	durch verriegeln/entriegeln						
2 mal +Z und -S	Meßstelle verriegeln						
2 mal –Z und +S	Meßstelle entriegeln						

Tabelle 4.1
Tastenfunktionen

- * Hinweis: Das erste Drücken aktiviert die Anzeige, erst beim zweiten Drücken beginnt die Anzeige zu zählen. Bei gedrückter Taste beginnt der Wert erst langsam, dann immer schneller zu laufen.
- ** Zeigt die Anzeige nach dem Abgleich des Meßanfangs bei Prozeßdruck Null nicht Null an (Lageabhängigkeit), kann sie durch Übernahme eines Biasdruck auf Null korrigiert werden. Der Lageabgleich über einen Biasdruck hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value), der über den Bus übertragen wird. Sehen Sie bitte Kapitel 6.1, Abschnitt "Lageabgleich – Anzeige (Biasdruck)".

4.2 Bedienung mit Commuwin II

Das Anzeige- und Bedienprogramm Commuwin II bietet folgende Einstell- und Bedienmöglichkeiten für den Deltabar S an:

- über eine Matrixbedienung oder
- über eine grafische Bedienung.

Der Server PA-DPV1 muß über das Menü "Verbindungsaufbau/Verbindung aufbauen" aktiviert sein. Für die Beschreibung des Bedienprogrammes Commuwin II sehen Sie bitte Betriebsanleitung BA 124F.

Hinweis!

Die aktuelle Gerätebeschreibung (DD) können Sie entweder über Ihr lokales Endress+Hauser Verkaufsbüro oder über das Internet (http://www.de.endress.com \rightarrow Produkte \rightarrow Process Solutions \rightarrow CommuWIN II \rightarrow Updates/Downloads) beziehen.

Über das Menü "Gerätedaten/Matrixbedienung" können Sie auf die erweiterten Funktionen des Deltabar S wie z.B. die Füllstandmessung zugreifen.

Matrixbedienung (Menü Gerätedaten)

- Jede Reihe ist einer Funktionsgruppe zugeordnet.
- Jedes Feld stellt einen Parameter dar.

Die Einstellparameter werden in den entsprechenden Feldern eingetragen und mit
bestätigt. Über das Matrixfeld "Geräteprofil" (VAH9) wechseln Sie zwischen den Blockdarstellungen: Standard, Physical Block, Press Block und Al Transmitter.

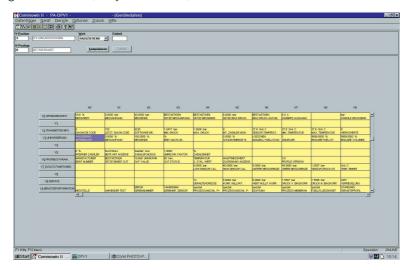


Abbildung 4.2 Menü "Gerätedaten/Matrixbedienung" in Commuwin II

Über das Menü "Gerätedaten/Grafische Bedienung" bietet Ihnen Commuwin II Bildvorlagen für bestimmte Konfigurationsvorgänge an. Die Parameteränderungen werden hier direkt eingetragen und mit → bestätigt. Auch die Block-Profil-Parameter sind über die graphische Bedienungen zugänglich, siehe Kapitel 3.7.

Grafische Bedienung (Menü Gerätedaten)

Abbildung 4.3 Menü "Gerätedaten/Grafische Bedienung" in Commuwin II

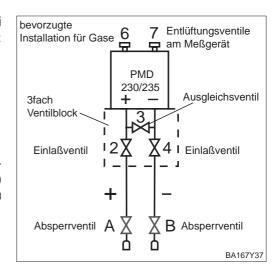
5 Inbetriebnahme der Meßstelle

Deltabar S PMD 230/235: Dieses Kapitel beschreibt, wie die Meßstellen, die mit Dreifach-Ventilblöcken ausgestattet sind, bedient werden. Weil die Bedienung der Ventile vor Ort erfolgen muß, wird der Lageabgleich des Deltabar S vor Ort über Tasten vorgenommen.

Deltabar S FMD 230/630/633: Nach Öffnen eventuell vorhandener Absperrventile kann das Gerät vor Ort oder über PROFIBUS-PA abgeglichen werden.

Hinweis!

Die Bedienung kann statt über die Taste auch über ein Bedienprogramm wie z.B. Commuwin II erfolgen. Weitere Funktionen wie z.B. die Aktivierung der Füllstand- und Durchflußmessung, Dämpfung oder Schleichmengenunterdrückung lassen sich ausschließlich über Kommunikation durchführen. Sehen Sie hierfür die folgenden Kapitel.

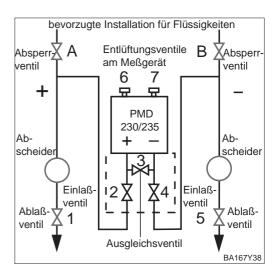

5.1 Funktion der Ventilblöcke

Dreifach-Ventilblock

Der Dreifach-Ventilblock besteht aus zwei Einlaßventilen und einem Ausgleichsventil:

- Einlaßventile (2 und 4):
 Absperren des Meßumformers gegenüber den Wirkdruckleitungen
- Ausgleichsventil (3): Herstellung des Druckausgleichs zwischen Plus- und Minusseite.

Häufig ist es notwendig, die Wirkdruckleitungen durch die Absperrventile (A und B) auch von den Druckentnahmestellen zu trennen.



Verunreinigte Medien

In verunreinigten flüssigen Medien, die zur Ablagerung von Feststoffen neigen, ist der Einsatz von Ablaßventilen üblich.

- Ablaßventile (1 und 5):
 Ablaß bzw. Ausblasung von Ablagerungen in den Wirkdruckleitungen
- Einlaßventile (2 und 4):
 Absperren des Meßumformers gegenüber den Wirkdruckleitungen
- Ausgleichsventil (3): Herstellung des Druckausgleichs zwischen Plus- und Minusseite.

Häufig ist es notwendig, die Wirkdruckleitungen durch Absperrventile (A und B) auch von den Druckentnahmestellen zu trennen.

Hinweis!

Hinweis!

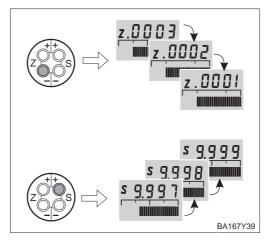
In Kraftwerken wird diese Anordnung üblicherweise mit einem speziellen Fünffach-Ventilblock realisiert.

5.2 Differenzdruckmessung

Dieses Kapitel enthält folgende Informationen:

- Allgemeine Beschreibung der Bedienung mit Tasten
- Inbetriebnahme der Meßstelle

Das Kapitel 6 beschreibt die "Differenzdruckmessung" und die Bedienung über Commuwin II.


Hinweis!

Mit den Tasten der Vor-Ort-Bedienung stellen Sie Meßanfang und Meßende für die Balkenanzeige im Anzeigemodul ein. Die Einstellungen von Meßanfang und Meßende haben keinen Einfluß auf den digitalen Ausgangswert oder auf den Anzeigewert im Anzeigemodul.

Der gewünschte Meßanfang und das Meßende werden mit den Tasten eingestellt.

#	Taste	Eingabe
1		Meßanfang einstellen +Z oder –Z mehrmals drücken (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)
2		Meßende einstellen +S oder -S mehrmals drücken (Der Meßanfang wird nicht beeinflußt.)

Meßanfang und -ende: Einstellung ohne Referenzdruck

#	Taste	Eingabe					
1	Druck f	ür Meßanfang exakt vorgeben.					
2		+Z und –Z zweimal gleichzeitig drücken. (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)					
3	Druck f	Druck für Meßende exakt vorgeben.					
4	Z O O S	+S und –S zweimal gleichzeitig drücken.					

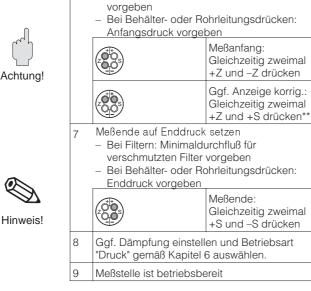
(Der Meßanfang wird nicht

beeinflußt.)

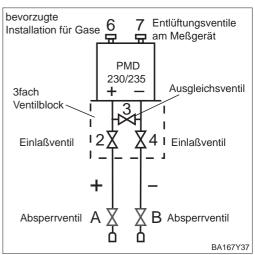
Ein Referenzdruck steht zur Verfügung, der genau dem gewünschten Meßanfang und Meßende entspricht.

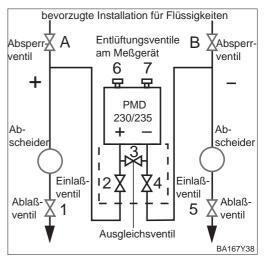
Meßanfang und -ende: Abgleich mit Referenzdruck

#	Taste	Eingabe
1		Anzeige korrigieren +Z und +S zweimal gleichzeitig drücken: Ein anliegender Biasdruck wird übernommen.
2		Biasdruck anzeigen +Z und +S einmal gleichzeitig drücken: Der gespeicherte Biasdruck wird kurz angezeigt.
3		Biasdruck löschen –Z und –S zweimal gleichzeitig drücken: Der gespeicherte Biasdruck wird gelöscht.


Zeigt die Anzeige nach dem Abgleich bei Prozeßdruck Null nicht Null an, kann sie durch Übernahme eines anliegenden Biasdrucks auf Null korrigiert werden. Dieses hat keine Auswirkung auf den digitalen Ausgangswert (OUT Value).

Lageabgleich
– Anzeige
(Biasdruck)


Inbetriebnahme der Meßstelle


Bevor Sie den Deltabar S für die Differenzdruckmessung einsetzen, müssen die Wirkdruckleitungen gereinigt und das Gerät mit Medium gefüllt sein. Die Meßspanne (Meßende-Meßanfang) ist entweder voreingestellt (siehe Seite 35), oder sie wird bei der Inbetriebnahme eingestellt

#	Ventile	Bedeutung
1	3 schließen	
2	Meßeinrichtung mit Medium füllen	
	A, B, 2, 4 öffnen	Medium strömt ein
3	Ggf. Wirkdruckleitungen reinigen* – bei Gasen durch Ausblasen mit Druckluft – bei Flüssigkeiten durch Ausspülen	
	2 und 4 schließen	Gerät absperren
	1 und 5 öffnen*	Wirkdruckleitung ausblasen/ausspülen
	1 und 5 schließen*	Ventile nach Reinigung schließen
4	Gerät entlüften	
	2 und 4 öffnen	Medium einleiten
	4 schließen	Minusseite schließen
	3 öffnen	Ausgleich Plus- und Minusseite
	6 und 7 kurz öffnen dann wieder schließen	Meßgerät vollständig mit Medium füllen und Luft entfernen
5	Meßstelle auf Meßbetrieb setzen	
	3 schließen	Plus- und Minusseite trennen
	4 öffnen	Minusseite anschließen
	Jetzt sind: 1*, 3, 5*, 6 und 7 geschlossen 2 und 4 offen A und B offen (falls vorhanden)	
6	Meßanfang auf Anfangsdruck und Anzeige auf Null setzen – Bei Filtern: Durchfluß absperren oder Minimaldurchfluß für sauberen Filter vorgeben – Bei Behälter- oder Rohrleitungsdrücken: Anfangsdruck vorgeben	
		Meßanfang: Gleichzeitig zweimal +Z und -Z drücken

^{*} Nur bei Anordnungen mit fünf Ventilen

Achtung!

Beim Öffnen und Schließen der Ventile während des Prozesses muß Überhitzung ebenso vermieden werden, wie einseitige Überdruckbelastungen der Meßzelle über die angegebenen Grenzen hinaus. Wird der Meßbereich verstellt, darf das Ausgangssignal nicht zu unzulässigen Sprüngen im Regelkreis führen.

**Hinweis!

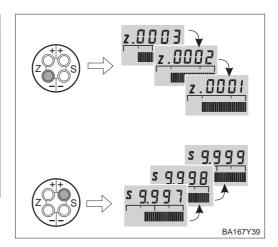
Der Lageabgleich über die +Z- und +S-Taste hat keinen Einfluß auf den digitalen Ausgangswert (Out Value), der über den Bus übertragen wird. Damit der Anzeigewert im Anzeigemodul und der digitale Ausgangswert den gleichen Wert annehmen, muß in Commuwin II nach dem Abgleich (nach Schritt 8) der Parameter "Setze Einheit Out" bestätigt werden. Beachten Sie dabei, daß eine Änderung des digitalen Ausgangswertes die Regelung beeinflußen könnte. Siehe auch Kapitel 6.1, Abschnitt "Lageabgleich - Anzeige (Biasdruck)".

5.3 Füllstandmessung

Dieses Kapitel enthält folgende Informationen:

- Allgemeine Beschreibung der Bedienung mit Tasten
- Inbetriebnahme der Meßstelle

Hinweis: Abgleich durch Tastenbedienung


Nach der Erstinbetriebnahme Vor-Ort über Tasten zeigt das Anzeigemodul den aktuellen Meßwert als Druckwert an. Über ein Bedienprogramm wie z.B. Commuwin II kann der Meßwert in anderen Einheiten (Füllstand, Volumen oder Masse) angezeigt werden.

Das Kapitel 7 beschreibt die "Füllstandmessung" und die Bedienung über Commuwin II.

Der gewünschte Meßanfang und das Meßende werden mit den Tasten eingestellt.

#	Taste	Eingabe
1		Meßanfang einstellen: +Z oder –Z mehrmals drücken (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)
2		Meßende einstellen: +S oder –S mehrmals drücken (Der Meßanfang wird nicht beeinflußt.)

Meßanfang und -ende: Einstellung ohne Referenzdruck

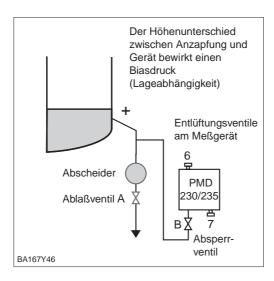
Ein Referenzdruck steht zur Verfügung, der genau dem gewünschten Meßanfang bzw. Meßende entspricht.

Meßanfang und -ende: Abgleich mit Referenzdruck

#	Taste	Eingabe
1	Druck für Meßanfang exakt vorgeben.	
2		+Z und –Z zweimal gleichzeitig drücken. (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)
3	Druck für Meßende exakt vorgeben.	
4		+S und -S zweimal gleichzeitig drücken. (Der Meßanfang wird nicht beeinflußt.)

Lageabgleich
– Anzeige
(Biasdruck)

Zeigt die Anzeige nach dem Abgleich bei Prozeßdruck Null nicht Null an, kann sie durch Übernahme eines anliegenden Biasdrucks auf Null korrigiert werden. Dieses hat keine Auswirkung auf den digitalen Ausgangswert (OUT Value).

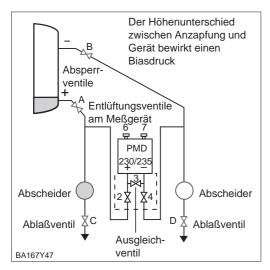

#	Taste	Eingabe
1		Anzeige korrigieren +Z und +S zweimal gleichzeitig drücken: Ein anliegender Biasdruck wird übernommen.
2		Biasdruck anzeigen +Z und +S einmal gleichzeitig drücken: Der gespeicherte Biasdruck wird kurz angezeigt.
3		Biasdruck löschen –Z und –S zweimal gleichzeitig drücken: Der gespeicherte Biasdruck wird gelöscht.

Achtung!

Beim Öffnen und Schließen der Ventile während des Prozesses muß Überhitzung ebenso vermieden werden, wie einseitige Überdruckbelastungen der Meßzelle über die angegebenen Grenzen hinaus. Wird der Meßbereich verstellt, darf das Ausgangssignal nicht zu unzulässigen Sprüngen im Regelkreis führen.

Inbetriebnahme der Meßstelle – Offener Behälter

#	Ventile	Bedeutung	
1	Behälter bis über die Anzapfung befüllen		
2	Meßeinrichtung mit Me	dium füllen	
	B öffnen	Absperrventil öffnen	
3	Gerät entlüften		
	6 kurz öffnen dann wieder schließen	Meßgerät vollständig mit Medium füllen und Luft entfernen	
4	Meßstelle auf Meßbetrieb setzen		
	Jetzt sind: A und 6 geschlossen B geöffnet		
5	Abgleich über Tasten (Seiten 37 und 38) oder über Commuwin (Kapitel 7) durchführen.		
6	Über Commuwin (Kapitel 7): Betriebsart "Füllstand" wählen. Meßanfang und Meßende für Füllstand "leer" und "voll" vorgeben. Einheiten und Dämpfung einstellen.		
7	Meßstelle ist betriebsbereit		



Hinweis!

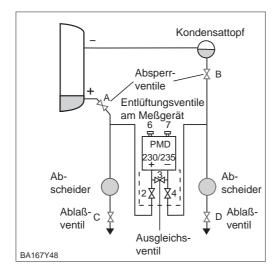
Hinweis!

- Ein evtl. vorhandener Abscheider wird mit Ablaßventil A durchspült.
- Die Minusseite des Deltabar S bleibt offen zum atmosphärischen Druck.
- Beim Abgleich muß die "+" Wirkdruckleitung mit Medium befüllt werden.
- Die Variante FMD 230/630 ist nach Öffnen eines evtl. vorhandenen Absperrventils sofort abgleichbereit.

38

#	Ventile	Bedeutung	
1	Behälter bis über die untere Anzapfung befüllen		
2	Meßeinrichtung mit Me	dium füllen	
	3 schließen	Plus- und Minusseite trennen	
	A und B öffnen	Absperrventile öffnen	
3	Plusseite entlüften (evtl	. Minusseite entleeren)	
	2 und 4 öffnen	Medium einleiten auf Plusseite	
	6 und 7 kurz öffnen dann wieder schließen	Plusseite vollständig mit Medium füllen und Luft entfernen	
4	Meßstelle auf Meßbetrieb setzen		
	Jetzt sind: 3, 6 und 7 geschlossen 2, 4, A und B geöffnet		
5	Abgleich über Tasten (Seiten 37 und 38) oder über Commuwin (Kapitel 7) durchführen.		
6	Über Commuwin (Kapitel 7): Betriebsart "Füllstand" wählen. Meßanfang und Meßende für Füllstand "leer" und "voll" vorgeben. Einheiten und Dämpfung einstellen.		
7	Meßstelle ist betriebsbereit		

Inbetriebnahme der Meßstelle – Geschlossener Behälter


Hinweis!

- Evtl. vorhandene Abscheider werden mit Ablaßventil C bzw. D durchspült.
- Beim Leerabgleich muß die "+" Wirkdruckleitung mit Medium befüllt werden.
- Die Variante FMD 230/630 ist nach Öffnen eines evtl. vorhandenen Absperrventils sofort abgleichbereit.
- Die Variante FMD 633 ist sofort abgleichbereit.

Hinweis!

Geschlossener Behälter mit Dampfüberlagerung

#	Ventile	Bedeutung	
1	Behälter bis über die untere Anzapfung befüllen		
2	Meßeinrichtung mit Medium füllen		
	A und B öffnen	Absperrventile öffnen	
	Kondensattopf füllen bzw. warten bis sich genügend Kondensat sammelt. Das kann einige Minuten dauern.		
3	Gerät entlüften		
	2 und 4 öffnen	Medium einleiten	
	4 schließen	Minusseite schließen	
	3 öffnen	Ausgleich Plus- und Minusseite	
	6 und 7 kurz öffnen dann wieder schließen	Meßgerät vollständig mit Medium füllen und Luft entfernen	
4	Meßstelle auf Meßbetrieb setzen		
	3 schließen	Plus- und Minusseite trennen	
	4 öffnen	Minusseite anschließen	
	Jetzt sind: 3 geschlossen 6 und 7 geschlossen 2 und 4 geöffnet A und B geöffnet (falls vorhanden)		
5	Abgleich über Tasten (Seite 37 und 38) oder über Commuwin (Kapitel 7) durchführen.		
6	Über Commuwin (Kapitel 7): Betriebsart "Füllstand" wählen. Meßanfang und Meßende für Füllstand "leer" und "voll" vorgeben. Einheiten und Dämpfung einstellen.		
7	Meßstelle ist betriebsbereit		

Hinweis!

Hinweis!

- Evtl. vorhandene Abscheider bzw. der Kondensattopf werden mit dem Ablaßventil C bzw. D durchspült.
- Beim Abgleich müssen beide Wirkdruckleitungen mit Medium gefüllt sein.
- Die Variante FMD 230/630 ist nach Öffnen evtl. vorhandener Absperrventile abgleichbereit. Die "-" Wirkdruckleitung muß mit Medium befüllt werden.
- Die Variante FMD 633 ist sofort abgleichbereit.

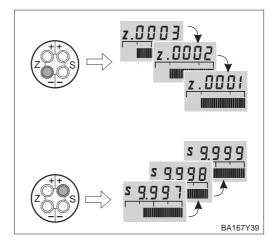
5.4 Durchflußmessung mit Differenzdruck

Dieses Kapitel enthält folgende Informationen:

- Allgemeine Beschreibung der Bedienung mit Tasten
- Inbetriebnahme der Meßstelle

Hinweis: Abgleich durch Tastenbedienung

Nach der Erstinbetriebnahme Vor-Ort über Tasten zeigt das Anzeigemodul den aktuellen Meßwert als Druckwert an. Über ein Bedienprogramm wie z.B. Commuwin II kann der Meßwert mit einer Durchflußeinheit angezeigt werden.



Das Kapitel 8 beschreibt die "Durchflußmessung" und die Bedienung über Commuwin II.

Der gewünschte Meßanfang und das Meßende werden mit den Tasten eingestellt. Der Durchfluß wird über Differenzdruck mit Wirkdruckgebern wie z.B. Staudrucksonde oder Blende ermittelt. Der Wert für Meßanfang entspricht dem Durchfluß Null (Differenzdruck = 0 mbar). Der Wert für Meßende entspricht dem Differenzdruck bei maximalen Durchfluß (siehe Auslegungsblatt Deltatop/Deltaset).

Meßanfang und -ende: Einstellung ohne Referenzdruck

#	Taste	Eingabe
1		Meßanfang einstellen: +Z oder –Z mehrmals drücken (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)
2		Meßende einstellen: +S oder –S mehrmals drücken (Der Meßanfang wird nicht beeinflußt.)

Meßanfang und -ende: Abgleich mit Referenzdruck

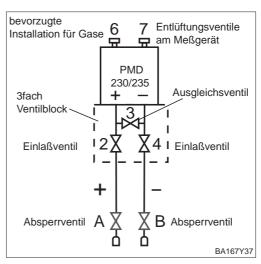
Ein Referenzdruck steht zur Verfügung, der genau dem gewünschten Meßanfang bzw. Meßende entspricht. Der Referenzdruck für den Meßanfang entspricht dem Durchfluß Null (Differenzdruck = 0 mbar). Der Referenzdruck für das Meßende entspricht dem Differenzdruck bei maximalen Durchfluß (siehe auch Auslegungsblatt Deltatop/Deltaset).

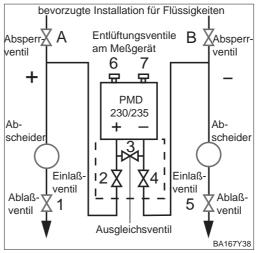
#	Taste	Eingabe
1	Druck f	ür Meßanfang exakt vorgeben.
2		+Z und –Z zweimal gleichzeitig drücken. (Da die Meßspanne konstant bleibt, wird das Meßende entsprechend dem Meßanfang verschoben.)
3	Druck für Meßende exakt vorgeben.	
4	ZÖÖS ZÖSS	+S und –S zweimal gleichzeitig drücken. (Der Meßanfang wird nicht beeinflußt.)

Lageabgleich – Anzeige (Biasdruck)

Zeigt die Anzeige nach dem Abgleich bei Prozeßdruck Null nicht Null an, kann sie durch Übernahme eines anliegenden Biasdrucks auf Null korrigiert werden. Dieses hat keine Auswirkung auf den digitalen Ausgangswert (OUT Value).

#	Taste	Eingabe
1		Anzeige korrigieren +Z und +S zweimal gleichzeitig drücken: Ein anliegender Biasdruck wird übernommen.
2		Biasdruck anzeigen +Z und +S einmal gleichzeitig drücken: Der gespeicherte Biasdruck wird kurz angezeigt.
3	Z S S	Biasdruck löschen –Z und –S zweimal gleichzeitig drücken: Der gespeicherte Biasdruck wird gelöscht.


Bevor Sie den Deltabar S für die Durchflußmessung einsetzen, müssen die Wirkdruckleitungen gereinigt und das Gerät mit Medium gefüllt sein. Die Meßspanne (Meßende-Meßanfang) ist entweder voreingestellt (siehe Seiten 41 und 42), oder es wird, wie unten beschrieben, nur der Meßanfang während der Inbetriebnahme gesetzt.


Inbetriebnahme der Meßstelle

Meßeinrichtung mit Medium füllen A, B, 2, 4 öffnen Medium strömt ein Ggf. Wirkdruckleitungen reinigen* - bei Gasen durch Ausblasen mit Druckluft - bei Flüssigkeiten durch Ausspülen 2 und 4 schließen Gerät absperren 1 und 5 öffnen* Wirkdruckleitung ausblasen/ausspülen 1 und 5 schließen* Ventile nach Reinigung schließen Gerät entlüften Gerät entlüften Gerät entlüften Ausgleich Plus- und Minusseite Gund 7 kurz öffnen dann wieder schließen mit Medium füllen und Luft entfernen	#	Ventile	Bedeutung	
A, B, 2, 4 öffnen Medium strömt ein Ggf. Wirkdruckleitungen reinigen* – bei Gasen durch Ausblasen mit Druckluft – bei Flüssigkeiten durch Ausspülen 2 und 4 schließen Gerät absperren 1 und 5 öffnen* Wirkdruckleitung ausblasen/ausspülen 1 und 5 schließen* Ventile nach Reinigung schließen 2 und 4 öffnen Medium einleiten 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und - sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal	1	3		
Ggf. Wirkdruckleitungen reinigen* - bei Gasen durch Ausblasen mit Druckluft - bei Flüssigkeiten durch Ausspülen 2 und 4 schließen 1 und 5 öffnen* Wirkdruckleitung ausblasen/ausspülen 1 und 5 schließen* Ventile nach Reinigung schließen Gerät entlüften 2 und 4 öffnen Medium einleiten 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: - der Prozeß nicht abgesperrt werden kann und - sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal	2	Meßeinrichtung mit Medium füllen		
- bei Gasen durch Ausblasen mit Druckluft - bei Flüssigkeiten durch Ausspülen 2 und 4 schließen 3 und 5 öffnen* 4 Gerät absperren 4 Gerät entlüften 2 und 4 öffnen 4 schließen Medium einleiten 4 schließen Menusseite schließen Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: - der Prozeß nicht abgesperrt werden kann und - sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		A, B, 2, 4 öffnen	Medium strömt ein	
1 und 5 öffnen* 1 und 5 schließen* Wirkdruckleitung ausblasen/ausspülen 1 und 5 schließen* Ventile nach Reinigung schließen Gerät entlüften 2 und 4 öffnen Medium einleiten 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: der Prozeß nicht abgesperrt werden kann und sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal	3	- bei Gasen durch Aus	blasen mit Druckluft	
ausblasen/ausspülen 1 und 5 schließen* Ventile nach Reinigung schließen Gerät entlüften 2 und 4 öffnen Medium einleiten 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		2 und 4 schließen	Gerät absperren	
Reinigung schließen 4 Gerät entlüften 2 und 4 öffnen Medium einleiten 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		1 und 5 öffnen*	1	
2 und 4 öffnen 4 schließen Minusseite schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		1 und 5 schließen*		
4 schließen 3 öffnen Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: der Prozeß nicht abgesperrt werden kann und sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal	4	Gerät entlüften		
Ausgleich Plus- und Minusseite 6 und 7 kurz öffnen dann wieder schließen mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		2 und 4 öffnen	Medium einleiten	
Minusseite 6 und 7 kurz öffnen dann wieder schließen wit Meßgerät vollständig mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		4 schließen	Minusseite schließen	
dann wieder schließen mit Medium füllen und Luft entfernen Meßanfang und Anzeige auf Null setzen Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal		3 öffnen		
Anmerkung: Die folgenden Eingaben sind nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden kann und – sich die Druckentnahmestellen (A und B) au geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6. Meßanfang: Gleichzeitig zweimal			mit Medium füllen	
	5	Anmerkung: Die folgenden Eingaben si nur dann an dieser Stelle sinnvoll, wenn: – der Prozeß nicht abgesperrt werden ka und – sich die Druckentnahmestellen (A und geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang u Anzeige erst nach Schritt 6.		
			Gleichzeitig zweimal	

#	Ventile	Bedeutung
8	Über Commuwin (Kapit Betriebsart "Radizierend Meßanfang und Meßend bzw. "Max." vorgeben. Einheiten und Dämpfun	d" (Durchfluß) wählen. de für Durchfluß "Null"
9	Meßstelle ist betriebsbe	ereit

* Nur bei Anordnungen mit fünf Ventilen

Achtung!

Achtung!

Beim Öffnen und Schließen der Ventile während des Prozesses muß Überhitzung ebenso vermieden werden, wie einseitige Überdruckbelastungen der Meßzelle über die angegebenen Grenzen hinaus. Wird der Meßbereich verstellt, darf das Ausgangssignal nicht zu unzulässigen Sprüngen im Regelkreis führen.

Kann der Durchfluß abgesperrt werden, erfolgt der Abgleich von Meßanfang und Anzeige an dieser Stelle.

Meßanfang und Anzeige auf Null setzen

Meßstelle auf Meßbetrieb setzen

Jetzt sind: 1*, 3, 5*, 6 und 7 geschlossen

2 und 4 offen

In diesem Fall entfällt Schritt 5

Durchfluß absperren

3 schließen

4 öffnen

	Meßanfang: Gleichzeitig zweimal +Z und -Z drücken
Z OS	Ggf. Anzeige korrig.: Gleichzeitig zweimal +Z und +S drücken
Durchfluß öffnen	

Ggf. Anzeige korrig.:

Gleichzeitig zweimal

+Z und +S drücken

Plus- und Minusseite

trennen

A und B offen (falls vorhanden)

Minusseite

anschließen

6 Differenzdruckmessung

Wird der Deltabar S wie in Kapitel 5.2 in Betrieb genommen, so ist er sofort meßbereit. Der Meßbereich entspricht der Angabe auf dem Typenschild. Standardmäßig wird der Meßwert über PROFIBUS-PA in der Einheit übertragen, die auf dem Typenschild angegeben ist. Nach einem Reset "5140" wird der Meßwert in der Einheit "bar" übertragen (siehe auch Kapitel 9.3, Reset).

Eine Meßbereichs-Aufspreizung (Turndown) im herkömmlichen Sinne gibt es nicht. Der Meßwert wird jedoch mit einer Auflösung übertragen, die eine Genauigkeit von 0,1% bei einem "Turndown" von 10:1 bietet (siehe auch Kapitel 11, Technische Daten). Folgendes wird in diesem Kapitel beschrieben:

- Abgleich über Commuwin II (mit und ohne Referenzdruck)
- Dämpfung
- Verriegelung/Entriegelung der Bedienung
- Informationen zur Meßstelle

6.1 Abgleich über Commuwin II

Der Abgleich erfolgt über die Bedienmatrix (Fernbedienung) mit Commuwin II.

Matrixfeld	Bedeutung
V0H1	Eingabe Druckwert für Meßanfang (wirkt nur auf Balkenanzeige im Anzeigemodul)
V0H2	Eingabe Druckwert für Meßende (wirkt nur auf Balkenanzeige im Anzeigemodul)
V0H3	Übernahme des anliegenden Drucks als Meßanfang (wirkt nur auf Balkenanzeige im Anzeigemodul)
V0H4	Übernahme des anliegenden Drucks als Meßende (wirkt nur auf Balkenanzeige im Anzeigemodul)
V0H5	Eingabe Biasdruck (wirkt nur auf Balkenanzeige im Anzeigemodul und auf die Matrixfelder V0H0, V0H1 und V0H2)
V0H6	Übernahme des anliegenden Drucks als Biasdruck (wirkt nur auf Balkenanzeige im Anzeigemodul und auf die Matrixfelder V0H0, V0H1 und V0H2)
V0H7	Eingabe Dämpfung τ (040 s)
V0H9	Druckeinheit wählen
V3H0	Betriebsart: 1 = Druck
V6H1	Über V0H9 sind verschiedene Druckeinheiten wählbar. Die druckspezifischen Parameter werden umgerechnet und mit der gewählten Einheit in Commuwin II dargestellt. Damit die umgerechneten Werte über den Bus übertragen werden, muß V6H1 einmal bestätigt werden, siehe dieses Kapitel, Abschnitt "Druckeinheit wählen".
V9H5	Lageabgleich, siehe dieses Kapitel, Abschnitt "Nullpunkt-Korrektur"

Über den Parameter "Druckeinheit wählen" (V0H9) können Sie eine Druckeinheit wählen. Bei der Auswahl einer neuen Druckeinheit in V0H9, werden alle druckspezifischen Parameter umgerechnet und mit der neuen Druckeinheit in Commuwin II dargestellt. Die Druckeinheit in der Tabelle unten stehen zur Wahl.

Druckeinheit wählen

#	VH	Eingabe	Bedeutung
1	der Dru	uckspezifischen uckeinheit bar da eßwert (V0H0) =	
2	V0H9	z.B. psi	Druckeinheit wählen
3	der Dru	uckspezifischen uckeinheit psi da rt (V0H0) = 14.5	

mbar	bar	Pa	hPa
kPa	MPa	mmH ₂ O	m H ₂ O
in H ₂ O	ft H ₂ O	psi	g/cm ²
kg/cm ²	kgf/cm2	atm	lb/ft ²
Torr	mmHg	inHg	

Ist eine Darstellung des Druckwertes in "%" gewünscht, sehen Sie folgenden Abschnitt "Ausgabe Druck in %".

Hinweis!

Standardmäßig wird der Meßwert in der Druckeinheit, die auf dem Typenschild angegeben ist über den Bus übertragen. Damit der digitale Ausgangswert und der Meßwert im Matrixfeld V0H0 – auch nach der Wahl einer neuen Druckeinheit – den gleichen Wert anzeigen, muß in V6H1 der Parameter "Setze Einheit OUT" einmal bestätigt werden. Beachten Sie dabei, daß eine Änderung des digitalen Ausgangswertes die Regelung beeinflußen könnte.

#	VH	Eingabe	Bedeutung
1	z.B. Me	eßwert (V0H0) =	1 bar
2	V0H9	z.B. psi	neue Druckeinheit wählen
3	Über de übertra	Anzeige Meßwert (V0H0) = 14.5 psi Über den Bus wird noch der Wert 1 übertragen. V6H2 zeigt: 1.0 UNKNOWN	
4	V6H1	"Setze Einheit OUT" mit Enter bestätigen	V6H2 zeigt: 14.5 psi
5	Über den Bus wird jetzt der Wert 14.5 übertragen.		

Ausgabe Druck in "%"

Ist eine Darstellung des Druckwertes in "%" gewünscht, muß die Betriebsart auf "Füllstand linear" (V3H0 = 2) eingestellt werden. Werksmäßig werden dem Meßanfang und dem Meßende des PROFIBUS-PA-Signals die Werte 0 und 100 % zugewiesen, d.h. der OUT Value im Analog Input Block wird automatisch in "%" umgerechnet. Mit den Parametern "Meßanfang nach Lin." (V3H1) und "Meßende nach Lin." (V3H2), setzen Sie den Anfangsund Endwert fest. Mit dem Parameter "Einheit nach Linearisierung" (V3H3) wählen Sie "%".

#	VH	Eingabe	Bedeutung
1	V3H0	Füllstand linear	Betriebsart "Füllstand linear" wählen
2	V3H1	z.B. 0	Ausgangswert eingeben
3	V3H2	z.B. 100	Endwert eingeben
4	V3H3	%	Einheit wählen
5	z.B. aktueller Meßwert (V0H0) = 7 %		

Hinweis!

Hinweis!

Mit den Parametern "Meßanfang" (V0H1/V0H3) und "Meßende" (V0H2/V0H4) wird die Balkenanzeige im Anzeigemodul eingestellt. Die Einstellungen von Meßanfang und Meßende haben keinen Einfluß auf den digitalen Ausgangswert (OUT Value) oder auf den "Meßwert" im Matrixfeld V0H0.

Abgleich ohne Referenzdruck

Die gewünschten Druckwerte für Meßanfang und Meßende werden gesetzt. Ein bestimmter Druck muß nicht anliegen.

#	VH	Eingabe	Bedeutung
1	V0H9	z.B. mbar	Druckeinheit wählen
2	V3H0	Druck	Betriebsart "Druck" wählen
3	V0H1	z.B. 0	Druckwert für "Meßanfang" setzen
4	V0H2	z.B. 100	Druckwert für "Meßende" setzen
5	z.B. aktueller Meßwert (V0H0) = 0.7 bar		(V0H0) = 0.7 bar

Abgleich mit Referenzdruck

Ein anliegender Referenz- bzw. Prozeßdruck entspricht exakt dem Meßanfang und Meßende der Balkenanzeige und wird übernommen.

#	VH	Eingabe	Bedeutung
1	V0H9	z.B. mbar	Druckeinheit wählen
2	V3H0	"Druck"	Betriebsart "Druck" wählen
3	Druck f	ür Meßanfang e:	xakt vorgeben.
4	V0H3	mit "Enter" bestätigen	Anliegenden Druck für Meßanfang übernehmen
5	Druck für Meßende exakt vorgeben.		
6	V0H2	mit "Enter" bestätigen	Anliegenden Druck für Meßende übernehmen
7	z.B. aktueller Meßwert (V0H0) = 0.7 bar		

Lageabgleich – Anzeige (Biasdruck)

Zeigt die Anzeige nach dem Abgleich bei Prozeßdruck Null nicht Null an (Lageabhängigkeit), kann sie durch Eingabe bzw. Übernahme eines Biasdrucks auf Null korrigiert werden (Lageabgleich).

Eingabe eines Biasdrucks

Übernahme eines anliegenden Biasdrucks

#	VH	Eingabe	Bedeutung
1	V0H5	z.B. 0,1	Biasdruck eingeben
2	Ggf. Ausgangswert (OUT Value) mit dem "Meßwert" (V0H0) gleichsetzen (siehe Hinweis unten).		
	V6H1	mit "Enter" bestätigen	Ausgangswert (OUT Value) mit "Meßwert" (V0H0) gleichsetzen

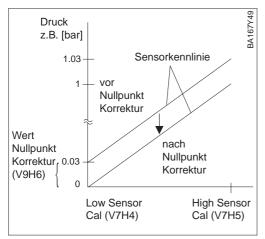
#	VH	Eingabe	Bedeutung
1	V0H6	mit "Enter" bestätigen	Anliegenden Druck als Biasdruck übernehmen
2	"Meßwe	Ausgangswert (OUT Value) mit dem wert" (V0H0) gleichsetzen e Hinweis unten).	
	V6H1	mit "Enter" bestätigen	Ausgangswert (OUT Value) mit "Meßwert" (V0H0) gleichsetzen

Hinweis!

- In Flüssigkeiten und Dämpfen kann ein Biasdruck (lageabhängiger Druck) nur übernommen werden, wenn die jeweiligen Wirkdruckleitungen gefüllt sind.
- Der Lageabgleich über einen Biasdruck hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value), der über den Bus übertragen wird. Damit der "Meßwert" (V0H0) und OUT Value den gleichen Wert anzeigen, muß im Matrixfeld V6H1 der Parameter "Setze Einheit OUT" bestätigt werden.

46

Der Parameter "Korrektur Nullpunkt" (V9H5) bietet eine weitere Möglichkeit einen Lageabgleich vorzunehmen. Im Gegensatz zum Lageabgleich mittels Biasdruck (V0H5/V0H6) wird zusätzlich zum Anzeigewert der Vor-Ort-Anzeige (Meßwert (V0H0)) der digitale Ausgangswert (OUT Value) mit korrigiert.


Nullpunkt-Korrektur

Bei der Nullpunkt-Korrektur wird einem anliegenden Druck über "Korrektur Nullpunkt" (V9H5) ein Korrekturwert zugewiesen. Dadurch wird die Sensorkennlinie gemäß Abbildung verschoben und die Werte für "Low Sensor Cal" (V7H4) und "High Sensor Cal" (V7H5) neu berechnet. Das Matrixfeld "Wert Nullpunkt Korrektur" (V9H6) zeigt den Wert an, um welchen die Sensorkennlinie verschoben wurde.

Der Wert für "Wert Nullpunkt Korrektur" (V9H6) wird wie folgt berechnet:

• Wert Nullpunkt Korrektur (V9H6) = Sensor Druck (V7H8) - Korrektur Nullpunkt (V9H5)

Der "Sensor Druck" (V7H8) zeigt den aktuellen anliegenden Druck an.

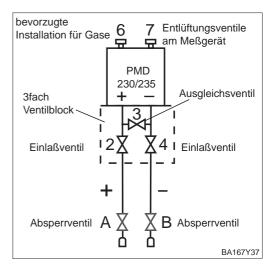
#	VH	Eingabe	Bedeutung
1	 Anzeige Meßwert (V0H0) = 0.03 bar (lageabhängiger Druck) OUT Value (V6H2) = 0.03 Meßanfang (V0H1) ist auf 0.0 bar gesetzt. 		
2	Sensor	ür Nullpunkt-Kol druck V7H8 = 0. icht dem lageab	9
3	V9H5	0.0	Der Wert 0.0 wird dem anliegendem Druck zugewiesen.
4	Nullpur folgend – Wert I V9H6 V9H6 – Meßw) bar

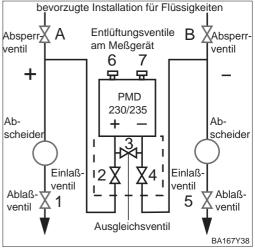
Inbetriebnahme der Meßstelle

Bevor Sie den Deltabar S für die Differenzdruckmessung einsetzen, müssen die Wirkdruckleitungen gereinigt und das Gerät mit Medium gefüllt sein. Die Meßspanne (Meßendende – Meßanfang) ist entweder voreingestellt (siehe Seite 46), oder sie wird bei der Inbetriebnahme eingestellt.

#	Ventile	Bedeutung		
1	3 schließen			
2	Meßeinrichtung mit Me	dium füllen		
	A, B, 2, 4 öffnen	Medium strömt ein		
3	Ggf. Wirkdruckleitunge – bei Gasen durch Aus – bei Flüssigkeiten dur	sblasen mit Druckluft		
	2 und 4 schließen	Gerät absperren		
	1 und 5 öffnen *	Wirkdruckleitungen ausblasen/ausspülen		
	1 und 5 schließen *	Ventile nach Reinigung schließen		
4	Gerät entlüften			
	2 und 4 öffnen	Medium einleiten		
	4 schließen	Minusseite schließen		
	3 öffnen	Ausgleich Plus- und Minusseite		
	6 und 7 kurz öffnen dann wieder schließen	Meßgerät vollständig mit Medium füllen und Luft entfernen		
5	Meßstelle auf Meßbetrieb setzen			
	3 schließen	Plus- und Minusseite trennen		
	4 öffnen	Minusseite anschließen		
	Jetzt sind: 1*, 3, 5*, 6 und 7 geschlossen 2 und 4 offen A und B offen (falls vorhanden)			
6	Meßanfang auf Anfangsdruck und Anzeige auf Null setzen			
	 Filter: Durchfluß abs Minimaldurchfluß fü vorgeben Behälter- oder Rohr Anfangsdruck vorg 	r sauberen Filter leitungsdrücke:		
	Parameter V0H3 Setze Meßanfang	Anliegenden Druck für Meßanfang übernehmen		
	Parameter V0H5 Bias Druck Autom	Anzeige auf "0" setzen (Lageabgleich)**		
7	Meßende auf Enddruck setzen			
	 Filter: Minimaldurchfluß für verschmutzten Filter vorgeben Behälter- oder Rohrleitungsdrücke: Enddruck vorgeben 			
	Parameter V0H4 Setze Meßende	Anliegenden Druck für Meßende übernehmen		

Ggf. Dämpfung (V0H7) einstellen.


Betriebsart "Druck"


wählen

Parameter V3H0:

Meßstelle ist betriebsbereit

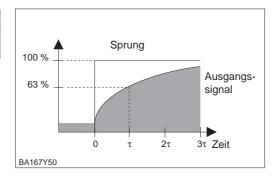
"Druck"

Achtung!

Beim Öffnen und Schließen der Ventile während des Prozesses muß Überhitzung ebenso vermieden werden, wie einseitige Überdruckbelastungen der Meßstelle über die angegebenen Grenzen hinaus. Wird der Meßbereich verstellt, darf das Ausgangssignal nicht zu unzulässigen Sprüngen im Regelkreis führen.

**Hinweis!

Der Lageabgleich über die Parameter V0H5 bzw. V0H6 hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value), der über den Bus übertragen wird. Damit der Anzeigewert im Anzeigemodul und der Ausgangswert den gleichen Wert annehmen, muß in Commuwin II nach dem Abgleich (nach Schritt 7) der Parameter "Setze Einheit Out" im Matrixfeld V6H1 bestätigt werden. Siehe auch dieses Kapitel, Abschnitt "Lageabgleich – Anzeige (Biasdruck)".


^{*} Nur bei Anordnungen mit fünf Ventilen

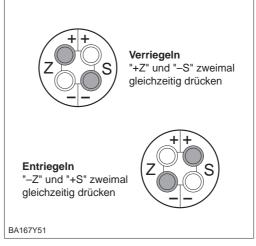
6.2 Dämpfung

Die Dämpfung beeinflußt die Geschwindigkeit, mit der das Ausgangssignal und die Anzeige in V0H0 auf Änderungen des Drucks reagieren.

Dämpfung τ
(Integrationszeit)

#	VH	Eingabe	Bedeutung
1	V0H7	z.B. 30	Dämpfung (040 s)

6.3 Verriegelung/Entriegelung der Bedienung


Nach dem Abgleich bzw. nach der Eingabe aller Parameter, können Sie die Bedienung verriegeln:

- über die Tasten +Z und -S oder
- über die Matrix durch Eingabe eines Codes. Als Code ist eine Zahl von 1 bis 9998 außer den Zahlen 130 und 2457 einzugeben.

Damit schützen Sie die Meßstelle gegen ungewollte und unbefugte Veränderung Ihrer Eingaben.

#	Taste	Eingabe
1		Bedienung verriegeln: +Z und –S zweimal gleichzeitig drücken
2		Bedienung entriegeln: +S und –Z zweimal gleichzeitig drücken

#	VH	Eingabe	Bedeutung
1	V9H9	z.B. 131	Bedienung verriegeln
2	V9H9	130 oder 2457	Bedienung entriegeln

Tasten

Matrix

Verriegelung über Tasten hat Vorrang

Die Tabelle gibt einen Überblick über die Verriegelungsfunktion:

	Anzeige/Lesen	Veränderung/Schreiben über		Entriegelung über	
über	der Parameter	Tasten	Kommunikation	Tasten	Kommunikation
Tasten	ja	nein	nein	ja	nein
Matrix	ja	nein	nein	ja	ja

6.4 Informationen zur Meßstelle

Folgende Informationen zur Meßstelle können Sie über die Matrix in Commuwin II abfragen:

Matrixfeld	Bedeutung	
Meßwerte		
V0H0	Hauptmeßwert: Druck	
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)	
V6H2/V6H3	OUT Value, OUT Status (Analog Input Block)	
V7H8	Aktueller Sensordruck (Einheit in V0H9 wählbar)	
Sensordaten		
V0H1	Meßanfang	
V0H2	Meßende	
V2H5	Überlastzähler Druck (0255)	
V7H4	Low Sensor Calibration (Einheit in V0H9 wählbar)	
V7H5	High Sensor Calibration (Einheit in V0H9 wählbar)	
V7H6	Untere Meßgrenze des Sensors (Einheit in V0H9 wählbar)	
V7H7	Obere Meßgrenze des Sensors (Einheit in V0H9 wählbar)	
V9H7	Druck vor Biaskorrektur (Einheit in V0H9 wählbar)	
V9H8	Druck nach Biaskorrektur (Einheit in V0H9 wählbar)	
Information zur Meß	Sstelle	
V2H2	Geräte- und Softwarenummer	
Störungsverhalten		
V2H0	Aktueller Diagnosecode	
V2H1	Letzter Diagnosecode	

Anzeige zur Diagnose

Die Schleppzeigerfunktion erlaubt, für Druck und Temperatur rückwirkend den jeweils kleinsten und größten gemessenen Wert abzufragen. Der Wert geht beim Abschalten des Gerätes nicht verloren.

Matrixfeld	Bedeutung	
V2H3	Minimaler Druck (Schleppzeigerfunktion)	
V2H4	Maximaler Druck (Schleppzeigerfunktion)	
V2H7	Minimale Temperatur (Schleppzeigerfunktion)	
V2H8	Maximale Temperatur (Schleppzeigerfunktion)	
V2H5	Überlastzähler Druck (0255)	
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)	

Benutzerinformationen

Das Matrixfeld VAH2 zeigt die Seriennummer des Gerätes an. Das Matrixfeld VAH3 zeigt die Seriennummer des Sensors an. Die Felder VAH0, VAH1 sowie VAH4 -VAH8 bieten die Möglichkeit, weitere Informationen über Meßstelle und Meßgerät zu speichern.

Matrixfeld	Bedeutung
VAH0 * Bezeichnung der Meßstelle (Physical Block)	
VAH1 *	Anwendertext (Physical Block)
VAH2	Anzeige Seriennummer
VAH3	Seriennummer des Sensors
VAH4 – VAH8	Informationen zum Gerät (Auswahl)

^{*} Eingabe bis zu 32 Zeichen (ASCII)

Deltabar S PROFIBUS-PA 7 Füllstandmessung

7 Füllstandmessung

Dieses Kapitel beschreibt die Betriebsarten "Füllstand linear", "Füllstand zylindrisch liegend" und "Füllstand Kennlinie", die ausschließlich über Kommunikation aktiviert werden können. In diesen Betriebsarten wird der aktuelle Druckmeßwert in "%" umgerechnet, d.h. der digitale Ausgangswert (OUT Value) und der Meßwert in V0H0 werden automatisch in "%" umgerechnet. Andere Einheiten für Füllstand, Volumen und Gewicht sind zur besseren Darstellung über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar.

Dieses Kapitel enthält folgende Informationen:

- Abgleich über Commuwin II
- Abgleich mit Referenzdruck (Leer- und Vollabgleich)
- Abgleich ohne Referenzdruck (Trockenabgleich)
- Linearisierung
- Dämpfung
- Verriegelung/Entriegelung der Bedienung
- Informationen zur Meßstelle

7.1 Abgleich über Commuwin II

Der Abgleich erfolgt über Bedienmatrix (Fernbedienung) mit Commuwin II:

Matrixfeld	Bedeutung
V0H1	Eingabe Druckwert für Meßanfang (Druck für Füllstand "leer")
V0H2	Eingabe Druckwert für Meßende (Druck für Füllstand "voll")
V0H3	Übernahme des anliegenden Drucks als Meßanfang (Druck für Füllstand "leer")
V0H4	Übernahme des anliegenden Drucks als Meßende (Druck für Füllstand "voll")
V0H5	Eingabe Biasdruck (wirkt nur auf Balkenanzeige im Anzeigemodul und die Matrixfelder V0H0, V0H1 und V0H2)
V0H6	Übernahme des aniegenden Drucks als Biasdruck (wirkt nur auf die Balkenanzeige im Anzeigemodul und die Matrixfelder V0H0, V0H1 und V0H2)
V0H7	Eingabe Dämpfung τ (040 s)
V0H9	Druckeinheit, wählen
V3H0	Betriebsart: 2 = Füllstand linear, 3 = Füllstand zyl. liegend, 4 = Füllstand Kennlinie
V3H1	Meßanfang für Füllstand, Volumen oder Gewicht (leer)
V3H2	Meßende für Füllstand, Volumen oder Gewicht (voll)
V3H3	Einheit für Füllstand, Volumen oder Gewicht wählen
V3H4	Dichtefaktor zur Korrektur der Dichte
V3H6 *	Linearisierungsmodus: Tab. aktivieren, Manuell, Halbautomatisch, Löschen
V3H7 *	Eingabe Zeilen-Nummer für Tabelle
V3H8 *	Eingabe Füllstand in %
V3H9 *	Eingabe Volumen in %
V6H1	Ausgangswert (OUT Value) mit dem Meßwert (V0H0) gleichsetzen.

^{*} nur in der Betriebsart "Füllstand Kennline", siehe Kapitel 7.4 Linearisierung

7 Füllstandmessung Deltabar S PROFIBUS-PA

Druckeinheit wählen

Über den Parameter "Druckeinheit wählen" (V0H9) können Sie eine Druckeinheit wählen. Bei der Auswahl einer neuen Druckeinheit in V0H9, werden alle druckspezifischen Parameter umgerechnet und mit der neuen Druckeinheit in Commuwin II dargestellt.

#	VH	Eingabe	Bedeutung		
1	der Dru	uckspezifischen Parameter werden uckeinheit bar dargestellt. eBwert (V0H0) = 1 bar			
2	V0H9	z.B. psi	neue Druckeinheit wählen		
3	Alle druckspezifischen Parameter werden in der Druckeinheit psi dargestellt. Meßwert (V0H0) = 14.5 psi				

Die Druckeinheit in der Tabelle unten stehen zur Wahl.

mbar	bar	Pa	hPa	kPa	MPa	mmH ₂ O
m H ₂ O	in H ₂ O	ft H ₂ O	psi	g/cm ²	kg/cm ²	kgf/cm ²
atm	lb/ft ²	Torr	mmHg	inHg		

Einheit für Füllstand, Volumen oder Gewicht wählen (Einheit nach Linearisierung) Die Einheiten für Füllstand, Volumen oder Gewicht sind über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar. Die Wahl einer dieser Einheiten dient ausschließlich der besseren Darstellung. Sie hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value) und den "Meßwert" (V0H0).

#	VH	Eingabe	Bedeutung		
1	z.B. Me	eßwert (V0H0) =	55 %		
2	V3H3	z.B. hl	Einheit für Füllstand, Volumen oder Gewicht wählen		
3	Meßwe	Meßwert (V0H0) = 55 hl			

Einheiten für die Betriebsarten "Füllstand linear" und "Füllstand Kennlinie":

%	cm	dm	m	inch	ft
I	hl	cm ³	dm ³	m ³	ft ³
US gal	Imp gal	ton	kg	t	lb

Einheiten für die Betriebsart "Füllstand zylindrisch liegend":

%	I	hl	cm ³	dm ³	m ³
ft ³	US gal	Imp gal	ton	kg	t
lb					

52

Wenn Sie den Meßwert (V0H0) in der gewählten Füllstandseinheit umgerechnet darstellen möchten, müssen für den minimalen und maximalen Füllstandswert umgerechnete Werte eingegeben werden. Der Parameter "Meßanfang nach Linearisierung" (V3H1) entspricht dem minimalen und der Parameter "Meßende nach Linearisierung" (V3H2) entspricht dem maximalen Füllstandswert.

#	VH	Eingabe	Bedeutung
1	Beispiel: Meßanfang und -ende sind gesetzt. "Meßanfang" (V0H1) = 0 mbar "Meßende" (V0H2) = 1500 mbar		
2		uelle Meßwert ze V0H0) = 750 mk	eigt in der Betriebsart oar an.
3	V3H0	Füllstand linear	Betriebsart "Füllstand linear" wählen
4	Der minimale und maximale Füllstandswert sowie der aktuelle Meßwert werden wie folgt angezeigt: – "Meßanfang nach Lin." (V3H1) = 0 % – "Meßende nach Lin." (V3H2) = 100 % – "Meßwert" (V0H0) = 50 %		
5	V3H3	z.B. m	Einheit für Füllstand, Volumen oder Gewicht wählen

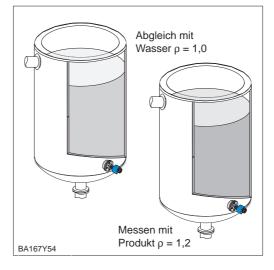
#	VH	Eingabe	Bedeutung
6	V3H1	z.B 0 (m)	Umgerechneten Wert für minimalen Füllstand eingeben
7	V3H2	z.B. 15 (m)	Umgerechneten Wert für maximalen Füllstand eingeben

Ergebnis:

- Die Parameter für den minimalen und maximalen Füllstandswert zeigen an:
- "Meßanfang nach Lin." (V3H1) = 0 m
- "Meßende nach Lin." (V3H2) = 15 m
- Der aktuelle Meßwert (V0H0) zeigt an:
 - "Meßwert" (V0H0) = 7,5 m

Soll der Abgleich mit Wasser erfolgen, oder wechselt später das Produkt, korrigieren Sie Dichtekorrektur Ihre Abgleichwerte einfach durch Eingabe eines Dichtefaktors.

Beispiel: Ein Behälter wird mit Wasser gefüllt und abgeglichen. Die Dichte von Wasser (alte Dichte) ist 1 g/cm³. Später wird der Behälter als Lagertank genutzt und mit dem zu messenden neuen Medium gefüllt. Die neue Dichte ist 1,2 g/cm³. In V3H4 steht noch die Werkseinstellung "1", d.h. der aktuelle Faktor ist 1.


Ermittlung des Dichtefaktors

Dichtefaktor = 1,0 x
$$\frac{1,2 \text{ g/cm}^3}{1,0 \text{ g/cm}^3}$$
 = 1,2

#	VH	Eingabe	Bedeutung
1	V3H4	z.B. 1.2	Dichtefaktor
2	V0H0	z.B. 62.5 %	Korrigierter Füllstand

Ergebnis

• Der Meßwert in V0H0 wird durch den Dichtefaktor geteilt und damit an das neue Produkt angepaßt.

Hinweis!

Der Dichtefaktor wirkt auf die Füllstandsmessung. Berücksichtigen Sie bei Änderung der Produktdichte, daß eine vorhandene Linearisarungstabelle nur mit korrigiertem Dichtefaktor weiterverwendet werden kann.

7.2 Abgleich mit Referenzdruck

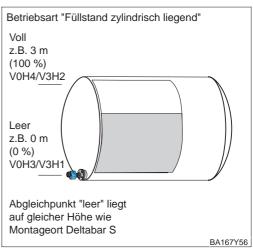
Zum Abgleich wird der Behälter jeweils bis Meßanfang und Meßende befüllt. Es gibt zwei Vorraussetzungen:

- Der Deltabar S ist montiert.
- Der Behälter kann befüllt bzw. entleert werden.

Durch die Wahl der Betriebsart (V3H0) können Sie zwischen den Behälterformen:

- stehend "Füllstand linear" und
- liegend "Füllstand zylindrisch liegend" wählen.

Hinweis!



- Besitzt das Gerät eine Anzeige und ist es unterhalb des "Leer"-Füllstands montiert, dann kann ein anliegender Druck als Biasdruck in V0H6 übernommen werden (Lageabhängigkeit).
- Für den Schritt 3 können Sie auch eine Nullpunkt-Korrektur gemäß Kapitel 6.1, Seite 47 durchführen.

Ahal	leich
ANG	

#	VH	Eingabe	Bedeutung
1	Meßstelle meßbereit? Vergleiche Kapitel 5.3. Wenn Meßanfang und Meßende bereits über Tasten gemäß Kapitel 5.3 gesetzt wurde, dann Abgleich ab Schritt 7 fortsetzen.		
2	Behälte	er bis Füllstandn	ullpunkt befüllen
3	Überna	nzeige auf Null s ahme eines beka ohängiger Druck	ınnten Biasdrucks
	V0H6	mit "Enter" bestätigen	Biasdruck automatisch setzen
4	V0H3	mit "Enter" bestätigen	Anliegenden Druck für Meßanfang übernehmen
5	Behälte	er bis Füllstande	ndwert befüllen
6	V0H4	mit "Enter" bestätigen	Anleigenden Druck für Meßende übernehmen
7	V3H0	Füllstand linear oder Füllstand zyl. liegend	Betriebsart Füllstand, Behälterform stehend oder Behälterform liegend wählen
8	V3H1	z.B. 0	Füllhöhe, Volumen oder Gewicht für "leer" setzen
9	V3H2	z.B. 3	Füllhöhe, Volumen oder Gewicht für "voll" setzen
10	V3H3	z.B. m	Einheit für Füllstand, Volumen oder Gewicht wählen (siehe Tabellen Seite 52)

Betriebsart "Füllstand linear" Voll z.B. 3 m 3 m (100 %) V0H4/V3H2 4 m Leer z.B. 0 m (0 %)0 m V0H3/V3H1 Abgleichpunkt "leer" oberhalb Montageort Deltabar S BA167Y57

Ergebnis

 Der Meßwert wird in Matrixfeld V0H0 als Füllstandswert angezeigt, hier z.B. in Metern.

7.3 Trockenabgleich

Der Trockenabgleich ist ein berechneter Abgleich, der auch bei nicht montiertem Deltabar S oder leerem Behälter durchgeführt werden kann. Für Geräte mit Kapillaren oder Behälter mit Dampfüberlagerung ist er nicht zu empfehlen. Der Abgleichpunkt "Leer" kann sowohl auf der gleichen Höhe (Flansch-Ausführung) oder über dem Montageort des Deltabar S liegen. Dies muß bei der Berechnung berücksichtigt werden. Die Voraussetzungen für den Trockenabgleich sind:

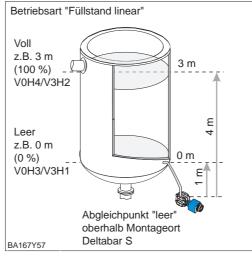
- Die Füllhöhe für die Abgleichpunkte "Leer" und "Voll" sind bekannt.
- Der Dichtefaktor ist bekannt.
- Der Druck für "Leer" und "Voll" ist berechnet worden ($p = \rho gh$).

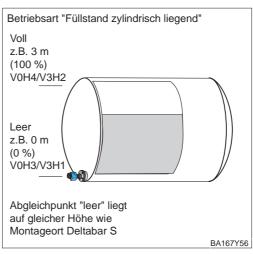
Durch die Wahl der Betriebsart können Sie zwischen den Behälterformen:

- stehend "Füllstand linear" und
- liegend "Füllstand zylindrisch liegend" wählen.

Hinweis!

- Besitzt das Gerät eine Anzeige und ist es unterhalb des "Leer"-Füllstands montiert, dann kann ein bekannter Druck als Biasdruck in V0H5 eingegeben werden (Lageabhängigkeit).
- Für den Schritt 3 können Sie auch eine Nullpunkt-Korrektur gemäß Kapitel 6.1, Seite 47 durchführen.




Α	ba	lei	ich

#	VH	Eingabe	Bedeutung
1	Meßstelle meßbereit? Vergleiche Kapitel 5.3 Wenn Meßanfang und Meßende bereits über Tasten gemäß Kapitel 5.3 gesetzt wurde, dann Abgleich ab Schritt 6 fortsetzen.		
2	V0H9	z.B. bar	Druckeinheit wählen
3	eines b	nzeige auf Null s ekannten Biasd phängiger Druck	
	V0H5	z.B. 0.1	Biasdruck eingeben
4	V0H1	0	Druckwert für Abgleichpunkt "leer" setzen
5	V0H2	z.B. 0.3	Druckwert für Abgleichpunkt "voll" setzen
6	V3H0	"Füllstand linear" oder "Füllstand zyl. liegend"	Betriebsart Füllstand, Behälterform stehend oder Behälterform liegend wählen
7	V3H1	z.B. 0	Füllhöhe, Volumen oder Gewicht für "leer" setzen
8	V3H2	z.B. 3	Füllhöhe, Volumen oder Gewicht für "voll" setzen
9	V3H3	z.B. m	Einheit für Füllstand, Volumen oder Gewicht wählen (siehe Tabellen Seite 52)

Ergebnis

 Der Meßwert wird im Matrixfeld V0H0 als Füllstandswert angezeigt, hier z.B. in Metern.

Kontrolle nach Einbau

Nach einem Trockenabgleich sollte das erste Füllen des Behälters auf jeden Fall unter Aufsicht erfolgen, um eventuelle Fehler oder Ungenauigkeiten sofort zu erkennen.

7 Füllstandmessung Deltabar S PROFIBUS-PA

7.4 Linearisierung

Linearisierungsmodus

Eine Linearisierung ermöglicht eine Volumenmessung in Behältern z.B. mit konischem Auslauf, in denen das Volumen nicht direkt proportional zum Füllstand ist. Die Tabelle unten gibt einen Überblick der Linearisierungsfunktion (V3H6), die mit der Betriebsart "Füllstand Kennlinie" (V3H0) zur Verfügung steht. Die Linearisierung folgt einem Abgleich in den gewünschten Volumeneinheiten. Einheiten für Füllstand, Volumen oder Gewicht sind über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar (siehe auch Tabellen, Seite 52).

Eingabe V3H6	Linearisierungsmodus	Bedeutung	
1	manuelle Eingabe	Für eine Linearisierungskurve werden max. 21 Wertepaare aus einem %-Füllstand und dem jeweils entsprechenden %-Volumen eingegeben.	
2	halbautomatische Eingabe einer Linearisierungskurve "auslitern"	Bei der halbautomatischen Eingabe der Linearisierungs- kurve wird der Tank schrittweise gefüllt oder entleert. Die Füllhöhe erfaßt der Deltabar S automatisch über den hydrostatischen Druck, das zugehörige Volumen wird eingegeben.	
Außerdem	ւսßerdem bietet V3H6 die Funktionen:		
0	Tabelle aktivieren	Eine eingegebene Linearisierungstabelle tritt erst in Kraft, wenn sie zusätzlich aktiviert wird.	
3	Tabelle löschen	Vor Eingabe einer Linearisierungstabelle muß immer eine eventuell vorhandene Tabelle gelöscht werden. Dabei springt der Linearisierungsmodus auf linear.	

Warnungen

Nach der Eingabe wird die Linearisierungskurve auf ihre Plausibilität überprüft. Folgende Warnungen können auftreten:

Code	Тур	Bedeutung
E602	Warnung	Die Linearisierungskurve ist nicht monoton steigend oder fallend. In V3H7 erscheint automatisch die Nummer des letzten gültigen Wertepaares. Ab dieser Nummer müssen evtl. alle Wertepaare neu eingegeben werden.
E604	Warnung	Die Linearisierungskurve besteht aus weniger als zwei Wertepaaren. Ergänzen Sie Ihre Eingaben um weitere Wertepaare. Ggf. Linearisierung neu durchführen.

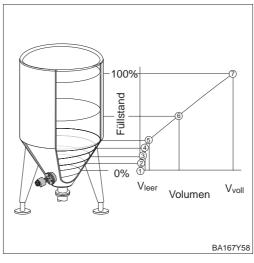
Nach Wahl der Betriebsart "Füllstand Kennlinie" kann folgende Fehlermeldung erscheinen:

Code	Тур	Bedeutung
E605	Störung	Die manuelle Linearisierungstabelle wurde noch nicht über V3H6 aktiviert.

Die Voraussetzungen für eine manuelle Linearisierung sind wie folgt:

Manuelle Eingabe

- Die max. 21 Wertepaare für die Punkte der Linearisierungskurve sind bekannt.
- Die Kurve wird als % Füllstand (% Druckspanne) gegen % Volumen eingegeben. Die Linearisierungskurve muß stetig steigen oder fallen.
- Der Meßwert wird als Volumen ausgegeben.


Volumen bei x % Füllstand = Gesamtvolumen·Volumen(%)

Die Eingabe der Tabelle erfolgt nach einem Leer-/Voll- bzw. Trockenabgleich in %. Nachfolgend wird der Vorgang mit dem *Trockenabgleich* beschrieben.

#	VH	Eingabe	Bedeutung
1	Meßstelle meßbereit? Vergleiche Kapitel 5.3. Wenn Meßanfang und Meßende bereits über Tasten gemäß Kapitel 5.3 gesetzt wurde, dann Abgleich ab Schritt 6 fortsetzen.		
2	V0H9	z.B. bar	Druckeinheit wählen
3	eines b	nzeige auf Null s ekannten Biasd phängiger Druck	
	V0H5	z.B. 0.1	Biasdruck eingeben
4	V0H1	z.B. 0	Druckwert für Abgleichpunkt "leer" setzen
5	V0H2	z.B. 0.5	Druckwert für Abgleichpunkt "voll" setzen
6	V3H0	Füllstand Kennlinie	Betriebsart "Füllstand Kennlinie" wählen
7	V3H1	z.B. 0	Füllhöhe, Volumen oder Gewicht für "leer" setzen
8	V3H2	z.B. 10	Füllhöhe, Volumen oder Gewicht für "voll" setzen
9	V3H3	z.B. hl	Einheit für Füllstand, Volumen oder Gewicht wählen
10	V3H6	löschen	Vorhandene Kennlinie löschen
11	V3H6	manuelle Eingabe	Linearisierungsmodus "manuell" wählen
12	V3H7	z.B. 1	Zeilennummer eingeben
13	V3H8	z.B. 0 %	Füllstand eingeben
14	V3H9	z.B. 0 %	Volumen eingeben
15	Schritte 1214 für weitere Wertepaare wiederholen (max. 21)		
16	V3H6	Tab. aktivieren	Tabelle aktivieren

Ergebnis

 Der Meßwert wird im Matrixfeld V0H0 als Volumenwert angezeigt, hier z.B. in Hektolitern.

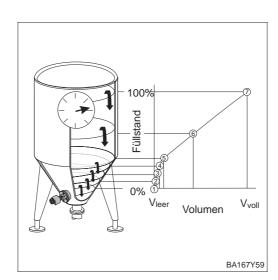
Beispieltabelle:				
Punkt	Meßwert (mbar)	Füllstand (%)	Volumen (%)	
1	0	0	0	
2	100	20	8	
3	200	40	20	
7	500	100	100	

Hinweis!

Hinweis!

- Für den Schritt 3 können Sie auch eine Nullpunkt-Korrektur gemäß Kapitel 6.1, Seite 47 durchführen.
- Bei den Schritten 2-5 kann auch ein Leer-/Vollabgleich erfolgen, siehe Seite 54, Abschnitt "Abgleich mit Referenzdruck".
- Im Editiermodus, V3H6 = manuelle Eingabe, können Sie einzelne Punkte einer Linearisierungstabelle durch Eingabe von "9999" für Füllstand oder Volumen löschen. Zuvor muß die Linearisierungstabelle einmal aktiviert werden.

7 Füllstandmessung Deltabar S PROFIBUS-PA


Halbautomatische Eingabe

Die Vorraussetzungen für eine halbautomatische Eingabe der Kennlinie sind wie folgt:

- Die max. 21 Wertepaare für die Punkte der Linearisierungskurve sind bekannt.
- Der Behälter kann z.B. beim Leer-/Vollabgleich gefüllt und bei der Linearisierung schrittweise entleert werden, wie unten beschrieben. Der Füllstand wird über den hydrostatischen Druck automatisch erfaßt. Das zugehörige Volumen wird in % eingegeben.
- Der Meßwert wird als Volumen ausgegeben.

Volumen bei x % Füllstand =
$$\frac{\text{Gesamtvolumen} \cdot \text{Volumen}(\%)}{400}$$

Die Eingabe der Tabelle erfolgt nach einem Leer-/Vol- bzw. Trockenabgleich in %. Nachfolgend wird der Vorgang mit dem Leer-/Vollabgleich beschrieben.

Beispieltabelle:					
Punkt	Meßwert (mbar)	Füllstand (%)	Volumen (%)		
1	0	0	0		
2	100	20	8		
3	200	40	20		
7	500	100	100		

Hinweis!

Hinweis!

- Für den Schritt 3 können Sie auch eine Nullpunkt-Korrektur gemäß Kapitel 6.1, Seite 47 durchführen.
- Bei den Schritten 2-7 kann auch ein Trockenabgleich erfolgen, siehe Seite 55.
- Im Editiermodus, V3H6 = manuelle Eingabe, können Sie einzelne Punkte einer Linearisierungstabelle durch Eingabe von "9999" für Füllstand oder Volumen löschen. Zuvor muß die Linearisierungstabelle einmal aktiviert werden.

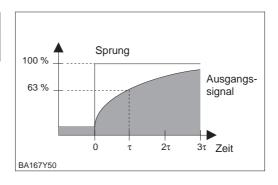
#	VH	Eingabe	Bedeutung	
1	Wenn Tasten	eßstelle meßbereit? Vergleiche Kapitel 5.3. enn Meßanfang und Meßende bereits über isten gemäß Kapitel 5.3 gesetzt wurde, ann Abgleich ab Schritt 7 fortsetzen.		
2	Behält	er bis Füllstandn	ullpunkt befüllen.	
3	Überna	nzeige auf Null s ahme eines beka bhängiger Druck	annten Biasdrucks	
	V0H5	mit "Enter" bestätigen	Biasdruck automatisch setzen	
2	Behält	er bis Füllstandn	ullpunkt befüllen.	
4	V0H3	mit "Enter" bestätigen	Anliegenden Druck für Meßanfang übernehmen	
5	Behält	er bis Füllstande	ndwert befüllen (100%)	
6	V0H4	mit "Enter" bestätigen	Anliegenden Druck für Meßende übernehmen	
7	V3H0	Füllstand Kennlinie	Betriebsart "Füllstand Kennlinie" wählen	
8	V3H1	z.B. 0	Füllstand, Volumen oder Gewicht für "leer" setzen	
9	V3H2	z.B. 100	Füllstand, Volumen oder Gewicht für "voll" setzen	
10	V3H3	z.B. hl	Einheit für Füllstand, Volumen oder Gewicht wählen (siehe Tabellen Seite 52)	
11	V3H6	löschen	Vorhandene Kennlinie löschen	
12	V3H6	halbauto- matisch	Linearisierungsmodus "halbautomatisch"	
13	V3H7	z.B. 1	Zeilennummer eingeben	
14	V3H8	mit "Enter" bestätigen	Füllstand eingeben	
15	V3H9	z.B. 0 %	Volumen eingeben	
16		Schritte 1315 für weitere Wertepaare wiederholen (max. 21)		
17	V3H6	Tab. aktivieren	Tabelle aktivieren	

Ergebnis

 Der Meßwert wird im Matrixfeld V0H0 als Volumenwert angezeigt, hier z.B. in Hektolitern.

58

7.5 Dämpfung


Die Dämpfung beeinflußt die Geschwindigkeit, mit der das Ausgangssignal und die Anzeige in V0H0 auf Änderungen des Füllstands reagiert. Durch Erhöhen der Dämpfung kann z.B. der Einfluß unruhiger Flüssigkeitsoberflächen auf die Meßwertanzeige und die Schleppzeigerfunktion gedämpft werden.

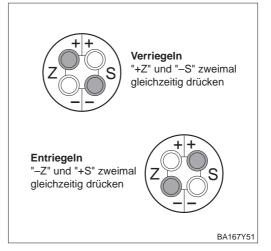
Dämpfung τ (Integrationszeit)

Tasten

Matrix

#	VH	Eingabe	Bedeutung
1	V0H7	z.B. 30	Dämpfung (040 s)

7.6 Verriegelung/Entriegelung der Bedienung


Nach dem Abgleich bzw. Eingabe aller Parameter, können Sie die Bedienung verriegeln:

- über die Tasten +Z und -S oder
- über die Matrix durch Eingabe eines Codes. Als Code ist eine Zahl von 1 bis 9998 – außer den Zahlen 130 und 2457 – einzugeben.

Damit schützen Sie die Meßstelle gegen ungewollte und unbefugte Veränderung Ihrer Eingaben:

#	Taste	Eingabe
1		Bedienung verriegeln: +Z und –S zweimal gleichzeitig drücken
2		Bedienung entriegeln: +S und –Z zweimal gleichzeitig drücken

#	VH	Eingabe	Bedeutung
1	V9H9	z.B. 131	Bedienung verriegeln
2	V9H9	130 oder 2457	Bedienung entriegeln

Verriegelung über Tasten hat Vorrang

Die Tabelle gibt einen Überblick über die Verriegelungsfunktion:

Verriegelung	Anzeige/Lesen	Veränderung/Schreiben über		Entriegelung über	
über	der Parameter	Tasten	Kommunikation	Tasten	Kommunikation
Tasten	ja	nein	nein	ja	nein
Matrix	ja	nein	nein	ja	ja

7 Füllstandmessung Deltabar S PROFIBUS-PA

7.7 Informationen zur Meßstelle

Folgende Informationen zur Meßstelle können Sie über die Matrix in Commuwin II abfragen:

Matrixfeld	Bedeutung			
Meßwerte	Vießwerte			
V0H0	Hauptmeßwert: Füllstand, Volumen bzw. Gewicht			
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)			
V6H2/V6H3	OUT Value, OUT Status (Analog Input Block)			
V7H8	Aktueller Sensordruck (Einheit in V0H9 wählbar)			
Sensordaten				
V0H1	Meßanfang (Druck für Füllstand "leer")			
V0H2	Meßende (Druck für Füllstand "voll")			
V2H5	Überlastzähler Druck (0255)			
V3H1	Meßanfang für Füllstand, Volumen oder Gewicht (leer)			
V3H2	Meßende für Füllstand, Volumen oder Gewicht (voll)			
V7H4	Low Sensor Calibration (Einheit in V0H9 wählbar)			
V7H5	High Sensor Calibration (Einheit in V0H9 wählbar)			
V7H6	Untere Meßgrenze des Sensors (Einheit in V0H9 wählbar)			
V7H7	Obere Meßgrenze des Sensors (Einheit in V0H9 wählbar)			
Information zur Meß	Sstelle			
V2H2	Geräte- und Softwarenummer			
Störungsverhalten				
V2H0	Aktueller Diagnosecode			
V2H1	Letzter Diagnosecode			

Anzeige zur Diagnose

Die Schleppzeigerfunktion erlaubt, für Druck und Temperatur rückwirkend den jeweils kleinsten und größten gemessenen Wert abzufragen. Der Wert geht beim Abschalten des Gerätes verloren.

Matrixfeld	Bedeutung	
V2H3	Minimaler Druck (Schleppzeigerfunktion)	
V2H4	Maximaler Druck (Schleppzeigerfunktion)	
V2H7	Minimale Temperatur (Schleppzeigerfunktion)	
V2H8	Maximale Temperatur (Schleppzeigerfunktion)	
V2H5	Überlastzähler Druck (0255)	
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)	

Benutzerinformationen

Das Matrixfeld VAH2 zeigt die Seriennummer des Gerätes an. Das Matrixfeld VAH3 zeigt die Seriennummer des Sensors an. Die Felder VAH0, VAH1 sowie VAH4 - VAH8 bieten die Möglichkeit, weitere Informationen über Meßstelle und Meßgerät zu speichern.

Matrixfeld	Bedeutung	
VAH0 *	Bezeichnung der Meßstelle (Physical Block)	
VAH1 *	Anwendertext (Physical Block)	
VAH2	Anzeige Seriennummer	
VAH3	Seriennummer des Sensors	
VAH4 – VAH8	Informationen zum Gerät (Auswahl)	

^{*} Eingabe bis zu 32 Zeichen (ASCII)

8 Durchflußmessung

Dieses Kapitel beschreibt die Betriebsart "Durchfluß", die ausschließlich über Kommunikation aktiviert werden kann. Der Durchfluß wird über Differenzdruck mit Wirkdruckgebern wie z.B. Staudrucksonden oder Blenden ermittelt. Der Druckmeßbereich entspricht dem Typenschild. Dem Meßanfang und dem Meßende des PROFIBUS-PA-Signals werden in dieser Betriebsart standardmäßig die Werte 0 und 100% zugewiesen, d.h. der Ausgangswert (OUT Value) und der Meßwert in V0H0 werden automatisch in % umgerechnet. Dieses Kapitel enthält folgende Informationen:

- Abgleich über Commuwin II
- Dämpfung
- Verriegelung/Entriegelung der Bedienung
- Summenzähler
- Informationen zur Meßstelle

8.1 Abgleich über Commuwin II

Der Abgleich erfolgt über Bedienmatrix (Fernbedienung) mit Commuwin II:

Matrixfeld	Bedeutung	
V0H1	Eingabe Druckwert für Meßanfang (Druck für Durchfluß "Null")	
V0H2	Eingabe Druckwert für Meßende (Druck für Durchfluß "Max.")	
V0H3	Übernahme des anliegenden Drucks als Meßanfang (Druck für Durchfluß "Null")	
V0H4	Übernahme des anliegenden Drucks als Meßende (Druck für Durchfluß "Max.")	
V0H5	Eingabe Biasdruck (wirkt nur auf Balkenanzeige im Anzeigemodul und die Matrixfelder V0H0, V0H1 und V0H2)	
V0H6	Übernahme des anliegenden Drucks als Biasdruck (wirkt nur auf Balkenanzeige im Anzeigemodul und die Matrixfelder V0H0, V0H1 und V0H2)	
V0H7	Eingabe Dämpfung τ (040 s)	
V0H9	Druckeinheit wählen	
V3H0	Betriebsart: 1 = Durchfluß (radizierend)	
V3H1	Meßanfang für Durchfluß "Null" ("0" eingeben)	
V3H2	Meßende für Durchfluß "Max."	
V3H3	Durchflußeinheit wählen	
V3H5	Schleichmengenunterdrückung	
V5H0	Anzeige: aktueller Durchfluß (Durchfluß) oder gesamte Durchflußmenge (Zähler)	
V5H1	Auswahl der Betriebsartanzeige: aktueller Durchfluß oder gesamte Durchflußmenge	
V5H2	Aktivieren des Summenzählers und Auswahl Zählmodus für negative Durchflußwerte: Aus, neg. flow: Stop, neg. flow: Abwärts und neg. flow: Aufwärts	
V5H3	Umrechnungsfaktor zur Umrechnung aktueller Durchfluß in eine Gesamt-Durchflußmenge	
V5H4	Zähleinheit wählen	

8 Durchflußmessung Deltabar S PROFIBUS-PA

Druckeinheit wählen

Über den Parameter "Druckeinheit wählen" (V0H9) können Sie eine Druckeinheit wählen. Bei der Auswahl einer neuen Druckeinheit in V0H9, werden alle druckspezifischen Parameter umgerechnet und mit der neuen Druckeinheit in Commuwin II dargestellt. Die Druckeinheiten in der Tabelle unten stehen zur Wahl.

#	VH	Eingabe	Bedeutung
1	Alle druckspezifischen Parameter werden in der Druckeinheit bar dargestellt. z.B. Meßwert VOHO = 1 bar		
2	V0H9	z.B. psi	Druckeinheit wählen
3	Alle druckspezifischen Parameter werden in der Druckeinheit psi dargestellt. Meßwert (V0H0) = 14.5 psi		

mbar	bar	Pa	hPa
kPa	MPa	mmH ₂ O	m H ₂ O
in H ₂ O	ft H ₂ O	psi	g/cm ²
kg/cm ²	kgf/cm2	atm	lb/ft ²
Torr	mmHg	inHg	

Einheit für Durchfluß wählen (Einheit nach Linearisierung)

Eine Einheit für Durchfluß ist über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar. Die Wahl einer Durchflußeinheit dient ausschließlich der besseren Darstellung. Sie hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value) und den Meßwert (V0H0). Die Durchflußeinheiten in der Tabelle unten stehen zur Wahl.

#	VH	Eingabe	Bedeutung	
1	z.B. Me	Bwert (V0H0) =	55 %	
2	V3H3		Einheit für Durchfluß wählen	
3	Meßwe	Meßwert (V0H0) = 55 m ³ /h		

%	ft ³ /min	m³/h	l/s
ft ³ /s	m ³ /s	norm m ³ /h	std ft ³ /min
m³/min	USG/h	USG/d	MGal/d
g/min	kg/s	kg/min in	kg/h
t/min	t/h	t/d	lb/s
lb/min	lb/h		

Wenn Sie den Meßwert (V0H0) in der gewählten Durchflußeinheit umgerechnet darstellen möchten, müssen für den minimalen und maximalen Durchflußwert berechnete Werte eingegeben werden. Sehen Sie hierfür auch die Angaben des Auslegungsblattes Deltatop/Deltaset. Der Parameter "Meßanfang nach Lin." (V3H1) entspricht dem minimalen und der Parameter "Meßende nach Lin." (V3H2) entspricht dem maximalen Durchflußwert.

	VH	Eingabe	Bedeutung	
1	Beispiel: Meßanfang und -ende sind gesetzt. "Meßanfang" (V0H1) = 0 mbar "Meßende" (V0H2) = 200 mbar			
2		tuelle Meßwert zo (V0H0) = 128 mb	eigt in der Betriebsart par an.	
3	V3H0	radizierend	Betriebsart "Durchfluß" wählen	
4	Der minimale und maximale Durchflußwert sowie der aktuelle Meßwert werden wie folgt angezeigt: - "Meßanfang nach Lin." (V3H1) = 0 % - "Meßende nach Lin." (V3H2) = 100 % - "Meßwert" (V0H0) = 80 %			
5	V3H3	z.B. m ³ /h	Einheit für Durchfluß wählen	
6	V3H1	z.B. 0 (m ³ /h)	Umgerechneten Wert für minimalen Durchfluß eingeben	
7	V3H2	z.B. 3500 (m ³ /h)	Umgerechneten Wert für maximalen Durchfluß eingeben (siehe auch Auslegungsblatt Deltatop/Deltaset)	

Ergebnis

- Die Parameter für den minimalen und maximalen Durchflußwert zeigen an:
 - "Meßanfang nach Lin." $(V3H1) = 0 \text{ m}^3/h$
- "Meßende nach Lin." (V3H2) = 3400 m³/h
- Der aktuelle Meßwert (V0H0) zeigt an:
 - "Meßwert" (V0H0) = 2720 m 3 /h

Der gewünschte Meßanfang und das Meßende werden über Kommunikation eingestellt. Der Durchfluß wird über Differenzdruck mit Wirkdruckgebern wie z.B. Staudrucksonden oder Blenden ermittelt. Der Wert für Meßanfang entspricht dem Durchfluß Null (Differenzdruck = 0 mbar). Der Wert für Meßende entspricht dem Differenzdruck bei maximalen Durchfluß (siehe auch Auslegungsblatt Deltatop/Deltaset).

Abgleich ohne Referenzdruck

#	VH	Eingabe	Bedeutung
1	V0H9	z.B. mbar	Druckeinheit wählen
2	V0H1	z.B. 0	Druckwert für Meßanfang setzen
3	V0H2	z.B. 100	Druckwert für Meßende setzen

Ein Referenzdruck steht zur Verfügung, der genau dem Meßanfang bzw. dem Meßende entspricht. Der Referenzdruck für den Meßanfang entspricht dem Durchfluß Null (Differnenzdruck = 0 mbar). Der Referenzdruck für das Meßende entspricht dem Differenzdruck bei maximalen Differenzdruck (siehe auch Auslegungsblatt Deltatop/Deltaset).

Abgleich mit Referenzdruck

#	VH	Eingabe	Bedeutung
1	V0H9	z.B. mbar	Druckeinheit wählen
2	Druck f	ür Meßanfang e:	xakt vorgeben.
3	V0H3	mit "Enter" bestätigen	Anliegenden Druck für Meßanfang übernehmen
4	Druck für Meßende exakt vorgeben.		
5	V0H4	mit "Enter" bestätigen	Anliegenden Druck für Meßende übernehmen

Zeigt die Anzeige nach dem Abgleich des Meßanfangs beim Nulldurchfluß nicht Null an (Lageabhängigkeit), kann sie durch Eingabe bzw. Übernahme eines Biasdrucks auf Null korrigiert werden (Lageabgleich). Der Lageabgleich über einen Biasdruck hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value), der über den Bus übertragen wird.

Lageabgleich - Anzeige (Biasdruck)

Eingabe eines Biasdrucks

Übernahme eines anliegenden Biasdrucks

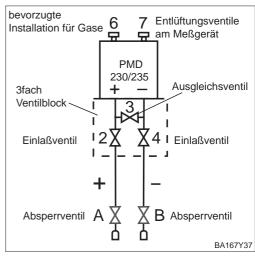
#	VH	Eingabe	Bedeutung
1	V0H5	z. B. 0.1	Biasdruck eingeben

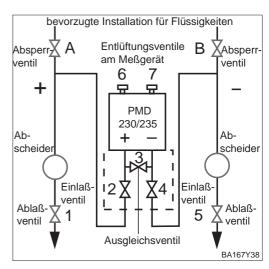
#	VH	Eingabe	Bedeutung
1	V0H6		Anliegenden Druck als Biasdruck übernehmen

Hinweis!

In Flüssigkeiten und Dämpfen kann ein Biasdruck (lageabhängiger Druck) nur übernommen werden:

- der Durchfluß abgesperrt werden kann oder
- sich die Druckentnahmestellen auf geodätisch gleicher Höhe befinden.
- Die Wirkdruckleitungen müssen in jedem Fall gefüllt sein.


Hinweis!


8 Durchflußmessung Deltabar S PROFIBUS-PA

Inbetriebnahme der Meßstelle

Bevor Sie den Deltabar S für die Durchflußmessung einsetzen, müssen die Wirkdruckleitungen gereinigt und das Gerät mit Medium gefüllt sein. Die Meßspanne (Meßende-Meßanfang) ist entweder voreingestellt (Seiten 62 und 63), oder es wird wie unten beschrieben nur der Meßanfang während der Inbetriebnahme gesetzt.

#	Ventile	Bedeutung	
1	3 schließen	Dedeutaring	
2	Meßeinrichtung mit Medium füllen.		
	A, B, 2, 4 öffnen	Medium strömt ein	
2	Ggf. Wirkdruckleitungen reinigen*		
3	 bei Gasen durch Aus bei Flüssigkeiten durch 	blasen mit Druckluft	
	2 und 4 schließen	Gerät absperren	
	1 und 5 öffnen*	Wirkdruckleitungen ausblasen/ausspülen	
	1 und 5 schließen*	Ventile nach Reinigung schließen	
4	Gerät entlüften		
	2 und 4 schließen	Medium strömt ein	
	4 schließen	Minusseite schließen	
	3 öffnen	Ausgleich Plus- und Minusseite	
	6 und 7 kurz öffnen dann wieder schließen	Gerät vollständig mit Medium füllen und Luft entfernen	
5	Meßanfang und Anzeige auf Null setzen: Hinweis: Die folgenden Eingaben sind nur an dieser Stelle sinnvoll, wenn: der Prozeß nicht abgesperrt werden kann und sich die Druckentnahmestellen (A und B) auf geodätisch gleicher Höhe befinden. Kann der Durchfluß abgesperrt werden, erfolgt dieser Abgleich von Meßanfang und Anzeige erst nach Schritt 6.		
	Parameter V0H3 Meßanfang	Anliegenden Druck für Meßanfang übernehmen	
	Parameter V0H5 Bias Druck Autom	Anzeige auf "0" setzen (Lageabgleich)	
6	Meßstelle auf Meßbetrieb setzen		
	3 schließen	Plus- und Minusseite trennen	
	4 öffnen	Minusseite anschließen	
	2 und 4 offe	tzt sind: 1*, 3, 5*, 6 und 7 geschlossen 2 und 4 offen A und B offen (falls vorhanden)	
7	Meßanfang und Anzeige auf Null setzen Kann der Durchfluß abgesperrt werden, erfolgt der Abgleich von Meßanfang und Anzeige an dieser Stelle. (Schritt 5 entfällt).		
	Durchfluß absperren		
	Parameter V0H3 Meßanfang	Anliegenden Druck für Meßanfang übernehmen	
	Parameter V0H5 Bias Druck Autom	Anzeige auf "0" setzen (Lageabgleich)	
	Durchfluß öffnen		
8	Betriebsart "radizierend" (Durchfluß) wählen, Meßanfang und Meßende für Durchfluß "Null" bzw. "Max" setzen, Einheiten wählen, siehe Seite 62		
	Ma Oatalla iat la atriala ala		

* Nur bei Anordnungen mit fünf Ventilen

Achtung!

Beim Öffnen und Schließen der Ventile während des Prozesses muß Überhitzung ebenso vermieden werden, wie einseitige Überdruckbelastungen der Meßstelle über die angegebenen Grenzen hinaus. Wird der Meßbereich verstellt, darf das Ausgangssignal nicht zu unzulässigen Sprüngen im Regelkreis führen.

64 Endress+Hauser

Meßstelle ist betriebsbereit

Nachdem Sie die Meßstelle gemäß Kapitel 5.4 oder den Seiten 62 und 63 in Betrieb genommen haben, muß noch die Betriebsart gewählt sowie die Werte für Durchfluß "Null" und Durchfluß "Max" gesetzt werden.

Durchflußkennlinie Durchflußanzeige Durchflußeinheit

#	VH	Eingabe	Bedeutung
1	Meßstelle meßbereit? Vergleiche Schritte 1-7, Seite 62 oder Kapitel 5.4, Seite 43		
2	V3H0	radizierend	Betriebsart "Durchfluß" wählen
3	V3H1	0	Wert für Durchfluß "Null" setzen
4	V3H2	z.B. 100	Wert für Durchfluß "Max." setzen
5	V3H3	z.B. l/s	Einheit für Durchfluß wählen (siehe Tabelle Seite 62)

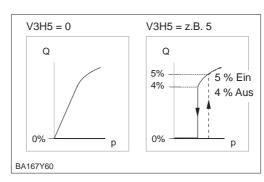
Ergebnis:

 Der Meßwert wird im Matrixfeld V0H0 als Durchflußwert angezeigt, hier z.B. in Litern pro Sekunde.

Erfolgt der Abgleich über Kommunikation oder wird nur ein Teil des Meßbereiches benutzt, dann werden für Meßanfang und Meßende die Druck- sowie die entsprechenden Durchflußwerte eingegeben.

Fernabgleich für Durchflußmessung

#	VH	Eingabe	Bedeutung		
1		Meßstelle meßbereit? Vergleiche Schritte 1-6 , Seite 62			
2 Ggf. Anzeige auf Null setzen durch Übernahme eines bekannten Biasdruc (lageabhängiger Druck)			annten Biasdruck		
	V0H5	z.B. 0.1	Biasdruck eingeben		
3	V0H1	z.B. 0	Druckwert für Durchfluß "Null" setzen		
4	V0H2	z.B. 100	Druckwert für Durchfluß "Max." setzen		
5	V3H0	radizierend	Betriebsart "Durchfluß" wählen		
6	V3H1	0	Wert für Durchfluß "Null" setzen		
7	V3H2	z.B. 500	Wert für Durchfluß "Max." setzen		
8	V3H3	z.B. l/s	Einheit für Durchfluß wählen (siehe Tabelle Seite 62)		

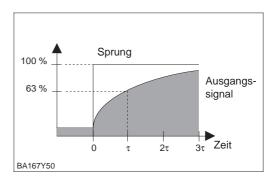

Ergebnis:

 Der Meßwert wird im Matrixfeld V0H1 als Durchflußwert angezeigt, hier z.B. in Litern pro Sekunde.

Im unteren Meßbereich können kleine Durchflußmengen – Schleichmengen, zu großen Meßwertschwankungen führen. Durch die Eingabe einer Schleichmengenunterdrückung werden diese Durchflüsse nicht mehr erfasst. Die Eingabe erfolgt immer in % Durchfluß. Sinnvoll ist die Ausblendung von 3...6 % des Meßbereichs.

Schleichmengenunterdrückung

#	VH	Eingabe	Bedeutung
1	V3H5		Schleichmengen- unterdrückung



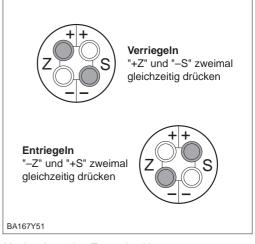
8.2 Dämpfung

Dämpfung τ (Integrationszeit)

Die Dämpfung beeinflußt die Geschwindigkeit, mit der das Ausgangssignal und die Anzeige in V0H0 auf Änderungen des Drucks reagieren.

1	#	VH	Eingabe	Bedeutung
	1	V0H7	z.B. 30	Dämpfung (040 s)

8.3 Verriegelung/Entriegelung der Bedienung


Nach dem Abgleich oder nach der Eingabe aller Parameter, können Sie die Bedienung verriegeln:

- über die Tasten +Z und -S oder
- über die Matrix durch Eingabe eines Codes. Als Code ist eine Zahl von 1 bis 9998 außer den Zahlen 130 und 2457 einzugeben.

Damit schützen Sie die Meßstelle gegen ungewollte und unbefugte Veränderung Ihrer Eingaben.

#	Taste	Eingabe
1		Bedienung verriegeln: +Z und –S zweimal gleichzeitig drücken
2		Bedienung entriegeln: +S und –Z zweimal gleichzeitig drücken

#	VH	Eingabe	Bedeutung
1	V9H9	z.B. 131	Bedienung verriegeln
2	V9H9	130 oder 2457	Bedienung entriegeln

Verriegelung über Tasten hat Vorrang

Die Tabelle gibt einen Überblick über die Verriegelungsfunktionen:

Verriegelung	Anzeige/Lesen	Veränderung/Sch	reiben über	Entriegelung übe	r
über	der Parameter	Tasten	Kommunikation	Tasten	Kommunikation
Tasten	ja	nein	nein	ja	nein
Matrix	ja	nein	nein	ja	ja

Matrix

Tasten

66

8.4 Summenzähler

Die Funktion "Summenzähler" ist standardmäßig in der Software-Version 2.1 enthalten. Mit dieser Funktion ist es möglich, einen gemessenen Durchfluß durch die Eingabe eines Umrechnungsfaktors als Durchflußmenge in einer Volumen- oder Masseneinheit zu erfassen und aufzusummieren.

Funktion

Vor der Wahl der Funktion "Summenzähler" muß der Deltabar S entsprechend Kapitel 2.2 "Meßanordnung für Durchflußmessung" montiert und abgeglichen werden. Beachten Sie dabei folgende Hinweise:

- Der Durchflußwert der bei "Meßanfang nach Lin." (V3H1) eingegeben wird, sollte immer 0 sein.
- Die Funktion "Summenzähler" steht nur in der Betriebsart "Radizierend" (Durchfluß) (V3H0) zur Verfügung.

Die Betriebsartanzeige erfolgt wahlweise als aktueller Durchfluß oder gesamte Durch
Betriebsartanzeige flußmenae.

• Durchfluß: Betriebsartanzeige als aktueller Durchfluß.

Die Balkenanzeige zeigt den aktuellen Durchfluß an.

• Zähler: Betriebsartanzeige als gesamte Durchflußmenge. Die Balkenanzeige zeigt den aktuellen Durchfluß an.

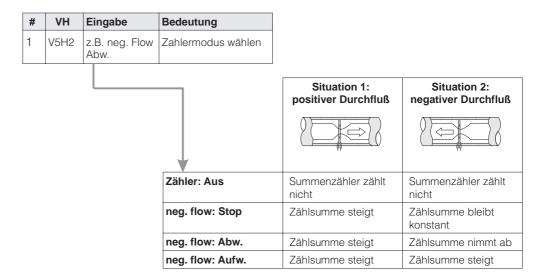
#	VH	Eingabe	Bedeutung
1	V5H1	z.B. Zähler	Betriebsartanzeige

Das Matrixfeld V5H0 "Interner Zähler" zeigt unabhängig von der Auswahl der Betriebsartanzeige immer die gesamte Durchflußmenge an.

Hinweis!

Der Summenzähler kann bis auf 7 Vorkommastellen hochzählen. Das Anzeigemodul des Deltabar S kann nur 4 Stellen anzeigen. Daher werden bei Zählwerten über vier Stellen die Stellen 1...4 und 5...7 im Rhytmus von 4 s abwechselnd angezeigt.

Der Zähler springt beim Hochzählen von 9 999 999 auf 0 und beim Abwärtszählen von 0 auf 9 999 999.


Abbildung 8.1 Meßwertanzeige

- Die Ziffern zeigen alternierend die gesamte Durchflußmenge
- Die Balkenanzeige zeigt immer den aktuellen Durchfluß an.

8 Durchflußmessung Deltabar S PROFIBUS-PA

Zählermodus

Im Feld Zählermodus wird der Summenzähler aktiviert, und festgelegt wie negative Durchflußwerte aufsummiert werden.

Zähleinheit

Die Wahl einer Volumen- oder Masseneinheiten dient ausschließlich der besseren Darstellung. Sie hat keinen Einfluß auf den digitalen Ausgangswert (OUT Value) und der Anzeige in V5H0. Standarmäßig wird die Gesamt-Durchflußmenge in "%" angezeigt.

#	VH	Eingabe	Bedeutung
1	z.B. Inte	erner Zähler (V5	H0) = 649 %
2	V5H4	z.B. I	Zahleinheit wählen
3	Interne	r Zähler (V5H0) :	= 649

%	1	hl	cm ³
dm ³	m ³	10 x m ³	100 x m ³
ft ³	10 x ft ³	100 x ft ³	US gal
I Gal	ton	kg	t
lb	special		

Umrechnungsfaktor

Die Eingabe des Umrechnungsfaktors ermöglicht die interne Umrechnung des gemessenen Durchflusses in eine Gesamt-Durchflußmenge.

#	VH	Eingabe	Bedeutung
1	V5H3		Umrechnungsfaktor eingeben

Der Umrechnungsfaktor wird aus der "Durchflußeinheit" (V3H3) und der gewählten "Zähleinheit" (V5H4) bestimmt. In den Tabellen auf den folgenden Seiten sind die Umrechnungsfaktoren für die meisten Einheiten dargestellt. Die Umrechnungsfaktoren sind wie im folgenden Beispiel berechnet:

Beispiel

Der Durchfluß von 0...100~% soll als Hauptmeßwert (V0H0) in $0...50~m^3/h$ angezeigt werden. Im Summenzähler (V5H0) sollen US Gal gezählt werden .

- Umrechnung der Durchflußeinheit auf Durchflußeinheit pro Sekunde 50 m³/h = 50 m³ / [60 (min) x 60 (s)] = 0,013888 m³/s
- Umrechnung der Durchflußeinheit pro Sekunde in die Z\u00e4hleinheit pro Sekunde 0,013888 m³/s x 264,2 US Gal/m³ = 3,6694 US Gal/s (1 m³ entspricht 254,2 US Gal)
- Berechnung des Umrechnungsfaktors durch Division des Durchflußendwerts durch den vorher berechneten Zahlenwert
 50 / 3.6694 = 13.62604

Umrechnungsfaktor für Volumendurchfluß-Einheiten

						Zanle	Zanleinheiten					
	_	Ч	cm³	dm³	m ₃	m ³ x 10	m ³ x 100	ft³	ft ³ x 10	ft ³ x 100	US Gal	Imp. Gal
ft³/min	2,1186	211,86	0,002118	2,1186	2118,6	21186	211860	09	009	0009	8,018925	6,63
m³/h	3,6	360	0,0036	3,6	3600	36000	360000	101,954	1019,54	10195,41	13,62604	16,3636
I/s	F	100	0,001	-	1000	10000	100000	25,3206	283,206	2832,058	3,785011	4,54545
ft³/s	0,03531	3,531	0,000035	0,03531	35,31	353,1	3531	-	10	100	0,133649	0,1605
m³/s	0,001	0,1	0,000001	0,001	-	10	100	0,02832	0,238321	2,832058	0,003785	0,00455
m³/min	90'0	9	900000	0,06	09	009	0009	1,69924	16,9924	169,9235	0,227101	0,27273
Gal/h	951,12	95112	0,95112	951,12	951120	9511200	1	26936,3	269363	2693627	3600	4323,27
Gal/day	22826,88	2282688	22,82688	22826,9	I	1	1	646471	6464707	I	86400	103759
MGal/day	0,022826	2,28269	0,0000238	0,02283	22,82688	228,2688	2282,688	0,64647	6,46471	64,64706	0,0864	0,10376

Beispiel: Umrechnungsfaktor für Durchflußeinheit m /h in Zähleinheit US Gal = 13,62604

Umrechnungsfaktor für Massedurchfluß-Einheiten

•			Zähleinheiten		
	ton (UK) (long ton)	ton (US) (short ton)	kg	t	qı
g/min	1	-	00009	-	27210,88
kg/s	1016,053	907,4410	1	1000	0,453514
kg/min	60963,21	54446,46	09	00009	27,21088
kg/h	3657793	3266787	3600	3600000	1632,653
Metric t/min	60,96321	54,44646	90'0	09	0,027210
Metric t/h	3657,793	3266,787	3,6	3600	1,632653
Metric t/day	87787,03	78402,90	86,4	86400	39,18367
lb/s	2240,398	2000,907	2,205	2205	1
lb/min	134423,8	120054,4	132,3	132300	09
lb/h	8065433	7203266	7938	7938000	3600

8 Durchflußmessung Deltabar S PROFIBUS-PA

Imp.Gal 0,22 0,22 22000 6,23 220 2200 62,3 623 US Gal 26420 0,2642 26,42 0,000264 0,2642 264,2 2642 7,492 74,92 749,2 1,201 ft³ x 100 0,001336 0,000353 35,31 0,01 0,000353 0,3531 3,531 0,1 0,001605 0,03531 ft³ x 10 0,01336 353,1 0,01605 0,003531 0,003531 3,531 35,31 0,1 0,3531 0,1336 35,31 3531 10 0,03531 3,531 0,03531 100 353,1 $m^{3} \times 100$ 0,000045 0,000283 0,002832 0,02832 0,000037 0,00001 0,001 0,1 0,01 0,1 $m^{3} \times 10$ 9 0,002832 0,02832 0,000378 0,000454 0,0001 0,01 0,2832 0,01 0,1 Ë 100 0,001 0,001 0,02832 0,2832 0,003785 0,004545 0,1 10 gu 10000 100000 28,32 283,2 3,785 4,545 100 0,001 1000 2832 CE. 1000 100000 1000 28320 283200 2832000 3785 4545 0,01 100 1000 0,2832 2,832 0,03785 0,04545 0,00001 28,32 10 **Umrechnung Volumeneinheiten** 10000 100000 28,32 283,2 2832,05 3,785 3 4,545 100 0,001 1000 $1 \text{ m}^3 \times 100$ 1 ft³ x 100 1 Imp. Gal 1 m³ x 10 1 ft³ x 10 1 US Gal 1 dm³ 1 cm³ 1 m³ 1 ft³ 1 h

Beispiel: 1m = 264,2 US Gal

Umrechnung Masseeinheiten					
	ton (UK) (long ton)	ton (US) (short ton)	kg	t	ql
1 ton (UK) (long ton)	1	1,12	1016,05	1,0165	2240
1 ton (US) (short ton)	0,8928	-	907,2	0,9072	2000
1 kg	0,000993	0,001102	-	0,001	2,205
1 t	0,9934	1,102	1000	1	2205
1 lb	0,000446	0,0005	0,4535	0,000453	-

Deltabar S PROFIBUS-PA 8 Durchflußmessung

8.5 Informationen zur Meßstelle

Folgende Informationen zur Meßstelle können Sie über die Matrix in Commuwin II abfragen:

Matrixfeld	Bedeutung	
Meßwerte		
V0H0	Hauptmeßwert: Durchfluß	
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)	
V6H2/V6H3	OUT Value, OUT Status (Analog Input Block)	
V7H8	Aktueller Sensordruck (Einheit in V0H9 wählbar)	
Sensordaten		
V0H1	Meßanfang (Druck für Durchfluß "Null")	
V0H2	Meßende (Druck für Durchfluß "Max.")	
V2H5	Überlastzähler Druck (0255)	
V3H1	Meßanfang für Durchfluß "Null" ("0" eingeben)	
V3H2	Meßende für Durchfluß "Max"	
V7H6	Untere Meßgrenze des Sensors (Einheit in V0H9 wählbar)	
V7H7	Obere Meßgrenze des Sensors (Einheit in V0H9 wählbar)	
V9H7	Druck vor Biaskorrektur (Einheit in V0H9 wählbar)	
V9H8	Druck nach Biaskorrektur (Einheit in V0H9 wählbar)	
Information zur Meßstelle		
V2H2	Geräte- und Softwarenummer	
Störungsverhalten		
V2H0	Aktueller Diagnosecode	
V2H1	Letzter Diagnosecode	

Die Schleppzeigerfunktion erlaubt, für Druck und Temperatur rückwirkend den jeweils kleinsten und größten gemessenen Wert abzufragen. Der Wert geht beim Abschalten des Gerätes verloren.

Anzeid	is at	ır Di	agn	ose

Matrixfeld	Bedeutung
V2H3	Minimaler Druck (Schleppzeigerfunktion)
V2H4	Maximaler Druck (Schleppzeigerfunktion)
V2H7	Minimale Temperatur (Schleppzeigerfunktion)
V2H8	Maximale Temperatur (Schleppzeigerfunktion)
V2H5	Überlastzähler Druck (0255)
V2H6	Aktuelle Sensortemperatur (Einheit in V7H9 wählbar)

Das Matrixfeld VAH2 zeigt die Seriennummer des Gerätes an. Das Matrixfeld VAH3 zeigt Benutzerinformationen die Seriennummer des Sensors an. Die Felder VAH0, VAH1 sowie VAH4 -VAH8 bieten die Möglichkeit, weitere Informationen über Meßstelle und Meßgerät zu speichern.

	,
Matrixfeld	Bedeutung
VAH0 *	Bezeichnung der Meßstelle (Physical Block)
VAH1 *	Anwendertext (Physical Block)
VAH2	Anzeige Seriennummer
VAH3	Seriennummer des Sensors
VAH4 – VAH8	Informationen zum Gerät (Auswahl)

Eingabe bis zu 32 Zeichen (ASCII)

9 Diagnose und Störungsbeseitigung

9.1 Diagnose von Störung und Warnung

Störung

Erkennt der Deltabar S eine Störung:

- wird ein Fehlercode mit dem Meßwert übertragen
- bei gestecktem Anzeigemodul wird der Fehlercode angezeigt und blinkt
- in V2H0 kann der aktuelle, in V2H1 der letzte Fehlercode abgelesen werden.

Warnung

Erkennt der Deltabar S eine Warnung:

- wird ein Fehlercode mit dem Meßwert übertragen: der Deltabar mißt weiter
- in V2H0 kann der aktuelle, in V2H1 der letzte Fehlercode abgelesen werden.

Fehlercodes in V2H0 und V2H1

Treten mehrere Fehler gleichzeitig auf, entspricht die Reihenfolge, in der sie angezeigt werden, der Priorität der Fehler.

Code	Тур	Ursache und Beseitigung	Priorität
E 101	Störung	Sensor Checksummenfehler Fehler beim Auslesen der Checksumme aus dem Sensor-EEPROM. - Checksumme nicht korrekt, Übertragungsstörung beim Lesevorgang durch EMV-Einwirkungen größer als Angaben Kapitel 11 "Technische Daten" EMV-Einwirkungen abblocken. - Sensor-EEPROM defekt. Sensor auswechseln.	3
E 102	Warnung	Elektronischer Gerätefehler bei der Schleppzeigeranzeige – Reset (Code 5140) durchführen, Sensor neu kalibrieren. – Hauptelektronik defekt. Elektronik auswechseln.	19
E 103	Störung	Initialisierung aktiv – Nach dem Anschließen des Gerätes wird die Elektronik initialisiert. Initialisierungsvorgang abwarten.	17
E 104	Warnung	Sensorkalibration - Werte in V7H4 und V7H5 (Low Sensor Cal und High Sensor Cal) liegen zu dicht beeinander, z.B. nach einer Sensor-Neukalibration. Reset (Code 2509) durchführen, Sensor neu kalibrieren.	18
E 106	Störung	Download aktiv — Download abwarten.	10
E 110	Störung	Checksummenfehler - Während eines Schreibvorganges in den Prozessor wird die Spannungsversorgung unterbrochen. Spannungsversorgung wieder herstellen. Ggf. Reset (Code 5140) durchführen, Sensor ggf. neu kalibrieren. - EMV-Einwirkungen (größer als Angaben in Kapitel 11, Technische Daten). EMV-Einwirkugen abblocken. - Hauptelektronik defekt. Elektronik auswechseln.	12
E 111	Störung	Keine Verbindung zum Sensor-EEPROM - Kabelverbindungen Sensorelektronik - Hauptelektronik - Display (interner Bus) unterbrochen oder Sensorelektronik defekt. Stecker zum Sensor kontrollieren. Kabelverbindung überprüfen. Sensor auswechseln.	2
E 112 PMD 230, FMD 230	Störung	 Keine Verbindung zum Sensor-Analog-/Digitalwandler Kabelverbindung Sensor - Hauptelektronik unterbrochen. Kabelverbindung überprüfen. Hauptelektronik defekt. Elektronik austauschen. Sensorelektronik defekt. Sensor auswechseln. 	4

72

Code **Ursache und Beseitigung** Priorität Тур E 113 Störung Meßfehler bei der Druck- und Temperaturmessung Die Sensorelektronik wandelt den Druck- und den Temperaturmeßwert PMD 230, nicht mehr korrekt um. FMD 230 Verbindung "Drucksignal" (PIN 6) am Stecker gelöst. Verbindung wieder herstellen. Sensor oder Sensorelektronik defekt. Sensor auswechseln. E 113 Störung Meßfehler bei der Druck- und Temperaturmessung 5 Analoge Signale vom Sensor zur Hauptelektronik werden nicht mehr PMD 235 korrekt übertragen. FMD 630. Kabelverbindung Sensor - Hauptelektronik unterbrochen. FMD 633 Kabelverbindung überprüfen. Hauptelektronik defekt. Elektronik auswechseln. Sensorelektronik defekt. Sensor auswechseln. E 114 Störung Meßfehler bei der Temperaturmessung 6 Unterschied zwischen der im Sensor berechneten Temperatur und der gemessenen Temperatur ist größer als 50 K. Kabelverbindung Sensor - Hauptelektronik unterbrochen. Kabelverbindung überprüfen. Sensorelektronik defekt. Sensor auswechseln. E 115 Störung Sensor-Überdruck Plusseite 7 Überdruck steht an. Druck verringern bis Meldung erlöscht. Kabelverbindung Sensor - Hauptelektronik unterbrochen. Kabelverbindung überprüfen. Sensor defekt. Sensor auswechseln. E 116 Downloadfehler (PC - Transmitter) Störung 11 Während eines Downloads werden die Daten zum Prozessor nicht korrekt übertragen, z.B. durch offene Kabelverbindungen, Spannungsspitzen (Ripple) auf der Versorgungsspannung, EMV-Einwirkungen. Kabelverbindung PC - Transmitter überprüfen. Reset (Code 5140) durchführen, Download neu starten. Abgleichfehler E 118 13 Störuna Editiergrenzen¹⁾ oder maximaler Turndown überschritten, z.B. durch einen unpassenden Download. - Reset (Code 5140) durchführen. Download wiederholen. E 120 Störung Sensor-Unterdruck Minusseite 8 Druck zu niedrig. Druck erhöhen bis Meldung erlöscht. Kabelverbindung Sensor - Hauptelektronik unterbrochen. Kabelverbindung prüfen. Sensor defekt. Sensor auswechseln. E 121 Störung 1 Hauptelektronik defekt. Hauptelektronik auswechseln. E 602 Warnung Linearisierungskurve ist nicht monoton steigend oder fallend. 16 Wertepaare für die Linearisierungskurve sind nicht korrekt eingegeben. Manuelle Kennlinie auf Plausibilität überprüfen. (Z.B. steigt das Volumen mit der Füllhöhe an?) Ggf. Linearisierung neu durchführen bzw. Wertepaare neu eingeben, siehe Kapitel 7.4 Linearisierung. Die Linearisierungskurve besteht aus weniger als 2 Wertepaaren. E 604 Warnung 15 Manuelle Kennlinie überprüfen. Ggf. Linearisierung erneut durchführen bzw. um weitere Wertepaare ergänzen, siehe Kapitel 7.4 Linearisierung. E 605 Störung Keine Linearisierungskurve gespeichert 14 Linearisierungskurve noch nicht aktiviert, obwohl die Betriebsart "Füllstand Kennlinie" gewählt wurde. Nach Eingabe aller Wertepaare der Linearisierungskurve, manuelle Kennlinie über Matrixfeld V3H6 (Manueller Füllstand) aktivieren. Hinweis: Die Meldung steht auch an, wenn bereits während der Eingabe der Wertepaare die Betriebsart "Füllstand Kennlinie" gewählt wurde.

Fehlercodes in V2H0 und V2H1 (Fortsetzung)

¹⁾ Die Editiergrenzen sind im Kapitel 9.4 beschrieben.

Fehlercodes Vor-Ort-Anzeige

Code	Тур	Ursache und Beseitigung
E 670 ²⁾	Warnung	 Meßanfang wurde nicht übernommen Der Wert für Meßende liegt außerhalb der Editiergrenzen1). Da die Meßspanne bei einer Änderung vom Meßanfang konstant bleibt, verschiebt sich das Meßende mit dem Meßanfang. Diese Warnung erscheint nur bei einem Abgleich mit Referenzdruck über die Tasten Z- und Z+. Abgleich erneut durchführen. Das Meßende muß innerhalb der Editiergrenzen liegen. Ggf. Meßende auf einen kleineren beliebigen Wert setzen. Danach erst den Abgleich für Meßanfang und Meßende durchführen.
E 672 ²⁾	Warnung	Editiergrenze1) für Meßanfang erreicht – Untere bzw. obere Editiergrenze für Meßanfang wurde erreicht. Diese Warnung erscheint bei einem Abgleich vom Meßanfang ohne Referenzdruck über die Tasten Z+ oder Z Der Wert wird nicht übernommen. Abgleich erneut durchführen und dabei beachten, daß die untere bzw. obere Editiergrenze für Meßanfang nicht unter- bzw. überschritten wird.
E 673 ²⁾	Warnung	Editiergrenze1) für Meßende erreicht – Untere bzw. obere Editiergrenze für Meßende wurde erreicht. Diese Warnung erscheint bei einem Abgleich vom Meßende ohne Referenzdruck über die Tasten S+ und S Der Wert wird nicht übernommen. Abgleich erneut durchführen und dabei beachten, daß die untere bzw. obere Editiergrenze für Meßende nicht unter- bzw. überschritten wird.
E 674 ²⁾	Warnung	Abgleichfehler: Turndown zu groß. – Der maximal mögliche Turndown wurde überschritten. Diese Warnung erscheint nur bei einem Abgleich mittels Tasten der Vor-Ort-Bedienung. Der Wert wird nicht übernommen. Abgleich erneut durchführen. Der Druckwert für Meßende darf nicht zu dicht bei dem Druckwert für Meßanfang liegen.
E 675 ²⁾	Warnung	Aktueller Druckwert liegt außerhalb der Sensorgrenzen. – Der aktuell anliegende Druck für den Abgleich von Meßanfang bzw. Meßende liegt außerhalb der Editiergrenzen ¹⁾ (Abgleich mit Referenzdruck und über die Tasten Z+ und Z- bzw. S+ und S-). Der Wert wird nicht übernommen. Abgleich erneut durchführen. Der aktuell anliegende Druck für den Abgleich von Meßanfang und Meßende muß innerhalb der Editiergrenzen liegen.

¹⁾ Die Editiergrenzen sind im Kapitel 9.4 beschrieben.

²⁾ Diese Fehlercodes zeigt nur die Vor-Ort-Anzeige an.

9.2 Simulation

Es gibt die Möglichkeit, entweder den Ausgangswert (OUT Value) oder die Funktion des Anlog Input Blocks zu simulieren. Die Matrixfelder in Klammern geben die Matrixposition in der Analog Input Block-Darstellung in Commuwin II an, siehe auch Kapitel 12.2 "Matrix Analog Input Block (AI Transmitter)."

Den Ausgangswert (OUT Value) können Sie wie folgt simulieren:

Simulation OUT Value

- 1. Ggf. Matrix über das Matrixfeld V9H9 mit Code 130 oder 2457 entriegeln.
- 2. Über das Matrixfeld V9H9 von der Standard- in die Analog Input Block-Darstellung wechseln.
- 3. Parameter "Target Mode" Mode (V8H0) auf "on" setzen.
 - Nun können Sie einen Simulationswert direkt für den "OUT Value" (V0H0) eingeben.
 - Überprüfen Sie danach die Änderung des OUT Values z.B. an der SPS.
- 4. Parameter "Target Mode" wieder auf "off" zurücksetzen.

Hinweis!

Commuwin II bietet über die grafische Bedienung, Menü "Simulation Al-Block" eine weitere Möglichkeit einen OUT Value vorzugeben.

Die Funktion des Analog Input Blocks können Sie wie folgt simulieren:

Simulation Analog Input Block

- 1. Ggf. Matrix über das Matrixfeld V9H9 mit Code 130 oder 2457 entriegeln.
- 2. Wechseln Sie über das Matrixfeld V9H9 von der Standard- in die Analog Input Block Darstellung.
- 3. Parameter "Simulation" im Analog Input Block (V7H2) auf "on" setzen.
 - Nun können Sie einen Simulationswert direkt für "Simulation Value" (V7H0) eingeben der den Wert für OUT Scale Min. und OUT Scale Max. (V1H3/V1H2) ändern.
 - Überprüfen Sie danach die Änderung des OUT Values (V0H0) und an der SPS.
- 4. Parameter "Simulation" zurück auf "off" setzen.

9.3 Reset

Durch Eingabe einer bestimmten Codezahl können Sie die Eingaben in der Matrix ganz oder teilweise auf die Werkswerte zurücksetzen.

#	VH	Eingabe	Text
1	V2H9		Rücksetzen auf Werkseinstellung

Der Deltabar S unterscheidet zwischen verschiedenen Resetcodes mit unterschiedlichen Auswirkungen. Welche Parameter von den Resetcodes 5140 bzw. 1, 2380 und 731 betroffen sind entnehmen Sie bitte der Tabelle auf Seite 76.

Weitere Resetcodes haben folgende Auswirkungungen:

- 2506: Warmstart des Gerätes
- 2509: Dieser Reset setzt die untere und obere Sensorkalibrationsgrenze sowie den Wert Nullpunktkorrektur auf die Werkseinstellung zurück. D.h.:

Low Sensor Cal = Untere Meßgrenze (V7H4 = V7H6),

High Sensor Cal = Obere Meßgrenze (V7H5 = V7H7),

Wert Nullpunktkorrektur (V9H6) = 0.0.

• 2712: Die über den Bus eingestellte Geräteadresse wird auf den Werkswert 126 zurückgesetzt.

Reset Codes		Н0	H1	H2	Н3	H4	H5	H6	H7	H8	Н9
	V0	Meßwert	Meß- anfang	Meß- ende	Setze Meßanfang	Setze Meßende	Setze Bias Druck	Bias Druck Autom.	Dämpfung Ausgang [s]		Wähle Druck- einheit
/ 5140			0.0	= V7H7			0.0	7.0.0	0.0		bar
380			0.0	= V7H7			0.0		0.0		
31			0.0	= V7H7			0.0		0.0		
	V1										
	V2	Diagnose- code	Letzter Diagnose- code	Software- nummer	Minimaler Druck	Maximaler Druck	Interner Zähler high	Sensor Temp.	Min. Temp.	Max. Temp.	Werks- werte
/5140 380 31			0 0 0		=V7H8 ¹⁾ =V7H8 ¹⁾	=V7H8 ¹⁾ =V7H8 ¹⁾	0		=V2H6 ²⁾ =V2H6 ²⁾	=V2H6 ²⁾ =V2H6 ²⁾	
	V3	Betriebs- art	Meßanfang 3)	Meßende 3)	Einheit nach der Lin. ³⁾	Dichte- faktor ⁴⁾	Schleich- menge % ⁵⁾	Manueller Füllstand	Zeilen-Nr.	Eingabe Füllstand	Eingabe Volumen
/5140		Druck	0.0 %	100.0 %	%	1.0	0.0 %	Löschen	1	9999.0%	9999.0%
2380			0.0 %	100.0 %		1.0	0.0 %				
31			0.0 %	100.0 %		1.0					
	V4										
	V5	Interner Zähler	Betriebs- artanzeige	Zähler Modus	Umrech- nungs- faktor	Zähl- einheit					
/ 5140 380 31		0 %	Durchfluß	Aus	1.0	%					
/5140 380 31	V6	Identity Number	Setze Einheit Out	Al Out Value	Al Out Status	2. Zyklischer Wert	Zuordn. Anzeige Hauptm. Hauptm.	OUT Value SPS	Profile Revision		
<u> </u>	V7					Low Sensor Cal	High Sensor Cal	Untere Meß- grenze	Obere Meß- grenze	Sensor Druck	Temp. Einheit
/5140 380 31						= V7H6 = V7H6	= V7H7 = V7H7				°C
	V8										
/5440	V9					Geräte- adresse	Korrektur Nullpunkt	Wert Nullpunkt Korrektur	Druck vor Bias Korrektur	Druck nach Bias Korrektur	Verriege
/ 5140 380 31							0.0	0.0	= V7H8 ¹⁾ = V7H8 ¹⁾	= V7H8 ¹⁾ = V7H8 ¹⁾	2457
	VA	Meß- stelle	Anwender Text	Serien- nummer Gerät	Serien- nummer Sensor	Prozeß- anschluß P+	Prozeß- anschluß P-	Dichtung	Prozeß- membran	Füll- flüssig- keit	Geräte- profil
/5140 380 31		gelöscht gelöscht	gelöscht gelöscht			spezial	spezial	spezial	spezial	spezial	

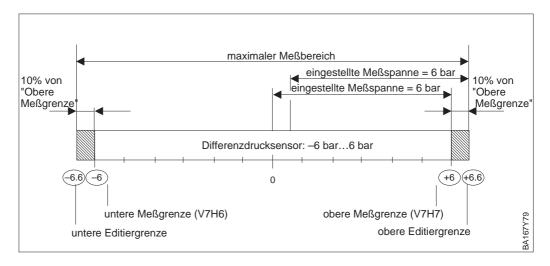
- 1) Nach einem Reset zeigen die Felder V2H3, V2H4, V9H7 und V9H8 den aktuell anliegenden Druck an.
- 2) Nach einem Reset zeigen die Felder V2H7 und V2H8 die aktuell gemessene Temperatur an.
- 3) Die Felder V3H1, V3H2 und V3H3 werden in der Betriebsart "Druck" nicht angezeigt.
- 4) Das Feld V3H4 (Dichtefaktor) wird in den Betriebsarten "Füllstand lin", "Füllstand zyl. linear" und "Füllstand Kennlinie" angezeigt.
- 5) Das Feld V3H5 (Schleichmenge %) wird nur in der Betriebsart "radizierend" (Durchfluß) angezeigt.
- 6) Nach einem Reset "5140" oder "2380" zeigt das Feld V6H2 den aktuellen digitalen Ausgangswert an: Da die Einheit nicht bekannt ist, wird hier UNKNOWN angezeigt.

9.4 Editiergrenzen

Um eine Fehlfunktion des Gerätes durch Eingabe von zu kleinen oder zu großen Werten zu vermeiden, gibt es für einige Parameter einen minimal und einen maximal zulässigen Eingabewert (Editiergrenzen). Der eingestellte Meßbereich muß sich innerhalb dieser Editiergrenzen befinden. Der Versuch diese Editiergrenzen zu über- bzw. unterschreiten, führt zu einer Fehlermeldung (siehe Kapitel 9.1 Diagnose von Störung und Warnung).

Die folgenden Parameter werden auf Einhaltung der Editiergrenzen überprüft:

- Meßanfang (V0H1)
- Meßende (V0H2)
- Setze Meßanfang automatisch (V0H3)
- Setze Meßende automatisch (V0H4)
- Bias Druck (V0H5)
- Bias Druck automatisch (V0H6)


In der nachfolgenden Tabelle sind die Editiergrenzen sowie die kleinste Meßspanne, die Sie einstellen können, dargestellt:

Sensorbereich	untere Meßgrenze (V7H6)	obere Meßgrenze (V7H7)	untere Editiergrenze	obere Editiergrenze	kleinste Meßspanne	
Keramiksensor PM	D 230 / FMD 230					
-2525 mbar	-25 mbar	25 mbar	-27.5 mbar	27.5 mbar	0,5 mbar	
-100100 mbar	-100 mbar	100 mbar	-110 mbar	110 mbar	2 mbar	
-500500 mbar	-500 mbar	500 mbar	-550 mbar	550 mbar	10 mbar	
-33 bar	-3 bar	3 bar	-3.3 bar	3.3 bar	0,06 bar	
Siliziumsensor PME	235 / FMD 630 /	FMD 633				
-1010 mbar	-10 mbar	10 mbar	-11 mbar	11 mbar	0,2 mbar	
-4040 mbar	-40 mbar	40 mbar	-44 mbar	44 mbar	0,8 mbar	
-100100 mbar	-100 mbar	100 mbar	-110 mbar	110 mbar	2 mbar	
-160160 mbar	-160 mbar	160 mbar	-176 mbar	176 mbar	3,2 mbar	
-500500 mbar	-500 mbar	500 mbar	-550 mbar	550 mbar	10 mbar	
-11 bar	-1 bar	1 bar	-1.1 bar	1.1 bar	0,02 bar	
-33 bar	-3 bar	3 bar	-3.3 bar	3.3 bar	0,06 bar	
-66 bar	-6 bar	6 bar	-6.6 bar	6.6 bar	0,12 bar	
-1616 bar	-16 bar	16 bar	-17.6 bar	17.6 bar	0,32 bar	
-4040 bar	-40 bar	40 bar	-44 bar	44 bar	0,8 bar	

Die Editiergrenzen berechnen sich wie folgt:

- Untere Editiergrenze =
 - "Untere Meßgrenze" (V7H6) 10% von "Obere Meßgrenze" (V7H7)
- Obere Editiergrenze =
 - "Obere Meßgrenze" (V7H7) + 10% von "Obere Meßgrenze" (V7H7)

Beispiel Editiergrenzen für einen Differenzdrucksensor –6...+6 bar

Hinweis!

Für eine Wirkungsumkehr des digitalen Ausgangswertes, weisen Sie dem Meßende den kleineren und dem Meßanfang den größeren Druckwert zu. Um die Editiergrenzen einzuhalten, führen Sie den Abgleich gemäß der nachfolgenden Tabelle durch. Beim 1. Schritt geben Sie als Druckwert für Meßende (V0H2) den unteren Editiergrenzwert ein (siehe auch Tabelle, Seite 77).

#	VH	Eingabe	Bedeutung
1	V0H2	z.B 1 (bar)	Druckwert für Meßende eingeben
2	V0H1	z.B. 1 (bar)	Druckwert für Meßanfang eingeben
3	V0H2	z.B. 0 (bar)	Druckwert für Meßende eingeben

Auch für die Parameter "Low Sensor Cal" (V7H4), "High Sensor Cal" (V7H5) und "Wert Nullpunkt Korrektur" (V9H5) gibt es Editiergrenzen. Bei diesen Parametern werden die Editiergrenzen durch die Sensorgrenzen und durch den anliegenden Druck bestimmt.

Um eine Sensorkalibration oder eine Nullpunkt-Korrektur durchzuführen, muß am Gerät ein Referenzdruck anliegen (siehe auch Kapitel 6.1, Abschnitt "Nullpunkt-Korrektur" und Kapitel 10.5 "Sensorkalibration"). Über den entsprechenden Parameter "Low Sensor Cal" (V7H4), "High Sensor Cal" (V7H5) bzw. "Wert Nullpunkt Korrektur" (V9H5) geben Sie einen Wert ein, der dem anliegendem Druck zugeordnet wird.

- Berechnung des Wertes für die untere Editiergrenze von V7H4, V7H5 und V9H5: "Sensor Druck" (V7H8) 10 % des Sensorendwertes
- Berechnung des Wertes für die obere Editiergrenze von V7H4, V7H5 und V9H5: "Sensor Druck" (V7H8) + 10 % des Sensorendwertes

Der Parameter "Sensor Druck" (V7H8) zeigt den am Gerät anliegenden Druck an.

#	Beispiel:
1	Sensor: -33 bar (Sensorendwert = 3 bar) anliegender Druck = "Sensor Druck" (V7H8) = 0,1 bar (z.B. Lageabhängigkeit)
2	Dem anliegenden Druck (V7H8) kann über den Parameter "Nullpunkt Korrektur" (V9H5) ein Wert zwischen der unteren und oberen Editiergrenze zugewiesen werden. D.h. für den o.g genannten Sensor ergeben sich Werte von –0,2 bis 0,4 bar (siehe nachfolgende Berechnungen).
	Wert für untere Editiergrenze, V9H5 = "Sensor Druck" – 10% vom Sensorendwert 0,1 bar – 0,1 • 3 bar = 0,1 bar – 0,3 bar = -0,2 bar
	Wert für obere Editiergrenze, V9H5 = "Sensor Druck" + 10% vom Sensorendwert 0,1 bar + 0,1 • 3 bar = 0,1 bar + 0,3 bar = 0,4 bar

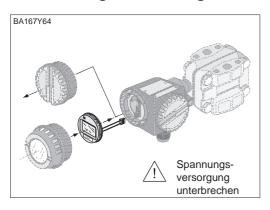
10 Wartung und Reparatur

10.1 Reparatur

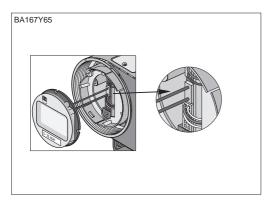
Falls Sie den Deltabar S zur Reparatur an Endress+Hauser einschicken müssen, legen Sie bitte einen Zettel mit folgenden Informationen bei:

- Eine exakte Beschreibung der Anwendung.
- Die chemischen und physikalischen Eigenschaften des Produkts.
- Eine kurze Beschreibung des aufgetretenen Fehlers.

Bevor Sie einen Deltabar S zur Reparatur einschicken, ergreifen Sie bitte folgende Maßnahmen:

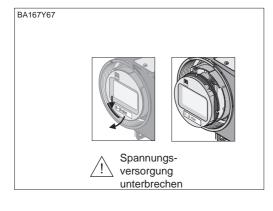

- Entfernen Sie alle anhaftenden Produktreste.
 Das ist besonders wichtig, wenn das Produkt gesundheitsgefährdend ist, z.B. ätzend, giftig, krebserregend, radioaktiv usw.
- Wir müssen Sie bitten, von einer Rücksendung abzusehen, wenn es Ihnen nicht mit letzter Sicherheit möglich ist, gesundheitsgefährdende Produktreste vollständig zu entfernen, weil es z.B. in Ritzen eingedrungen oder durch Kunststoff diffundiert sein kann.

Achtung!


Geräte mit Konformitätsbescheinigung oder Bauartzulassung müssen zu Reparaturzwecken komplett eingeschickt werden.

10.2 Montage der Anzeige

- Spannungsversorgung unterbrechen.
- Deckel des Anzeigeraums öffnen (nach der Montage der Anzeige Deckel mit Schauglas benutzen).


Einbau der Anzeige

 Stecker der Anzeige in die dafür vorgesehene Buchse stecken.
 Dabei Codierung von Stecker und Buchse beachten.

- Anzeige aufstecken.
 Die Anzeige kann in jeweils 90°-Schritten gedreht werden.
- Deckel zuschrauben (Deckel mit Schauglas benutzen).

- Spannungsversorgung unterbrechen.
- Deckel des Anzeigeraums öffnen.
- Vorstehende Lasche nach unten drücken.
- Anzeige nach vorn kippen und abnehmen.
- Stecker lösen.
- Abdeckplatte einstecken.
- Deckel zuschrauben.

Ausbau der Anzeige

10.3 Sensormodul und Elektronikeinsatz wechseln

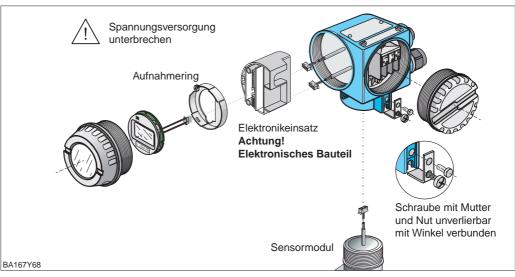
Warnung!

Beim Einsatz des Gerätes in einem EEx ia- Bereich ist folgendes zu beachten:

- Der Wechsel von Sensormodul und Elektronikeinsatz darf nur durch sachkundiges Personal oder durch den E+H Service erfolgen.
- Die entsprechenden einschlägigen Normen, nationalen Ex-Vorschriften sowie die Sicherheitshinweise (XA...) sind zu beachten.
- Nach dem Wechsel von Sensormodul und Elektronikeinsatz muß zwischen eigensicherem Stromkreis und Gehäuse eine Spannungsfestigkeit von 500 V AC sichergestellt sein.

Achtung!

Der Elektronikeinsatz ist ein elektronisches Bauteil. Elektrostatische Entladung kann zu einer Beeinträchtigung der Funktionsfähigkeit oder zu Schäden an elektronischen Bauteilen führen. Vor der Handhabung des Elektronikmoduls ist ein geerdeter Gegenstand zu berühren. Spannungsversorgung unterbrechen.


Elektronik wechseln

Ausbau

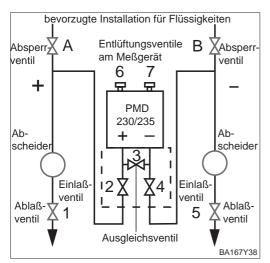
- Deckel des Anzeigeraums öffnen.
- Anzeige bzw. Abdeckplatte abnehmen.
- Stecker vom Elektronikeinsatz lösen.
- Zwei Schrauben am Aufnahmering lösen und Aufnahmering abnehmen.
- Elektronikeinsatz herausnehmen.

Finbau

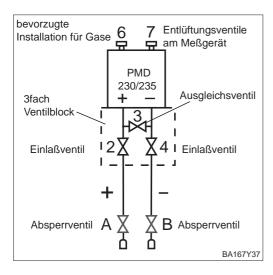
- Elektronikeinsatz einstecken.
- Aufnahmering montieren.
- Stecker einstecken, dabei Größe und Codierung beachten.
- Anzeige bzw. Abdeckplatte aufstecken und Deckel des Anzeigeraums schließen.

Sensormodul wechseln

Ausbau


- Elektronikeinsatz aus dem Gehäuse entfernen.
- Winkel und Abflachung am Sensormodul parallel ausrichten, dann Niet entfernen und Winkel abheben. Beim Ausschrauben des Sensormoduls, Kabel vorsichtig mitdrehen.
- Bei Versionen mit Ovalflansch Bolzen lösen und Sensormodul entfernen.

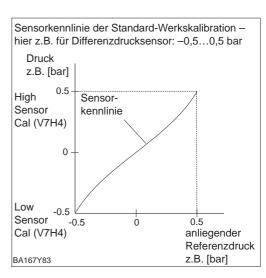
Finbau

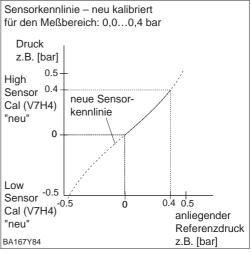

- Evtl. Ovalflansch mit neuem Sensormodul zusammenbauen.
- Kabel mit Stecker an der Elektronikbox vorbei in den Anzeigeraum schieben.
- Sensormodul bis zum Anschlag einschrauben, dabei Kabel vorsichig mitdrehen.
- Um den vollen Drehwinkel des montierten Deltabar S zu gewährleisten, eine ganze Drehung zurückschrauben.
- Winkel und Abflachung am Sensormodul parallel ausrichten.
- Winkel mit Niet und Schraube befestigen.
- Elektronikeinsatz montieren, Stecker einstecken, dabei Größe und Codierung beachten.

82

10.4 Meßumformer auswechseln

#	Ventile	Bedeutung
1	A und B schließen	Absperrventile schließen
2	4 schließen	Gerät zur Minusseite absperren
3	3 öffnen	Ausgleich Plus- und Minusseite
4	2 schließen	Gerät zur Plusseite abperren
5	Gerät austauschen	
6	Neues Gerät gemäß Kanehmen.	apitel 5 in Betrieb


10.5 Sensorkalibration


Über die Parameter "Low Sensor Cal" (V7H4) und "High Sensor Cal" (V7H5) können Sie einen Sensor neu kalibrieren, wenn Sie z.B. Ihren Sensor genau auf einen Meßbereich kalibrieren oder selbst Druckmittler an einem Drucktransmitter anbauen möchten.

Die höchste Meßgenauigkeit des Drucktransmitters erzielen Sie, wenn der Wert für den Parameter "Low Sensor Cal" (V7H4) dem Meßanfangswert (V0H1/V0H3) und der Wert für den Parameter "High Sensor Cal" (V7H5) dem Meßendwert (V0H2/V0H4) entspricht.

Für den neuen unteren bzw. oberen Wert der Sensorkennlinie muß je ein bekannter Referenzdruck anliegen. Je genauer der Referenzdruck bei der Sensorkalibration ist, desto höher ist später die Meßgenauigkeit des Drucktransmitters. Über die Parameter "Low Sensor Cal" (V7H4) und "High Sensor Cal" (V7H5) wird dann dem anliegenden Druck jeweils ein neuer Wert zugeordnet.

#	VH	Eingabe	Bedeutung				
1	soll für	ät mit einem Sei den Bereich: 0.0 rt werden.	nsor: -0.50.5 bar)0.4 bar neu				
2		nzdruck für Wert = 0.0 bar liegt a	"Low Sensor Cal" ın.				
3	V7H4	0.0	Der Wert 0.0 wird dem anliegenden Druck zugeordnet.				
4			zdruck für Wert "High Sensor Cal" = 0.4 bar liegt an.				
5	V7H5	0.4	Der Wert 0.4 wird dem anliegenden Druck zugewiesen.				
6	Die Ma Low Se						

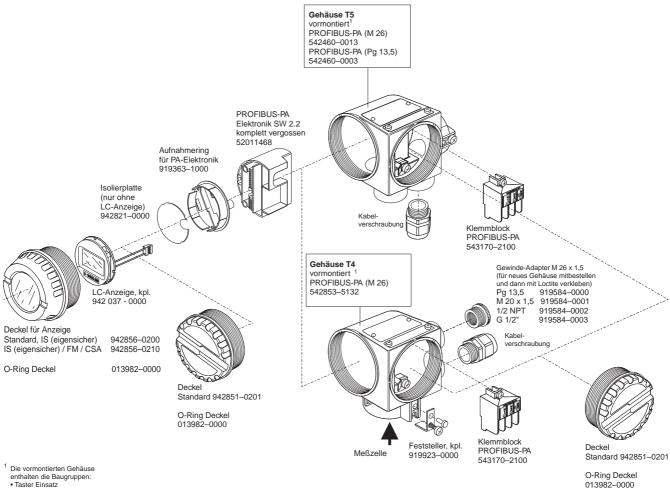
Hinweis!

Hinweis!

- Mit der Eingabe des Resetcodes "2509" in das Matrixfeld V2H9 setzten Sie folgende Parameter auf die Werkseinstellung zurück:
 - Low Sensor Cal = Untere Meßgrenze (V7H4 = V7H6),
 - High Sensor Cal = Obere Meßgrenze (V7H5 = V7H7),
 - Wert Nullpunktkorrektur (V9H6) = 0.0
- Wenn die Werte für "Low Sensor Cal" (V7H4) und "High Sensor Cal" (V7H5) zu dicht beieinander liegen, dann gibt das Gerät die Fehlermeldung "E 104" aus.

10.6 Ersatzteile

In der nachfolgenden Zeichnung sind alle Ersatzteile (mit Bestellnummern) aufgeführt, die Sie zur Reparatur des Deltabar S bei Endress+Hauser bestellen können.


Bitte beachten Sie bei der Bestellung von Ersatzteilen folgende Hinweise:

- Werden Teile ausgetauscht, die im Bestellcode aufgeführt sind, muß geprüft werden, ob der Bestellcode (Gerätebezeichnung) auf dem Typenschild noch gültig ist.
- Ändert sich die Gerätebezeichnung auf dem Typenschild, muß ein Änderungstypenschild mitbestellt werden. Die Angaben zum neuen Gerät müssen dann im Änderungstypenschild eingetragen und das Schild am Gehäuse des Deltabar S befestigt werden.
- Einige Ersatzteile sind sowohl in einer Standard- als auch in einer Ex-Ausführung erhältlich (z.B. Deckel). In diesem Fall dürfen für Ex-Geräte nur Ersatzteile für die Ex-Ausführung verwendet werden.
- Es ist nicht möglich ein Standardgerät durch Austausch der Teile in ein Ex-Gerät umzuwandeln.

Hinweis!

Jedem Ersatzteil liegt eine Austauschanleitung bei. Für weitere Informationen über Service und Ersatzteile wenden Sie sich bitte an Endress+Hauser, Service.

- Taster Einsatz
 Klemmenblock
- Erdungsklemmen

11 Technische Daten

Allgemeine Angaben

Hersteller	Endress+Hauser
Gerät	Drucktransmitter
Gerätebezeichnung	Deltabar S PMD 230, PMD 235, FMD 230, FMD 630, FMD 633
Technische Dokumentation	BA 167P/00/de
Version	08.02
Technische Daten	DIN 19259

Eingang

Meßgröße	Differenzdruck, davon abgeleitet auch Durchfluß (Volumen- oder
	Massenstrom), Füllstand, Masse oder Volumen

Meßbereich

Nennwert Keramik- sensor	Meí	Sgrenzen		empfohlene Meßspanne		Überlast		
PMD 230 FMD 230 [mbar]	Untere (LRL) [mbar]	Obere (URL) [mbar]	Minimum [mbar]	Maximum [mbar]	einseitig	beidseitig (System- druck PN) [bar]	Füllöl 2)	
25	-25	25	2	25	10	10	Mineralöl	
100	-100	100	5	100	16 ¹⁾	16 1)	Mineralöl	
500	-500	500	25	500	100 ¹⁾	100 1)	Silikonöl	
3000	-3000	3000	150	3000	100 ¹⁾	140 ^{1)}	Silikonöl	

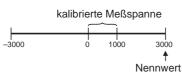
- 1) 10 bar mit Prozeßanschluß PVDF für PMD 230, 40 bar mit Prozeßanschluß für FMD 230
- 2) bei Anwendung in reinstgasen Voltalef 1A

Nennwert Silizium- sensor (URL)				empfohlene Meßspanne		Übe	rlast	Sensor
PMD 235 FMD 630 FMD 633	Untere (LRL)	Obere (URL)	Minimum	Maximum	PN	einseitig	beid- seitig ⁴)	Füllöl 2)
[mbar]	[mbar]	[mbar]	[mbar]	[mbar]	[bar]			
10 ¹)	-10	10	0.5	10	160 ⁵⁾	PN	1,5 x PN	Silikonöl
40 ¹⁾	-40	40	2	40	160 ⁵⁾	PN	1,5 x PN	Silikonöl
100	-100	100	5	100	160 ⁵⁾	PN	1,5 x PN	Silikonöl
500	-500	500	25	500	160 420	PN	1,5 x PN	Silikonöl
3000	-3000	3000	150	3000	160 420	PN	1,5 x PN	Silikonöl
16000	-16000	16000	800	16000	160 420	PN	1,5 x PN	Silikonöl
160	-160	160	8	160	160 ⁵⁾	PN	1,5 x PN	Silikonöl
1000	-1000	1000	50	1000	160 420	PN	1,5 x PN	Silikonöl
6000	-6000	6000	300	6000	160 420	PN	1,5 x PN	Silikonöl
40000 ¹)	-40000	40000	2000	40000	160 420	100 bar	1,5 x PN	Silikonöl

- 1) nur PMD 235
- 2) bei Anwendungen in Reinstgasen Voltalef 1A, auf Anfrage auch andere Füllöle
- 3) 160 bar Variante mit Edelstahlschrauben, 420 bar Variante mit chromatierten Stahlschrauben
- 4) Berstdruck typgeprüft (FM) in PN 420 bar Ausführung bis 1120 bar beidseitig
- 5) Hochdruckausführung mit 420 bar auf Anfrage

86

Ausgang


Ausgangssignal	Digitales Kommunikationssignal PROFIBUS-PA
PROFIBUS-PA-Funktion	Slave
Übertragungsrate	31,25 kBit/s
Anwortzeit	Slave: 200 ms SPS: 300600 ms bei 30 Geräten (je nach Segmentkoppler)
Ausfallsignal	Signal: Statusbit wird gesetzt, letzter gültiger Meßwert wird gehalten Anzeige: Fehlercode
Dämpfung (Integrationszeit)	040 s über Kommunikation
Kommunikationswiderstand	keiner, separater PROFIBUS-PA Terminierungswiderstand
Physikalische Schicht	MBP (Manchester coded and Bus Powered)

Meßgenauigkeit

Begriffserklärung:

Turndown (TD)

= Nennwert / kalibrierte Meßspanne

Beispiel:

Nennwert = 3000 mbar eingestellte Meßspanne = 1000 mbar Turndown (TD) = 3:1

Nenwert

"Platinum"

* Werte für Geräte mit verbesserter Genauigkeit ("Platinum") sind mit * gekennzeichnet (PMD 235 – ****A**** PMD 235 – ****B**** PMD 235 – ****C****)

Radizierung

Für radizierende Kennlinie gilt: Die Genauigkeitsdaten des Deltabar S gehen mit Faktor ½ in die Genauigkeitsberechnung des Durchflusses ein.

Referenzbedingungen	nach DIN IEC 770 T _U =25 °C Genauigkeitsdaten gelten nach Eingabe von "Low sensor calibration" und "High sensor calibration" für Meßanfang und Meßende			
Linearität inklusive Hystrerese und Wiederholbarkeit nach der Grenzpunktmethode nach IEC 770	bis TD 10:1: ±0,1% (* ±0,05%) von der kalibrierten Meßspanne bei TD 10:1 bis 20:1: ±0,1% (* 0,05%) x [Nennwert/(kalibrierten Meßspanne x 10)] von der kalibrierten Meßspanne			
Langzeitdrift	±0,1 % vom Nennwert pro Jahr, ±0,25 % vom Nennwert pro 5 Jahre			
Einfluß des Systemdrucks auf Nullpunkt (auf Spanne)	Metallsens	or	Keramikse	nsor
(adi opariio)	Nennwert	Abweichung	Nennwert	Abweichung
Angaben in Prozent vom	10 mbar	1,5 (0,5)%/100 bar	25 mbar	0,5 (0.2)%/10 bar

0,5 (0,2)%/100 bar

0,3 (0,2)%/100 bar

100 mbar

500 mbar

0,2 (0,2)%/16 bar

0,2 (0,2)%/100 bar

40 mbar

100 mbar

	160 mbar, 500 mbar, 1 bar, 3 bar, 6 bar, 16 bar 40 bar	0,2 (0,2)%/100 bar	3000 mbar	0,2 (0,2)%/100 bar
Temperaturkoeffizient	-10 bis 60 °C -40 bis -10 °C	: 0,04% (* 0,03%) vo C oder 60 bis 85 °C: 0	m Nennwert/ ,1% (* 0,08%	30 K und) vom Nennwert/30 K
Temperaturkoeffizient des Druckmittlers		sche Information TI 25 alte "Druckmittler", T _K	,	ungen Deltabar S
Thermische Änderung (max. TD 20:1)	(0,2 % x TD +	- 0,2 %) der kalibriert	en Meßspanr	ne
Vakuumfestigkeit		5, FMD 230: bis 1 mb 3: bis 10 mbar _{abs}	oar _{abs}	

Einsatzbedingungen

Einbaubedingungen	
Lage bei Kalibration ① PMD 230 ② PMD 235, FMD 230 ③ FMD 630 ④ FMD 633	
Einbaulage	beliebig, lageabhängige Nullpunktverschiebung kann vollständig korrigiert werden, kein Einfluß auf Meßspanne

Meßstoffbedingungen	
Meßstofftemperaturbereich im Prozeß	PMD 230/FMD 230: -40+85 °C PMD 235: -40+120 °C FMD 630/633: bis +350 °C Bitte beachten Sie die Temperaturgrenzen der eingesetzten Dichtungen, siehe Tabellen Seite 88. Beachten Sie für FMD 630 und FMD 633 auch die Temperaturgrenzen des eingesetzten Öls, siehe Technische Information TI 256P, Abschnitt
	"Planungshinweise für Druckmittler".
Prozeßdruck	entspricht zulässiger Überlast, siehe Seite 86

11 Technische Daten Deltabar S PROFIBUS-PA

Umgebungsbedingungen

Umgebungstemperatur	-40+85 °C (für Ex-Geräte siehe Sicherheitshinweise)
Lagertemperaturbereich	-40+100 °C (für Ex-Geräte siehe Sicherheitshinweise)
Klimaklasse	G P C nach DIN 40 040
Schwingungsfestigkeit	Keramiksensor: ± 0,1% der Sensorspanne (nach DIN IEC 68 Teil 2-6) Metallsensor: ± 0,1% der Senorspanne (nach DIN IEC 68 Teil 2-6)
Schutzart	IP 65/NEMA 4X
Elektromagnetische Verträglichkeit	Störaussendung nach EN 61 326, Betriebsmittel B; Störfestigkeit nach EN 61 326, Anhang A (Industriebereich) und NAMUR-Empfehlung EMV (NE 21); Störfestigkeit nach EN 61 000-4-3: 30 V/m

Konstruktiver Aufbau

	htungen für ramiksensor	Temperatur- grenzen
1	FPM, Viton	–20 °C ¹⁾
3	PTFE-gefaßter Hastelloy C4	-40 °C ¹⁾
4	EPDM	-30 °C ^{1), 2)}
С	FFKM Chemraz	−10 °C ¹⁾
7	FFKM Kalrez	+5 °C ¹⁾
8	FPM, Viton öl- und fettfrei	-10 °C ¹⁾
6	FPM, Viton gereinigt für Sauerstoff- einsatz Compound V7G03	–10+60 °C

$\overline{}$		
	chtungen für etallsensor	Temperatur- grenzen
1	FPM, Viton	–20 °C ¹⁾
2	NBR	–20…+80 °C
3	PTFE	-40 °C¹)
8	FPM, Viton öl- und fettfrei	−10 °C ¹⁾
6	FPM, Viton gereinigt für Sauerstoff- einsatz Compound V7G03	–10+60 °C
Н	Kupfer	-40 °C ¹⁾

Anzeige und Bedienoberfläche

Hilfsenergie

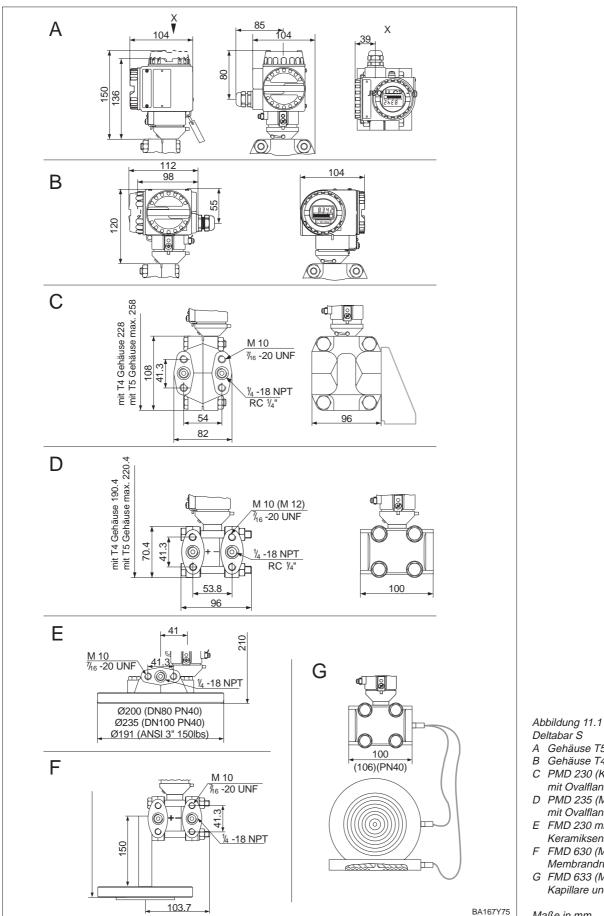
Zertifikate und Zulassungen

Bauform

Abmessungen	Siehe Technische Information TI 256P
Gehäuse	Gehäuse T4 (Anzeige seitlich) oder T5 (Anzeige oben), Gehäuse drehbar bis 330°, Elektronik- und Anschlußraum getrennt, Elektrischer Anschluß wahlweise – Kabelverschraubung M 20x1,5 – Kabeleinführung G ½, ½ NPT – M12-Stecker oder Harting-Stecker Han7D Klemmenanschluß für Kabeldurchmesser 0,52,5 mm²
Prozeßanschlüsse	wahlweise Flansch oder Druckmittler mit Kapillarverlängerung verfügbar, siehe auch Technische Information TI 256P

Werkstoffe	
Gehäuse	 Druckguß-Aluminiumgehäuse mit Pulver-Schutzbeschichtung auf Polyesterbasis RAL 5012 (blau), Deckel RAL 7035 (grau), Salzsprühtest DIN 20021 (504 h) bestanden Edelstahl 1.4435 (AISI 316L)
Typenschilder	1.4301 (AISI 304)
Prozeßanschlüsse	wahlweise: 1.4435 (AISI 316L), Stahl C 22.8, Hastelloy 2.4819 (C279)
Prozeßmembran	Keramiksensor: Al ₂ O ₃ Aluminium-Oxid-Keramik Metallsensor: wahlweise 1.4401 (AlSI 316), Hastelloy C, Monel, Tantal optional 1.4435 (AlSI 316L)
Füllflüssigkeit in Druckmittlern	Silikonöl AK 100, Hochtemperaturöl, Fluorolobe, Glyzerin, Pflanzenöl
Dichtungen Keramiksensor Metallsensor	FPM Viton, PTFE-gefaßter Hastelloy C-4 Dichtring für p _{abs} > 900 mbar, EPDM, FFKM Chemraz, FFKM Kalrez, FPM Viton öl- und fettfrei, FPM Viton gereinigt für Sauerstoffeinsatz ³⁾ (siehe auch nebenstehende Tabelle "Dichtungen für Keramiksensor") FPM Viton, NBR, PTFE, FPM Viton öl- und fettfrei, FPM Viton gereinigt für Sauerstoffeinsatz ³⁾ , (siehe auch nebenstehende Tabelle "Dichtungen für Metallsensor")
O-Ring für Deckelabdichtung	NBR
Befestigungszubehör	Montageset mit Schrauben 1.4301 (AISI 304)

Anzeige (optional)	Steckbares Anzeigemodul mit Digitalanzeige und Balkenanzeige (28 Segmente)
Bedienung	über vier Tasten Z-, Z+, S-, S+
Fernbedienung	Anschluß über Segmentkoppler an SPS oder PC mit Bedienprogramm, z. B. Commuwin II
Kommunikationsschnittstelle	PROFIBUS-PA


	Standard: 932 V DC, Ex: 924 V DC (siehe auch Sicherheitshinweise)
Stromaufnahme	10 mA ± 1 mA (für Ex-Geräte siehe Sicherheitshinweise)
Einschaltstrom	entspricht Tabelle 4, IEC 1158-2

- CE-Zeichen

 Das Gerät erfüllt die gesetzlichen Anforderungen aus den EG-Richtlinien. Endress+Hauser bestätigt die erfolgreiche Prüfung des Gerätes mit der Anbringung des CE-Zeichens.
- 1) Für die obere Temperaturgrenze, siehe Seite 85 "Meßstofftemperaturbereich".
- 2) Dichtungen für tiefere Temperaturen auf Anfrage.
- 3) Einsatzgrenzen für Sauerstoff gemäß BAM-Liste der nichtmetallischen Materialien beachten.

Weitere Angaben, zu Abmessungen und Einbauhöhe der verschiedenen Versionen, sind der Technische Information TI 256P zu entnehmen.

Abmessungen Deltabar S

- A Gehäuse T5 (Anzeige oben) B Gehäuse T4 (Anzeige seitlich)
- PMD 230 (Keramiksensor) mit Ovalflansch
- PMD 235 (Metallsensor) mit Ovalflansch
- FMD 230 mit frontbündigem Keramiksensor
- FMD 630 (Metallsensor) mit Membrandruckmittler
- FMD 633 (Metallsensor) mit Kapillare und Druckmittler

Maße in mm

12 Bedienmatrix

12.1 Matrix Commuwin II

	Н0	H1	H2	H3	H4	H5	H6	H7	Н8	Н9
V0 Grund- abgleich	Meßwert	Meßanfang	Meßende	Setze Meßanfang	Setze Meßende	Setze Biasdruck	Biasdruck autom.	Dämpfung 040 s		Wähle Druck- einheit
V1			1				1		-	
V2 Transmitter- information	Aktueller Diagnose- code	Letzter Diagnose- code	Software- Nr.	Minimaler Druck	Maximaler Druck	Zähler für Überlast	Sensor Temperatur	Minimale Temperatur	Maximale Temperatur	Reset (Werks- werte)
V3 Lineari- sierung	Betriebsart Druck: 0 Durchfluß 1 Füllstand: 2 Zylinder: 3 Kennlinie: 4	Meßanfang nach Lineari- sierung ¹⁾	Meßende nach Lineari- sierung ¹⁾	Einheit nach Lineari- sierung ¹⁾	Dichte- faktor ²⁾	Schleich- mengen- unter- drückung ³⁾	Tabelle aktiv: 0 manuelle Eingabe: 1 halbaut.: 2 löschen: 3	Zeilen- nummer (121)	Eingabe Füllstand %	Eingabe Volumen %
V4										
V5 Summen- zähler	Interner Zähler ³⁾	Betriebsart Anzeige ³⁾	Zähler Modus ³⁾	Umrech- nungs- faktor ³⁾	Zähleinheit ³⁾					
V6 PROFIBUS Parameter	Identity number	Setze Einheit OUT	AI OUT Value	AI OUT Status	2. Zykl. Wert	Zuordnung Anzeige	Out Value von SPS	Profile revision		
V7 Zusatz- funktionen					Low sensor calibration	High sensor calibration	Untere Sensor- Meßgrenze	Obere Sensor- Meßgrenze	Sensor- druck	Temperatur- einheit
V8										
V9 Service					Geräte- adresse	Korrektur Nullpunkt	Wert Nullpunkt- korrektur	Druck vor Bias- korrektur	Druck nach Bias- korrektur	Verriege- lung ⁴⁾
VA Benutzer- infor- mation	Meßstellen- bezeich- nung	Anwender- text	Serien-Nr. Gerät	Serien-Nr. Sensor	Prozeß- anschluß P+	Prozeß- anschluß P-	Dichtung	Prozeß- membran	Füllflüssig- keit	Geräteprofil

Anzeigefeld

- 1) Nicht in der Betriebsart "Druck".
- 2) Nur in den Betriebsarten "Füllstand linear", "Füllstand zyl. linear" und "Füllstand Kennlinie".
- 3) Nur in der Betriebsart "radizierend" (Durchfluß).
- 4) Verriegeln \neq 130/2457, Entriegelung = 130/2457 Wenn die Bedienung über die +Z und -S-Taste verriegelt wurde, zeigt das Matrixfeld 9999 an.

Diese Matrix bietet einen Überblick über die Werkseinstellungen.

	НО	H1	H2	Н3	H4	H5	H6	H7	Н8	H9
V0		0	V7H7	_	_	0	_	0		bar
V1										
V2	0	0		aktueller Druck	aktueller Druck	0	aktuelle Temp.	aktuelle Temp.	aktuelle Temp.	0
V3	Druck									
V4										
V5										
V6	0				0					
V7					V7H6	V7H7			aktueller Druck	°C
V8	V8									
V9								_	_	2457
VA			XXXX	XXXX						

12.2 Matrix Analog Input Block (AI Transmitter)

	Н0	H1	H2	Н3	H4	H5	H6	H7	Н8	Н9
V0 OUT	OUT Value	OUT Status	OUT Status	OUT Sub Status	OUT Limit		Fail Safe Action	Fail Safe Value		
V1 Scaling	PV Scale Min	PV Scale Max	Type of Linearisa- tion	OUT Scale Min	OUT Scale Max	OUT Unit	User Unit	Decimal Point OUT	Rising Time	
V2 Alarm Limits	Alarm Hysteresis									
V3 HI HI Alarm	HI HI Limit	Value	Alarm State	Switch-on Point	Switch-off Point					
V4 HI Alarm	HI Limit	Value	Alarm State	Switch-on Point	Switch-off Point					
V5 LO Alarm	LO Limit	Value	Alarm State	Switch-on Point	Switch-off Point					
V6 LO LO Alarm	LO LO Limit	Value	Alarm State	Switch-on Point	Switch-off Point					
V7 Simulation	Simulation Value	Simulation Status	Simulation Mode							
V8 Block Mode	Target Mode	Actual	Permitted	Normal		Channel		Unit Mode		
V9 Alarm Config.	Current	Disable				Static Revision				
VA Block Parameter	Set Tag Number	Strategy	Alert Key	Profile Version	Batch ID	Batch Rup	Batch Phase	Batch Operation		Device Profile

12 Bedienmatrix Deltabar S PROFIBUS-PA

12.3 Parameterbeschreibung

Parameter	Beschreibung
Meßwert (V0H0)	Dieser Parameter zeigt den aktuell gemessenen Wert an. Das Matrixfeld V0H0 entspricht der Vor-Ort-Anzeige. Für die Betriebsart "Druck" wählen Sie über den Parameter "Wähle Druckeinheit" (V0H9) eine Druckeinheit aus. Der Meßwert wird umgerechnet und in der gewählten Druckeinheit dargestellt. Hinweis: Standardmäßig wird der Meßwert in der Druckeinheit, die auf dem Typenschild angegeben ist über den Bus übertragen. Um über den Bus den umgerechneten Meßwert zu übertragen, muß im Matrixfeld V6H1 der Parameter "Setze Einheit OUT" einmal bestätigt werden. Siehe auch Parameterbeschreibung "Setze Einheit OUT" (V6H1). In den Betriebsarten "Füllstand" und "Radizierend" (Durchfluß) wird der Meßwert standardmäßig in "%" angezeigt. Über den Parameter "Einheit nach Linearisierung" (V3H3) können Sie eine Einheit für Füllstand, Volumen, Gewicht oder Durchfluß auswählen. Diese Einheit dient ausschließlich der Darstellung. Der Meßwert wird nicht auf die gewählte Einheit umgerechnet.
Meßanfang * (V0H1)	Eingabe eines Druckwertes für Meßanfang (Abgleich ohne Referenzdruck). Mit diesem Parameter stellen Sie den Meßanfang für die Balkenanzeige der Vor-Ort-Anzeige ein. In der Betriebsart "Druck" hat dieser Parameter keinen Einfluß auf den digitalen Ausgangswert. In den Betriebsarten "Füllstand" und "Radizierend" (Durchfluß) muß ein Druckwert für Meßanfang vorgegeben werden, da in diesen Betriebsarten dieser Druckwert dem Punkt "Füllstand leer" bzw. "Min. Durchfluß" zugeordnet wird. Werkseinstellung: 0.0
Meßende * (V0H2)	Eingabe eines Druckwertes für Meßende (Abgleich ohne Referenzdruck). Mit diesem Parameter stellen Sie das Meßende für die Balkenanzeige der Vor-Ort-Anzeige ein. In der Betriebsart "Druck" hat dieser Parameter keinen Einfluß auf den digitalen Ausgangswert. In den Betriebsarten "Füllstand" und "Radizierend" (Durchfluß) muß ein Druckwert für Meßende vorgegeben werden, da in diesen Betriebsarten dieser Druckwert dem Punkt "Füllstand voll" bzw. "Max. Durchfluß" zugeordnet wird. Werkseinstellung: "Obere Meßgrenze" (V7H7)
Setze Meßanfang * (V0H3)	Wenn Sie diesen Parameter bestätigen, wird der aktuelle Druckwert als Meßanfangswert gesetzt (Abgleich mit Referenzdruck). Der Wert wird in Parameter "Meßanfang" (V0H1) angezeigt. Dies entspricht bei der Vor-Ort-Bedienung: +Z und -Z-Taste zweimal gleichzeitig drücken.
Setze Meßende * (V0H4)	Wenn Sie diesen Parameter bestätigen, wird der aktuelle Druckwert als Meßendewert gesetzt (Abgleich mit Referenzdruck). Der Wert wird in Parameter "Meßende" (V0H2) angezeigt. Dies entspricht bei der Vor-Ort-Bedienung: +S und -S-Taste zweimal gleichzeitig drücken.
Setze Biasdruck * (V0H5)	Zeigt die Vor-Ort-Anzeige nach dem Abgleich des Meßanfangs bei Prozeßdruck Null nicht Null an (Lageabhängigkeit), können Sie durch Eingabe eines Druckwertes (Biasdruck) den Anzeigewert der Vor-Ort-Anzeige auf Null korrigieren (Lageabgleich). Die Parameter "Meßwert" (V0H0), "Meßanfang" (V0H1) und "Meßende" (V0H2) werden um den Biasdruck korrigiert. Hinweis: In der Betriebsart "Druck" hat der Lageabgleich über einen Biasdruck keinen Einfluß auf den digitalen Ausgangswert (Parameter "OUT Value"), der über den Bus übertragen wird. Damit die Vor-Ort-Anzeige und der "OUT Value" (V6H2) den gleichen Wert anzeigen, muß im Matrixfeld V6H1 der Parameter "Setze Einheit OUT" bestätigt werden. Siehe auch Kapitel 6.1, Abschnitt "Lageabgleich – Anzeige (Biasdruck)".
Biasdruck automatisch * (V0H6)	Wenn Sie diesen Parameter bestätigen, wird der aktuelle Druckwert als Biasdruck übernommen. Der Wert wird in Parameter "Setze Biasdruck" (V0H5) angezeigt. Dies entspricht bei der Vor-Ort-Bedienung: +Z und +S-Taste zweimal gleichzeitig drücken. Siehe auch Parameterbeschreibung "Setze Biasdruck" (V0H5).
Dämpfe Ausgang (V0H7)	Die Dämpfung (Integrationszeit) beeinflußt die Geschwindigkeit, mit der das Ausgangssignal und der Anzeigewert auf eine Änderung des Drucks reagiert. Die Dämpfung ist einstellbar von 0 bis 40 s. Werkseinstellung: 0.0

^{*} Die Elektronik überprüft die Eingabewerte für diese Parameter auf die Einhaltung der Editiergrenzen, siehe hierfür Kapitel 9.4.

Parameter	Beschreibung
Wähle Druckeinheit (V0H9)	Auswahl einer Druckeinheit. Bei Auswahl einer neuen Druckeinheit werden alle druckspezifischen Parameter umgerechnet und mit der neuen Druckeinheit angezeigt. Hinweis: Standardmäßig wird der Meßwert in der Druckeinheit, die auf dem Typenschild angegeben ist über den Bus übertragen. Um über den Bus den umgerechneten Meßwert zu übertragen, muß im Matrixfeld V6H1 der Parameter "Setze Einheit OUT" einmal bestätigt werden. Siehe auch Parameterbeschreibung "Setze Einheit OUT" (V6H1) und Kapitel 6.1, Abschnitt "Druckeinheit wählen". Werkseinstellung: bar
Aktueller Diagnose Code (V2H0)	Erkennt der Drucktransmitter eine Störung oder eine Warnung, gibt er einen Fehlercode aus. Dieser Parameter zeigt den aktuellen Fehlercode an. Beschreibung der Fehlercodes siehe Kapitel 9.1.
Letzter Diagnose Code (V2H1)	Anzeige des letzten Fehlercodes. Beschreibung der Fehlercodes siehe Kapitel 9.1. Werkseinstellung: 0
Software Nummer (V2H2)	Anzeige der Geräte- und Softwarenummer. Die ersten beiden Ziffern stellen die Gerätenummer dar, die 3. und 4. Ziffer die Softwareversion. Deltabar S PROFIBUS-PA SW 2.2 = 8222
Minimaler Druck (V2H3)	Anzeige des kleinsten gemessenen Druckwerts (Schleppzeiger). Dieser Parameter wird durch Bestätigen mit der Enter-Taste auf den aktuellen Druckwert zurückgesetzt.
Maximaler Druck (V2H4)	Anzeige des größten gemessenen Druckwerts (Schleppzeiger). Dieser Parameter wird durch Bestätigen mit der Enter-Taste auf den aktuellen Druckwert zurückgesetzt.
Interner Zähler High (V2H5)	Dieser Zähler zeigt an, wie oft ein gemessener Druck oberhalb der oberen Meßgrenze (V7H7) lag. Maximaler Wert = 255 Dieser Parameter wird durch Bestätigen mit der Enter-Taste auf Null zurückgesetzt.
Sensor Temperatur (V2H6)	Anzeige der aktuell gemessenen Temperatur. Die Einheit, in der die Temperatur hier dargestellt wird, ist über den Parameter "Temperatur Einheit" (V7H9) wählbar.
Minimale Temperatur (V2H7)	Anzeige der kleinsten gemessenen Temperatur (Schleppzeiger). Dieser Parameter wird durch Bestätigen mit der Enter-Taste auf den aktuellen Temperaturwert zurückgesetzt.
Maximale Temperatur (V2H8)	Anzeige der größten gemessenen Temperatur (Schleppzeiger). Dieser Parameter wird durch Bestätigen mit der Enter-Taste auf den aktuellen Temperaturwert zurückgesetzt.
Werkswerte (Reset) (V2H9)	Eingabe eines Resetcodes. Mögliche Resetcodes sind: 5140 bzw. 1, 2380, 731, 2506, 2509 und 2712. Welche Parameter von welchem Resetcode auf die Werkseinstellung zurückgesetzt werden, ist im Kapitel 9.3 dargestellt.
Betriebsart (V3H0)	 Auswahl der Betriebsart: Druck: für lineare Druckmessungen. Der Meßwert (V0H0) zeigt den Druck in der gewählten Druckeinheit (V0H9) an. Siehe auch Kapitel 6. Radizierend *: für Durchflußmessungen z.B. mit einer Blende oder Staudrucksonde. Die Umrechnung vom gemessenen Differenzdruck in ein durchflußproportionales Ausgangssignal erfolgt über eine Wurzelfunktion. Siehe auch Kapitel 8. Füllstand linear *: für Füllstands-, Volumen- oder Gewichtsmessungen für stehende Behälter. Der Füllstand ist linear zum gemessenen Druck. Siehe auch Kapitel 7. Füllstand zylindrisch liegend *: für Füllstands-, Volumen- oder Gewichtsmessungen bei zylindrisch liegenden Behältern. Das Volumen bzw. das Gewicht ist nicht proportional zum Füllstand. Eine Linearisierungstabelle ist integriert. Siehe auch Kapitel 7.4. Manuelle Kennlinie *: für genaue Volumen- oder Gewichtsmessung, bei denen das Volumen bzw. das Gewicht nicht proportional zum Füllstand bzw. zum gemessenen Druck ist, z. B. bei Behältern mit konischem Auslauf. Über die Parameter "Zeilen-Nr." (V3H7), "Eingabe Füllstand" (V3H8) und "Eingabe Volumen" (V3H9) geben Sie eine Linearisierungstabelle ein. Diese Linearisierungstabelle wird zur Berechnung des Ausgangssignal verwendet. Siehe auch Kapitel 7.4. Werkseinstellung: Druck linear * In diesen Betriebsarten wird der Meßwert (V0H0) werksmäßig in % angezeigt. Zur besseren Darstellung können Sie über den Parameter "Einheit nach Linearisierung" (V3H3) eine Einheit für Füllstand, Volumen, Gewicht oder Durchfluß wählen. Siehe auch Parameterbeschreibung "Einheit nach Linearisierung" (V3H3).

Parameterbeschreibung (Fortsetzung)

12 Bedienmatrix Deltabar S PROFIBUS-PA

Parameterbeschreibung (Fortsetzung)

Parameter	Beschreibung
Meßanfang nach Linearisierung (V3H1)	Nur für die Betriebsarten "Radizierend" (Durchfluß), "Füllstand linear" und "Füllstand horizontal liegend". Eingabe eines Wertes für den Meßpunkt "Min. Druchfluß" bzw. "Füllstand leer". Der Wert wird dem Parameter "Meßanfang" (V0H1) zugeordnet. Werksmäßig wird dieser Parameter in % dargestellt. Eine andere Einheit zur besseren Darstellung ist über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar. Werkseinstellung: 0%
Meßende nach Linearisierung (V3H2)	Für die Betriebsarten "Radizierend" (Durchfluß), "Füllstand linear", "Füllstand horizontal liegend". Eingabe eines Wertes für den Meßpunkt "Max. Durchfluß" bzw. "Füllstand voll". Der Wert wird dem Parameter "Meßende" (V0H2) zugeordnet. Werksmäßig wird dieser Parameter in % dargestellt. Eine andere Einheit zur besseren Darstellung ist über den Parameter "Einheit nach Linearisierung" (V3H3) wählbar. Werkseinstellung: 100%
Einheit nach Linearisierung (V3H3)	Nur für die Betriebsarten "Radizierend" (Durchfluß), "Füllstand linear", "Füllstand horizontal liegend" und "Füllstand Kennlinie". Auswahl einer Füllstands-, Volumen-, Gewichts- oder Durchflußeinheit. Die Optionen sind von der ausgewählten Betriebsart abhängig. Die Einheit dient ausschließlich der Darstellung. Der "Meßwert" (V0H0) wird nicht in die gewählte Einheit umgerechnet. Beispiel: V0H0 = 55 %. Nach Wahl der Einheit "hl" zeigt V0H0 = 55 hl an. Wenn Sie den Meßwert in der gewählten Einheit umgerechnet darstellen möchten, müssen für die Parameter "Meßanfang nach Lin." (V3H1) und "Meßende nach Lin." (V3H2) umgerechnete Werte eingegeben werden, siehe auch Kapitel 7.1 bzw. 8.1, Abschnitt "Einheit für Füllstand, Volumen oder Gewicht" bzw. "Einheit für Durchfluß" wählen. Werkseinstellung: %
Dichtefaktor (V3H4)	Nur für die Betriebsarten "Füllstand linear", "Füllstand horizontal liegend" und "Füllstand Kennlinie". Mit dem Dichtefaktor wird der Ausgangswert und der "Meßwert" (V0H0) auf eine geänderte Flüssigkeitsdichte des Meßmediums angepaßt. Der Dichtefaktor ergibt sich aus dem Verhältnis von "neuer Dichte" zu "alter Dichte". Werkseinstellung: 1.0
Schleichmenge (V3H5)	Nur für die Betriebsart "Radizierend" (Durchfluß). Im unteren Meßbereich können kleine Durchflußmengen (Schleichmengen) zu großen Meßwertschwankungen führen. Durch die Eingabe einer Schleichmengen-unterdrückung werden diese Durchflüsse nicht mehr erfaßt. Die Eingabe erfolgt immer in % Durchfluß. Siehe auch Kapitel 8, Abschnitt "Schleichmengenunterdrückung". Werkseinstellung: 0.0 %
Manuell Füllstand (Linearisierung) (V3H6)	Nur für die Betriebsart "Füllstand Kennlinie". Auswahl des Editiermodus für die Lienearisierungstabelle. Optionen: Tabelle aktivieren, Manuell, Halbautomatisch und Tabelle löschen. Siehe auch Kapitel 7.4 Linearisierung. Werkseinstellung: löschen
Zeilennummer (V3H7)	Nur für die Betriebsart "Füllstand Kennlinie". Eingabe der Zeilennummern für die Linearisierungstabelle. Über die Parameter "Zeilennummer" (V3H7), "Eingabe Füllstand" (V3H8) und "Eingabe Volumen" (V3H9) geben Sie eine Linearisierungstabelle ein. Anzahl Zeilen der Linearisierungstabelle: Min. = 2 und Max. = 21 Siehe auch Kapitel 7.4 Linearisierung. Werkseinstellung: 1
Eingabe Füllstand (V3H8)	Nur für die Betriebsart "Füllstand Kennlinie". Eingabe eines Füllstandwertes in die Linearisierungstabelle. Die Eingabe erfolgt in %. Wenn Sie für diesen Parameter "9999.0" eingeben, löschen Sie einzelne Punkte der Linearisierungstabelle. Zuvor muß die Liniearisierungstabelle über den Parameter "Manuell Füllstand" (V3H6) einmal aktiviert werden. Siehe auch diese Tabelle Parameter "Zeilennummer" (V3H7) und Kapitel 7.4 Linearisierung. Werkseinstellung: 9999.0 %
Eingabe Volumen (V3H9)	Nur für die Betriebsart "Füllstand Kennlinie". Eingabe eines Volumenwertes in die Linearisierungstabelle. Die Eingabe erfolgt in %. Wenn Sie für diesen Parameter "9999.0" eingeben, löschen Sie einzelne Punkte der Linearisierungstabelle. Zuvor muß die Liniearisierungstabelle über den Parameter "Manuell Füllstand" (V3H6) einmal aktiviert werden. Siehe auch diese Tabelle Parameter "Zeilennummer" (V3H7) und Kapitel 7.4 Linearisierung. Werkseinstellung: 9999.0 %

Parameter	Beschreibung
Interner Zähler (V5H0)	Nur für die Betriebsart "Radizierend" (Durchfluß). Anzeige der gesamten gemessenen Durchflußmenge. Nach einem Reset "5140" wird der Zähler auf Null zurückgesetzt. Siehe auch Kapitel 8.4 "Summenzähler". Werkseinstellung: 0
Betriebsart Anzeige (V5H1)	Nur für die Betriebsart "Radizierend" (Durchfluß). Auswahl der Betriebsart für die Vor-Ort-Anzeige. Optionen: - Durchfluß: Anzeige des aktuell gemessenen Volumen- oder Massenstroms, entspricht der Anzeige des Parameters "Meßwertes" (V0H0). Die Einheit wird über den Parameter "Einheit nach Linearisierung" (V3H3) gewählt. - Zähler: Anzeige der gesamten Durchflußmenge, entspricht der Anzeige des Parameters "Interner Zähler" (V5H1). Die Einheit wird über den Parameter "Zähleinheit" (V5H4) gewählt. Die Balkenanzeige zeigt immer den aktuell gemessenen Durchfluß an. Siehe auch Kapitel 8.4 "Summenzähler". Werkseinstellung: Durchfluß
Zähler Modus (V5H2)	Nur für die Betriebsart "Radizierend" (Durchfluß). Mit diesem Parameter aktivieren Sie die Funktion Summenzähler und legen fest wie negative Durchflüsse gezählt werden. Siehe auch Kapitel 8.4 "Summenzähler". Werkseinstellung: Aus
Umrechnungs- faktor (V5H3)	Nur für die Betriebsart "Radizierend" (Durchfluß). Mit diesem Umrechnungsfaktor wird der aktuelle Durchfluß in eine Gesamtdurchflußmenge umgerechnet. Siehe auch Kapitel 8.4 "Summenzähler". Werkseinstellung 1.0
Zählereinheit (V5H4)	Nur für die Betriebsart "Radizierend" (Durchfluß). Auswahl einer Volumen- oder einer Masseneinheit für den Parameter "Interner Zähler" (V5H0). Die Auswahl dient ausschließlich der Darstellung. Der "Interne Zähler" (V5H0) wird nicht in die gewählte Einheit umgerechnet. Beispiel: V5H0 = 55 %. Nach Wahl der Einheit "I" zeigt V5H0 = 55 I an. Siehe auch Kapitel 8.4 "Summenzähler". Werkseinstellung: %
Identity Number (V6H0)	Auswahl der ID-Number. Optionen: - Profile: Allgemeine ID-Number der PNO (PROFIBUS-Nutzerorganisation): "9700 (hex)". Für die Konfiguration der SPS muß die Gerätestammdatei (GSD) der PNO verwendet werden. - Manufacturer: Geräte-ID-Number für Deltabar S PROFIBUS-PA: "1504 (hex)". Für die Konfiguration der SPS muß die gerätespezifische GSD verwendet werden. Siehe auch Kapitel 3.3 Gerätestamm- und Typ-Dateien (GSD)
Setze Einheit OUT (V6H1)	In folgenden Fällen zeigen der digitale Ausgangswert (OUT Value) und die Vor-Ort-Anzeige bzw. der Parameter "Meßwert" (VOH0) nicht den gleichen Wert an: - wenn Sie eine neue Druckeinheit über den Parameter "Druckeinheit" (VOH9) gewählt haben und/oder - wenn Sie in der Betriebsart "Druck" einen Lageabgleich über Eingabe eines Biasdrucks (VOH5/VOH6) durchgeführt haben. Damit der digitale Ausgangswert in diesen Fällen den gleichen Wert wie die Vor-Ort-Anzeige bzw. VOH0 anzeigt, muß nach dem Abgleich der Parameter "Setze Einheit OUT" im Matrixfeld V6H1 bestätigt werden. Beachten Sie dabei, daß eine Änderung des digitalen Ausgangswertes die Regelung beeinflußen könnte. Siehe auch Kapitel 6.1, Abschnitte "Druckeinheit wählen" und "Lageabgleich – Anzeige (Biasdruck)".
V6H2 OUT Value (V6H2)	Dieser Parameter zeigt den OUT Value des Anlog Input Blocks (digitaler Ausgangswert, der über den Bus übertragen wird) an. Solange das Matrixfeld V6H2 zusätzlich noch UNKNOWN anzeigt, wurde der Parameter "Setze Einheit OUT" im Matrixfeld V6H1 nicht bestätigt.
OUT Status (V6H3)	Dieser Parameter zeigt den Status des OUT Values (digitaler Ausgangswert) an. Für die Beschreibung der Statuscodes, siehe Kapitel 3.4, Abschnitt "Statuscodes".
2. Zykl. Wert (V6H4)	Über dieses Feld kann ein zweiter Parameter ausgewählt werden, der an die SPS zyklisch ausgegeben wird. Optionen: Temperature (V2H6), Sensor Value (V7H8), Trimmed Value (V9H7) und Biased Value (V9H8). Siehe auch Kapitel 3.4, Abbildung. 3.3. Werkseinstellung: Hauptmeßwert (V0H0)
Zuordnung Anzeige (V6H5)	Standardmäßig zeigt die Vor-Ort-Anzeige und das Matrixfeld V0H0 den gleichen Wert an. Der Vor-Ort-Anzeige kann aber auch ein zyklischer Ausgangswert durch eine SPS zur Verfügung gestellt werden. Hierfür ist dieser Parameter auf "eingelesener Wert" (bzw. 1) zu setzen. Siehe auch Kapitel 3.4.

Parameterbeschreibung (Fortsetzung)

Parameterbeschreibung (Fortsetzung)

Parameter	Beschreibung
OUT Value von SPS (V6H6)	Anzeige eines zyklischen OUT Values der SPS. Siehe auch Kapitel 3.4, Abb. 3.3.
Profile version (V6H7)	Anzeige der PROFIBUS-PA-Profile-Version.
Low sensor calibration * (V7H4)	Eingabe des unteren Punkts der Sensorkennlinie bei einer Sensorkalibration. Über diesen Parameter können Sie einem am Gerät anliegenden Referenzdruck einen neuen Wert zuordnen. Der anliegende Druckwert und der für "Low Sensor Cal" eingegebene Wert entspricht dem unteren Punkt der Sensorkennlinie. Siehe auch Kapitel 10.5 "Sensorkalibration". Werkseinstellung: "Untere Meßgrenze" (V7H6)
High sensor calibration * (V7H5)	Eingabe des oberen Punkts der Sensorkennlinie bei einer Sensorkalibration. Über diesen Parameter können Sie einem am Gerät anliegenden Referenzdruck einen neuen Wert zuordnen. Der anliegende Druckwert und der für "High Sensor Cal" eingegebene Wert entspricht dem oberen Punkt der Sensorkennlinie. Siehe auch Kapitel 10.5 "Sensorkalibration". Werkseinstellung: "Obere Meßgrenze" (V7H7)
Untere Meßgrenze (V7H6)	Anzeige der unteren Meßgrenze.
Obere Meßgrenze (V7H7)	Anzeige der oberen Meßgrenze.
Sensordruck (V7H8)	Anzeige des aktuell anliegenden Drucks.
Temperatureinheit (V7H9)	Auswahl einer Temperatureinheit. Optionen: °C, K,°F Bei Auswahl einer neuen Tempertureinheit werden alle temperaturspezifischen Parameter (V2H6, V2H7, V2H8) umgerechnet und mit der neuen Temperatureinheit dargestellt. Werkseinstellung: °C
Geräteadresse (V9H4)	Anzeige der eingestellten Geräteadresse im Bus. Die Adresse ist entweder Vor-Ort über Dip-Schalter oder über Software einstellbar. Siehe auch Kapitel 3.2. Werkseinstellung: 126
Korrektur Nullpunkt * (V9H5)	Über diesen Parameter können Sie für den Anzeigewert der Vor-Ort-Anzeige ("Meßwert" (V0H0)) und für den digitalen Ausgangswert (OUT Value) gleichzeitig einen Abgleich (Nullpunkt-Korrektur) durchführen. Über diesen Parameter können Sie einem am Gerät anliegenden Druck durch Eingabe einen neuen Wert zuordnen. Die Sensorkennlinie wird um diesen Wert verschoben und die Parameter "Low Sensor Cal" (V7H4) und "High Sensor Cal" (V7H5) werden neu berechnet. Siehe Kapitel 6.1, Abschnitt "Nullpunkt-Korrektur". Werkseinstellung: 0.0
Wert Nullpunkt- Korrektur (V9H6)	Anzeige des Wertes, um welchen die Sensorkennlinie bei einer Nullpunkt-Korrektur verschoben wurde. Siehe auch Parameterbeschreibung "Korrektur Nullpunkt" (V9H5) und Kapitel 6.1, Abschnitt "Nullpunkt-Korrektur". Werkseinstellung: 0.0
Druck vor Biaskorrektur (V9H7)	Dieser Parameter zeigt den aktuell anliegenden und gedämpften Druck ohne Biaskorrektur an. Siehe auch Parameterbeschreibung "Setze Biasdruck" (V0H5).
Druck nach Biaskorrektur (V9H8)	Dieser Parameter zeigt den aktuell anliegenden und gedämpften Druck nach der Biaskorrektur an. Siehe auch Parameterbeschreibung "Setze Biasdruck" (V0H5). Berechnung: "Druck nach Biaskorrektur" (V9H8) = "Druck vor Biaskorrektur" (V9H7) – "Setze Biasdruck" (V0H5) In der Betriebsart "Druck" zeigt dieser Parameter und der Parameter "Meßwert" (V0H0) den gleichen Wert an.
Verriegelung (V9H9)	Eingabe eines Codes, um die Bedienmatrix sowie die Vor-Ort-Bedienung zu verriegeln oder zu entriegeln. Bedienung verriegeln: - über den Parameter "Verriegelung" (V9H9): Eingabe einer Zahl von 1 bis 9998, außer den Zahlen 130 und 2457, - über die Vor-Ort-Bedienung: +Z und -S-Taste zweimal gleichzeitig drücken. Bedienung entriegeln: - über den Parameter "Verriegelung" (V9H9): Eingabe von 130 oder 2457, - über die Vor-Ort-Bedienung: -Z und +S-Taste zweimal gleichzeitig drücken. Das Matrixfeld V9H9 ist nur dann editierbar, wenn nicht vorher über die Vor-Ort-Tasten die Bedienung verriegelt wurde. Siehe auch Kapitel 6.3, 7.6 und 8.3.

^{*} Die Elektronik überprüft die Eingabewerte für diese Parameter auf die Einhaltung der Editiergrenzen, siehe hierfür Kapitel 9.4.

Deltabar S PROFIBUS-PA

Parameter	Beschreibung
Meßstellen- bezeichnung (VAH0)	Eingabe eines Textes für die Bezeichnung der Meßstelle (bis zu 32 Zeichen ASCII).
Anwendertext (VAH1)	Eingabe eines Textes für zusätzliche Informationen (bis zu 32 Zeichen ASCII).
Serien-Nr. Gerät (VAH2)	Anzeige der Serien-Nr. des Gerätes.
Serien-Nr. Sensor (VAH3)	Anzeige der Serien-Nr. des Sensors.
Prozeßanschluß P+ (VAH4)	Auswahl und Anzeige des Prozeßanschlußwerkstoffes der Plus-Seite. Optionen: Stahl, 304 rostfrei, 316 rostfrei, Hastelloy C, Monel, Tantal, Titan, PTFE (Teflon), 316L rostfrei, PVC, Inconel, ECTFE und spezial (für Sonderausführung)
Prozeßanschluß P- (VAH5)	Auswahl und Anzeige des Prozeßanschlußwerkstoffes der Minus-Seite. Optionen: siehe Parameter "Prozeßanschluß" (VAH4)
Dichtung (VAH6)	Auswahl und Anzeige des Dichtungswerkstoffes. Optionen: FPM Viton, NBR, EPDM, Urethan, IIR, Kalrez, FPM Viton für Sauerstoffanwendungen, CR, MVQ und spezial (für Sonderausführung)
Prozeßmembran (VAH7)	Auswahl und Anzeige des Membranwerkstoffes. Optionen: 304 rostfrei, 316 rostfrei, Hastelloy C, Monel, Tantal, Titan, PTFE (Teflon), Keramik, 316L rostfrei, Inconel, spezial (für Sonderausführung)
Füllflüssigkeit (VAH8)	Auswahl und Anzeige der Ölfüllung. Optionen: Silikonöl, Pflanzenöl, Glyzerin, Inertöl, HT Öl (Hochtemperatur-Öl), spezial (für Sonderausführung)
Geräteprofil (VAH9)	Über dieses Matrixfeld wechseln Sie zwischen den verschiedenen Blöcken: Standard (E+H-Matrix), Physical Block, Press Block und Al Transmitter (Analog Input Block).

Parameterbeschreibung (Fortsetzung)

Deltabar S PROFIBUS-PA Stichwortverzeichnis

Stichwortverzeichnis

A	F
Abmessungen Deltabar S	Fehlercodes
Anzeigemodul	Gehäuse ausrichten
В	
Bedienelemente 32 Bedienung 5, 32 - 33 Bedienung mit Commuwin II 33 Bedienung Vor-Ort 32 Bestimmungsgemäße Verwendung 5 Betriebsartanzeige 67 Blockmodel 21 Buskabel 16	H Hilfsenergie
	Inbetriebnahme
D	Differenzdruckmessung
Dämpfung	Inbetriebnahme der Meßstelle, Durchflußmessung
Dichtekorrektur53Dichtung bei Flanschmontage14Differenzdruckmessung35, 44 - 50Dreifach-Ventilblock34Druckeinheit wählen45, 52, 62Druckmittler, Montage14Durchflußmessung41 - 43, 61 - 71	Inbetriebnahme der Meßstelle, Füllstandmessung
	K
E	Keramiksensor8Konfiguration22
Editiergrenzen	L
Elektrischer Anschluß	Lageabgleich, Anzeige (Biasdruck)

M	Т
M12 Stecker	Technische Daten
Meßumformer auswechseln	U Umrechnungsfaktor
N	v
Nullpunkt-Korrektur 47	Verriegelung
0	W
OUT Value (digitaler Ausgangswert)	Warnung
	Z
Parameterbeschreibung	Zähleinheit 68 Zählermodus 68 Zyklischer Datenaustausch 21
R	
Reparatur	
S	
Schleichmengenunterdrückung 65 Sensorkalibration 84 Sensormodul wechseln 82 Sicherheitshinweise 5 Sicherheitsrelevante Hinweise 6 Simulation 75 Slot/Index Tabelle 25 Störung 72 Störungsbeseitigung 72 - 74 Summenzähler 67 - 70	

Europe

Austria

Endress+Hauser Ges.m.b.H. Tel. (01) 88056-0, Fax (01) 88056-335

Belarus

Belorgsintez Minsk

Tel. (017) 2 508473, Fax (017) 2 508583

Belgium / Luxembourg

Endress+Hauser N.V.

Tel. (02) 248 06 00, Fax (02) 248 05 53

Bulgaria Intertech-Automation Sofia

Tel. (02) 9627152, Fax (02) 9621471

☐ Endress+Hauser GmbH+Co. Zagreb Tel. (01) 6637785, Fax (01) 6637823

Cyprus I+G Electrical Services Co. Ltd. Tel. (02) 48 47 88, Fax (02) 48 46 90

Czech Republic

Endress+Hauser Czech s.r.o.
Praha Tel. (02) 6678 42 00, Fax (026) 6678 41 79

Denmark
☐ Endress+Hauser A/S
Søborg
Tel. (70) 131132, Fax (70) 132133

Estonia

Elvi-Aqua Tartu Tel. (7) 44 16 38, Fax (7) 44 15 82

Finland
☐ Metso Endress+Hauser Oy
Helsinki
Tel. (204) 831 60, Fax (204) 831 61

France
☐ Endress+Hauser S.A.
Huningue
Tel. (389) 696768, Fax (389) 694802

Germany
□ Endress+Hauser
Messtechnik GmbH+Co. KG Weil am Rhein Tel. (07621) 975-01, Fax (07621) 975-555

Great Britain
☐ Endress+Hauser Ltd.
Manchester
Tel. (01 61) 2865000, Fax (01 61) 9981841

I & G Building Services Automation S.A. Athens Tel. (01) 9241500, Fax (01) 9221714

Hungary

☐ Endress+Hauser Magyarország
Budapest
Tel. (01) 4120421, Fax (01) 4120424

Iceland Sindra-Stál hf

Reykjavik Tel. 5750000, Fax 5750010

Ireland

Flomeaco Endress+Hauser Ltd. Clane Tel. (045) 868615, Fax (045) 868182

Italy
☐ Endress+Hauser S.p.A. Cernusco s/N Milano Tel. (02) 921 92-1, Fax (02) 921 92-362

Latvia Elekoms Ltd.

Riga Tel. (07) 336444, Fax (07) 312894

Lithuania UAB "Agava"

Kaunas Tel. (03) 7202410, Fax (03) 7207414

Netherlands

☐ Endress+Hauser B.V. Tel. (035) 6958611, Fax (035) 6958825

Norway
☐ Endress+Hauser A/S Lierskogen Tel. (032) 859850, Fax (032) 859851

Poland
☐ Endress+Hauser Polska Sp. z o.o.
Wroclaw
Tel. (071) 7803700, Fax (071) 7803700

Portugal

☐ Endress+Hauser Lda.
Cacem
Tel. (219) 4267290 Fax (219) 4267299

Romania

Romconseng S.R.L. Bucharest Tel. (01) 4101634, Fax (01) 4112501

☐ Endress+Hauser GmbH+Co Moscow Tel. (095) 1587564, Fax (095) 7846391

Slovak Republic Transcom Technik s.r.o. Bratislava Tel. (2) 44 88 86 90, Fax (2) 44 88 71 12

Slovenia

Endress+Hauser D.O.O.

Ljubljana Tel. (01) 5192217, Fax (01) 5192298

Spain

Endress+Hauser S.A. ☐ Endress+⊓aucc. Sant Just Desvern Tel. (93) 480 33 66, Fax (93) 473 38 39

☐ Endress+Hauser AB Sollentuna

Tel. (08) 55 51 16 00, Fax (08) 55 51 16 55

Switzerland

□ Endress+Hauser Metso AG
Reinach/BL 1 Tel. (061) 7 15 75 75, Fax (061) 7 11 16 50

Turkey Intek Endüstriyel Ölcü ve Levent/Istanbul Tel. (0212) 2751355, Fax (0212) 2662775

Ukraine Photonika GmbH

Kiev Tel. (44) 268 8102, Fax (44) 269 0805

Yugoslavia Rep. Meris d.o.o.

Beograd Tel. (11) 44412966, Fax (11) 3085778

Africa

Algeria

Symes Systemes et mesures Annaba Tel. (38) 883003, Fax (38) 883002

Egypt Anasia Egypt For Trading S.A.E. Heliopolis/Cairo Tel. (02) 2684159, Fax (02) 2684169

Morocco Oussama S.A.

Casablanca Tel. (02) 22241338, Fax (02) 2402657

South Africa ☐ Endress+Hauser Pty. Ltd. Sandton Tel. (011) 2628000, Fax (011) 2628062

Tunisia Controle, Maintenance et Regulation Tel. (01) 79 30 77, Fax (01) 78 85 95

America

Argentina

Endress+Hauser Argentina S.A. ☐ Endress+Hauser Argentina 5..... Buenos Aires Tel. (11) 45227970, Fax (11) 45227909

Bolivia Tritec S.R.L. Cochaba

Tel. (04) 4256993, Fax (04) 4250981

☐ Samson Endress+Hauser Ltda Sao Paulo Tel. (011) 50313455, Fax (011) 50313067

Canada
□ Endress+Hauser Ltd. Burlington, Ontario Tel. (905) 681 92 92, Fax (905) 681 94 44

Chile
☐ Endress+Hauser Chile Ltd Santiago Tel. (02) 321-3009, Fax (02) 321-3025

Colombia Colsein Ltda

Bogota D.C. Tel. (01) 2367659, Fax (01) 6104186

Costa Rica EURO-TEC S.A.

San Jose Tel. 2202808, Fax 2961542

Ecuador Insetec Cia. Ltda. Quito Tel. (02) 226 91 48, Fax (02) 246 18 33

Automatizacion Y Control Industrial S A Ciudad de Guatemala, C.A. Tel. (03) 345985, Fax (03) 327431

☐ Endress+Hauser S A de C V Mexico, D.F Tel. (5) 55568-2407, Fax (5) 55568-7459

Paraguay Incoel S.R.L.

Asuncion Tel. (021) 213989, Fax (021) 226583

Peru Process Control S.A.

Tel. (2) 610515, Fax (2) 612978

USA
☐ Endress+Hauser Inc.
Greenwood, Indiana
Tel. (317) 535-7138, Fax (317) 535-8498

Venezuela Controval C.A.

Caracas Tel. (02) 944 09 66, Fax (02) 944 45 54

Asia

Azerbaijan Modcon Systems

Baku Tel. (12) 929859, Fax (12) 929859

China
☐ Endress+Hauser Shanghai
Instrumentation Co. Ltd. Shanghai Tel. (021) 54902300, Fax (021) 54902303

☐ Endress+Hauser Beijin Instrumentation Co. Ltd.

Beijing Tel. (010) 65882468, Fax: (010) 65881725

Hong Kong
☐ Endress+Hauser H.K. Ltd. Hong Kong Tel. 85225283120, Fax 85228654171

India
☐ Endress+Hauser (India) Pvt. Ltd.
Mumbai
Tel. (022) 8521458, Fax (022) 8521927

Indonesia PT Grama Bazita Jakarta Tel. (21) 7955083, Fax (21) 7975089

Japan

☐ Sakura Endress Co. Ltd. Tokyo Tel. (0422) 540611, Fax (0422) 550275

Malavsia

☐ Endress+Hauser (M) Sdn. Bhd. Shah Alam, Selangor Darul Ehsan Tel. (03) 78464848, Fax (03) 78468800

Speedy Automation Tel. (021) 772 29 53, Fax (021) 773 68 84

Philippines

Endress+Hauser Inc. Pasig City, Metro Manila Tel. (2) 6381871, Fax (2) 6388042

Singapore
☐ Endress+Hauser (S.E.A.) Pte., Ltd.
Singapore
Tel. (65) 668222, Fax (65) 666848

South Korea

Endress+Hauser (Korea) Co., Ltd. Seoul Tel. (02) 6587200, Fax (02) 6592838

Taiwan Kingjarl Corporation

Taipei Tel. (02) 27 18 39 38, Fax (02) 27 13 41 90

Thailand

☐ Endress+Hauser Ltd. Bangkok Tel. (2) 9967811-20, Fax (2) 9967810

Uzbekistan Im Mexatronoka EST

Tashkent Tel. (71) 1167316, Fax (71) 1167316

Vietnam Tan Viet Bao Co. Ltd. Ho Chi Minh City Tel. (08) 8335225, Fax (08) 8335227

Iran PATSA Industy

Tehran Tel. (021) 8726869, Fax(021) 8747761

Instrumetrics Industrial Control Ltd. Netanya Tel. (09) 8357090, Fax (09) 8350619

Jordan A.P. Parpas Engineering S.A. Amman Tel. (06) 5539283, Fax (06) 5539205

Kingdom of Saudi Arabia Anasia Ind. Agencies

Jeddah Tel. (02) 6710014, Fax (02) 6725929

Lebanon Network Engineering

Jbeil Tel. (3) 94 40 80, Fax (9) 54 80 38

Sultanate of Oman Mustafa Sultan Science & Industry Co. L.L.C. Ruwi Tel. 60 20 09, Fax 60 70 66

United Arab Emirates

Dubai Tel. (04) 2653651, Fax (04) 2653264

Australia + New Zealand

Australia U Endress+Hauser PTY. Ltd.
Sydney
Tel. (02) 88777000, Fax (02) 88777099

New Zealand EMC Industrial Group Limited Tel. (09) 4155110, Fax (09) 4155115

All other countries

☐ Endress+Hauser GmbH+Co.KG

Instruments International Weil am Rhein Germany Tel. (07621) 975-02, Fax (07621) 975-345

http://www.endress.com

Endress + Hauser The Power of Know How

☐ Members of the Endress+Hauser group

05 01/PT

